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Topic of this talk : Smectic A - hexatic smectic B
phase transition.
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Not only liquid crystals : From Dust plasma to lipid
membranes
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Background

All experimental observations suggest a “large” specific heat critical
exponent α = 0.5÷ 0.7 inconsistent with the universality class for this
phase transition predicting the exponent α ≈ −0.01 (like for the superfluid
phase transition).
Two different suggestions can be found in literature : 1. Since α is near
0.5, it is tempting to assume that the phase transition occurs in a vicinity
of a tricritical point. However, it is hard to believe that all known hexatic
materials, irrespective to the width of the stability region for the hexatic
phase are always near the tricritical point ; 2. Measured experimentally
critical exponents are close to those predicted by the 3-state Potts model.
However it is not clear how (and why) the Potts model can be mapped to
the physics of the hexatics.
Our approach is based on experimental observations that the
crystallization (translational) correlation length ξtr is larger than the
hexatic correlation length ξh. It allows us to explain the calorimetric data
and is consistent with X-ray scattering measurements.
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Experimental data on ξtr . I

FIGURE : 65OBC sample
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Experimental data on ξtr . II

FIGURE : a - 3(10)OBC sample, b - 75OBC sample, c -POL sample ; the insets show
the temperature dependence of the diffraction peak maximum.
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Hexatic order parameter
Smectic A – hexatic phase transition means reduction of the rotational
symmetry of the smectic layers, from D∞h in the smectic A state to D6h in
hexatics (instead of D2h in smectics C). Hexatic layers are invariant under
rotation around the axis of the sixth order. The corresponding order
parameter is a six order symmetric irreducible tensor Qinjklm. Its
irreducibility means Qiijklm = 0. In the smectic A phase the average value
of the tensor is zero (the layers are isotropic) whereas in the hexatic
smectic phase the average value of Qiijklm is non-zero (the smectic layers
posses an orientation order). Since the tensor describes the orientation
order in the smectic layers, it should be perpendicular to the normal l to
the smectic layers, liQinjklm = 0. Therefore the tensor has only two
independent components.

Ψ = Qxxxxxx + iQxxxxxy .

where Ψ is equivalent to the traditional hexatic order parameter
introduced in the textbooks in terms of the molecular bond orientations.
At rotation by an angle χ around the Z -axis the order parameter is
transformed as

Ψ→ exp(6iχ)Ψ.
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Hexatic free energy

Due to the rotational invariance the Landau functional FLa (determining
an energy excess associated with the order parameter Ψ) contains only
even in Ψ terms in its expansion. Indeed, just the combinations ΨΨ∗,
(ΨΨ∗)2 etc are invariant under the rotation.
Therefore the smectic A – hexatic phase transition should be of the
second order. Since we deal with the two-component order parameter,
the phase transition belongs to the same universality class as the
superfluid phase transition. Particularly, the heat capacity exponent α for
the smectic A – hexatic phase transition should be small and negative
α ≈ −0.01.
In a dramatic contradiction to this theoretical expectation, all known
calorimetric data for the smectic A – hexatic phase transition show large
and positive exponent α = 0.5÷ 0.7. Thus one encounters an obvious
problem, and the main motivation of this work is to find where is a catch.
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Positional order fluctuations

The positional order can be described in terms of the short-range density
modulation δρ that plays a role of the order parameter for the
crystallization phase transition. The short-range density modulation
determines X -ray scattering. The pair correlation function of δρ is known
as the structure function

S(q) =

∫
d3r exp(−iqr)〈δρ(r1)δρ(r1 + r)〉.

In smectics the structure function has quasi-Bragg peaks in Z -direction at
qx ,qy = 0, and maxima at q⊥ = q0 where q2

⊥ = q2
x + q2

y .
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Landau expansion I.

F(2) =

∫
d3q

(2π)3

[
a
2
|δρ(q)|2 +

b
2

(q⊥ − q0)2|δρ(q)|2
]
,

F(4) =

∫
dx dy dz

λl
24

(δρ)4

=

∫
d3q1 d3q2d3q3d3q4

(2π)9 δ(q1 + q2 + q3 + q4)

λl
24
δρ(q1)δρ(q2)δρ(q3)δρ(q4),

where as usual a ∝ (T − T∗)
It is not a traditional Landau expansion ( !) :

(q⊥ − q0)2δρ2 → (q2
⊥ − q2

0)δρ2 → (∇2 + q2
0)2δρ2
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Landau expansion II.

Self-interaction of the translational order parameter δρ renor-
malizes the bare value of the parameter a. The main fluctua-
tion contribution is determined by the so-called one-loop term

FIGURE : solid line represents the pair correlation function and the bullet represents λ.
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Landau expansion III.

S(q) =
T

∆ + b(q⊥ − q0)2 .

where
∆ = a +

Tq0λ

4
√

b∆
,

and

〈(δρ)2〉 =
Tq0

2l
√

b∆
,

where the thickness l of the smectic layer appears due to integration over
qz .
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Landau expansion IV.

The crossed over the translational and orientational fluctuations coupling
term

Fint = − 1
2q6

0

∫
dV Qijklmn∂i∂j∂kδρ∂l∂m∂nδρ.

or equivalently

Fint = − 1
2q6

0
Re
∫

dV Ψ[(∂x − i∂y )3δρ]2,
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The cornerstone assumptions

ξtr ≡
√

b/∆� ξh � q−1
0 ,

When ξh � ξtr one has to recover the standard universal behavior.
However, to achieve such large value of ξh one has to probe a narrow
vicinity of the phase transition point.
ξh ' ξ0|(T − Th)/Th|−ν where ξ0 is the bare (microscopic) correlation
length, Th is the second order smectic A – hexatic transition temperature,
and ν = 0.76 is the critical exponent of the correlation length.
Assuming that ξ0 ' 0.1 nm we find that ξh achieves the value larger than
ξtr ' 3 nm in the vicinity of the transition point ∆T/Th . 10−3. Beyond
this region, one has to deal with an interaction of the hexatic order
parameter Ψ with the long-correlated translational order parameter δρ.
Analyzing experimental data we conclude that for the standard universal
behavior takes place in the vicinity of about 0.1 K around the transition
point. Non-standard intermediate critical behavior with strong fluctuations
and strong coupling of the orientational and positional order parameters,
holds in the region on the order of 1 K around the critical point.
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Fluctuation effects I.

F (r1, r2) = 〈Ψ(r1)Ψ?(r2)〉,

that is invariant under rotations

FIGURE : wavy lines correspond to the pair correlation function of the hexatic
order parameter.
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Fluctuation effects II.
Fourier transform of the correlation function has the following self-similar
form

F (q) =
1

|(T − Th)/Th|2−η
f (qξh),

where for the superfluid universality class, η ≈ 0.02. F depends solely on
|T − Th| for qξh � 1 and only on q in the opposite limit.
In the smectic-A phase the single point average contribution
〈[(∂x − i∂y )3δρ]2〉 is zero (isotropy of the smectic layers). In the vicinity of
the phase transition, we are considering, the contribution is also
negligible in the hexatic phase. Thus, we have only the term

− 1
2T

∫
d3q

(2π)3 F (q)S(k + q),

k is the wave vector of the density fluctuation (k � q), then

∆ = a +
Tq0λ

4
√

b∆

− 1
8π2
√

b∆

∫
dqzdq⊥F (q)

[
1 + ∆/(bq2

⊥)
]−1

,
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Fluctuation effects III.

∆ = a +
Tq0λ

4
√

b∆
+ δ∆,

where
δ∆ = − 1

8π2
√

b∆

∫
dqzdq⊥F (q),

If qξh � 1 the pair correlation function F (q) ∝ qη−2. Therefore there is
ultraviolet contribution to the integral

∫
dqzdq⊥F to be included into

redefinition of the factor λ, and besides, there is negative critical
contribution to the integral

∫
dqzdq⊥F that behaves ∝ |T − Th|νη.

Keeping in mind that ∆ remains finite at the transition point, we find

∂

∂T
∆ ∝ |T − Th|νη−1.

The singularity is integrable due to η, ν > 0, the gap ∆ remains finite at
the transition point.
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Heat capacity I.

Additional contributions to the heat capacity related to the positional
degree of freedom δρ, are associated with the T -dependence of the
coefficient a :

∂Fa

∂T
=

V
2
∂a
∂T
〈(δρ)2〉 =

∂a
∂T

TVq0

4l
√

b∆
,

Then we find the following critical contribution to the heat capacity

−T
∂2Fa

∂T 2 =
V
8
∂a
∂T

T 2q0

lb1/2∆3/2

∂∆

∂T
.

The contribution diverges near the phase transition with the exponent
1− νη, close to unity.
Our main finding is that a sum of two critical contributions to the heat
capacity, with the “small” exponent α and with the “large” exponent
1− νη, enables one to describe quantitatively the experimental data.
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Heat capacity II.

Namely :
C =

p1

|x |−0.013 +
p3

|x |
+ p5, if x < 0,

C =
p2

x−0.013 +
p4

x
+ p5, if x > 0,

where x = (T − Th)/Th is the reduced temperature, and we borrowed the
value of the exponent α = −0.013 from the standard data for the
two-component order parameter in three dimensions. The obtained
values giving the best fitting are Th = 341.11K , p1 = −48.09599,
p2 = −48.19495, p3 = 0.0008, p4 = 0.00064 and p5 = 91.60242.
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Confronting our theory with calorimetric data for
65OBC
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OPTIONAL SLIDES.
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Applicability conditions

First, to get weak first order crystallization transition ξtr q0 � 1 has to be
satisfied.
Second. we should compare the contribution of the one-loop diagram
with contributions of higher order, e.g.,

Straightforward estimation shows that one can neglect the higher loop
diagrams if δ∆� ∆.
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