Issues

 / 

1972

 / 

January

  

Reviews of topical problems


Clebsch-Gordan coefficients, viewed from different sides

,  a
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

A generalized theory of angular momenta has been developed over the past few years. The new results account for a substantial change in the role played by Clebsch--Gordan coefficients both in physical and in mathematical problems. This review considers two aspects of the theory of Clebsch--Gordan coefficients, which forms a part of applied group theory. First, the close relation of these coefficients with combinatorics, finite differences, special functions, complex angular momenta, projective and multidimensional geometry, topology and several other branches of mathematics are investigated. In these branches the Clebsch--Gordan coefficients manifest themselves as some new universal calculus, exceeding substantially the original framework of angular momentum theory. Second, new possibilities of applications of the Clebsch--Gordan coefficients in physics are considered. Relations between physical symmetries are studied by means of the generalized angular momentum theory which is an adequate formalism for the investigation of complicated physical systems (atoms, nuclei, molecules, hadrons, radiation); thus, e.g., it is shown how this theory can be applied to elementary particle symmetries. A brief summary of results on Clebsch--Gordan coefficients for compact groups is given in the Appendix.

Fulltext pdf (2.5 MB)
Fulltext is also available at DOI: 10.1070/PU1972v015n01ABEH004942
PACS: 02.20.Sv, 02.20.Uw (all)
DOI: 10.1070/PU1972v015n01ABEH004942
URL: https://ufn.ru/en/articles/1972/1/a/
Citation: Smorodinskii Ya A, Shelepin L A "Clebsch-Gordan coefficients, viewed from different sides" Sov. Phys. Usp. 15 1–24 (1972)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Смородинский Я А, Шелепин Л А «Коэффициенты Клебша — Гордана с разных сторон» УФН 106 3–45 (1972); DOI: 10.3367/UFNr.0106.197201a.0003

Cited by (45) ↓ Similar articles (20)

  1. Akdemir S, Özay S, Öztekin E J Math Chem 62 2761 (2024)
  2. Louck Ja D Springer Handbook of Atomic, Molecular, and Optical Physics Springer Handbooks Chapter 2 (2023) p. 9
  3. Pain J -C Opt. Spectrosc. 128 1105 (2020)
  4. Martins A C N, Suffak M W, de Guise H J. Phys. A: Math. Theor. 53 025201 (2020)
  5. Gordienko V M Sib Math J 58 990 (2017)
  6. Chernega V N, Manko O V et al Theor Math Phys 193 1715 (2017)
  7. Heim T A, Hinze J, Rau A R P J. Phys. A: Math. Theor. 42 175203 (2009)
  8. Novikova E M Russ. J. Math. Phys. 16 518 (2009)
  9. Pupyshev V V Phys. Atom. Nuclei 72 845 (2009)
  10. Filippov S N, Man’ko V I J Russ Laser Res 30 224 (2009)
  11. Smorodinskaya N Ya Phys. Atom. Nuclei 72 894 (2009)
  12. Aquilanti V, Haggard H M et al J. Phys. A: Math. Theor. 40 5637 (2007)
  13. Louck Ja Springer Handbook of Atomic, Molecular, and Optical Physics Springer Handbooks Chapter 2 (2006) p. 9
  14. Marzuoli A, Rasetti M Annals Of Physics 318 345 (2005)
  15. Krattenthaler C, Srinivasa R K Symmetries in Science XI Chapter 17 (2005) p. 355
  16. Lievens S, Van der Jeugt J Journal Of Computational And Applied Mathematics 160 191 (2003)
  17. Van der Jeugt J Lecture Notes In Mathematics Vol. Orthogonal Polynomials and Special Functions3nj-Coefficients and Orthogonal Polynomials of Hypergeometric Type1817 Chapter 2 (2003) p. 25
  18. De Fazio D, Cavalli S, Aquilanti V Int J Of Quantum Chemistry 93 91 (2003)
  19. Aquilanti V, Cavalli S, Coletti C Chemical Physics Letters 344 587 (2001)
  20. Rao K S Symmetries in Science X Chapter 24 (1998) p. 383
  21. Granovskii Ya I, Zhednov A S J. Phys. A: Math. Gen. 26 4339 (1993)
  22. Smorodinskii Ya A, Shelepin A L, Shelepin L A Uspekhi Fizicheskikh Nauk 162 1 (1992)
  23. Rao K S, Jeugt J Van der et al J. Phys. A: Math. Gen. 25 861 (1992)
  24. Kirillov A N J Math Sci 53 264 (1991)
  25. Rajeswari V, Rao K S J. Phys. A: Math. Gen. 22 4113 (1989)
  26. Nikiforov A F, Suslov S K, Uvarov V B Funct Anal Its Appl 19 182 (1986)
  27. Rao K S Pramana - J Phys 24 15 (1985)
  28. Niukkanen A W J. Phys. A: Math. Gen. 18 1399 (1985)
  29. Smirnov Yu F, Suslov S K, Shirokov A M J. Phys. A: Math. Gen. 17 2157 (1984)
  30. Bickerstaff R P 25 2808 (1984)
  31. Rao K S, Rajeswari V J. Phys. A: Math. Gen. 17 L243 (1984)
  32. Duffey G H A Development of Quantum Mechanics Chapter 8 (1984) p. 242
  33. Srinivasa R K Computer Physics Communications 22 297 (1981)
  34. Butler P H Recent Advances in Group Theory and Their Application to Spectroscopy Chapter 3 (1979) p. 123
  35. Karasev V P, Shelepin L A Coherent Cooperative Phenomena Chapter 4 (1978) p. 53
  36. Raynal Ja 19 467 (1978)
  37. Srinivasa R K, Venkatesh K Computer Physics Communications 15 227 (1978)
  38. Rao K S J. Phys. A: Math. Gen. 11 L69 (1978)
  39. Karasev V P, Shelepin L A Theor Math Phys 36 737 (1978)
  40. Rao K S, Venkatesh K Group Theoretical Methods in Physics (1977) p. 649
  41. Barut A O, Wilson R 17 900 (1976)
  42. Butler P H Int J Of Quantum Chemistry 10 599 (1976)
  43. Stedman G E J. Phys. A: Math. Gen. 9 1999 (1976)
  44. Rao K S, Santhanam T S, Venkatesh K 16 1528 (1975)
  45. Karasev V P, Shelepin L A Theor Math Phys 17 991 (1973)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions