Issues

 / 

1980

 / 

November

  

Reviews of topical problems


Limits of applicability of the method of geometric optics and related problems

 a,
a Space Research Institute, Russian Academy of Sciences, Profsoyuznaya str. 84/32, Moscow, 117997, Russian Federation

We present on a heuristic basis the universal sufficient conditions for applicability of the method of geometric optics. In formulating the criteria, we make essential use of the concept of the ``Fresnel volume'' of a ray, whose boundary links the first Fresnel zones ``threaded'' on the ray. The fundamental criterion of applicability requires that the parameters of the medium and of the wave should vary little over the transverse section of the Fresnel volume. The second criterion, which stems from the first, requires that rays incident on the same given point should lie mostly outside the Fresnel volume of an adjacent ray. The effectiveness of these criteria has been demonstrated in many problems of electrodynamics and acoustics that allow a solution more precise than the ray solution. On the basis of the presented criteria, one can reveal the regions of inapplicability of the ray method (focal and caustic regions, penumbra regions in diffraction by screens and convex bodies, regions where lateral waves arise, etc.). If we know the dimensions of the regions of inapplicability, we can also solve a number of related problems. The most important of these problems are: the problem of determining the field in the neighborhood of caustics and foci and the problem of analyzing the wave pattern as a whole. The proposed criteria also allow a generalization to three-dimensional quantummechanical problems, while outlining the limits of applicability of the quasiclassical approximation.

Fulltext pdf (1.2 MB)
Fulltext is also available at DOI: 10.1070/PU1980v023n11ABEH005060
PACS: 42.10.Dy
DOI: 10.1070/PU1980v023n11ABEH005060
URL: https://ufn.ru/en/articles/1980/11/c/
Citation: Kravtsov Yu A, Orlov Yu I "Limits of applicability of the method of geometric optics and related problems" Sov. Phys. Usp. 23 750–762 (1980)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Кравцов Ю А, Орлов Ю И «Границы применимости метода геометрической оптики и смежные вопросы» УФН 132 475–496 (1980); DOI: 10.3367/UFNr.0132.198011c.0475

Cited by (46) Similar articles (20) ↓

  1. Yu.A. Kravtsov, Yu.I. Orlov “Caustics, catastrophes, and wave fieldsSov. Phys. Usp. 26 1038–1058 (1983)
  2. V.V. Zheleznyakov, V.V. Kocharovskii, V.V. Kocharovskii “Linear coupling of electromagnetic waves in inhomogeneous weakly-ionized mediaSov. Phys. Usp. 26 877–905 (1983)
  3. Yu.A. Kravtsov, O.N. Naida, A.A. Fuki “Waves in weakly anisotropic 3D inhomogeneous media: quasi-isotropic approximation of geometrical opticsPhys. Usp. 39 129–154 (1996)
  4. Yu.N. Barabanenkov, Yu.A. Kravtsov et alStatus of the theory of propagation of waves in a Randomly inhomogeneous mediumSov. Phys. Usp. 13 551–575 (1971)
  5. M.G. Bulatov, Yu.A. Kravtsov et alPhysical mechanisms of aerospace radar imaging of the oceanPhys. Usp. 46 63–79 (2003)
  6. V.M. Agranovich “Crystal optics of suface polaritons and the properties of surfacesSov. Phys. Usp. 18 99–117 (1975)
  7. N.S. Erokhin, S.S. Moiseev “Problems of the theory of linear and nonlinear transformation of waves in inhomogeneous mediaSov. Phys. Usp. 16 64–81 (1973)
  8. Yu.A. Kravtsov, S.M. Rytov, V.I. Tatarskii “Statistical problems in diffraction theorySov. Phys. Usp. 18 118–130 (1975)
  9. G.V. Rozenberg “The light ray (contribution to the theory of the light field)Sov. Phys. Usp. 20 55–80 (1977)
  10. S.M. Arakelyan, G.A. Lyakhov, Yu.S. Chilingaryan “Nonlinear optics of liquid crystalsSov. Phys. Usp. 23 245–268 (1980)
  11. M.B. Partenskii “Self-consistent electron theory of a metallic surfaceSov. Phys. Usp. 22 330–351 (1979)
  12. V.I. Arnol’d “Singularities, bifurcations, and catastrophesSov. Phys. Usp. 26 1025–1037 (1983)
  13. A.F. Andreev “Interaction of conduction electrons with a Metal surfaceSov. Phys. Usp. 14 609–615 (1972)
  14. V.P. Kandidov “Monte Carlo method in nonlinear statistical opticsPhys. Usp. 39 1243–1272 (1996)
  15. F.V. Bunkin, Yu.A. Kravtsov, G.A. Lyakhov “Acoustic analogues of nonlinear-optics phenomenaSov. Phys. Usp. 29 607–619 (1986)
  16. D.N. Klyshko “Berry geometric phase in oscillatory processesPhys. Usp. 36 (11) 1005–1019 (1993)
  17. Yu.A. Kravtsov “Randomness, determinateness, and predictabilitySov. Phys. Usp. 32 434–449 (1989)
  18. V.L. Ginzburg, A.A. Sobyanin “Superfluidity of helium II near the λ pointSov. Phys. Usp. 31 289–299 (1988)
  19. S.N. Gurbatov, A.I. Saichev, I.G. Yakushkin “Nonlinear waves and one-dimensional turbulence in nondispersive mediaSov. Phys. Usp. 26 857–876 (1983)
  20. V.I. Pavlov, A.I. Sukhorukov “Emission of acoustic transition wavesSov. Phys. Usp. 28 784–802 (1985)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions