
Abstract. Experimental and theoretical work on solid hydrogen
under high pressure is reviewed with special emphasis on three
aspects of the field. The first concerns the equation of state of
hydrogen and the properties of its molecular phase. Both ex-
perimental and theoretical studies show that hydrogen has a rich
variety of unusual properties even in its molecular phase, as the
formation of many highly anisotropic crystal structures with
little energy difference exemplifies. The second aspect is the
insulator-metal transition which, while customarily associated
with atomization, i.e., with the dissociation of hydrogen mole-
cules, is also possible in the molecular phase according to recent
theoretical studies. In discussing the metallic phase, finally, the
existence of a metastable phase at normal pressure and pro-
spects for the high superconducting transition temperatures in
metallic hydrogen are considered.

1. Introduction

Theoretical studies of crystalline hydrogen properties as a
function of pressure have been in progress for more than half
a century, beginning from the classic study by Wigner and
Huntington [1]. In that work it was predicted for the first time
that hydrogen that crystallizes under low pressures in a
molecular insulating phase should transform to a monoa-
tomic metallic phase under higher pressures. The transition
pressure predicted in that work turned out to be rather low,
pc � 25GPa. The obvious simplicity of this systemwas one of
the motives for the theoretical study of crystalline hydrogen.

Actually, a hydrogen atom is the simplest quantum system
and, in addition, an exactly solvable one. A hydrogen
molecule that is also the simplest of possible molecules
contains only two electrons, and hence it may be a good
candidate to be investigated using various approximate
methods of quantum-mechanical calculations. However, it
turned out before long that this simplicity is only seeming.
Thus, further calculations of pc [2 ± 4] lead to a spread in the
values over the range 25 to 1500GPa, that is from 250 kbar to
15 Mbar (1 bar � 105 Pa, 1 atm � 1:01325� 105 Pa).

As is evident from recent experimental and theoretical
work done in the late 80s ± early 90s (see, for example, the
review [5]), even in its molecular phase, high-pressure crystal-
line hydrogen exhibits a number of properties rather unusual
among molecular crystals. Moreover, its behavior is difficult
to explain unambiguously by theory.

Another important motive for the study of crystalline
hydrogen is related to the predictions [6 ± 8] which appeared
in the 70s of very interesting, even exotic, phenomena, which
may exist in the hydrogen metallic phase. Thus, it was
assumed [6] that high-temperature superconductivity with a
critical temperature Tc � 200 K should occur in the metallic
phase of hydrogen. Such a high value of Tc is basically due to
the high Debye temperature of hydrogen caused by its small
atomic mass, (YD �Mÿ1=2). It was assumed that even more
exotic possibilities might be realized in themetallic phase. For
example, it was discussed [7] that a liquid phase of metallic
hydrogen might be stabilized with zero-point motion (ZPM)
at sufficiently low temperatures, by analogy with liquid
helium. In such a situation, with a two-component Fermi-
liquid (protons and electrons for hydrogen), or a mixture of
Fermi- and Bose-liquids (for deuterium), either the super-
conductivity of both Fermi-liquids (for H) or superconduc-
tivity of electrons and superfluidity of the Bose-liquid (for D)
is possible, correspondingly. Notice that it is all these
interesting properties possibly exhibited by high-density
hydrogen which encouraged Vitaly Ginzburg to inscribe the
study of hydrogen in his well known `list of the key problems
in physics' (to this day, the problem of hydrogen still remains
in the list) [9].

A nontrivial idea of primary interest concerning the
properties of the hydrogen metallic phase has been advanced
by Yury Kagan and his group [8]. Their calculation made
within the perturbation theory in the electron-proton poten-
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tial demonstrated that a metastable metallic phase of
hydrogen might exist at zero pressure. The mere fact of the
existence of metastable phases is not contrary to the common
laws of nature. An important point is that the lifetimes of such
phases should be long enough to measure their characteristics
and, possibly, even to find where such phases might be used.
At least one example is familiar to everybodyÐ the existence
of ametastable phase of carbon at zero pressure. This phase is
diamond. But, graphite is a stable phase of carbon at p � 0. It
is well known also that the lifetime of metastable diamond is
certainly enough to examine its properties and to use it in
practice.

The possible existence of a metastable phase in metallic
hydrogen at p � 0 has been a subject of animated discussion
[10, 11]. Considerations have been advanced to challenge such
a possibility, but actually, this problem still remains unsolved.
Beginning in the 70s, and especially in recent years, a large
body of experimental work on hydrogen has been done at
high pressure (see the review [5] and references therein). These
measurements were carried out both at static compression,
typically with the use of diamond-anvil cells, and at dynamic
compression, by means of various explosion methods. Even
on static compression in diamond-anvil cells, pressures of the
order of 300 GPa were achieved [12] which corresponds to a
twelve-fold solid compression of crystalline hydrogen. Most
of the theoretical estimates indicated that hydrogen would
become a metal at such pressures. It is most likely, however,
that the insulator-metal transition has not been observed
experimentally in the accessible range of pressures. It was
stated [13, 14] that the metallization of hydrogen on
compression was observed by means of explosion techni-
ques. Here, however, the problem of crucial importance that
is incompletely understood are the temperature values
occurring in the experiment. Related to this problem is the
question of whether or not the reported insulator-metal
transition is due to the direct effect of high temperatures
which occur in the system in the course of shock-wave
compression experiment.

This review is devoted to the presentation and discussion
of most problems touched upon above.

2. The properties of molecular hydrogen
at high compression

Molecular crystalline hydrogen has a variety of peculiar
properties responsible for its dissimilarity to other molecular
crystals. The main distinction is, perhaps, that the rotation of
molecules is not suppressed at low pressures, even in the
crystalline state. Because of the coupling between nuclear
spins and rotational states of the molecules with a given
moment J, two modifications of hydrogen molecules are
available Ð para- and ortho-hydrogen Ð with even or odd
J values, correspondingly. At zero temperature T � 0, the
concentration ratio cortho : cpara � 0. Because of a small
difference in energy between ortho- and para-states
(DE � 170:5 K), the concentration ratio increases to 3:1 as
the temperature is increased to room temperature. Ortho-
hydrogen possesses an electric quadrupole moment, and this
may lead to a number of essential effects in the crystal at low
pressures. In particular, quadrupole ordering occurs in pure
ortho-hydrogen at T � 3ÿ4 K. Properties of molecular
hydrogen at low pressure are described comprehensively in
the review [15], and in what follows we shall not touch upon
this problem.

The equation of state (EOS), i.e. the relation between
pressure and volume p � p�V�, of molecular hydrogen has
long been investigated both theoretically and experimentally.
One of the important motives of this work is that the Sun and
giant planets Ð Jupiter and Saturn Ð are more than 90%
hydrogen. A major part of this work pursued astrophysical
objectives [16]. Earlier investigations of the EOS are reviewed
in Ref. [17]. Recently, considerable advances have been made
in the field of experimental research, through the use of the
diamond-cell technique. In Ref. [18] the EOS of deuterium
wasmeasured to 32GPa bymeans of neutron diffraction. The
use of the deuterium in this work is due to the fact that its
cross-section of coherent neutron scattering is three times as
large as in hydrogen. The crystal structure of deuterium was
also determined. The hexagonal-close-packed (hcp) structure
was observed to exist over the whole range of pressures
measured, the c=a ratio decreasing continuously from 1.634
at p � 0 to 1.62 at p � 32 GPa. In Ref. [18] is reported that an
error of pressure determination did not exceed a value of
��0:07ÿ0:1�GPa.

Further experimental study of the EOS for hydrogen was
made by a research group from the Carnegie Institution,
Washington, first to the pressure of 42 GPa [19] and then to
120 GPa [20]. In these experiments the X-ray diffraction in
crystalline hydrogen compressed using a diamond-anvil cell
was investigated. In the course of work the investigators had
to overcome severe difficulties related to hydrogen's small X-
ray-scattering efficiency and to a considerable reduction in
the diamond-cell volume needed to achieve high pressures.
Highly intensive synchrotron radiation was used as the X-ray
source. A new experimental technique was developed on the
basis of a combination of standard single-crystal X-ray
methods with energy-dispersive diffraction [21]. The investi-
gators estimate the accuracy of the pressure measurement as
Dp � �0:3 GPa and that of the volume measurement as
�2� 10ÿ3 cm3 moleÿ1.

The solid line in Fig. 1 represents the EOS of hydrogen
obtained by the Carnegie Institution group. The investigators
adjusted a Vinet equation [22] to describe their experimental
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Figure 1. Equation of state of solid hydrogen: neutron diffraction at static

compression [18] (�); shock compression [13, 23] (�); static X-ray data

fitted in [5] using the Vinet equation (solid line); first-principles calcula-

tions [26] using the equations (1), (5) (+). The arrow indicates a possible

phase transition with an 8% increase in density obtained in [13, 23] by

processing of shock compression data.
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data to 120 GPa. The main thing we would like to emphasize
concerning this picture is the surprisingly good agreement of
the new data of the EOS of molecular hydrogen with the
shock-compression results obtained more than 20 years ago
by Kormer's group [13, 23] from the All-Russian Research
Institute of Experimental Physics (VNIIEF, at that time
Arzamas-16). The results obtained by the VNIIEF group in
the pressure range from about 40 to 400GPamatchwith good
accuracy the curve that represents both the Vinet equation
and the data to 120 GPa obtained by the Carnegie Institution
team. An extra point at 400 GPa, as well as the whole EOS
curve, was obtained by the VNIIEF group [23] by means of
calculations. This point indicates the occurrence at
p � 400 GPa of a phase transition with an increase in density
by � 8%.

The Birch equation [24] andMurnaghan equation [25] are
frequently used in high pressure physics to describe EOS. The
Birch equation was derived in the framework of the elastic
deformation theory to second order in such deformations. It
has the following form:

p�X� � 1:5K0�Xÿ7=3 ÿ Xÿ5=3��1ÿ x�Xÿ2=3 ÿ 1�� : �1�

Here X � V=V0, V0 is the equilibrium volume at p � 0, K0 is
the bulk modulus, and is

x � 3ÿ 3

4

qK0

qp
: �2�

The Murnaghan equation can be derived from Eqn (1)
assuming that the bulk modulus K0 depends linearly on
pressure:

K0�X� � K0 � K 00p�X� ; �3�

K 00 �
qK0

qp
: �4�

It has the form

p�X� � K0

K 00

��
p0

K 00
K0
� 1

�
XÿK

0
0 ÿ 1

�
; �5�

where p0 denotes p�X � 1�.
Strictly speaking, i.e. with the use of experimental data on

bulk modulusK0 and its pressure derivativeK 00, the Birch and
Murnaghan equations are applicable only over a very limited
range of compressions and cannot be employed for represent-
ing the EOS of hydrogen to pressures of 120 GPa which
correspond to an almost ten-fold reduction in specific
volume. Nevertheless, in a number of cases the EOS can be
reasonably well fitted with Eqns (1) and (5), by using the
values of K0 and K 00 as adjustable parameters. It is this
technique that is applied in Ref. [26] for representing the
EOS determined from so-called ab initio calculations at
several volumes.

Most theoretical attempts to find the EOS of molecular
hydrogen are based on various approximate expressions for
the intermolecular interaction. Since hydrogen molecules
have an almost spherical distribution of the electron charge
as well as a small size, their behavior is similar to that of noble
gas molecules in many cases. The first calculation of an EOS
for the hydrogen molecular phase was performed by
Trubitsyn [27] who used an intermolecular potential in a
simple analytical form of van der Waals attraction combined

with short-range repulsion. He determined the free para-
meters of the potential by adjusting to experimental data on
the EOS to 20 GPa available at that time. Subsequently, Ross
[3] attempted to determine the EOS for hydrogen more
accurately to 100 GPa using the data of shock compression
experiments. He applied the same analytical expression for
intermolecular potential as Trubitsyn did. Phenomenological
intermolecular potentials were compared [28] with potentials
obtained from ab initio calculations based on the quantum-
mechanical consideration of two and four hydrogen mole-
cules. The important role of many-body interactions was
emphasized. In Ref. [29] three-particle interactions were
consistently included in calculation of the EOS for molecular
hydrogen. Actually, as became clear from the measurements
of EOS to 120 GPa, all the previous attempts to construct the
EOS using various intermolecular potentials led to a `harder'
EOS than observed experimentally.

In this respect, the following proposal advanced in Ref.
[22] seems to be quite interesting: to write a universal EOS for
any kind of solid on the basis of an approach just opposite to
that of the works discussed above. While the authors of Refs
[3, 27 ± 29] used the idea of molecular hydrogen as a system
with almost non-overlapping electron shells of different
molecules and with a given intermolecular interaction, in
Ref. [22] it was assumed that the EOS for molecular and ionic
crystals, along with covalent semiconductors is mainly
determined by effects related to the electron-shell overlap.
Previously, an appropriate EOS was written for metals [30],
where the electron subsystemwith strongly overlapping shells
makes, actually, the basic contribution to the EOS. This EOS
has the following form:

p�X� � 3K0X
ÿ2=3ÿ1ÿ X 1=3

�
exp

�
3

2
�K 00 ÿ 1�ÿ1ÿ X 1=3

��
:

�6�
It was shown [22] that expression (6), commonly referred to as
the Vinet equation, described quite well the then available
experimental data of the EOS for molecular hydrogen to 25
GPa. In Ref. [22] the experimental values of K0, K

0
0 and V0

were used. Subsequently, equation (6) was applied [19] to
represent experimental results to 42 GPa. In this case an
experimental value of V0 equal to 25.433 cm3 moleÿ1 was
taken, while the values of K0 and K 00 were used as adjustable
parameters. It was obtained that K0 � 0:162 GPa and
K 00 � 6:813 GPa which is not too different from experimental
data at p � 0.

Besides semi-phenomenological [3, 27 ± 29] and purely
phenomenological [22] approaches to the EOS calculation
for molecular hydrogen, a serious effort was made to
calculate the EOS ab initio [26, 31 ± 34]. In Refs [26, 31] a
method of total energy calculation based on the density
functional theory (DFT) [35] was used which is standard in
state-of-the-art solid state physics. In those calculations, the
protons were treated as classical particles rigidly fixed to the
sites of an appropriate crystal lattice. In Ref. [31] phonon
spectra in several symmetrical directions were calculated and
then used to find the zero-point contribution of lattice to the
total energy and pressure. The contribution turned out to be
much larger than in many other molecular crystals. This is
directly related to the smallness of protonmass and points out
the important role possibly played by quantum effects in the
behavior of proton lattice. In Ref. [32, 33] quantum Monte
Carlo methods were applied to calculate the EOS of
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hydrogen, both electrons and protons being treated as
quantum particles. A detailed comparison [20] of band
structure calculations with experimental data of EOS to
120 GPa demonstrated that the calculated specific volume is
underestimated at low pressures (p < 100 GPa) and over-
estimated at higher p by � 6% on average, a deviation in
compressibility being even greater. In Monte Carlo simula-
tions the specific volume is overestimated by � 8% as
compared to the experimental data. Thus, the available ab
initio methods do not provide the accuracy required for
calculating the EOS of high-pressure crystalline hydrogen.
We shall return in this review to the discussion of possible
reasons for such a situation. For completeness sake, one
should mention a recent quantum Monte Carlo simulation
[34] where the EOS of molecular hydrogen was found to
practically coincide with the experimental data. Nevertheless,
these results cannot be regarded as a considerable advance in
the field of theoretical study of compressed hydrogen since
phenomenological pair potentials of the proton-proton
interaction with adjustable parameters were used in Ref. [34].

In addition to the EOS, the pÿT phase diagram of
hydrogen was studied basically by the effort of two research
groups in the USA [36 ± 38]. It is schematically plotted in
Fig. 2. The phase diagrams of both isotopes, H2 and D2, are
much alike, they are different only in the position of boundary
between the phases I and II. As is seen in Fig. 2, at least three
different phases of crystalline hydrogen exist in the pressure
range to� 200 GPa. Experimentally, except for phase I, little
is known about these phases and the character of transitions
between them. Only that all three phases apply to the
molecular hydrogen solid may be thought of as well-founded
experimentally [36]. In the experiments, all the boundaries
between phases were detected through the changes in various
vibration modes of corresponding crystal lattices (see the
review [5] for more detail). Characteristic of the transition
from phase I to phase II is that the optically active modes
lacking in phase I appear in the vibration spectrum of the
phase II [37, 38]. The transition from phase II to phase III is
marked by discontinuous changes in both IR and Raman
modes. Another distinctive feature of phase III is a sharp
increase in the oscillator strengths of optically active modes
[36].

The crystal structure of phase I is reliably established by
means of both neutron [18] and X-ray [19] measurements. In
this phase the centres of H2 molecules form the hcp structure,
while the molecules themselves rotate freely owing to the
occurrence of both thermal and zero-point librons (rotational
modes). Because of the almost spherical distribution of
electron density in hydrogen molecules there are no optically
active modes in this phase, and the infrared absorption occurs
only through second-order processes. A wide absorption
band appears around � 4500 cmÿ1 that is the energy of
intramolecular vibron. The very fact that optically active
modes arise in phase II is, first of all, evidence of molecular
ordering occurring in this phase and it allows the exclusion of
at least some possible ways of such ordering. However, the
nature of the ordering in question remains to be understood.
Thus, a model was proposed [39] of quantum orientational
ordering of hydrogen molecules in phase II. It was assumed
that in phase II the hydrogenmolecules remain freely rotating
with rather high angular momenta J � 2, 4, but at the I ± II
boundary the ordering of quantization axes of molecular
rotation takes place. Then, according to Ref. [39] a classical
ordering of molecular axes occurs at the boundary of phases
II and III. In most other theoretical studies on this problem
[34, 40, 41] the phase boundaries I ± II and II ± III are
associated with a different type of ordering of both the
molecular axes and molecular centres. Since the thermal
librons as well as the zero-point ones necessarily exist in
systems with an ordering of molecular axes, then it is
absolutely unclear whether there is any principal difference
between the quantum ordering of quantization axes and the
classical ordering of molecular axes. It is quite possible that
nothing more than a proper inclusion of the libron-mode
influence on the properties of systems with ordering of
molecular axes is needed. At the moment, this question is
quite difficult to answer because a detailed analysis of the
quantum-ordered phase properties is absent in Ref. [39].

A large body of theoretical work [39 ± 48] is available on
the structure of high-pressure molecular hydrogen. In these
investigations, two of above-mentioned ab initiomethods for
calculating the crystal properties are basically employed. This
is the density functional method of electron-band structure
calculation [38, 39, 41 ± 44] and the quantum Monte Carlo
method [34, 47, 48]. In Refs [40, 46] a method of ab initio
molecular dynamics (AIMD) was used. Before discussing
these studies in detail, we would like to formulate what
follows from them. To start with, a variety of crystal
structures of nearly the same energy are predicted for
molecular hydrogen at high pressure. In this regard the EOS
depends only weakly on the type of crystal structure stable at
a given pressure, but many other properties of such a system
may crucially depend on its crystal structure. In the high-
pressure region, anisotropic and very complex structures with
many molecules per unit cell have the lowest energy, at least
prior to a transition to a monoatomic phase. Most of these
structures can be derived from an hcp lattice characteristic of
phase I by changing the ordering of the molecular axes and by
slightly displacing the molecular centres off positions corre-
sponding to the regular hcp structure.

Below we shall describe in brief the methods of ab initio
calculations. As noted already, most of them are based on the
density functional theory. The essence of this theory is as
follows. It is proven that the ground-state energy of a system
of interacting electronsEel in an external field (here in the field
of protons) is a single-valued functional of the electron
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density. The real distribution of electron density is determined
by minimizing this functional:

dEel

�
r�r�	

dr�r� � 0 : �7�

The energy Eel

�
r�r�	 can be presented in the form

Eel

�
r�r�	 � T0

�
r�r�	� e2

2

�
r�r�r�r0�
jrÿ r0j dr0

�
�
r�r�Vext�r� dr� Exc

�
r�r�	 : �8�

Here T0

�
r�r�	 is the kinetic energy of a system of noninter-

acting electrons with the same density as that of the crystalline
system under consideration; Vext�r� is an external potential.
In case of crystal it is nothing but a sum of potentials of nuclei
(protons):

Vext�r� �
X
n

Vn�rÿ Rn� : �9�

The functional of exchange-correlation energy is denoted as
Exc

�
r�r�	. At present, the exact form of this functional is

unknown. In most calculations the so-called local density
approximation is used. It means thatExc

�
r�r�	 is presented in

the form

Exc

�
r�r�	 � � r�r�exc�r�r�g dr ; �10�

where an expression obtained for the homogeneous electron
gas with a given density is used for exc

�
r�r�	. This expression

for exc
�
r�r�	 is well known. Then, with r�r� written as the

density of a system of non-interacting electrons in an external
self-consistent field

r�r� �
Xem
i

jci�r�j2 ; �11�

one can get a Kohn ± Sham equation [35] for wave functions
ci�r�:�

ÿ H2

2m
� Veff�r�

�
ci�r� � eici�r� ; �12�

where the effective potential Veff�r� has the form

Veff�r� �
X
n

Vn�rÿ Rn� � e2
�

r�r0�
jrÿ r0j dr

0 � Vxc

�
r�r�	 ;
�13�

Vxc

�
r�r�	 � dExc

�
r�r�	

dr�r� : �14�

Within the local density approximation for Exc

�
r�r�	 (10) all

the quantities in Eqns (8) ± (14) are well defined, and the
calculation of the ground-state energy of the electron
subsystem can be carried through.

Formally, the procedure of further calculations is rather
simple. In the initial stage a crystalline electron density is
constructed, for example, following Mattheiss, i.e. as a
superposition of atomic electron densities. It is substituted
into expression (13) for the effective potential. Then, the
Kohn ± Sham equation (12) is solved and a new density is
defined from its solution by formula (11). After that a new

potential Veff�r� is constructed using the new density, and the
equation of Kohn ± Sham is solved again. The whole cycle is
iterated to self-consistency. As a result, the ground-state
energy Eel of electrons is calculated by formula (8) using the
solutions obtained to the Kohn ± Sham equation. To calcu-
late the total energy of the crystal, the Coulomb energy of
nuclei (protons) is added to Eel:

E � Eel � e2

2

X
n; n0

1

jRn ÿ Rn0 j : �15�

All these calculations can be performed for any crystalline
structure and for any interatomic spacing allowing us to get
the equation of state and to find a lattice corresponding to the
global energy minimum.

In fact, the above calculational procedure is quite
complicated and tedious. This is easy to understand even
from the fact that the very procedure of solving the Kohn ±
Sham equation with a periodic potential and the calculation
of corresponding Bloch functions ckl�r� (k is the electron
momentum, l is the number of energy band) is a large
separate chapter of solid state theory [49]. Naturally, we
cannot discuss here in detail all the problems related to the
practical realization of the procedure of band structure
calculation, thus, we consider briefly the possible causes of
different-type errors occurring in the scheme described. There
are a few such causes. First of all, this is the local density
approximation for exchange-correlation energy. The electron
density distribution in crystalline hydrogen is far from the
homogeneous one for which this approximation is exact. In
some investigations of hydrogen (for example, Refs [40, 42])
attempts were made to go beyond this approximation,
however, this problem has not been seriously studied with
respect to the calculation of crystalline hydrogen. The second
cause that now is specific just to hydrogen is that in band
structure calculations the protons are treated as classical
particles rigidly fixed to the sites of a particular lattice [39 ±
45]. There is great evidence, however, that quantum fluctua-
tions of the protons are of great importance for crystalline
hydrogen, and hence the ZPM must be taken into account,
even at T � 0.

The first attempt to include the influence of proton ZPM
on the properties of high-density hydrogen was made in Ref.
[50] in calculating the metallic phase. The total energy of the
crystal was written in terms of perturbation theory in
electron-proton interaction:

E � 1

2

X
q; l

�ho�q; l� �
X
R6�0

U�R��

+ structure-independent. (16)

Here the first sum is taken over phonon frequencies. Taking
into account that the amplitude of proton ZPM is rather large
and hence anharmonism is essential, the phonon frequency
calculation [50] was performed using the quasiharmonic
approximation. In this approximation the phonon frequen-
cies are determinedby solving a standard eigenvalue equation:

Mo2�q; l�ea�q; l� � eb�q; l� 1
N

X
R 6�0

�
�cos qRÿ 1�

�
�

4pe2

k2e�k� kakb exp
�
ÿ 1

2
kmknlmn�R�

�
exp�ikR� d3k

�2p�3
�
:

�17�
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HereM is the proton mass, e�q; l� is the phonon polarization
vector, and lab�R� is the pair correlation function of
displacements. In the quasiharmonic approximation, lab�R�
may be written as

lab�R� � 1

M

X
q; l

�
1ÿ cos�qR��ea�q; l�eb�q; l�oÿ1�q; l� :

�18�
Equations (17), (18) are solved self-consistently. This means
that first the phonon frequencies and polarization vectors are
found. Then, the correlation function of displacements lab�R�
is determined. After that the renormalized force constants are
calculated, and the whole cycle is iterated to self-consistency.
In Ref. [50] the Coulomb potential screened by free electrons,
which have the dielectric function e�k�, was used as an initial
proton-proton interaction. Then, the effect of phonons on the
electron contribution to energy was taken into account [50].
The resulting potential U�R� was presented in the form

U�R� �
�

4pe2

k2e�k� exp
�
ÿ 1

2
kakblab�R�

�
exp�ikR� d3k

�2p�3 :

�19�
In the harmonic approximation, i.e., assuming that
lab�R� � 0, Eqn (16) transforms to the standard expression
for themetal energy in terms of the second-order perturbation
theory in electron-ion (proton) potential [8].

Subsequently, the same method for calculating the
quasiharmonic phonons was applied [51] to study the
molecular phase. In this case, however, the initial interpro-
tonic potential V0�Rn; Rn0 � was calculated within the DFT.
Then the phonon frequencies determined in such a way were
used to calculate the zero-point energy that was, in turn,
included into the total energy of crystal. In a number of
investigations (for example, Refs [31, 52]) the zero-point
energy was calculated in the harmonic approximation. The
conclusions made in Refs [31, 52] imply that the ZPMmust be
taken into account in the determining the crystal structure
energies and that its inclusion may change the sequence of
structures arranged by total energy, which is essential in
finding the ground state of the system.

An attempt to take into account the dynamics of proton
vibrations in the crystalline potential was made in the
calculations [40, 46] performed by the AIMD method. This
approach was advanced for the first time by Car and
Parrinello [53]; its essence is as follows. Classical molecular-
dynamics simulation of a system with the Hamiltonian

H �
X
n

p2n
2M
� e2

2

X
n; n0

1

jRn ÿ Rn0 j � EelfRng ; �20�

is performed. Here pn is the particle momentum and M is its
mass (proton mass in our case). The electron contribution to
the Hamiltonian EelfRng is calculated within the DFT
described above. Thus, the electron energy is determined
self-consistently for any position of protons. Then, the forces
acting on the protons are calculated by the classical Newton
equations.

Among the drawbacks to the outlined approach are, of
course, all those mentioned above in connection with the
DFT. There are also inaccuracies specific to the AIMD
method. First, the number of particles involved in molecu-
lar-dynamics simulation is rather small. As a rule, it does not

exceed 128 atoms. The second essential shortcoming is related
to the way of calculating the electronic energy. Usually it is
calculated by integration over the momentum space. Integra-
tion over the real space is, in turn, most commonly replaced
by taking an integral over a small number of points in the
momentum space. In many studies this number was simply
equal to 1, i.e. k � 0. InRef. [40] it was demonstrated that this
approach might introduce large errors, even into the evalua-
tion of the crystal structure energy.

The quantum Monte Carlo method is best suited to take
into consideration all the peculiarities of crystalline hydrogen
behavior under high pressure. Only a few calculations of solid
hydrogen performed by this method are currently available
[32 ± 34, 47, 48]. In Ref. [47] the properties of high-density
hydrogen are calculated by a generalized Car ± Parrinello
AIMD method developed in [54, 55] to take into account the
quantum character of proton motion. Broadly speaking, the
essence of this generalization boils down to the calculation of
the partition function for the proton quantum system
described by Hamiltonian (20). This partition function is
written as a path integral with subsequent replacement of the
latter by an ordinary integral over a large number of
variables. Each proton is represented by a ring polymer of
classical particles with a finite number of `beads' that is equal
to the number of discretizations in imaginary time. The
mathematical Monte Carlo method is used to calculate the
resulting integrals. The results [47] make it clear that taking
into account the quantum behavior of protons is of great
importance. Thus, at low temperatures of � 50 K the pair
correlation function of quantumprotons g�r� is demonstrated
[47] to have the shape closely similar to the g�r� of classical
protons at T � 520 K. This, in particular, indicates a large
amplitude of the protonic ZPM. In Refs [32, 33] molecular
hydrogen was calculated in the pressure range 100 to
� 250GPa by means of a quantum Monte Carlo method
with both protons and electrons treated on equal footing, that
is their quantum motion was taken into complete account.
The simulations were performed for 48 molecules. As was
pointed out above, the results of these EOS calculations
turned out to be different by � 8% from experimental data,
regarding the determination of specific volume.

We now proceed to discuss the theoretical calculations of
the crystal structure and properties of molecular hydrogen at
pressures corresponding to phases II and III. Figure 3
displays some candidate structures for these phases. In these
structures, the molecular centres occupy the sites of the hcp
lattice. The simplest of them considered first in Ref. [2] and
then investigated thoroughly in Ref. [31] is shown in Fig. 3a.
In this structure, sometimes referred to as mhcp-c, the axes of
all molecules are aligned parallel to c. However, a detailed
consideration [43 ± 45] of the stability of various structures,
and of their energies, performed on the basis of band structure
calculations demonstrated that the low-coordinated, so-
called `canted', structures are more stable and have lower
energy. Figures 3b, c display two such structures character-
ized by orthorhombic symmetry. One of these structures
corresponding to the space group Pca21 (Fig. 3b) possesses
the lowest energy among the systems of classical quadrupoles,
as was earlier demonstrated by Kitaigorodskii and Mirskaya
[52]. In this structure, the molecular axes lie along four
directions according to the combinations of cos y � �1= ���

3
p

and cosj � �1= ���
2
p

, with the polar angle y measured from
the c axis, and the azimuthal angle j measured from the
direction to the nearest molecule. The structure shown in
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Fig. 3c has the space group Cmc21. In its two sublattices
moved relative to each other by c=2, the molecular axes are
tilted from the c axis by the angles y andÿy, correspondingly,
with y � 30�.

ThePca21 structure (Fig. 3b) is the strongest candidate for
a crystal structure of phase II. This conclusion stems from a
detailed consideration [40] of energies and lattice dynamics
performed by theAIMDmethod for several crystal structures
in the corresponding pressure range. First, it was shown in
Ref. [40] that within the classical treatment of proton
dynamics, this structure has the lowest energy among all
other structures considered. A system ordered initially in an
arbitrary lattice relaxes to the Pca21 structure in the course of
molecular-dynamics simulation. Second, this structure pos-
sesses optically active modes, which are found experimentally
to appear at the phase I - phase II boundary. This is no
surprise, since the molecules in this structure may possess
quadrupole moments by virtue of Pca21 symmetry. Occur-
rence of the quadrupole moments Q leads [39] inevitably to
electric fields E � bQ=a4 occurring in the system, here b is
some number depending on the structure and orientation,
and a is the lattice parameter. The electric fields give rise, in
turn, to the effective charges q � aE=d occurring in the
molecules, here a is the molecular polarizability and d is the
molecular bond length. An essential problem, which, how-
ever, has not been comprehensively studied, is the mechanism
for occurrence of the quadrupole moments in hydrogen
molecules. It remains unclear whether they are trivially
caused by the crystalline field or the quadrupole moments
due to the ortho-states of hydrogen molecules are also
observed in real experiments as, actually, assumed in Ref.
[39].

In phase II, the effective charge of optically active vibrons
is extremely small, q � 0:004e, where e is the electron charge.
In phase III it increases almost by two orders ofmagnitude. In
Ref. [39] it was noted that in phase III the integrated intensity
of IR absorption is proportional to the squared shift �Dn�2 of
the vibron frequency, where Dn is measured with respect to
the frequency value at the transition point. This may be an
indication that the both quantities, q and Dn, depend on a
single order parameter characteristic of phase III and are
proportional to it. It is suggested in Ref. [39] to consider the
quadrupole moment of molecule as such a parameter. This
interpretation of the phase III properties was challenged [41,
57] andmodels were proposed [41, 57] for the crystal structure
of phase III, whereby the hydrogen molecules get dipole
moments, i.e., the electron charge is transferred within a
molecule from one proton to another, and the molecule
acquires some fraction of an ionic bond. A previous
assumption [58] is noteworthy that at high compressions
molecular hydrogen may become a fully ionic compound (of

NaCl type). Previously, a hypothetical ionic phase of atomic
hydrogen was examined and found to be not favored
energetically [59].

Edwards and Ashcroft [41] considered the structures
Cmc21 (see Fig. 3c) and C2=m as candidates for phase III.
The C2=m structure possesses monoclinic symmetry and is
different from Cmc21 in that the molecular axes in both
sublattices are parallel, i.e. all are tilted from the c axis by
the angle y � 30�. It was shown on the basis of band structure
calculations that at a small sliding of either sublattice in the
plane perpendicular to c, the charge distribution along the
molecular bond becomes asymmetric in both structures. It
was also shown that the structure Cmc21 distorted by such a
displacement possesses a lower energy than C2=m. In this
work, the effective dipole charge and the shift of vibron
modes Dn were not calculated in detail. Nevertheless, simple
estimates [41] show that this model is, at least, not contrary to
the interrelation between q and Dn observed experimentally.
It should be noted that in the Cmc21 structure distorted by
sublattice displacement, the number of optically active modes
exceeds that observed experimentally (2 instead of 1). The
authors of Ref. [41] also point out that in the C2=m structure
which, according to their calculation, has a higher energy the
number of IR- and Raman-active phonons is in agreement
with the experimental data. In this connection, study [47]
should be mentioned, where the crystal structure of hydrogen
was calculated by the quantum Monte Carlo method at
various pressures. A structure qualitatively similar to C2=m
was shown in [47] to possess the lowest energy. However, its
characteristics, such as the tilting angles of molecules, the
molecular bond length and the lattice parameters are slightly
different from those obtained by Edwards and Ashcroft [41].
A detailed investigation of optical-mode frequencies in high-
density hydrogen was performed by the Japanese team [45]
with the use of DFT and a standard method of band structure
calculation. They calculated the optical-mode frequencies
and their dependence on pressure for three structures Ð
Pca21, Cmc21 and Cmca Ð and demonstrated that the
vibration frequencies obtained for the Pca21 structure are in
close agreement with the experimental data. This confirms the
results reported previously in Ref. [41]. According to
calculations [45], the Cmc21 is the strongest candidate for
phase III.

The problem of effective dipole charges in phase III was
studied most comprehensively by Souza and Martin [57].
They considered the C2=m and Cmc21 structures as well.
Based on band structure calculation, they found not only the
charge distribution in the system but also the electric
polarization related to the IR-active vibron modes. For this
purpose, the Berry's phase [60] formed of electron wavefunc-
tion phases was used to describe the polarization of the
periodic insulating system. It follows from calculation [57]
that at pressures corresponding to phase III the effective
charges in C2=m structure are almost thirty times larger than
those observed experimentally. Moreover, in this structure
the band gap is closed at pressures of � 160 GPa and the
system transforms to a metallic state. In the Cmc21 structure
band-gap closure does not take place up to the highest
pressures considered in this work (� 180 GPa ) which is in
agreement with the results [41, 42]. The calculated effective
charges, however, are several times larger than the experi-
mental ones.

The following conclusions can be made from the above
discussion on the structure and properties of high-pressure

a b cy

Figure 3. Predicted hcp-type crystal structures for molecular hydrogen: c-

axis oriented molecules [2, 31] (a); the axes of molecules lie on the ab plane

[43] (b); molecules are tilted off the ab plane [43, 44] (c).
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molecular hydrogen. The main point is the inadequacy of
available ab initio methods to explain hydrogen's properties.
The fact that uncertainties and errors of different kinds arise
in studies of crystal properties by these methods [61] has been
well known for a long time. These errors are rather small for
many crystalline systems and do not substantially affect the
results of calculations of their properties. In this regard, high-
pressure hydrogen turned out to be a very special system: it
may form many crystal structures of nearly the same energy
which are, however, highly distinct in other characteristics, as
the C2=m and Cmc21 structures exemplify. For instance, at
p � 160 GPa hydrogen becomes a metal in the C2=m
structure, while it remains an insulator in the Cmc21
structure. Moreover, many quantities including the effective
charges depend strongly on the lattice constant and the
molecular bond length, so an error of several percent in
determining these parameters may result in a much more
considerable change in the charge magnitude. It is clear that a
further increase in the accuracy of ab initio calculations is
needed to evaluate reliably the properties of high-pressure
hydrogen. It is not only in the case of hydrogen that this task
may become urgent. There is recent experimental and
theoretical evidence [62] that pressurized crystalline lithium
also exhibits various anomalies including the occurrence of
the same complex crystal structures and even a possible
transition of lithium into an insulating state with increasing
pressure.

3. Insulator ±metal transition

In the physics of hydrogen, a long-standing problem,
however, still unsolved, is the insulator ± metal (IM)
transition at high pressure. This problem became a subject
of vigorous study, both theoretical and experimental, in the
70s. At that time, several experimental observations of IM
transition were reported [13, 14, 23, 63, 64]. In two of those
experiments [63, 64], two different static-pressure devices
were used. In the experiment performed by a group from
the High Pressure Physics Institute headed by Vereshchagin
[63] a hydrogen sample was placed on a flat anvil of
polycrystalline diamond and pressed by a thin indenter
also made of polycrystalline diamond. In the experiment
carried out by a Japanese team [64] a hydrogen sample was
placed inside a nine-sector sphere made of tungsten
carbide, and high pressure was generated by bringing
these sectors synchronously together. In Ref. [63] the
indenter-to-anvil voltage was measured, and the IM
transition was detected through a drastic decrease in
voltage at some compression. The corresponding value of
pressure was estimated with a high degree of uncertainty.
Actually, a question arose as to whether or not the
observed drastic decrease in voltage was caused by the
puncture of a hydrogen sample with diamond indenter. The
work by Japanese investigators [64] provoked much
criticism as well. Thus, it still remains unclear whether the
IM transition of hydrogen was really observed in these
experiments. Utter denial of this fact does not nowadays
seem to be so convincing as it was in the 70s. The point is
that the same group from HPPI observed an IM transition
in crystalline sulphur [65]. Moreover, a subsequent transi-
tion of metallic sulphur to a superconducting state was
observed. Those results received initially with profound
skepticism have recently been confirmed by investigations
made with diamond-anvil cells [66, 67].

Observations of IM transitions were also reported in early
shock-compression experiments [13, 14]. These investigations
were performed in nuclear centres of the USSR (Arzamas-16)
[13] and USA (Lawrence Livermore National Laboratory,
LLNL) [14]. In these experiments, isentropic shock compres-
sionwas used to lower hydrogen temperatures as compared to
those arising at ordinary shock compression. For this
purpose, a metallic shell enclosing a hydrogen sample was
compressed by means of high magnetic fields produced by
explosion. The idea of explosive compression used to create
high magnetic fields was advanced in the USSR by Andre|̄
Sakharov [68]. The Arzamas-16 investigators determined the
density of hydrogen by measuring the diameter of a
cylindrical enclosure containing a hydrogen sample with a
powerful transmission g-spectrometer. The American team
measured, besides density, the electrical resistance of hydro-
gen. In fact, no thermodynamic variable other than density
was measured in both experiments. Only the speeds of shock
waves generated in the experiments can be reconstructed. All
other quantities are to be calculated using various phenom-
enological equations of state and the shock wave theory. As
mentioned in the preceding section, the Arzamas-16 team
managed to reconstruct the EOS of molecular hydrogen to
pressures of� 400 GPa surprisingly well. In Ref. [13], several
possible pressures corresponding to different equations of
state for the molecular phase are reported for a transition
registered through an abrupt change in density. When using
one set of parameters [23] that leads to the best agreement
with the EOS to 120 GPa known today, the transition
observed by this group takes place around 400 GPa. The
American investigators reported in their publication an IM
transition registered around 200 GPa. According to their
measurements, the electrical conductivity of hydrogen was of
the order of 1 Oÿ1 cmÿ1 which is considerably lower than the
threshold of metallic conductivity. In Ref. [14], the EOS was
not established with sufficient reliability.

We shall subsequently return to an extended discussion of
the work by the Arzamas-16 investigators, and here we
mention only that new observations of the IM transition in
hydrogen at shock compression have been recently reported
by a Livermore team [69].

As is evident from the above discussion, the experimental
observation of the IM transition in high-density hydrogen is
an extremely complicated problem that still remains
unsolved. A similar statement is true for theoretical calcula-
tion of this transition as we shall see later. In early
publications [1 ± 4], the IM transition was customarily
associated with the transformation of hydrogen from a
molecular state to an atomic one. As was noted subsequently
[70, 71], the metallization of high-density hydrogen should
most probably occur in its molecular phase, owing to the
overlap of electron bands and the closure of an indirect band
gap. Such a phenomenon was observed, for example, in
molecular iodine [72]. Subsequent extended calculations [42,
44, 52, 73] confirmed the assumption that the IM transition
may occur in the molecular phase of hydrogen.

The possible pressure of this transition is easily estimable
by means of various techniques. The IM transition in the
molecular phase takes place if the widths of both filled 1sg

and empty 1su bands originating from the corresponding
molecular orbitals exceed the splitting of these bands. An
estimate [73] made using the tight-binding method with
variational Slater 1s orbitals indicates that this overlap
should occur at densities corresponding to rs � 1:45, which
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corresponds to pressures of the order of 150 GPa. The
parameter rs is the radius of a sphere falling at one electron:

O0 � 4p
3

r3s r
3
B ; �21�

where O0 is the volume per electron and rB is the Bohr radius.
Another way of estimating the transition pressure is based

on a longstanding idea [74] of a so-called `dielectric cata-
strophe'. Let us write the dielectric function of molecular
crystal in the Lorenz ±Lorentz form:

e � 1� 4pna
1ÿ 4pna=3

; �22�

where n is the density ofmolecules and a is their polarizability.
The IM transition may be expected to occur, as e goes to
infinity. This takes place under the following condition:

4pna
3
� 1 : �23�

According to a simple estimate [41] made using the a value for
a free molecule, equality (23) is again true at p � 150 GPa.
With this estimate, it is no wonder that the transition between
phases II and III that takes place just at p � 150 GPa was
initially thought of as the onset of hydrogen metallization
[37].

On the one hand, the extended calculations [42, 44, 52, 73]
mentioned above demonstrated, that the cited simple estimate
of the IM transition pressure in the molecular phase was
reasonable. Indeed, according to these calculations the
pressure of the IM transition falls in the range 130 to
180 GPa for many molecular crystal structures. On the other
hand, these very calculations revealed a number of difficulties
in the solution of this problem. First of all, it was found that
the IM transition pressure might depend strongly on the
crystal structure of molecular hydrogen. To be more exact, it
depends on the orientation of the molecular axes, since most
of the crystal structures favored energetically have an hcp-like
arrangement of molecular centres.Moreover, lower pressures
of IM transition are inherent in the very structures, which are
less preferred energetically in the insulating state. An example
is themhcp-c structure with all molecular axes aligned parallel
to c. According to the band structure calculation [43] made
within the DFT, this structure has the highest energy as
compared to all other hcp-based structures and the smallest
energy gap at the same density. Its metallization pressure
turns out to be the lowest as well.

Figure 4 illustrates in a more informative way the
positions of hydrogen molecules in the three crystal struc-
tures presented schematically in Fig. 3, while the relative
energies of these structures and the corresponding energy
gaps are presented in Fig. 5 (both Figs 4 and 5 are after Ref.
[43]). Figure 5 demonstrates clearly that the mhcp-c structure
has, indeed, the smallest gap, but it is not favored energeti-
cally within a large compression range. The calculation [43]
was performed in the clamped-nuclei approximation, i.e.
without including ion vibrations. More recently, it was
shown [52] that the situation could be changed considerably
by taking into account the phonon contribution to the total
energy of crystal. Figure 6 (after Ref. [52]) exhibits the relative
energies of the structures with different y angles by which the
molecules are tilted to the c axis. Notice, that the y � 0 case
corresponds to the structure in Fig. 4a, and the y � 60�

structure is that of Fig. 4c. It is seen in Figure 6 that inclusion

of the zero-point contribution alters the relative energies of
phases, and the Pca21-to-mhcp-c crystallographic transition
should occur at p � 78 GPa. According to the calculation
under discussion, this transition would probably be accom-
panied by the IM transition because the mhcp-c phase is
metallic at such pressures. It is known to a high degree of
certainty that the IM transition does not actually occur either
at such pressures or at considerably higher pressures up to
300 GPa.

It follows from the above discussion that a whole set of
intricate problems arise, when evaluating the metallization
pressure of molecular hydrogen. First, the accurate evalua-
tion of the energy gap and of the pressure (or, at least, density)
at which the gap is closed, i.e. the IM transition occurs, is
necessary. Second, an accurate calculation is required of
relative energies for different crystalline phases, in both
insulating and metallic states. Third, one should take into
account the effect of phonons on the crystalline phase energy,

a cb

Figure 4. Three molecular orientations a, b and c corresponding to the

three structure types in Fig. 3a, b, c. The arrows represent the basis vectors

of the hcp lattice.
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as well as on its electronic structure, in particular, on the
energy gap. It will be seen later that the solution of all these
problems is presently hindered by the lack of a detailed
underlying theory.

Let us start our consideration with the gap problem. The
DFT outlined in the preceding section of this review provides
a standard approach for calculating the energy band structure
of crystals, that has been used in most of the studies on
molecular hydrogen [41, 42, 51, 73]. This approach reduces to
solving the Kohn ± Sham equations (12) ± (14). The band
structure described by the dispersion law ekl (k is the wave
vector in the first Brillouin zone and l is the number of a
branch of the electronic spectrum) is a result of solving these
equations. Figure 7 displays the band structure of molecular
hydrogen calculated inRef. [42]. The calculation is performed
at a hydrogen density corresponding to rs � 1:6. The above-
mentioned strong crystal-structure dependence of the band
structure and, in particular, of the energy gap is clearly visible
from Fig. 7. Thus, at rs � 1:6, the indirect gaps are closed in
the mhcp-c phase, and the system becomes a zero-gap
semiconductor, while the Cmc21 phase remains an insulator
with rather a large gap,Eg � 1:5 eV. It should be noted that in
the Cmca phase, the gaps are closed at lower density, and this
phase is already metallic at rs � 1:6. The Cmca structure was
not considered in Ref. [43] where the mhcp-c phase was
reported to possess the lowest metallization pressure.

It was established in Refs [75, 76] that in the framework of
DFT, the energy gap is, in principle, underestimated for
insulating systems. This is related to the so-called disconti-
nuity of the exchange-correlation potential. We will not
discuss this problem in detail here, referring the interested
reader to review [77]. Two points, however, should be
emphasized. First, the gap is underestimated not only in the
local density approximation, but in the case of the exact
exchange-correlation potential as well [77]. Second, as
demonstrated in Ref. [7], the DFT underestimates not only
the gap value at any given density, but also the density value
at which this gap is closed. Thus, the DFT underestimates the
value of pressure at which the IM transition occurs.

The band gap of insulators is to be found not by solving
the Kohn ± Sham equations (12) ± (14), but by the use of a
one-particle Green's function. An appropriate equation has
the following form:�

ÿ H2

2m
�
X
n

Vn�rÿ Rn� � e2
�

r�r0�
jrÿ r0j dr

0
�
ckl�r�

�
�
S�r; r0; ekl�ckl�r0� dr0 � eklckl�r� : �24�

The only but essential difference between this equation and
theKohn ± Shamone (12) is in the fourth term in the left-hand
side of Eqn (24). Instead of a local operator of exchange-
correlation potential Vxc�r�, a non-local energy-dependent
operator of self-energy S�r; r0;o� appears in the equation for
one-particle excitations.

It is easy to understand that the electron bands obtained
from these two equations may be substantially different, even
in the simplest case of the homogeneous electron gas. In this
case Vxc�r� is merely a constant, and the spectrum obtained
from the corresponding Kohn ± Sham equation coincides
with the spectrum of non-interacting electrons. The situation
is completely different in the case of one-particle excitations
determined by Eqn (24). First of all, the electron mass is
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renormalized in the vicinity of the Fermi surface. Moreover,
the excitations have a finite lifetime due to the imaginary part
of S�k;o�.

Going to the consideration of crystalline systems, we note,
first of all, that the solution of the Kohn ± Sham equations
with the local operator Vxc�r� alone is a nontrivial procedure
for three-dimensional crystals. It is clear that the solution of
Eqn (24) presents an even more considerable challenge. But
this is apparently not the crux of the difficulty in the
calculation under discussion. Evaluation of the self-energy
S�r; r0; o� on its own presents the central problem. Usually,
when doing such a calculation, one restricts oneself to the
simplest approximation referred to as theGW approximation
and written in the form [79]

S�r; r0;o� � � i

2p

�
W�r; r0;o�G�r; r0;oÿ o0� do0 �25�

where G�r; r0;o� is a one-particle Green's function satisfying
the following equation:�

oÿ H2

2m
�
X
n

Vn�rÿ Rn� � e2
�

r�r0�
jrÿ r0j dr

0
�
G�r; r0;o�

�
�
S�r; r00;o�G�r; r00;o� dr00 � d�rÿ r0� : �26�

andW�r; r0;o� characterizes the electron-electron interaction
and has the form of a screened Coulomb potential:

W�r; r0;o� � e2
�

1

jrÿ r00j e
ÿ1�r00; r0;o� dr00 : �27�

Here eÿ1�r; r0;o� is an inverse electron dielectric function
(DF) of crystal. It is commonly determined in the framework
of the simplest random phase approximation:

e�r; r0;o� � d�rÿ r0� � e2
�
dr0
�
dr00 do0

1

jrÿ r00j
� G�r0; r00;oÿ o0�G�r00; r0;o0� : �28�

Calculation of the DF from equation (28) with a subsequent
change to the momentum representation, i.e. derivation of
the e�q� K; q� K0;o�, matrix (K and K0 are vectors of
reciprocal lattice), allows one to find an inverse matrix
eÿ1�q� K; q� K0;o�.

The above approach to the calculation of the spectrum of
electron excitations was successfully applied to a number of
semiconductors and insulators [80]. A few simplifications to
this approach were also suggested which allowed such
calculations to be performed more efficiently. Thus, a
Green's function derived in the framework of DFT rather
than the self-consistent Green's function from equation (26)
was proposed [81] for use when calculating the self-energy
(25):

G�r; r0;o� �
X
k; l

c�kl�r�ckl�r0�
oÿ ekl

: �29�

Various simplified techniques were also proposed for calcu-
lating the inverse DF (see, for example, Ref. [82]). The
simplest way to find the excitation spectrum of an insulator
was suggested inRef. [78]. It was demonstrated on the basis of
analytical consideration of the expression (25) for self-energy

that the main distinction of W�r; r0;o� from the local
exchange-correlation potential is the exchange interaction
nonlocality describable within the Hartree ± Fock approx-
imation. It was suggested that a correction to the excitation
energy be sought

DEkl � Ekl ÿ ekl ; �30�

where the energy Ekl is a solution to equation (24) and ekl is
the energy in DFT, in the following form:

DEkl � EHF
kl ÿ ekl

e0
: �31�

Here EHF
kl is the Hartree ±Fock excitation energy (the gap is

overestimated in this approximation), and e0 is the static
electron DF. Both the energy gap and the near-gap excitation
spectra obtained in these calculations [78] turned out to be in
excellent agreement with the experimental data. The GW
approximation was also applied to evaluate the energy gap
and the metallization pressure in molecular hydrogen [83].
The metallization pressure was demonstrated to be nearly
twice as high as that obtained within the DFT approach.

Turning back to the second of the above problems arising
in the calculation of the metallization pressure for molecular
hydrogen, namely, to the necessity of precisely calculating the
crystal structure energies, we will only add something to what
has been said in the preceding section concerning the
inaccuracy of the methods used. This `something' is con-
cerned with the probable inconsistency when using the two
approaches. As pointed out already, the metallization
pressure should be calculated from the equation for the one-
particle Green's function rather than within the DFT
approach. In this case, it would be natural to use the Green's
function method in the calculation of the relative energies as
well. To date, however, such attempts have not beenmade for
crystalline systems. The GW method has only been recently
applied to calculate the energy of the homogeneous electron
gas [84]. So far, a generalization of this method to crystalline
systems is lacking.

To conclude the discussion on the calculation of the
metallization pressure in the molecular phase, we briefly
discuss the role possibly played by phonons and by electron-
phonon interaction in this problem. So far, when calculating
the metallization pressure, the phonon effect has been taken
into account only through the inclusion of the zero-point
contribution to the total energy of crystal [52]. It is well
known, however, that the consideration of the electron-
phonon interaction within the many-body theory [85] can
change the gapwidth, as well as its dependence on density and
temperature [86]. As yet, no adequate technique has been
developed to take into account those effects in the framework
of DFT, while, considering the strong dependence of the
energy gap on the crystal structure in molecular hydrogen, it
is beyond question that the gap width can be substantially
changed just through the electron-phonon interaction.

Evidence in favor of this fact is, perhaps, the observation
of the IM transition in liquid hydrogen at pressures of � 140
GPa and temperatures of� 2600 K reported in Ref. [69]. The
measurements were carried out using strong shock waves
generated by a hypervelocity impactor made of Al or Cu. A
layer of liquid hydrogen placed betweenAl2O3 anvils was held
by two Al plates cooled to 20 K. On impact of the impactor
onto the Al plate, a strong shock wave is created which travels
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through the hydrogen layer to compress it. To decrease the
temperature occurring in the hydrogen sample, compression
by shock waves reverberating between the Al2O3 anvils was
used. The experimental set-up also incorporated electrodes to
measure the electrical resistivity of the compressed hydrogen
sample. The set-up components are described in detail in Ref.
[69]. The parameters of theHugoniot shock adiabatmeasured
in the case of reverberating shock waves are not too different
from those measured before by the group from Arzamas-16
[13, 23]. However, no abrupt first-order phase transition was
observed in the experiment [69] under discussion. In this
experiment, the electric conductivity of hydrogen was found
to increase monotonically through four orders of magnitude
in the pressure range 93 to 140 GPa and to be constant and
approximately equal to 2000Oÿ1 cmÿ1 in the range 140 to 180
GPa. This conductivity is of the same order as that of denseCs
and Rb vapors at the IM transition in the temperature range
� 2000 K [87].

The experimental data on electric conductivity in the
pressure range 93 to 140 GPa were approximated by a
standard expression for conductivity in semiconductors:

s � s0 exp
�
ÿ Eg

2kBT

�
: �32�

Here the value of s0 and the energy gap Eg are considered to
be dependent on the density r and are fitted to the
experimental data. Moreover, in the specified pressure
range, the conductivity is reasonably well approximated
with a linear r-dependence of Eg:

Eg�r� �eV� � 1:22ÿ 62:6�rÿ 0:30� : �33�

Here r is expressed in mole cmÿ3, and s0 is assumed to be
constant and equal to 90Oÿ1 cmÿ1. The rate of gap reduction
with increasing density is equal to 62.6 eV moleÿ1 cm3 which
is rather close to that calculated theoretically [83] in the case
of solid hydrogen (40 eV moleÿ1 cm3). The gap expressed in
temperature units becomes equal to approximately 2600 K at
the density of 0.32 mole cmÿ3 corresponding to a pressure of
120 GPa. Thus, in the opinion of the authors of Ref. [69], a
complete IM transition (Eg � 0) occurs in liquid hydrogen at
p � 140 GPa and T � 2600 K. At higher pressures, the
electric conductivity becomes practically pressure-indepen-
dent.

So, in accordance with the results [69], the hydrogen
metallization pressure decreases considerably in the fluid
phase. This is of course related largely to the strong crystal-
structure dependence of this pressure. In the above-cited
theoretical papers it was demonstrated that the mhcp-c
structure possesses the lowest pressure of metallization, pc.
The canted structures have higher pc values. However, in Ref.
[83] it was shown using a `virtual-crystal approximation' that
the metallization pressure decreases to approach pc for the
mhcp-c structure if the disordering of molecular axes is taken
into account.

Notice that there is serious disagreement on the theore-
tical interpretation of the very process of metallization found
experimentally to occur at pc � 140 GPa and Tc � 3000 K.
Based on molecular-dynamics simulation [88], the experi-
menters themselves consider hydrogen near the metallization
point to be essentially `molecular': the fraction of dissociated
molecules is 10% or even less. However, another theoretical
study [89] also performed with the use of molecular dynamics

method states that, in fact, the metallization observed in Ref.
[69] occurs simultaneously with the progressive dissociation
of molecules to atoms. One probable reason for the disagree-
ment between these two works has to do with different
calculational techniques. In Ref. [89], the ab initio Car ±
Parrinello method [53] was used, while in Ref. [88] a semi-
phenomenological approach based on the tight-binding
method was applied to describe the electronic structure of
the system. Notice that the average pair correlation functions
of protons g�R� found in both works are not too different
from one another. These functions have two maxima at
relatively low temperatures and pressures corresponding to
the onset of metallization. One maximum is related to the
shorter intramolecular distance while the other corresponds
to the longer intermolecular one. The maxima are smoothed
out as temperature increases, the smoothing being faster in
the calculation [89] done with the Car ± Parrinello method.
However, the main argument of Ref. [89] that favors the
inadequacy of considering the hydrogen structure near the
metallization transition as `molecular' is related to temporal
processes rather than to the shape of the average pair
correlation function g�R�. The average time interval was
determined within which the distance between two particular
protons remained corresponding to the intramolecular
maximum of g�R�. On the threshold of metallization, this
lifetime of a `molecule' was found to be shorter than the
period of intramolecular vibrations. In the opinion of the
authors of Ref. [89], there is no reason to speak of the
existence of molecules in this case. In fact, short-lived clusters
of two protons exist in the system, short-lived clusters of a
larger number of protons also being possible. Undoubtedly,
this problem calls for extended consideration.

In what follows, we will briefly consider a phase transition
due to the molecule dissociation that has been rather rarely
discussed in recent years. This problem was studied very
actively in the 70s and 80s [4, 26, 50, 90 ± 92]. It was
considered most comprehensively by Kagan's group [4, 90]
with the use of perturbation theory to fourth order in the
electron-proton interaction. At T � 0, the energy of the
metallic phase depends on the density determined by a
dimensionless parameter rs, as well as on the parameters gs
characterizing the shape of the unit cell. The electron energy
can be developed as a series in the electron-proton interac-
tion:

Eel � E �0� � E �2� � E �3� � . . . ; �34�

where

E �n� � O
X

K1 ;...;Kn

G �n��K1; . . . ;Kn�V�K1� � . . . � V�Kn�

� D�K1 � . . .� Kn� : �35�
Here V�k� is the electron-ion potential

V�k� � ÿ 4pe2

k2O0
S�k� ; �36�

K1; . . . ;Kn is a vector of the reciprocal lattice, S�k� is the
structure factor, D�K1 � . . .� Kn� is the Dirac delta function.
A multi-pole function G �n��K1; . . . ;Kn� is the ordinary linear
susceptibility of homogeneous electron gas at n � 2, and the
nonlinear susceptibility at n5 3. Expressions for them are
given in Ref. [90]. An extended analysis of these multi-pole
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functions made with the inclusion of exchange and correla-
tion effects is presented in the book [93]. To calculate the total
energy of the crystal, Eel, one should add the Coulomb energy
of protons together with the zero-point contribution Evib to
Eel:

Ecr � Eel � 1

2

X
n; n0

e2

jRn ÿ Rn0 j � Evib : �37�

In Refs [4, 90], the quantity Evib was evaluated in the
framework of the harmonic approximation,

Evib � 1

2

X
q;l

�ho�q; l� ; �38�

and the phonon spectrum was determined within a rather
rough approximation based on the use of elastic moduli. The
pressure range 100 ± 1000 GPa corresponding to the density
range

1:059rs91:45 �39�

received primary consideration. Without going into the
details of the calculations [4, 90], we briefly review their
results. First of all, the anisotropic crystal structures with
very little difference in cohesive energy are stable and
energetically favored in metallic hydrogen, practically over
the whole density range defined by Eqn (39). As the density
increases, an energy minimum is initially reached that
corresponds to the formation of structures with c=a < 1,
distinct from one another by the longitudinal displacement
of atomic chains. However, on further increase in density, the
c=a > 1 structures with a fixed separation of crystal planes
but with different ion arrangements in those planes, become
energetically favored. This circumstance allowed the authors'
of Refs [4, 90] to conclude that metallic hydrogen has a
tendency towards fluid-like behavior in the density range
(39) and an IM transition from themolecular phase to a liquid
metallic one is possible.

The result obtained in Refs [4, 90] have come under
criticism [50, 91, 92], especially concerning the fact that the
anisotropic structures are energetically preferred. It was
stated [50, 91, 92] that taking into account the anharmonism
and Debye ±Waller factor would change the structure
energies situation and lead to the stabilization of simple
isotropic structures like hcp or bcc. So far, the crystal
structure of the atomic phase of metallic hydrogen has
remained unclear. On the one hand, it was confirmed [31]
that anisotropic structures are energetically favored, as was
obtained by Kagan et al. On the other hand, a Monte Carlo
simulation [94] performed at the density corresponding to
rs � 1:31 demonstrated that anisotropic structures are
favored only in the limit of a static lattice. According to that
calculation, the diamond-like structure is the most stable one
if the protonic ZPM is taken into account. It should be noted,
however, that neither chain- nor layer-like anisotropic
structures were actually studied in that work.

The experimental data related to the IM transition
observed, presumably, by the VNIIEF group were thor-
oughly analysed in Ref. [90]. With the theoretical EOS of
metallic hydrogen [90] and the EOS of molecular hydrogen
[13] the authors of Ref. [90] concluded that the IM transition
had been observed at pressures of the order of 300 GPa. In a
subsequent experimental work by the VNIIEF group [23], the

EOS parameters for the molecular phase were refined and it
was shown that a somewhat different EOS might be used,
resulting in an estimated transition pressure of� 400GPa. As
we have already noted in Section 2 when discussing the EOS
problem (see Fig. 1), it is these parameters which lead to
excellent agreement with the EOS [5] measured experimen-
tally to 120 GPa by means of static compression in a
diamond-anvil cell.

4. Properties of the metallic phase.
Superconductivity

Theoretical research of the properties of the hydrogen
metallic phase was carried out very intensively in the late 60s
and in the 70s. The cardinal problem considered inmost of the
publications was the possible existence of a superconducting
state with a high critical temperature Tc0200 K in metallic
hydrogen. It was pointed out in an early publication [6] on this
problem that such a high value of Tc is of essential
astrophysical interest. As is well known [16], Jupiter, for
example, consists mainly of hydrogen. Moreover, it is
supposed to have rather a low temperature (100 ± 200 K)
and an appreciable magnetic field. In this case superconduc-
tivity may result in a variety of interesting phenomena related
to the interaction of normal and superconducting currents
and to temporal changes in the total magnetic field of Jupiter.
Before proceeding to an extended consideration of the
hydrogen superconducting state and of possible Tc values,
we briefly discuss a question that, if answered in the
affirmative, might turn superconductivity in metallic hydro-
gen from a problem of fundamental astrophysical importance
to one of practical significance. This is the problem of the
possible existence of a metastable phase at p � 0 that, as was
mentioned in the introduction, was first raised by Kagan's
group [8]. To clarify this possibility, a few interrelated tasks
formulated clearly in Ref. [8] must be solved:

(1) The determination of the metallic hydrogen energy for
varying specific volume for various crystal structures; the
determination of the lowest energy state.

(2) The verification of the stability of such a phase, which
implies, in particular, that all the phonon frequencies must be
real, and the phase should be stable with respect to thermal
and, we would add, quantum fluctuations.

(3) The determination of the metastable state lifetime.
The first task, and part of the second one, were considered

comprehensively in the work under discussion [8]. The
calculations were carried out within perturbation theory to
the third order in the electron-proton interaction. The total
energy was written in the form (34). The metallic hydrogen
density corresponding to zero pressure p � 0 can be easily
estimated if all the contributions of the electron-proton
interaction are neglected:

rs � 1:2

a2

�
1:5

pa
ÿ aM

�
; �40�

here a � �4=�9p��2 � 0:521 and aM is the Madelung constant
close to 1.8. This gives an rs value of about 1.65. It is also easy
to demonstrate that the bulk modulus satisfies the inequality

K0 � ÿV qp
qV

> 0 ; �41�
at such densities, which ensures stability with respect to long-
wavelength density disturbances.
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More recent first-principles total-energy calculations [26,
31, 95] made for metallic hydrogen in the framework of DFT
confirmed that there is a minimum on the E ± r curve just in
the density range corresponding to rs � 1:6 ± 1:8. Things are
much more complicated in determining an energetically
preferable crystal structure of atomic metallic hydrogen and
the dynamical stability of this structure. All the Bravais
lattices, and also the diatomic lattices of particular impor-
tance, were thoroughly considered in Ref. [8]. It was found
that at p � 0 metallic hydrogen has a tendency towards
crystallization in highly anisotropic structures which is also
characteristic of molecular hydrogen as we have seen in the
preceding section. Within the perturbation theory to third
order, a trigonal family that is based on the simple hexagonal
lattice and produces a trigonal `threadlike' structure with
two-dimensional periodicity was demonstrated to be lower in
energy. Moreover, it was shown that in the hydrogen metallic
phase, a continuous family formed from the simple hexagonal
lattice through the following transformation of its basis, a10,
a20, a30, with the use of x and Z parameters

a1 � a10 � xa30 ; a2 � a20 � Za30 ; a3 � a30 : �42�

is lower in energy, the energy difference for various structures
of the family being not more than 10 K.

Since third-order terms of perturbation theory in the
electron-proton interaction were essential for all those
calculations, and higher orders were not taken into account,
it was natural that the conclusions [8] on the existence of a
long-lived crystalline metastable phase of metallic hydrogen
were challenged by some authors in their publications. Some
of those works [10, 11] have already been mentioned in the
introduction. This problem was considered in more detail by
Avilov and Iordanski|̄ [96]. They applied an unrestricted
Hartree ±Fock method, different orbitals being used for
different spins. The bcc and simple hexagonal crystal
structures were studied. First of all, the bcc structure was
demonstrated to have a minimum energy at rs � 1:7 that is
very close to the rs value found within perturbation theory in
Ref. [8]. Moreover, this minimum value of energy measured
with respect to the free atom energy, is also rather close to that
found in Ref. [8]. Avilov and Iordanski|̄ point out [96],
however, that with correlations included, the minimum shifts
to rs � 2:3 and a sharp decrease in cohesive energy occurs.
Furthermore, at densities corresponding to rs > 2:1, the
hydrogen atomic phase becomes an antiferromagnet with a
gap in the electron excitation spectrum. According to the
calculation [96], in the simple hexagonal phase the energy as a
function of c=a ratio has nominimum though the energy itself
is lower than in bcc. With decreasing density, the system is
transformed to practically isolated atomic chains.

Somewhat different results were obtained by Kagan et al.
[59] when investigating low-density crystalline atomic hydro-
gen in the limit of only slightly overlapping electrons from
different atoms, i.e. in the same density range that was
considered in Ref. [96]. The cause for this divergence is rather
difficult to judge with certainty, since the approximations of
different kinds as well as two dissimilar calculational methods
were used in these two studies. The problem concerning the
properties of low-density atomic hydrogen has recently been
considered in the framework of DFT in Ref. [97]. The results
of this work are very close to those obtained inRefs [59, 96], at
least as concerning the determination of densities, which
correspond, to the antiferromagnetic transition and to the

metallization. According to Ref. [8] and the subsequent work
[90], it is not improbable that the metastable phase of metallic
hydrogen (at p � 0), and even its high-pressure metallic phase
(at p > pc), may turn out liquid. This conclusion is obviously
suggested by the fact that the energy difference between
various structures, DE � 10 K, is insignificant and small as
compared to the zero-point energy. This problem was studied
[95] by the Monte Carlo method in the framework of the
DFT. It was shown that the phase formed at rs < 1:5 is
certainly crystalline, but at rs > 1:6 the formation of a fluid
metallic phase is much more plausible.

To date, unfortunately, the properties of the metallic
hydrogen metastable phase have not been thoroughly
calculated beyond the perturbation theory and with both
crystalline fields and exchange-correlation effects properly
included. Here, the work by Kagan's group [98] should be
mentioned where some arguments were advanced in favor of
the application of perturbation theory to the problem of the
metallic hydrogen metastable phase. However, the question
of whether or not the metastable phase exists, still remains to
be answered in full. The effect of thermal and quantum
fluctuations on the expected lifetime of this phase has not
been considered either. Shilov and Ivanov [99, 100] calculated
the time of transition from a metastable molecular phase to a
metallic one at p > pc and demonstrated that related
processes are very fast. In our opinion which is coherent
with the assumptions [10, 96], the main process that prevents
the metallic hydrogen metastable phase from being stabilized
is the `pairing' of atoms with the formation of molecules
within the chains available in this phase. This process is
somewhat similar to the well-known Peierls' instability in
one-dimensional metals. The above-mentioned experimental
finding of anomalies in compressed Li is, perhaps, another
argument in favor of this assumption. The problem of high-
density lithium was considered in a recent work [101] within
the DFT approach, and it was demonstrated that at densities
corresponding to rs � 2:1 (at p � 0, rs � 3:25 in lithium) a
structure transformation occurs just through the `pairing' of
Li atoms with the formation of molecules, and this results in
the Cmca structure with semimetallic behavior similar to that
of a zero-gap semiconductor. On further compression, a
transition occurs to the Cmc21 structure analogous to the
structure expected to exist in molecular hydrogen at
p > 150 GPa and to be already insulating. In Ref. [101],
lithium is predicted to transform again into a monoatomic
metallic phase similar to the Cs-IV structure only at rs < 1:78
(p � 310 GPa)

Going to the problem of high-temperature superconduc-
tivity in metallic hydrogen, we note that the possibility of a
highTc in this system stems even from the simplest estimation
based on the BCS theory. In this approximation Tc may be
written in the following form:

Tc � oD exp

�
ÿ 1

lÿ m�

�
: �43�

Here oD is the characteristic phonon frequency, l is the
constant of electron-phonon coupling, and m� is the Coulomb
pseudopotential.

Metallic hydrogen differs from the majority of ordinary
metals in the following features, which favor high Tc values:

(a) first, owing to the small atomic mass of hydrogen, its
characteristic oD values are much higher than in other metals
and may be as high as � 1000 K;
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(b) second, since the hydrogen atom has no internal
electron shells, the electron-proton interaction is merely the
Coulomb potential rather than a significantly weaker crystall-
ine pseudopotential which results in a considerably larger l
constant as compared to alkali metals;

(c) third, because the electron density inmetallic hydrogen
(rs < 1:4) is higher than in alkali metals, the Coulomb
pseudopotential turns out to be rather low as well.

All this results in an estimated Tc of the order of 100 ±
300 K in hydrogen. Actually, similar estimates of oD, l, and
m� were made in early publications [6, 102] on high-
temperature superconductivity in metallic hydrogen. Subse-
quently, more comprehensive investigations [26, 103 ± 107] of
this problem have been performed which will be discussed in
what follows.

A standard method for calculating the critical tempera-
ture of the superconducting transition is the solution of the
linearized Eliashberg equations [108] which can be written in
the following form:

Z�o�D�o� �
��1
ÿ1

do0
ReD�o0�

o0

�1
0

dOa2�O�F�O�

�
�
f�ÿo0� �N�O�
o0 � Oÿ o

� f�o0� �N�O�
o0 ÿ Oÿ o

�

ÿ m
�eF
0

do
ReD�o0�

o0
tanh

o0

2tc
; �44�

�
1ÿ Z�o��o � �1

0

do0
�1
0

dOa2�O�F�O�

�
�
f�ÿo0� �N�O�
o0 � Oÿ o

ÿ f�ÿo0� �N�O�
o0 � Oÿ o

� f�o0� �N�O�
ÿo0 � O� o

ÿ f�o0� �N�O�
ÿo0 � Oÿ o

�
: �45�

Here D�o� is the frequency-dependent order parameter and
Z�o� is the renormalization function. The D�o� parameter is
nonzero only in the superconducting state, while Z�o� is
nonzero in the normal state as well and characterizes the
renormalization of electronic spectrum. In particular, in the
normal state the Z�0� function has the form:

Z�0� � 1� l ; �46�

Functions f�o� and N�o� represent the Fermi- and Bose-
distributions, correspondingly, and m is the average matrix
element of Coulomb electron-electron interaction. The
a2�o�F�o� function is the spectral density of the electron-
phonon interaction which is actually the basic quantity
responsible for the value of Tc. This function can be written
as an integral of the matrix element of the electron-phonon
interaction over the Fermi surface:

a2�O�F�O� � 1

N�eF�
�
dSF

nF

��gq; lk�q; k
��2d�Oÿ o�q; l��

� d�ek�d�ek�q� : �47�

Here N�eF� is the density of states at the Fermi level, ek is the
spectrum of electron excitations on the Fermi surface, and
o�q; l� is the phonon spectrum of metal. In the recent review

[109], the feasibility of ab initio calculation of this function for
metals is thoroughly analysed, and for a large number of
simple and transition metals, the results of calculating the
spectral densities of electron-phonon interaction are pre-
sented, revealing that the shape of the a2�o�F�o� function
coincides closely with the curve of the phonon state density
F�o�. Incidentally it should be mentioned that for metallic
hydrogen, such comprehensive calculations of this function
are lacking, and it would be of great interest to make them.

The features of the Eliashberg equations as well as of their
solutions are described in many books and reviews, so we
shall not consider them in close detail here. As an example a
review [110] published in Physics ±Uspekhi in 1982 may be
pointed out. Since that time the situation in this field has
remained practically unchanged, at least, for superconduc-
tors with a moderate constant of electron-phonon coupling,
l4 2, which have no soft phonon modes with frequencies
o < Tc. Metallic hydrogen is most likely to fall into this
category of metals. It was demonstrated in the review [110] in
particular that the critical temperature Tc determined by
solving the Eliashberg equations (44), (45) is approximated
rather well by an analytical expression of the following form:

Tc � olog

1:43
exp

�
1� l
lÿ m�

�
: �48�

Here olog is defined as

olog � 2

l

�1
0

dO
a2�O�F�O�

O
lnO ; �49�

and the Coulomb pseudopotential m� is expressed through m
as

m� � m
1� m ln�eF=olog� : �50�

Equation (48) is in good agreement with the McMillan
phenomenological formula [111] widely used for these
purposes. Thus, the task of Tc calculation, or at least of its
reliable estimation, is reduced to the evaluation of such
quantities as olog, l, and m. Actually, this very task was
considered in most of the publications devoted to the high-
temperature superconductivity in metallic hydrogen (see, for
example, Refs [6, 102, 103, 105 ± 107]).

A simple estimate for olog may be obtained by calculating
the average phonon frequency. As pointed out already, rather
high phonon frequencies may occur in hydrogen because of
small proton mass. The plasma frequency of protons
responsible for the renormalization of phonon frequencies
can be written in the form

opl �
�
4pne2

Mp

�1=2

� 1:04

r
3=2
s

eV: �51�

Phonon frequencies of metals may be somewhat arbitrarily
written as

o2�q; l� � o2
pl ÿ o2

el ; �52�

where o2
el is the electron contribution to the phonon

frequency that is expressed in the harmonic approximation
through the matrix element of the electron-ion interaction
and through the electron susceptibility [112]. In many metals,
the electron contribution lowers the average phonon frequen-
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cies as against the value of opl. The calculations [91, 92]
demonstrate that metallic hydrogen is not an exception in this
respect, and its average phonon frequencies do not exceed
20 ± 40% of opl. Nevertheless, in view of the high opl values,
the average phonon frequencies turn out to be of the order of
400 ± 600 K.

Calculating (or at least estimating) the spectral density
a2�o�F�o� or even the constant of electron-phonon coupling
presents more severe difficulties. Such estimates produce a
quite considerable spread in the values of the coupling
constant l. A simple estimate with the use of a quasi-
isotropic model was reported by Ashcroft in Ref. [6] where
the assumption of the possible high-temperature supercon-
ductivity of metallic hydrogen was advanced, in fact, for the
first time, but turned out to be, actually, too pessimistic. In
Ref. [6], a value of l � 0:3 was obtained, that is too small to
favor high Tc. Curiously enough, approximately the same l
value was reported by one of the present authors in a recent
article [107] where more comprehensive calculations were
performed within perturbation theory in the electron-proton
interaction. More optimistic estimates of l were obtained in
Ref. [102] also with the use of perturbation theory.

Considerably larger values of the coupling constant l
result from ab initio electronic-band structure calculations of
metallic hydrogen [26, 103, 105, 106]. In the above-cited paper
by McMillan [111] l was expressed in a very simple form:

l � N�eF�hI 2i
Mho2i : �53�

Here N�eF�hI 2i may be expressed through the phases dl of
scattering of electrons by ions (protons) which are directly
obtained in band structure calculations:

N�eF�hI 2i � 2eF
p2N�eF�

X
l

�l� 1� sin2�dl ÿ dl�1�

� Nl�eF�
N0

l �eF�
Nl�1�eF�
N0

l�1�eF�
: �54�

In this case, the Debye frequency found by Caron [91] in the
quasiharmonic approximation is used:

oD � 1:04

r
3=2
s

ÿ 0:52

r
1=2
s

� 0:018r1=2s : �55�

In this expression, the second term is the above-discussed
decrease in phonon frequencies as against the opl due to the
electron contribution. In the density range corresponding to
14l4 2, the coupling constant l obtained by this method
takes the values of 1 < rs < 2 [26]. Values of about the same
order were obtained in Refs [103, 105], the calculated Tc

values falling over the broad range, Tc � 80ÿ250 K.
Here, the study by Gupta and Sinha [104] based also on

the band structure calculation should be mentioned. In all the
previous investigations, the bare Coulomb potential was used
as an electron-proton potential. It is because of the weakness
of the electron-ion pseudopotential that the coupling con-
stant l in alkali metals is rather small. Since hydrogen has no
internal electron shells, there is seemingly no reason to replace
the Coulomb potential by a pseudopotential. However, as
suggested by Gupta and Sinha [104], with the nonadiabaticity
properly included in the electron-phonon interaction, one
should take into account that in the vicinity of the proton, the

electron wave function is rigidly displaced together with the
proton and hence is not involved in the electron-phonon
interaction. The estimates [104] made on this basis, demon-
strated that the problem reduces again to the replacement of
the Coulomb potential by a pseudopotential with the
resulting decrease of the coupling constant l to values
of � 0:2.

The question of the actual constant of the electron-
phonon coupling in metallic hydrogen and of its Tc value
still remains unanswered, as do most of the questions
concerning high-density hydrogen. One such unresolved
problem concerning hydrogen superconductivity is the
calculation of the Coulomb potential m�. It is commonly
accepted that m� � 0:1 in hydrogen, as in most other metals.
But actually, m� may be greater or less than this value.
Nevertheless, it should be mentioned that at l � 1, the exact
value of m� is not so important.

To complete the discussion of high-temperature super-
conductivity in metallic hydrogen we would like to call
attention to a recent article by Richardson and Ashcroft
[113] where they considered nontrivial aspects of this problem
which are associated with molecular metallic hydrogen. The
point is that the electronic structure of molecular metallic
hydrogen cannot be properly described in the one-band
approximation. Carriers of opposite signs from different
bands occur in the system, as for semimetals. As is demon-
strated in Ref. [113], taking into account the interaction of
different carriers may substantially change the Coulomb
contribution to superconductivity to result in additional
pairing of electrons. This very statement of a question is by
no means new, it has been actively discussed in the context of
the general problem of high-temperature superconductivity
[114]. In Ref. [113], these effects were calculated in the case of
molecular metallic hydrogen using approximate expressions
advanced previously [115] for the electron-hole plasma in
semiconductors. It was shown [113] that the Tc value turns
out to be considerably higher than that obtained with the
electron-phonon interaction alone involved and may reach
� 400 K.

5. Conclusions

Let us summarize in brief the discussion of high-pressure
hydrogen presented in this review. First of all, it is necessary
to state the progress achieved in recent years in the
experimental and theoretical study of the problem. The EOS
of themolecular phase has been established with rather a high
accuracy to ultrahigh pressures (possibly, to 400 GPa, with
the VNIIEF results [13, 23] taken into account). The phase
diagram of molecular hydrogen has been studied to pressures
of � 300 GPa. Its crystal structure is also well known to
pressures of at least 50 GPa.

Nevertheless, the hydrogen problem turned out to be
extremely complicated, both experimentally and theoreti-
cally. Thus, one cardinal question relative to this problem
still remains open, namely, the value of the metallization
pressure. That substances are difficult to investigate experi-
mentally under high pressure, is to some extent self-evident. It
is another matter why the theoretical study of this problem
turns out to be equally intricate. In our opinion, this situation
is not so trivial. As the results obtained by theoreticians and
the discussion presented in this review demonstrate, the point
is not that some essential processes occurring in high-density
hydrogen are incomprehensible to the theoreticians engaged
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in the problem. As hydrogen is compressed, structural
transformations of different kinds, changes in electronic
structure, and the like, occur as in any other system. High-
density hydrogen is complicated to study theoretically
because any ad hoc models are barely helpful to describe
these processes. What is required here is a quantitative and
precise calculation of specific properties of a particular
substance Ð hydrogen. Owing to a great number of different
structures of nearly the same cohesive energy, and owing to
the strong crystal-structure dependence of many hydrogen's
properties, the energy gap among them, the corresponding
calculations demand heavily both higher accuracy and the
taking into account of many factors, including, for example,
protonic zero-point motion. The solid state theory turned out
to be unprepared to solve this problem in full. This is related
to insufficient development of both the theoretical methods
for calculating crystal properties and the numerical techni-
ques.While a several-percent error in specific volume or in the
total energy of crystal due to, for example, the local-density
approximation for exchange-correlation energy is not a
severe problem for many other systems, an error of this
order is crucial for high-density hydrogen since it leads to an
energy difference between different crystal structures of the
order of fractions of a percent.

Unfortunately, no consistent approach has been devel-
oped thus far to go beyond the local density approximation.
Besides, a problem of crucial importance, at least in the case
of metallic hydrogen Ð the inclusion of the electron-phonon
interaction in the density functional method Ð is still
unsolved. The problem of high-density solid hydrogen is
probably among the first in condensed matter physics whose
solution imposes such severe quantitative requirements upon
the methods of first-principles calculations. But, this problem
is certainly not unique. This is possibly true for the calculation
of alkali metals in the range of intermediate pressures where
they may transform into insulators, as in the example of Li
mentioned in this review. A large and serious work lies ahead
with the aim of obtaining higher accuracy of ab initiomethods
and applying these methods for investigating the character-
istics of high-density hydrogen and similar systems.

The authors express deep gratitude to V L Ginzburg for
his constant attention to this work. The work was supported
by the International Science and Technology Center (Project
No. 207-98) and in part by the Russian Foundation for Basic
Research (Grant No. 99-02-16366).
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