Issues

 / 

1972

 / 

June

  

Reviews of topical problems


PULSED GAS-DISCHARGE LASERS

The present review of the investigations of pulsed gas-discharge lasers is based mainly on the literature published up to the middle of 1970. Lasers utilizing transitions in neutral and ionized atoms and electronic transitions in molecules a r e discussed. The attention is concentrated on the systems whose efficiency is likely to be improved. The factors which determine the efficiency and the peak output power are considered. The choice of transitions likely to give high efficiencies and high peak powers is justified. A summary is given of the available information on pulsed gas-discharge lasers of two types: the lasers utilizing transitions from resonance to metastable levels in neutral and ionized atoms and the lasers using electronic transitions in diatomic molecules. The lasers using thallium, copper, and lead vapors and those utilizing transitions in nitrogen molecules are discussed in detail. Practical difficulties encountered in the construction of high-efficiency pulsed lasers are analyzed. A list is given of the transitions in other neutral and ionized atoms and molecules which can be expected to provide high-power pulsed emission. The prospects of utilization of the transitions from a resonance electronic level to the ground state of a molecule a r e stressed. The possibility of advance into the still unmastered vacuum ultraviolet region is discussed. Possible effects of increasing the density of the active gas are considered. Ways of going over from pulsed to continuous-wave emission in collision lasers are analyzed. It is concluded that pulsed gas-discharge lasers offer means for generating high-efficiency (up to 10\%) and high-peak-power coherent pulses in a very wide range of wavelengths. It should also be possible to achieve high-efficiency continuous-wave emission in collision lasers operating at short wavelengths.

Fulltext pdf (2.1 MB)
Fulltext is also available at DOI: 10.1070/PU1972v014n06ABEH004769
PACS: 42.55.Lt, 42.60.Jf, 42.60.Lh, 42.65.Re (all)
DOI: 10.1070/PU1972v014n06ABEH004769
URL: https://ufn.ru/en/articles/1972/6/e/
Citation: Petrash G G "PULSED GAS-DISCHARGE LASERS" Sov. Phys. Usp. 14 747–765 (1972)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Петраш Г Г «Импульсные газоразрядные лазеры» УФН 105 645–676 (1971); DOI: 10.3367/UFNr.0105.197112b.0645

Cited by (102) ↓ Similar articles (20)

  1. Nagli L Optics Communications 559 130423 (2024)
  2. Yu R, Chi Yu et al Advanced Materials (2024)
  3. Tahsildaran F S, Farahbod A H, Malekfar R 13 (2) (2023)
  4. Baalbaki H A, Yudin N A, Yudin N N Atmos Ocean Opt 36 86 (2023)
  5. Baalbaki H A, Markova A A et al Biomed Eng 57 245 (2023)
  6. Nagli L, Gaft M, Raichlin Y SSRN Journal (2022)
  7. Nagli L, Gaft M, Raichlin Y Optics Communications 517 128292 (2022)
  8. Yudin N A, Baalbaki H A et al Laser Phys. 31 125001 (2021)
  9. Medjahdi I S, Ferouani A K et al IEEE Trans. Plasma Sci. 49 1181 (2021)
  10. Gembukh P I, Fedorov V F et al 2020 21st International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), (2020) p. 272
  11. Sabotinov N V (AIP Conference Proceedings) Vol. 2075 (2019) p. 190002
  12. Smirnov Yu M Plasma Res. Express 1 015004 (2018)
  13. Burdin A, Polunin Yu et al MATEC Web Conf. 155 01030 (2018)
  14. Li L, Ilyin A P et al Ceramics International 44 19800 (2018)
  15. Evtushenko G S, Fedorov V F et al Russ Phys J 58 1278 (2016)
  16. Yudin N A, Yudin N N Russ Phys J 58 1782 (2016)
  17. Yudin N A, Yudin N N Russ Phys J 59 809 (2016)
  18. Gulyaev Yu V, Kazaryan M A et al Quantum Electron. 45 283 (2015)
  19. Masers and Lasers 0 (2015) p. 28
  20. Boichenko A M, Evtushenko G S et al Phys. Wave Phen. 23 1 (2015)
  21. Soldatov A N, Prokopyev V E, Loginov S S Russ Phys J 56 1230 (2014)
  22. Gubarev F A, Trigub M V et al Atmos Ocean Opt 26 559 (2013)
  23. Torgaev S N, Boichenko A M et al Russ Phys J 55 1039 (2013)
  24. Yudin N A, Tret’yakova M R, Yudin N N Russ Phys J 55 1080 (2013)
  25. Bokhan P A, Gugin P P et al Quantum Electron. 43 715 (2013)
  26. Bel’skaya E V, Bokhan P A et al Quantum Electron. 42 99 (2012)
  27. Smirnov Yu M J Appl Spectrosc 78 746 (2011)
  28. Buzhinsky R O, Savransky V V et al Plasma Phys. Rep. 36 1269 (2010)
  29. Kuznetsov A P, Buzhinskij R O et al Plasma Phys. Rep. 36 428 (2010)
  30. Bokhan P A, Zakrevskii D E, Lavrukhin M A Quantum Electron. 39 911 (2009)
  31. Suvorov V, Teubner P J O et al Phys. Rev. A 80 (2) (2009)
  32. Kelman V A, Svetlichnyi E A, Remeta E Yu Tech. Phys. 54 1168 (2009)
  33. Soldatov A N, Yudin N A et al Russ Phys J 51 1334 (2008)
  34. Soldatov A N, Yudin N A et al Quantum Electron. 38 1009 (2008)
  35. Trushkin N I, Karal’nik V B et al Laser Phys. 16 173 (2006)
  36. Buzhinskij O I, Vasiliev N N et al Fusion Engineering And Design 60 141 (2002)
  37. Capitelli M, Ferreira C M et al Springer Series On Atomic, Optical, And Plasma Physics Vol. Plasma Kinetics in Atmospheric GasesDischarges in Pure N2 and O231 Chapter 13 (2000) p. 209
  38. Biryukov A S, Klimovskii I I et al J Russ Laser Res 21 101 (2000)
  39. Evtushenko G S Russ Phys J 42 737 (1999)
  40. Klimkin V M, Sokovikov V G J Russ Laser Res 19 211 (1998)
  41. Fedorov A I J Russ Laser Res 17 313 (1996)
  42. Buchanov V V, Kazaryan M A et al J Russ Laser Res 17 360 (1996)
  43. Smilanski I Pulsed Metal Vapour Lasers Chapter 9 (1996) p. 87
  44. Chvykov V V, Kraposhina T P et al Pulsed Metal Vapour Lasers Chapter 43 (1996) p. 403
  45. Soldatov A N, Yudin N A J Russ Laser Res 16 128 (1995)
  46. Lengyel V I, Navrotsky V T, Sabad E P Resonance Phenomena in Electron-Atom Collisions Chapter 7 (1992) p. 100
  47. Kim J J Opt Quant Electron 23 S469 (1991)
  48. Mal’tsev A N J Appl Spectrosc 52 470 (1990)
  49. Carman R J IEEE J. Quantum Electron. 26 1588 (1990)
  50. Mal’tsev A N J Appl Spectrosc 52 591 (1990)
  51. Anders A K, Tobin R C 64 4285 (1988)
  52. Gabay Sh, Kremer I et al Lasers Surg Med 8 418 (1988)
  53. Rae S C, Tobin R C 64 1418 (1988)
  54. Evtushenko G S, Kirilov A E et al J Appl Spectrosc 49 1117 (1988)
  55. Im K, Sung N, Kim J J 59 3930 (1986)
  56. Klimovskii I I, Morozov A V J Appl Spectrosc 44 222 (1986)
  57. Msezane A Z, Henry R J W Phys. Rev. Lett. 55 2277 (1985)
  58. Winiarczyk W, Krause L Journal Of Quantitative Spectroscopy And Radiative Transfer 32 211 (1984)
  59. Peard K, Tobin R IEEE J. Quantum Electron. 20 765 (1984)
  60. Litvinenko A, Odoulov S Opt. Lett. 9 68 (1984)
  61. Evchenko Yu A, Krasovitskii D V et al Soviet Physics Journal 27 411 (1984)
  62. Evtushenko G S, Kirilov A E et al J Appl Spectrosc 39 1388 (1983)
  63. Kuroda K, Takeda M et al 54 1670 (1983)
  64. Vuchkov N K, Astadjov D N, Sabotinov N V Optics Communications 42 199 (1982)
  65. Gabay S, Smilanski I, Karny Z IEEE J. Quantum Electron. 18 996 (1982)
  66. Karabut � K, Kravchenko V F, Mikhalevskii V S J Appl Spectrosc 37 1123 (1982)
  67. Kuroda K, Takahashi H et al 52 87 (1981)
  68. Tenenbaum J, Smilanski I, Levin L A Optics Communications 36 395 (1981)
  69. Gorshkov V A, Sokolovskii R I Soviet Physics Journal 23 399 (1980)
  70. Bridges W B Methods In Experimental Physics Vol. Quantum Electronics2. Atomic and Ionic Gas Lasers15 (1979) p. 31
  71. Gerstenberger D C, Latush E L, Collins G J Optics Communications 31 28 (1979)
  72. Smirnov A D, Kuz’menko N E, Kuzyakov Yu Ya J Appl Spectrosc 30 64 (1979)
  73. Tenenbaum J, Smilanski I et al 50 57 (1979)
  74. Kafri O, Bar-ziv Ezra Physics Letters A 71 332 (1979)
  75. Cartwright D C 49 3855 (1978)
  76. Belokon’ M V, Rubinov A N, Adamushko A V J Appl Spectrosc 29 1039 (1978)
  77. Bricks B G, Karras T W, Anderson R S 49 38 (1978)
  78. Feldman D W, Liu C S et al 49 3679 (1978)
  79. Gorshkov V A, Sokolovskii R I Soviet Physics Journal 21 1074 (1978)
  80. Linevsky M J, Karras T W 33 720 (1978)
  81. Vetter A IEEE J. Quantum Electron. 13 889 (1977)
  82. Karras T W, Anderson R S et al Cooperative Effects in Matter and Radiation Chapter 6 (1977) p. 101
  83. Gudzenko L I, Shelepin L A, Yakovlenko S I Theoretical Problems in the Spectroscopy and Gas Dynamics of Lasers Chapter 4 (1977) p. 103
  84. Bricks B, Karras T, Anderson R IEEE J. Quantum Electron. 13 905 (1977)
  85. Chutjian A, Cartwright D C, Trajmar S Phys. Rev. A 16 1052 (1977)
  86. Kirilov A E, Kukharev V N et al Soviet Physics Journal 20 1381 (1977)
  87. Fedorov A I, Sergeenko V P et al Soviet Physics Journal 20 251 (1977)
  88. Trajmar S, Williams W, Srivastava S K J. Phys. B: At. Mol. Phys. 10 3323 (1977)
  89. Brochard J, Cahuzac P J. Phys. B: At. Mol. Phys. 9 2027 (1976)
  90. Mandl A, Chen H-L Phys. Rev. A 14 264 (1976)
  91. Williams W, Trajmar S, Bozinis D G J. Phys. B: At. Mol. Phys. 8 L96 (1975)
  92. DAVIS C C, KING T A Advances in Quantum Electronics (1975) p. 169
  93. WANG C P Impact of Aerospace Technology on Studies of the Earth’s Atmosphere (1974) p. 105
  94. Wang C P Acta Astronautica 1 105 (1974)
  95. Fahlen T S 45 4132 (1974)
  96. Ewing J J, Trainor D W, Yatsiv S 61 4433 (1974)
  97. Weaver L, Liu C, Sucov E IEEE J. Quantum Electron. 10 140 (1974)
  98. Williams W, Trajmar S Phys. Rev. Lett. 33 187 (1974)
  99. Isaev A A, Kazaryan M A, Petrash G G J Appl Spectrosc 18 357 (1973)
  100. Petrash G, Isaev A, Kazaryan M IEEE J. Quantum Electron. 9 644 (1973)
  101. Weaver L, Liu C, Sucov E IEEE J. Quantum Electron. 9 645 (1973)
  102. Ferrar C IEEE J. Quantum Electron. 9 856 (1973)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions