Issues

 / 

1980

 / 

June

  

Methodological notes


Bose condensation of moving rotons

 a,  b, c
a Landau Institute for Theoretical Physics, Russian Academy of Sciences, prosp. Akademika Semenova 1A, Chernogolovka, Moscow Region, 142432, Russian Federation
b P.L. Kapitza Institute for Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 117334, Russian Federation
c Dipartimento di Fisica, Università di Trento and BDC Center, Povo, Trento, I-38050, Italy

If the initial roton distribution in helium has a resultant momentum above a certain critical value, it will relax to a state with a Bose condensate of particles with a nonzero momentum. In this state, the velocity of the normal component of the liquid will be equal to the Landau critical velocity.

Fulltext pdf (75 KB)
Fulltext is also available at DOI: 10.1070/PU1980v023n06ABEH004937
PACS: 67.40.Fd
DOI: 10.1070/PU1980v023n06ABEH004937
URL: https://ufn.ru/en/articles/1980/6/d/
Citation: Iordanskii S V, Pitaevskii L P "Bose condensation of moving rotons" Sov. Phys. Usp. 23 317–318 (1980)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Иорданский С В, Питаевский Л П «Бозе-конденсация движущихся ротонов» УФН 131 293–295 (1980); DOI: 10.3367/UFNr.0131.198006f.0293

Cited by (14) Similar articles (11) ↓

  1. V.L. Ginzburg, L.P. Pitaevskii “Quantum Nyquist formula and the applicability ranges of the Callen-Welton formulaSov. Phys. Usp. 30 168–171 (1987)
  2. E.E. Nikitin, L.P. Pitaevskii “Imaginary time and the Landau method of calculating quasiclassical matrix elementsPhys. Usp. 36 (9) 851–853 (1993)
  3. S.I. Blinnikov, L.B. Okun, M.I. Vysotskii “Critical velocities c/sqrt{3} and c/sqrt{2} in the general theory of relativityPhys. Usp. 46 1099–1103 (2003)
  4. V.I. Ritus “Generalization of the k coefficient method in relativity to an arbitrary angle between the velocity of an observer (source) and the direction of the light ray from (to) a faraway source (observer) at restPhys. Usp. 63 601–610 (2020)
  5. N.P. Klepikov “Radiation damping forces and radiation from charged particlesSov. Phys. Usp. 28 506–520 (1985)
  6. I.I. Abbasov, B.M. Bolotovskii, V.A. Davydov “High-frequency asymptotic behavior of radiation spectra of moving charges in classical electrodynamicsSov. Phys. Usp. 29 788–796 (1986)
  7. V.N. Tsytovich “Description of collective processes and fluctuations in classical and quantum plasmasSov. Phys. Usp. 32 911–932 (1989)
  8. B.M. Bolotovskii, A.V. Serov “Special features of motion of particles in an electromagnetic wavePhys. Usp. 46 645–655 (2003)
  9. E.D. Trifonov, S.N. Zagoulaev “On the Bose-Einstein condensate partition function for an ideal gasPhys. Usp. 53 83–90 (2010)
  10. A.S. Dzarakhokhova, N.P. Zaretskii et alIdentity of the mechanisms of Weibel and Alfvén-cyclotron plasma instabilitiesPhys. Usp. 63 611–616 (2020)
  11. V.V. Brazhkin “Why does statistical mechanics 'work' in condensed matter?Phys. Usp. 64 1049–1057 (2021)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions