Issues

 / 

1986

 / 

January

  

The twenty-fifth anniversary of the laser


Laser-induced damage in solids

,
Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russian Federation

The current state of studies of laser-induced damage (l.i.d.) in dielectrics and semiconductors in the wavelength range from the infrared to the ultraviolet, and pulse lengths in the range 10$^{-3}$--10$^{-12}$ s, is discussed. Experimental methods used in l.i.d. studies are presented. The influence of nonlinear effects, such as self-focusing, self-defocusing, and stimulated scattering, is also discussed. Principal l.i.d. mechanisms are examined, including the heating of absorbing inclusions and defects (extrinsic mechanism) and collisional and multiphoton ionization (intrinsic processes). Statistical aspects of l.i.d. due to the probabilistic nature of the entry of absorbing defects into the interaction region and the creation of seed electrons are analyzed. The nature of the accumulation effect in l.i.d. under multiple-pulse illumination is examined. Experimental results are reported on l.i.d. in wide-gap dielectrics by infrared, visible, and ultraviolet radiation, and in semiconductors by infrared radiation. Absorbing defects play a dominant part in the damage produced in most real optical materials. Data confirming the avalanche l.i.d. mechanism in high-purity crystals are reproduced.

Fulltext pdf (800 KB)
Fulltext is also available at DOI: 10.1070/PU1986v029n01ABEH003117
PACS: 61.80.Ba, 61.82.Fk, 61.82.Ms (all)
DOI: 10.1070/PU1986v029n01ABEH003117
URL: https://ufn.ru/en/articles/1986/1/h/
Citation: Manenkov A A, Prokhorov A M "Laser-induced damage in solids" Sov. Phys. Usp. 29 104–122 (1986)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Маненков А А, Прохоров А М «Лазерное разрушение прозрачных твердых тел» УФН 148 179–211 (1986); DOI: 10.3367/UFNr.0148.198601h.0179

References (93) Cited by (87) ↓ Similar articles (5)

  1. Yu J, Yang Q et al Optics & Laser Technology 180 111528 (2025)
  2. Zotov K  V, Tereshchenko N  V et al Bull. Lebedev Phys. Inst. 51 S51 (2024)
  3. Pustovalov V K 7 (1) (2024)
  4. Kostyukova N, Erushin E et al Photonics 11 281 (2024)
  5. Modaresialam M, Granchi N et al Opt. Express 32 12967 (2024)
  6. Hadjichristov G B, Stefanov I L Polymer Testing 133 108401 (2024)
  7. Gavrishchuk E M, Kurashkin S V et al Appl. Phys. B 129 (1) (2023)
  8. Golovin Yu I, Samodurov A A et al Meas Tech 66 36 (2023)
  9. Xu M, Liu F et al Opt. Mater. Express 13 2925 (2023)
  10. Chen Z, Tian Y et al Crystals 13 571 (2023)
  11. Yudin N Yu N, Dyomin V et al Photonics 10 1364 (2023)
  12. Golovin Yu I, Samodurov A A et al Jour (1) 36 (2023)
  13. Vlasenko O I Optoelektron. Napìvprovìd. Teh. 57 43 (2022)
  14. Yudin N, Antipov O et al Crystals 12 652 (2022)
  15. Li F, Dlott D D 131 (7) (2022)
  16. Xu M, Liu B et al Light Sci Appl 11 (1) (2022)
  17. Li T, Hu J, Ji X Optics Communications 507 127649 (2022)
  18. Golovin Yu I, Tyurin A I et al J Eng Phys Thermophy 95 266 (2022)
  19. Aloyan G A, Kovalenko N V et al Acoust. Phys. 68 427 (2022)
  20. Yudin N, Antipov O et al Ceramics 5 459 (2022)
  21. Jahncke C L, Zhang W et al J. Chem. Educ. 99 3233 (2022)
  22. Coker Z N, Liang X-X et al Photon. Res. 9 416 (2021)
  23. Yudin N N, Antipov O L et al Quantum Electron. 51 306 (2021)
  24. Shubnyy A G, Zhigarkov V S et al Quantum Electron. 51 8 (2021)
  25. Perlin E Yu, Ivanov A V, Popov A A Opt. Spectrosc. 128 1983 (2020)
  26. Boyd R W Nonlinear Optics (2020) p. 523
  27. Mkrtychev O V, Shemanin V G J. Phys.: Conf. Ser. 1147 012073 (2019)
  28. Mkrtychev O, Markovich D M et al EPJ Web Conf. 196 00047 (2019)
  29. Miroshnichenko A E, Tribelsky M I Phys. Rev. Lett. 120 (3) (2018)
  30. Shemanin V G, Mkrtychev O V Tech. Phys. 63 623 (2018)
  31. Zhokhov P A, Zheltikov A M Sci Rep 8 (1) (2018)
  32. Mkrtychev O V (AIP Conference Proceedings) Vol. 2053 (2018) p. 040062
  33. Zhou L, Jiang Y et al Applied Surface Science 428 322 (2018)
  34. Privalov V E, Shemanin V G, Mkrtychev O V Meas Tech 61 694 (2018)
  35. Shibkov A A, Zolotov A E et al Phys. Solid State 60 1674 (2018)
  36. Zheltikov A M Uspekhi Fizicheskikh Nauk 187 1169 (2017) [Zheltikov A M Phys.-Usp. 60 1087 (2017)]
  37. Zapf M, Ronning C, Röder R 110 (17) (2017)
  38. Rethfeld B, Ivanov D S et al J. Phys. D: Appl. Phys. 50 193001 (2017)
  39. Brant Ja A, Clark D J et al Inorg. Chem. 54 2809 (2015)
  40. Yang Ch, Mei X, Wang W Radiation Effects And Defects In Solids 169 194 (2014)
  41. Komolov V L Lith. J. Phys. 54 11 (2014)
  42. Li L, Xiang X et al Optik 124 1637 (2013)
  43. Shcheblanov N S, Itina T E Appl. Phys. A 110 579 (2013)
  44. Shcheblanov N S, Silaeva E P, Itina T E Applied Surface Science 258 9417 (2012)
  45. Gribin S V, Spesivtsev B I Tech. Phys. 57 649 (2012)
  46. Yan X-Q, Liu Zh-B et al J. Opt. Soc. Am. B 29 2721 (2012)
  47. Kozyrev A A, Gorin D A et al Nanotechnol Russia 6 335 (2011)
  48. Nikiforov A M, Epifanov A S, Garnov S V J. Exp. Theor. Phys. 112 160 (2011)
  49. Tribelsky M I, Miroshnichenko A E et al Phys. Rev. X 1 (2) (2011)
  50. Medvedev N, Rethfeld B 108 (10) (2010)
  51. Medvedev N, Rethfeld B New J. Phys. 12 073037 (2010)
  52. Bykovsky N E, Senatsky Yu V Laser Phys. 20 478 (2010)
  53. Medvedev N, Rethfeld B Europhys. Lett. 88 55001 (2009)
  54. Dmitriev D I, Ivanova I V et al J. Opt. Technol. 76 546 (2009)
  55. Basiev T T, Baumer V N et al Crystallogr. Rep. 54 697 (2009)
  56. Boyd R W Nonlinear Optics (2008) p. 543
  57. Baidullaeva A, Veleshchuk V P et al Semiconductors 42 281 (2008)
  58. Rethfeld B Phys. Rev. B 73 (3) (2006)
  59. Reif Ju, Costache F Advances In Atomic, Molecular, And Optical Physics Vol. 53 (2006) p. 227
  60. Bagayev S, Krokhin O, Manenkov † Alexander Journal Of Modern Optics 52 1657 (2005)
  61. Bityurin N Annu. Rep. Prog. Chem., Sect. C 101 216 (2005)
  62. Bonneau F, Combis P et al Appl. Phys. B 78 447 (2004)
  63. Rethfeld B Phys. Rev. Lett. 92 (18) (2004)
  64. Karpenko S V, Temrokov A I Opt. Spectrosc. 94 389 (2003)
  65. Boyd R W Nonlinear Optics (2003) p. 515
  66. Karpenko S V, Savintsev A P, Temrokov A I Dokl. Phys. 48 5 (2003)
  67. Shevchenko V V Proceedings of LFNM 2002. 4th International Workshop on Laser and Fiber-Optical Networks Modeling (IEEE Cat. No.02EX549), (2002) p. 84
  68. Strekalov V N Tech. Phys. Lett. 26 1081 (2000)
  69. Kaiser A, Rethfeld B et al Phys. Rev. B 61 11437 (2000)
  70. Perry M D, Stuart B C et al 85 6803 (1999)
  71. Kamensky V A, Scripachev I V et al Appl. Opt. 37 5596 (1998)
  72. Stuart B C, Feit M D et al Phys. Rev. B 53 1749 (1996)
  73. Stuart B C, Feit M D et al J. Opt. Soc. Am. B 13 459 (1996)
  74. Oraevsky A A, Da Silva L B et al IEEE J. Select. Topics Quantum Electron. 2 801 (1996)
  75. Mirzoev F Kh, Panchenko V Ya, Shelepin L A Uspekhi Fizicheskikh Nauk 166 3 (1996)
  76. Stuart B C, Feit M D et al Phys. Rev. Lett. 74 2248 (1995)
  77. Khoo G S, Ong C K Phys. Rev. B 47 9346 (1993)
  78. Leonets V A Strength Mater 25 307 (1993)
  79. Barabanov V S, Morozov N V et al J Russ Laser Res 14 294 (1993)
  80. Geiler H D Nuclear Instruments And Methods In Physics Research Section B: Beam Interactions With Materials And Atoms 65 9 (1992)
  81. Hattori K, Okano A et al Phys. Rev. B 45 8424 (1992)
  82. Manenkov AA, Nechitailo VS Laser-Induced Damage in Optical Materials: 1990 (1991) p. 392
  83. Kerr N C, Clark S E, Emmony D C J. Phys. D: Appl. Phys. 23 192 (1990)
  84. Ursu I, Nistor L C et al Appl. Phys. A 48 451 (1989)
  85. Bezrodnyi V I, Bondar M V et al J Appl Spectrosc 50 441 (1989)
  86. Glauberman G Ya, Pilipetskiĭ N F et al Sov. J. Quantum Electron. 19 673 (1989)
  87. Garnov SV, Epifanov AS et al Laser Induced Damage in Optical Materials: 1987 (1988) p. 68

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions