Issues

 / 

1986

 / 

October

  

Reviews of topical problems


Dimensionalities and other geometric critical exponents in percolation theory

A review is given of the studies of the dimensionality characteristics of percolation clusters. The purely geometric nature of a percolation phase transition and the great variety of the quantities exhibiting critical behavior make this geometric approach both informative and useful. In addition to the fractal dimensionality of a cluster and its subsets (such as the backbone, hull, and other dimensionalities), it is necessary to introduce additional characteristics. For example, the maximum velocity of propagation of excitations is determined by the chemical dimensionality of a cluster, and the critical behavior of the conductivity, diffusion coefficient, etc., is determined by spectral (or other related to it) dimensionalities. Scaling relationships between different dimensionalities, as well as relationships between dimensionalities and conventional critical exponents are discussed.

Fulltext pdf (959 KB)
Fulltext is also available at DOI: 10.1070/PU1986v029n10ABEH003526
PACS: 64.60.Ak, 64.60.Fr (all)
DOI: 10.1070/PU1986v029n10ABEH003526
URL: https://ufn.ru/en/articles/1986/10/b/
Citation: Sokolov I M "Dimensionalities and other geometric critical exponents in percolation theory" Sov. Phys. Usp. 29 924–945 (1986)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Соколов И М «Размерности и другие геометрические критические показатели в теории протекания» УФН 150 221–255 (1986); DOI: 10.3367/UFNr.0150.198610b.0221

Cited by (145) Similar articles (20) ↓

  1. B.I. Shklovskii, A.L. Éfros “Percolation theory and conductivity of strongly inhomogeneous mediaSov. Phys. Usp. 18 845–862 (1975)
  2. B.M. Smirnov “Fractal clustersSov. Phys. Usp. 29 481–505 (1986)
  3. L.M. Zelenyi, A.V. Milovanov “Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamicsPhys. Usp. 47 749–788 (2004)
  4. A.I. Olemskoi, I.A. Sklyar “Evolution of the defect structure of a solid during plastic deformationSov. Phys. Usp. 35 (6) 455–480 (1992)
  5. V.V. Zosimov, L.M. Lyamshev “Fractals in wave processesPhys. Usp. 38 347–384 (1995)
  6. A.I. Olemskoi, A.Ya. Flat “Application of fractals in condensed-matter physicsPhys. Usp. 36 (12) 1087–1128 (1993)
  7. Ya.B. Zel’dovich, S.A. Molchanov et alIntermittency in random mediaSov. Phys. Usp. 30 353–369 (1987)
  8. A.S. Mikhailov, I.V. Uporov “Critical phenomena in media with breeding, decay, and diffusionSov. Phys. Usp. 27 695–714 (1984)
  9. A.A. Likal’ter “Gaseous metalsSov. Phys. Usp. 35 (7) 591–605 (1992)
  10. V.I. Alkhimov “The self-avoiding walk problemSov. Phys. Usp. 34 (9) 804–816 (1991)
  11. V.I. Alkhimov “Excluded volume effect in statistics of self-avoiding walksPhys. Usp. 37 527–561 (1994)
  12. G.A. Smolenskii, R.V. Pisarev, I.G. Sinii “Birefringence of light in magnetically ordered crystalsSov. Phys. Usp. 18 410–429 (1975)
  13. G.M. Zaslavskii, B.V. Chirikov “Stochastic instability of non-linear oscillationsSov. Phys. Usp. 14 549–568 (1972)
  14. M.A. Anisimov “Investigations of critical phenomena in liquidsSov. Phys. Usp. 17 722–744 (1975)
  15. R. Folk, Yu. Holovatch, T. Yavorskii “Critical exponents of a three-dimensional weakly diluted quenched Ising modelPhys. Usp. 46 169–191 (2003)
  16. E.Z. Meilikhov “Structural features, critical currents and current-voltage characteristics of high temperature superconducting ceramicsPhys. Usp. 36 (3) 129–151 (1993)
  17. V.K. Vanag “Study of spatially extended dynamical systems using probabilistic cellular automataPhys. Usp. 42 413–434 (1999)
  18. M.A. Anisimov, E.E. Gorodetskii, V.M. Zaprudskii “Phase transitions with coupled order parametersSov. Phys. Usp. 24 57–75 (1981)
  19. V.G. Boiko, Kh.I. Mogel’ et alFeatures of metastable states in liquid-vapor phase transitionsSov. Phys. Usp. 34 (2) 141–159 (1991)
  20. Ya.B. Zel’dovich, A.L. Buchachenko, E.L. Frankevich “Magnetic-spin effects in chemistry and molecular physicsSov. Phys. Usp. 31 385–408 (1988)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions