Issues

 / 

1982

 / 

May

  

On fifty years of the neutron discovery


Glow discharge in a gas flow

The status of research on glow discharges in a gas flow, used in pumping fast-flow lasers, is reviewed. Systematic study of this discharge began about 10 years ago. This discharge form, according to a number of properties (current flow mechanism, nature of the development of instabilities, etc.), differs considerably from the well-studied glow discharge in tubes. One of the distinguishing features of such a discharge is the negligibly small role of ionization in a large part of the positive column, so that narrow regions near the electrodes contribute most of the positive ions and electrons. Negative ions, which compensate the charge of the positive column, are generated in its volume. The discharge turns out to be weakly inhomogeneous in the direction from the cathode to the anode and the ion currents can form an appreciable part of the total current. These facts have not yet been sufficiently widely discussed in reviews and monographs. In this review, results of experimental investigations of the mechanism of current flow, energy balance, plasmochemical processes, and discharge instabilities are presented, the mathematical models used in their analysis are analyzed, and the possibilities for increasing the stability and efficiency of the discharge in fast-flow lasers are examined.

Fulltext pdf (901 KB)
Fulltext is also available at DOI: 10.1070/PU1982v025n05ABEH004552
PACS: 51.50.+v, 47.20.+m, 52.80.Hc, 42.55.Hq (all)
DOI: 10.1070/PU1982v025n05ABEH004552
URL: https://ufn.ru/en/articles/1982/5/e/
Citation: Velikhov E P, Golubev V S, Pashkin S V "Glow discharge in a gas flow" Sov. Phys. Usp. 25 340–358 (1982)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Велихов Е П, Голубев В С, Пашкин С В «Тлеющий разряд в потоке газа» УФН 137 117–150 (1982); DOI: 10.3367/UFNr.0137.198205e.0117

Cited by (62) ↓

  1. Baldanov B B, Semenov A P, Ranzhurov T V Bull. Russ. Acad. Sci. Phys. 88 597 (2024)
  2. Vysikaylo P I IEEE Trans. Plasma Sci. 1 (2023)
  3. Xie H, Liu N et al Nature 623 964 (2023)
  4. Savkin K P, Oks E M et al Plasma Sources Sci. Technol. 31 015009 (2022)
  5. Emelyanov O, Plotnikov A, Feklistov E 29 (6) (2022)
  6. Zhong H, Shneider M N et al Plasma Sources Sci. Technol. 30 035002 (2021)
  7. (INTERNATIONAL CONFERENCE ON THE METHODS OF AEROPHYSICAL RESEARCH (ICMAR 2020)) Vol. INTERNATIONAL CONFERENCE ON THE METHODS OF AEROPHYSICAL RESEARCH (ICMAR 2020)A missing link of contraction of atmospheric pressure gas discharge plasmaA. E.MedvedevP. A.Pinaev2351 (2021) p. 030081
  8. Zhong H, Shneider M N, Ju Y AIAA Scitech 2021 Forum, (2021)
  9. Baldanov B B, Ranzhurov T V et al Plasma Phys. Rep. 46 110 (2020)
  10. Zhong H, Shneider M N et al AIAA Scitech 2020 Forum, (2020)
  11. Cejas E, Mancinelli B R, Prevosto L Materials 12 2524 (2019)
  12. Funct.Mater. 26 (3) (2019)
  13. Zhong H, Shneider M N et al J. Phys. D: Appl. Phys. 52 484001 (2019)
  14. Medvedev A, Pinaev P, Barnyakov A (AIP Conference Proceedings) Vol. 2098 (2019) p. 020011
  15. Medvedev A, Kabanov A M, Tarasenko V F International Conference on Atomic and Molecular Pulsed Lasers XIII, (2018) p. 56
  16. Shibkov V M, Shibkova L V, Logunov A A Plasma Phys. Rep. 44 754 (2018)
  17. Taran M D, Dyatko N A et al Plasma Sources Sci. Technol. 27 055004 (2018)
  18. Prevosto L, Kelly H, Mancinelli B Plasma Chem Plasma Process 36 973 (2016)
  19. Medvedev A E Eur. Phys. J. D 70 (2) (2016)
  20. Akishev Yu, Karalnik V et al Plasma Sources Sci. Technol. 23 054013 (2014)
  21. Shneider M N, Mokrov M S, Milikh G M 21 (3) (2014)
  22. Vysikaylo P I Surf. Engin. Appl.Electrochem. 49 222 (2013)
  23. Shneider M, Mokrov M, Milikh G 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, (2013)
  24. Shneider M N, Mokrov M S, Milikh G M 19 (3) (2012)
  25. Tang J, Li Sh et al 100 (25) (2012)
  26. Shneider M, Mokrov M, Milikh G 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, (2012)
  27. Akishev Yu, Grushin M et al J. Phys. D: Appl. Phys. 43 215202 (2010)
  28. El-Koramy R A, Yehia A, Omer M 17 (5) (2010)
  29. Kishov M -R G, Magomedgadzhiev Kh I et al Tech. Phys. Lett. 36 302 (2010)
  30. Ershov A P, Kolesnikov E B et al High Temp 47 165 (2009)
  31. Aramyan A R, Galechyan G A Uspekhi Fizicheskikh Nauk 177 1207 (2007) [Aramyan A R, Galechyan G A Phys.-Usp. 50 1147 (2007)]
  32. Fridman A, Gutsol A, Cho Y I Advances In Heat Transfer Vol. Advances in Heat Transfer Volume 40Non-Thermal Atmospheric Pressure Plasma40 (2007) p. 1
  33. Popov N A Plasma Phys. Rep. 32 237 (2006)
  34. Panchenko V Ya, Zavalov Yu N et al Laser Phys. 16 40 (2006)
  35. Georgievskii P Yu, Ershov A P et al High Temp 44 1 (2006)
  36. Buyarov S A, Galushkin M G et al Instrum Exp Tech 48 241 (2005)
  37. Bychkov V L, Grachev L P et al Tech. Phys. 49 833 (2004)
  38. Alfyorov V I Fluid Dyn 39 988 (2004)
  39. Akishev Yu S, Aponin G I et al Plasma Phys. Rep. 30 971 (2004)
  40. Islamov R Sh Phys. Rev. E 64 (4) (2001)
  41. Baranov G A, Smirnov S A Tech. Phys. 44 1305 (1999)
  42. Ivanchenko I A Tech. Phys. 44 1431 (1999)
  43. Baranov G A, Smirnov S A Tech. Phys. 44 1298 (1999)
  44. Baksht F G, Dyuzhev G A et al Tech. Phys. 42 35 (1997)
  45. Paul R Optimierung von HF-Gasentladungen für schnell längsgeströmte CO2-Laser Laser In Der Materialbearbeitung Chapter 11 (1994) p. 132
  46. Sazhin S, Wild P et al J. Phys. D: Appl. Phys. 26 1872 (1993)
  47. Levitan Y S IEEE Trans. Plasma Sci. 21 614 (1993)
  48. Nemchinsky V J. Phys. D: Appl. Phys. 26 643 (1993)
  49. Raizer Yu P, Allen J E Gas Discharge Physics Chapter 14 (1991) p. 415
  50. Raizer Yu P, Allen J E Gas Discharge Physics Chapter 8 (1991) p. 167
  51. Karnyushin V N, Shirokov E I, Shushkov S V Journal Of Engineering Physics 56 669 (1989)
  52. Israfilov Z Kh, Sal’yanov F A Journal Of Engineering Physics 54 560 (1988)
  53. Harvey E C, Tobin R C 64 2861 (1988)
  54. Yunusov R F Journal Of Engineering Physics 54 76 (1988)
  55. Galeev R S, Faizrakhmanov R T J Appl Mech Tech Phys 28 645 (1988)
  56. Biblarz O, Barto J L Springer Proceedings In Physics Vol. Gas Flow and Chemical LasersFluid-Dynamic Effects, Including Turbulence, on a High-Pressure Discharge15 Chapter 5 (1987) p. 34
  57. Azharonok V V, Mel’nikov V V et al J Appl Spectrosc 47 1111 (1987)
  58. Mayerhofer W, Hennig W et al Springer Proceedings In Physics Vol. Gas Flow and Chemical LasersOptimization of Discharge Stability of an e-Beam Sustained Supersonic CO Laser by Optical Diagnostic Measurements15 Chapter 36 (1987) p. 237
  59. Dautov G Yu Journal Of Engineering Physics 53 1434 (1987)
  60. Volchkova G N, Lavrov A V Fluid Dyn 20 929 (1986)
  61. Eletskii A V, Smirnov B M J Russ Laser Res 7 207 (1986)
  62. Miller J D, Chang Je-Sh J. Phys. D: Appl. Phys. 19 565 (1986)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions