Issues

 / 

1986

 / 

January

  

The twenty-fifth anniversary of the laser


Laser-induced damage in solids

,
Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russian Federation

The current state of studies of laser-induced damage (l.i.d.) in dielectrics and semiconductors in the wavelength range from the infrared to the ultraviolet, and pulse lengths in the range 10$^{-3}$--10$^{-12}$ s, is discussed. Experimental methods used in l.i.d. studies are presented. The influence of nonlinear effects, such as self-focusing, self-defocusing, and stimulated scattering, is also discussed. Principal l.i.d. mechanisms are examined, including the heating of absorbing inclusions and defects (extrinsic mechanism) and collisional and multiphoton ionization (intrinsic processes). Statistical aspects of l.i.d. due to the probabilistic nature of the entry of absorbing defects into the interaction region and the creation of seed electrons are analyzed. The nature of the accumulation effect in l.i.d. under multiple-pulse illumination is examined. Experimental results are reported on l.i.d. in wide-gap dielectrics by infrared, visible, and ultraviolet radiation, and in semiconductors by infrared radiation. Absorbing defects play a dominant part in the damage produced in most real optical materials. Data confirming the avalanche l.i.d. mechanism in high-purity crystals are reproduced.

Fulltext pdf (800 KB)
Fulltext is also available at DOI: 10.1070/PU1986v029n01ABEH003117
PACS: 61.80.Ba, 61.82.Fk, 61.82.Ms (all)
DOI: 10.1070/PU1986v029n01ABEH003117
URL: https://ufn.ru/en/articles/1986/1/h/
Citation: Manenkov A A, Prokhorov A M "Laser-induced damage in solids" Sov. Phys. Usp. 29 104–122 (1986)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Маненков А А, Прохоров А М «Лазерное разрушение прозрачных твердых тел» УФН 148 179–211 (1986); DOI: 10.3367/UFNr.0148.198601h.0179

References (93) Cited by (86) ↓ Similar articles (5)

  1. Kostyukova N, Erushin E et al Photonics 11 281 (2024)
  2. Hadjichristov G B, Stefanov I L Polymer Testing 133 108401 (2024)
  3. Zotov K  V, Tereshchenko N  V et al Bull. Lebedev Phys. Inst. 51 S51 (2024)
  4. Modaresialam M, Granchi N et al Opt. Express 32 12967 (2024)
  5. Pustovalov V K 7 (1) (2024)
  6. Golovin Yu I, Samodurov A A et al Meas Tech 66 36 (2023)
  7. Xu M, Liu F et al Opt. Mater. Express 13 2925 (2023)
  8. Gavrishchuk E M, Kurashkin S V et al Appl. Phys. B 129 (1) (2023)
  9. Golovin Yu I, Samodurov A A et al Jour (1) 36 (2023)
  10. Chen Z, Tian Y et al Crystals 13 571 (2023)
  11. Yudin N Yu N, Dyomin V et al Photonics 10 1364 (2023)
  12. Yudin N, Antipov O et al Ceramics 5 459 (2022)
  13. Yudin N, Antipov O et al Crystals 12 652 (2022)
  14. Li T, Hu J, Ji X Optics Communications 507 127649 (2022)
  15. Li F, Dlott D D 131 (7) (2022)
  16. Jahncke C L, Zhang W et al J. Chem. Educ. 99 3233 (2022)
  17. Xu M, Liu B et al Light Sci Appl 11 (1) (2022)
  18. Golovin Yu I, Tyurin A I et al J Eng Phys Thermophy 95 266 (2022)
  19. Aloyan G A, Kovalenko N V et al Acoust. Phys. 68 427 (2022)
  20. Vlasenko O I Optoelektron. Napìvprovìd. Teh. 57 43 (2022)
  21. Yudin N N, Antipov O L et al Quantum Electron. 51 306 (2021)
  22. Shubnyy A G, Zhigarkov V S et al Quantum Electron. 51 8 (2021)
  23. Coker Z N, Liang X-X et al Photon. Res. 9 416 (2021)
  24. Boyd R W Nonlinear Optics (2020) p. 523
  25. Perlin E Yu, Ivanov A V, Popov A A Opt. Spectrosc. 128 1983 (2020)
  26. Mkrtychev O V, Shemanin V G J. Phys.: Conf. Ser. 1147 012073 (2019)
  27. Mkrtychev O, Markovich D M et al EPJ Web Conf. 196 00047 (2019)
  28. Zhokhov P A, Zheltikov A M Sci Rep 8 (1) (2018)
  29. Miroshnichenko A E, Tribelsky M I Phys. Rev. Lett. 120 (3) (2018)
  30. Shibkov A A, Zolotov A E et al Phys. Solid State 60 1674 (2018)
  31. Privalov V E, Shemanin V G, Mkrtychev O V Meas Tech 61 694 (2018)
  32. Mkrtychev O V (AIP Conference Proceedings) Vol. 2053 (2018) p. 040062
  33. Zhou L, Jiang Y et al Applied Surface Science 428 322 (2018)
  34. Shemanin V G, Mkrtychev O V Tech. Phys. 63 623 (2018)
  35. Zapf M, Ronning C, Röder R 110 (17) (2017)
  36. Rethfeld B, Ivanov D S et al J. Phys. D: Appl. Phys. 50 193001 (2017)
  37. Zheltikov A M Uspekhi Fizicheskikh Nauk 187 1169 (2017)
  38. Brant Ja A, Clark D J et al Inorg. Chem. 54 2809 (2015)
  39. Komolov V L Lith. J. Phys. 54 11 (2014)
  40. Yang Ch, Mei X, Wang W Radiation Effects And Defects In Solids 169 194 (2014)
  41. Shcheblanov N S, Itina T E Appl. Phys. A 110 579 (2013)
  42. Li L, Xiang X et al Optik 124 1637 (2013)
  43. Gribin S V, Spesivtsev B I Tech. Phys. 57 649 (2012)
  44. Yan X-Q, Liu Zh-B et al J. Opt. Soc. Am. B 29 2721 (2012)
  45. Shcheblanov N S, Silaeva E P, Itina T E Applied Surface Science 258 9417 (2012)
  46. Nikiforov A M, Epifanov A S, Garnov S V J. Exp. Theor. Phys. 112 160 (2011)
  47. Kozyrev A A, Gorin D A et al Nanotechnol Russia 6 335 (2011)
  48. Tribelsky M I, Miroshnichenko A E et al Phys. Rev. X 1 (2) (2011)
  49. Medvedev N, Rethfeld B 108 (10) (2010)
  50. Medvedev N, Rethfeld B New J. Phys. 12 073037 (2010)
  51. Bykovsky N E, Senatsky Yu V Laser Phys. 20 478 (2010)
  52. Basiev T T, Baumer V N et al Crystallogr. Rep. 54 697 (2009)
  53. Dmitriev D I, Ivanova I V et al J. Opt. Technol. 76 546 (2009)
  54. Medvedev N, Rethfeld B Europhys. Lett. 88 55001 (2009)
  55. Boyd R W Nonlinear Optics (2008) p. 543
  56. Baidullaeva A, Veleshchuk V P et al Semiconductors 42 281 (2008)
  57. Rethfeld B Phys. Rev. B 73 (3) (2006)
  58. Reif Ju, Costache F Advances In Atomic, Molecular, And Optical Physics Vol. 53 (2006) p. 227
  59. Bagayev S, Krokhin O, Manenkov † Alexander Journal Of Modern Optics 52 1657 (2005)
  60. Bityurin N Annu. Rep. Prog. Chem., Sect. C 101 216 (2005)
  61. Rethfeld B Phys. Rev. Lett. 92 (18) (2004)
  62. Bonneau F, Combis P et al Appl. Phys. B 78 447 (2004)
  63. Karpenko S V, Temrokov A I Opt. Spectrosc. 94 389 (2003)
  64. Boyd R W Nonlinear Optics (2003) p. 515
  65. Karpenko S V, Savintsev A P, Temrokov A I Dokl. Phys. 48 5 (2003)
  66. Shevchenko V V Proceedings of LFNM 2002. 4th International Workshop on Laser and Fiber-Optical Networks Modeling (IEEE Cat. No.02EX549), (2002) p. 84
  67. Kaiser A, Rethfeld B et al Phys. Rev. B 61 11437 (2000)
  68. Strekalov V N Tech. Phys. Lett. 26 1081 (2000)
  69. Perry M D, Stuart B C et al 85 6803 (1999)
  70. Kamensky V A, Scripachev I V et al Appl. Opt. 37 5596 (1998)
  71. Mirzoev F Kh, Panchenko V Ya, Shelepin L A Uspekhi Fizicheskikh Nauk 166 3 (1996)
  72. Oraevsky A A, Da Silva L B et al IEEE J. Select. Topics Quantum Electron. 2 801 (1996)
  73. Stuart B C, Feit M D et al J. Opt. Soc. Am. B 13 459 (1996)
  74. Stuart B C, Feit M D et al Phys. Rev. B 53 1749 (1996)
  75. Stuart B C, Feit M D et al Phys. Rev. Lett. 74 2248 (1995)
  76. Khoo G S, Ong C K Phys. Rev. B 47 9346 (1993)
  77. Leonets V A Strength Mater 25 307 (1993)
  78. Barabanov V S, Morozov N V et al J Russ Laser Res 14 294 (1993)
  79. Geiler H D Nuclear Instruments And Methods In Physics Research Section B: Beam Interactions With Materials And Atoms 65 9 (1992)
  80. Hattori K, Okano A et al Phys. Rev. B 45 8424 (1992)
  81. Manenkov AA, Nechitailo VS Laser-Induced Damage in Optical Materials: 1990 (1991) p. 392
  82. Kerr N C, Clark S E, Emmony D C J. Phys. D: Appl. Phys. 23 192 (1990)
  83. Glauberman G Ya, Pilipetskiĭ N F et al Sov. J. Quantum Electron. 19 673 (1989)
  84. Ursu I, Nistor L C et al Appl. Phys. A 48 451 (1989)
  85. Bezrodnyi V I, Bondar M V et al J Appl Spectrosc 50 441 (1989)
  86. Garnov SV, Epifanov AS et al Laser Induced Damage in Optical Materials: 1987 (1988) p. 68

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions