Issues

 / 

1984

 / 

September

  

Reviews of topical problems


The eigenvalue spectrum in quantum mechanics and the nonlinearization procedure

A new approach to the eigenvalue problem in quantum mechanics is proposed. This approach is based on three propositions: 1) a perturbation theory which does not require knowledge of the entire eigenvalue spectrum of the unperturbed problem and which uses a ``nonlinearization'' procedure (leaving some latitude in the choice of a zeroth order approximation); 2) a relationship between the perturbation theory and a variational principle, namely that any variational calculation is none other than the first two terms of some nontrivial perturbation theory which, when developed further, can reveal the accuracy of the variational calculations and can refine them by an iterative procedure; 3) ``Dyson's argument'', which serves as a criterion for the ``reasonableness'' of the choice of a zeroth order approximation (the unperturbed problem). The realization of this perturbation theory in a $k$-dimensional space is equivalent to the solution of a $k$-dimensional electrostatic problem with a variable dielectric permittivity. In the one-dimensional case and in cases which reduce to the one-dimensional case, all the corrections are written in quadratures. It is shown that the construction of an ordinary perturbation theory (in which the zeroth order approximation is an exactly solvable problem) within the framework of this perturbation theory is a purely algebraic procedure, which reduces to the solution of some simple recurrence relations. An approximation analogous to the leading logarithmic approximation of quantum field theory is constructed. Some standard problems of quantum mechanics--the anharmonic oscillator, the Zeeman effect, and the Stark effect--are treated as examples. It is shown that this new approach makes it possible to develop systematically a theory for strong coupling and large perturbations.

Fulltext pdf (1.2 MB)
Fulltext is also available at DOI: 10.1070/PU1984v027n09ABEH004155
PACS: 03.65.Fd, 03.65.Ge, 32.60.+i, 31.15.Ne, 31.15.Md (all)
DOI: 10.1070/PU1984v027n09ABEH004155
URL: https://ufn.ru/en/articles/1984/9/b/
Citation: Turbiner A V "The eigenvalue spectrum in quantum mechanics and the nonlinearization procedure" Sov. Phys. Usp. 27 668–694 (1984)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Турбинер А В «Задача о спектре в квантовой механике и процедура „нелинеаризации“» УФН 144 35–78 (1984); DOI: 10.3367/UFNr.0144.198409b.0035

Cited by (103) ↓ Similar articles (20)

  1. Gonzalez D, Chávez-Carlos J et al Phys. Scr. 99 025247 (2024)
  2. Babenko V A, Nesterov A V Nucl. Phys. At. Energy 25 216 (2024)
  3. del Valle J C, Segura L J A, Nader D J Phys. Rev. B 108 (15) (2023)
  4. Olivares-Pilón H, Escobar-Ruiz A M, Molina F M J. Phys. B: At. Mol. Opt. Phys. 56 075002 (2023)
  5. Castaño-Yepes J D, Nader D J, Martín-Ruiz A Phys. Rev. A 107 (3) (2023)
  6. Li Zh, Zhang Ch Applied Mathematics And Computation 414 126671 (2022)
  7. Díaz B, González D et al Phys. Rev. A 105 (6) (2022)
  8. Babenko V A, Petrov N M Mod. Phys. Lett. A 37 (25) (2022)
  9. Nader D J, Turbiner A V, López V J C Journal Of Quantitative Spectroscopy And Radiative Transfer 265 107545 (2021)
  10. Babenko V A, Petrov N M Nucl. Phys. At. Energy 22 127 (2021)
  11. Turbiner A V, Valle J C del J. Phys. A: Math. Theor. 54 295204 (2021)
  12. Turbiner A V, del Valle Juan Carlos Int J Of Quantum Chemistry 121 (19) (2021)
  13. del Valle J C, Turbiner A V Int. J. Mod. Phys. A 36 (29) (2021)
  14. del Valle J C, Turbiner A V Int. J. Mod. Phys. A 35 2050005 (2020)
  15. Panahi H, Najafizade S A, Mohammadkazemi G M Few-Body Syst 61 (1) (2020)
  16. Nader D J, Vieyra J C L, Turbiner A V Phys. Rev. A 100 (1) (2019)
  17. del Valle J C, Turbiner A V Int. J. Mod. Phys. A 34 1950143 (2019)
  18. Gonzalez D, Gutiérrez-Ruiz D, Vergara J D Phys. Rev. E 99 (3) (2019)
  19. Turbiner A V, Vieyra Ju C L, Olivares-Pilón H Annals Of Physics 409 167908 (2019)
  20. Alijah A, López V Ju C et al Journal Of Quantitative Spectroscopy And Radiative Transfer 233 78 (2019)
  21. del Valle J C, Nader D J 59 (10) (2018)
  22. Remez B, Goldstein M Phys. Rev. D 98 (5) (2018)
  23. Galiautdinov A Physics Letters A 382 72 (2018)
  24. Shuryak E, Turbiner A  V Phys. Rev. D 98 (10) (2018)
  25. Nader D J, Alvarez-Jiménez J, Mejía-Díaz H Few-Body Syst 58 (3) (2017)
  26. Quasi-exactly solvable models in quantum mechanics (2017) p. 453
  27. Escobar-Ruiz M  A, Shuryak E, Turbiner A  V Phys. Rev. D 96 (4) (2017)
  28. Vieyra J C L, Turbiner A V Phys. Rev. A 96 (2) (2017)
  29. Turbiner A V Physics Reports 642 1 (2016)
  30. Feranchuk I, Ivanov A et al Lecture Notes In Physics Vol. Non-perturbative Description of Quantum SystemsApplications of OM for One-Dimensional Systems894 Chapter 3 (2015) p. 81
  31. Cobaxin H M, Alijah A et al J. Phys. B: At. Mol. Opt. Phys. 48 045101 (2015)
  32. Traytak S D 140 (22) (2014)
  33. Turbiner A V, Lopez V J C J. Phys. Chem. A 117 10119 (2013)
  34. Turbiner A V, Lopez V J C Phys. Rev. Lett. 111 (16) (2013)
  35. Gonoskov I APM 03 178 (2013)
  36. Katsnelson B, Petnikov V, Lynch Ja Fundamentals of Shallow Water Acoustics Chapter 3 (2012) p. 79
  37. Turbiner A V, Medel C H Int J Of Quantum Chemistry 112 2411 (2012)
  38. Vieyra J C L, Turbiner A V, Cobaxin H M J. Phys. B: At. Mol. Opt. Phys. 44 195101 (2011)
  39. Turbiner A V, Olivares-Pilón H J. Phys. B: At. Mol. Opt. Phys. 44 101002 (2011)
  40. Olivares-Pilón H, Baye D et al J. Phys. B: At. Mol. Opt. Phys. 43 065702 (2010)
  41. Turbiner A V, López V J C, Guevara N L Phys. Rev. A 81 (4) (2010)
  42. Klinger M I Physics Reports 492 111 (2010)
  43. Guevara N L, Harris F E, Turbiner A V Int J Of Quantum Chemistry 109 3036 (2009)
  44. Bressanini D, Morosi G J. Phys. B: At. Mol. Opt. Phys. 41 145001 (2008)
  45. Tichý V, Skála L Collect. Czech. Chem. Commun. 73 1327 (2008)
  46. Turbiner A V Isolated Neutron Stars: From the Surface to the Interior Chapter 35 (2007) p. 267
  47. Turbiner A V, Guevara N L, López V J C Phys. Rev. A 75 (5) (2007)
  48. Turbiner A V, Guevara N L J. Phys. B: At. Mol. Opt. Phys. 40 3249 (2007)
  49. TURBINER A V, LÓPEZ VIEYRA J C Int. J. Mod. Phys. A 22 1605 (2007)
  50. Turbiner A V, Guevara N L Collect. Czech. Chem. Commun. 72 164 (2007)
  51. Turbiner A V Astrophys Space Sci 308 267 (2007)
  52. Turbiner A V, Juan C L V Physics Reports 424 309 (2006)
  53. Turbiner A V, Guevara N L Phys. Rev. A 74 (6) (2006)
  54. Turbiner A Lett Math Phys 74 169 (2005)
  55. Turbiner A V, Vieyra J C L, Guevara N L Phys. Rev. A 72 (2) (2005)
  56. BILLIONNET CLAUDE Int. J. Mod. Phys. A 19 2643 (2004)
  57. Turbiner A V, López V J C Phys. Rev. A 69 (5) (2004)
  58. Tkachuk V M, Fityo T V Physics Letters A 309 351 (2003)
  59. Turbiner A V, López V J C Phys. Rev. A 68 (1) (2003)
  60. Meurice Y J. Phys. A: Math. Gen. 35 8831 (2002)
  61. López V J C, Turbiner A V Phys. Rev. A 66 (2) (2002)
  62. Potekhin A Y, Turbiner A V Phys. Rev. A 63 (6) (2001)
  63. TURBINER ALEXANDER Int. J. Mod. Phys. A 16 1579 (2001)
  64. DOBROVOLSKA I V, TUTIK R S Int. J. Mod. Phys. A 16 2493 (2001)
  65. López V J C, Turbiner A Phys. Rev. A 62 (2) (2000)
  66. Burenin A V, Ryabikin M Yu Opt. Spectrosc. 89 195 (2000)
  67. Dobrovolska I V, Tutik R S J. Phys. A: Math. Gen. 32 563 (1999)
  68. Turbiner A, Lopez J -C, Solis U H Jetp Lett. 69 844 (1999)
  69. Konwent H, Machnikowski P et al J. Phys. A: Math. Gen. 31 7541 (1998)
  70. Matamala-V�squez A Int. J. Quant. Chem. 68 79 (1998)
  71. Dikman S M, Zhilin V M J. Exp. Theor. Phys. 85 528 (1997)
  72. Lopez J C, Hess P, Turbiner A Phys. Rev. A 56 4496 (1997)
  73. Jiménez F, Sierra G Nuclear Physics B 458 640 (1996)
  74. Belov V V, Olive V M, Volkova J L J. Phys. A: Math. Gen. 28 5799 (1995)
  75. Esteve J G, Sierra G Phys. Rev. B 51 8928 (1995)
  76. Belov V V, Olive V M, Volkova J L J. Phys. A: Math. Gen. 28 5811 (1995)
  77. Sorokin I R, Yurchenko S N Russ Phys J 37 522 (1994)
  78. Dickmann S M, Sidel’nikov D I Physics Letters A 187 79 (1994)
  79. Karliner M, Migdal A, Rusakov B Nuclear Physics B 399 514 (1993)
  80. Bender C M, Turbiner A Physics Letters A 173 442 (1993)
  81. Stepanov S S, Tutik R S Theor Math Phys 90 139 (1992)
  82. Turbiner A Physics Letters B 276 95 (1992)
  83. Khvingia N L, Turbiner A V J. Phys. B: At. Mol. Opt. Phys. 25 343 (1992)
  84. Sakhnovsky E G Nuclear Science And Engineering 104 197 (1990)
  85. Burenin A V, Ryabikin M Yu Radiophys Quantum Electron 33 210 (1990)
  86. Kobylinsky N A, Stepanov S S, Tutik R S Z. Phys. C - Particles And Fields 47 469 (1990)
  87. Burenin A V, Ryabikin M Yu Journal Of Molecular Spectroscopy 136 140 (1989)
  88. Arteca G A, Mezey P G 29 119 (1988)
  89. Bagrov V G, Vshivtsev A S, Chekalin V N Soviet Physics Journal 31 420 (1988)
  90. Silverman Je N, Hinze Ju Phys. Rev. A 37 1208 (1988)
  91. Turbiner A V, Ushveridze A G 29 2053 (1988)
  92. Turbiner A V Funct Anal Its Appl 22 163 (1988)
  93. Fedchenia I I J Stat Phys 50 1043 (1988)
  94. Papp E Physics Letters A 132 127 (1988)
  95. Okopińska A Phys. Rev. D 36 1273 (1987)
  96. Ushveridze A G J. Phys. A: Math. Gen. 20 5145 (1987)
  97. Balabanya G O Theor Math Phys 71 418 (1987)
  98. Ostrovsky V N, Telnov D A J. Phys. B: At. Mol. Phys. 20 2397 (1987)
  99. Okopińska A Phys. Rev. D 35 1835 (1987)
  100. Galanin A D At Energy 60 316 (1986)
  101. Sukhatme U P, Lauer B M, Imbo T D Phys. Rev. D 33 1166 (1986)
  102. Vikhnina G V, Pekar V S Theor Math Phys 68 740 (1986)
  103. Kadomtsev M B, Vinitsky S I J. Phys. A: Math. Gen. 18 L689 (1985)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions