Issues

 / 

1976

 / 

March

  

Methodological notes


Expressions for the energy density and evolved heat in the electrodynamics of a dispersive and absorptive medium

 a,  b
a Osipyan Institute of Solid State Physics, Russian Academy of Sciences, Akademika Osip'yana str. 2, Chernogolovka, Moscow Region, 142432, Russian Federation
b Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The question of the expressions for the energy density $W$ and evolved heat (dissipation) $Q$ in the electrodynamics of a dispersive and absorptive medium is discussed. Attention is concentrated on explaining the fact that $W$ and $Q$ are not expressed, generally speaking, in terms of the complex dielectric permittivity $\varepsilon(\omega)$. This statement is illustrated with the example of a medium consisting of a collection of oscillators and with the example of the simplest model of a plasma. A convenient expression for the energy density of a field with arbitrary time dependence in a transparent medium is obtained in the Appendix. A derivation of the high-frequency average of $(1/4\pi)\partial\mathbf{D}/\partial t\mathbf{E}$ for a quasi-monochromatic field in an absorptive dispersive medium is also given there.

Fulltext pdf (720 KB)
Fulltext is also available at DOI: 10.1070/PU1976v019n03ABEH005142
PACS: 03.50.Jj
DOI: 10.1070/PU1976v019n03ABEH005142
URL: https://ufn.ru/en/articles/1976/3/d/
Citation: Barash Yu S, Ginzburg V L "Expressions for the energy density and evolved heat in the electrodynamics of a dispersive and absorptive medium" Sov. Phys. Usp. 19 263–270 (1976)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Бараш Ю С, Гинзбург В Л «О выражениях для плотности энергии и выделяющегося тепла в электродинамике диспергирующей и поглощающей среды» УФН 118 523–537 (1976); DOI: 10.3367/UFNr.0118.197603f.0523

Cited by (44) ↓ Similar articles (20)

  1. de Aquino Carvalho J  C, Maurin I et al Phys. Rev. Lett. 131 (14) (2023)
  2. Aellen M, Norris D J ACS Photonics 9 3498 (2022)
  3. Raymer M G Journal Of Modern Optics 67 196 (2020)
  4. Zagorodny A G, Trigger S A Bull. Lebedev Phys. Inst. 45 159 (2018)
  5. Nechepurenko I A, Dorofeenko A V et al J. Commun. Technol. Electron. 62 1209 (2017)
  6. Mikaelyan M A Bull. Lebedev Phys. Inst. 44 81 (2017)
  7. Zheng Y Advances In Condensed Matter Physics 2015 1 (2015)
  8. Electromagnetic Phenomena in Matter 1 (2015) p. 689
  9. Zhao J M, Zhang Z M Journal Of Quantitative Spectroscopy And Radiative Transfer 151 49 (2015)
  10. Hansen T V, Kim O S, Breinbjerg O IEEE Trans. Antennas Propagat. 62 467 (2014)
  11. Grinchik N N JEMAA 06 57 (2014)
  12. Tomaschitz R Physics Letters A 378 2915 (2014)
  13. Hansen T V, Kim O S, Breinbjerg O IEEE Trans. Antennas Propagat. 62 1456 (2014)
  14. Lozovik Yu E, Nechepurenko I A et al Laser Phys. Lett. 11 125701 (2014)
  15. Grinchik N N, Grinchik Yu N Physics Research International 2012 1 (2012)
  16. Philbin T G Phys. Rev. A 83 (1) (2011)
  17. Dorofeyev I Phys. Scr. 84 055003 (2011)
  18. Shevchenko A, Kaivola M J. Phys. B: At. Mol. Opt. Phys. 44 065403 (2011)
  19. Glasgow S, Verhaaren Ch, Corson J Frontiers in Optics 2010/Laser Science XXVI, (2010) p. FThG4
  20. Rosa F S S, Dalvit D A R, Milonni P W Phys. Rev. A 81 (3) (2010)
  21. Glasgow S A, Corson J, Verhaaren Ch Phys. Rev. E 82 (1) (2010)
  22. Glasgow S, Ware M Phys. Rev. A 80 (4) (2009)
  23. Springer Series In Optical Sciences Vol. Electromagnetic and Optical Pulse Propagation 1Fundamental Field Equations in a Temporally Dispersive Medium125 Chapter 5 (2007) p. 221
  24. Springer Series In Optical Sciences Vol. Electromagnetic and Optical Pulse Propagation 1Introduction125 Chapter 1 (2007) p. 1
  25. Glasgow S, Meilstrup M et al Phys. Rev. E 75 (1) (2007)
  26. Ware M, Peatross J, Glasgow S Frontiers in Optics, (2006) p. FWA4
  27. Poklonski N A, Vyrko S A, Kocherzhenko A A Tech. Phys. 49 1469 (2004)
  28. Glasgow S, Peatross J et al Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing, (2004) p. FTuC2
  29. Emel’yanov O A Tech. Phys. Lett. 30 817 (2004)
  30. Poklonski N A, Mityanok V V, Vyrko S A Tech. Phys. Lett. 28 635 (2002)
  31. Brevik I, Kluge R J. Opt. Soc. Am. B 16 976 (1999)
  32. Smith P D, Oughstun K E Radio Science 33 1489 (1998)
  33. Smith P D, Oughstun K E Ultra-Wideband, Short-Pulse Electromagnetics 2 Chapter 30 (1995) p. 285
  34. Oughstun K E, Laurens Ju E K, Balictsis C M Ultra-Wideband, Short-Pulse Electromagnetics Chapter 26 (1993) p. 223
  35. Brevik I, Høye J S Physica A: Statistical Mechanics And Its Applications 173 583 (1991)
  36. Polevoi V G Radiophys Quantum Electron 33 603 (1990)
  37. BARASH Yu S, GINZBURG V L Modern Problems In Condensed Matter Sciences Vol. The Dielectric Function of Condensed SystemsElectromagnetic Fluctuations and Molecular Forces in Condensed Matter24 (1989) p. 389
  38. Glinskii G F, Koinov Z Theor Math Phys 70 252 (1987)
  39. Agranovich V M, Ginzburg V Springer Series In Solid-State Sciences Vol. Crystal Optics with Spatial Dispersion, and ExcitonsThe Complex Dielectric-Constant Tensor ε ij (ω,k) and Normal Waves in a Medium42 Chapter 2 (1984) p. 18
  40. Tonkonogov M P, Mironov V A Soviet Physics Journal 22 94 (1979)
  41. Smith C R, Jafarpour M, Ramarao I Phys. Rev. A 20 2074 (1979)
  42. Theoretical Physics and Astrophysics (1979) p. 447
  43. Chan V S, Wong S K 21 2268 (1978)
  44. Barash Yu S Radiophys Quantum Electron 21 521 (1978)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions