
Abstract. The nature of superfluid, superconducting, and mag-
netic ordering is elucidated for mesoscopic systems in which the
single-particle level spacing is much larger than both the tem-
perature and the critical temperature of ordering. Ordering is
defined as a spontaneous violation of symmetry, the gauge
invariance and time reversal being by definition symmetries
violated in superfluidity (superconductivity) and magnetism
contexts, respectively. Superfluidity and superconductivity are
realized in thermodynamic equilibrium states with a non-inte-
gral average number of particles and are accompanied by the
spontaneous violation of time homogeneity. In Fermi systems
two types of superfluidity and superconductivity are possible
which are characterized by the presence of pair or single-parti-
cle `condensates'. The latter is remarkable in that spontaneous
violation of fundamental symmetries such as spatial 2p rotation
and double time reversal takes place. Possible experiments on
metallic nanoparticles and ultracold atomic gases in magnetic
traps are discussed.

1. Introduction

Devoting this paper to the 90th anniversary of the great
physicist LevDavidovich Landau, it is pertinent to emphasize
that superfluidity, superconductivity and magnetism are
phenomena which determine, to a large extent, the face of
modern physics and that it is precisely these phenomena
which are most closely associated with his name.

Superfluidity, superconductivity and magnetism are
typical macroscopic quantum effects caused by the avail-
ability of a relevant long-range order in a system. The most

fundamental property of one or other type of order is,
according to Landau [1], a change in the symmetry of a
system or, to put it in modern terms, spontaneous symmetry
breaking. The transition of a system from the normal state to
a superfluid or superconducting one occurs with spontaneous
symmetry breaking with respect to gauge transformations.
Magnetic ordering is followed by spontaneous symmetry
breaking with respect to the sign of time. The fact that just a
change in the symmetry was a fundamental property of
matter in an ordered state was clearly demonstrated by
V L Ginzburg and L D Landau [2] who showed, long before
the development of the Bardeen ±Cooper ± Schrieffer (BCS)
theory, that all the main properties of superconductors could
be deduced from reasoning of symmetry alone.

The main aim of this paper, which is a further develop-
ment of the results of Refs [3, 4] is to bring out the rather
peculiar nature of superfluidity, superconductivity and
magnetism in mesoscopic systems where these phenomena
manifest themselves in the simplest, primitive form. Of special
interest is that spontaneous breaking can take place in such
fundamental symmetries as homogeneity of time, spatial 2p
rotations and double time reversal.

2. Main definitions

First, it is necessary to define a mesoscopic system. Restrict-
ing ourselves to thermodynamic equilibrium phenomena, we
will use the following definition.

A mesoscopic system (as well as a macroscopic one)
results from a finite system tending to the limit N!1 (and
V!1) where N is the number of particles and V is the
volume. However, at the same time, the temperature should
decrease indefinitely, i.e. T! 0, and the sensitivity of
measurements should be indefinitely improved. The decrease
in the temperature provides quantum coherence over an
arbitrary large system. In combination with enhanced
sensitivity of measurements this results in a property typical
for a mesoscopic system, i.e. a change in the number of
particles in a system by one, DN � 1, yields a finite
(measurable) effect despite the fact that N!1. `Improve-
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ment of the sensitivity of measurements' can arbitrarily be
treated as a change in the scale for DN without changing the
scale for N, so that as a result of a limit transition to a
mesoscopic system one variable N changes into two essen-
tially different variables DN and N!1.

A mesoscopic system, as distinct from a finite one, shows
phase transitions and, on the whole, some other peculiarities
of thermodynamic quantities typical for a macroscopic
system. However, the modified character of the limit transi-
tion leads to a qualitative difference in the behavior of
macroscopic and mesoscopic systems.

As an example of feasible mesoscopic systems we refer to
systems of a great number of neutral ultracold atoms in
magnetic traps [5 ± 7] and metal nanoparticles at ultralow
temperatures [8 ± 10].

There are two different limiting cases of a mesoscopic
system. In the first case, the limit transition N!1 takes
place under the condition T;Tc 4 de, where Tc is the critical
temperature of the transition to an ordered state, de is the
characteristic difference between the energies of two neigh-
boring quantum levels of the system. The type of ordering is
essentially the same as in a macroscopic system. According to
Anderson's theorem [11], superconducting particles can be
described within the BCS theory, as was done for the
mesoscopic systems in Refs [8, 9]. The transition of Bose
atoms in magnetic traps into a superfluid state can be treated
as the appearance of the Bose condensate. (To produce it in
experiments, the number of particles should be rather large
N > 103 [5 ± 7].) In this case, ordering, including magnetic,
can generally be described as the occurrence of long-range
order.

The other case, which is the subject of this paper,
corresponds to the inverse inequality T;Tc 5 de. The systems
to be studied can be called mesoscopic quantum dots, since
despite their large dimensions, the degrees of freedom in
them, associated with spatial motion of the particles, can be
considered as completely frozen. Actually we will deal with
metal particles of the type of those realized byDCRalph et al.
[10] or with atoms in magnetic traps at N < 103 [5 ± 7].

The key problem is concerned with the criterion of
ordering in mesoscopic quantum dots. Use was made of
various definitions of superconductivity and superfluidity
based on the effect of parity (the difference between the
functions Eo�N� and Ee�N� obtained by analytical continua-
tion of the energy of a system containing integral odd Eo�N�
and integral even Ee�N� numbers of fermions N with respect
toN, see, for example, Ref. [10]), a strong pairwise correlation
of fermions, a large number of bosons in the same quantum
state, etc. Criteria of this type are not unambiguous for
mesoscopic quantum dots, since the properties indicated
above are always inherent in a system whether it is in a
superconducting, superfluid or normal state. In keeping with
what was said in Introduction we will use a criterion based on
the symmetry of a system. A mesoscopic system is, by
definition, superfluid (when the constituent particles are
neutral) or superconducting (when the particles are charged)
if its state is not invariant with respect to the gauge
transformations C! C exp�if�, where C are the particle
operators and f is a constant. The system is normal if its state
is invariant with respect to gauge transformations. Similarly,
a system is magnetically ordered if its symmetry breaks
spontaneously with respect to time reversal.

Since a mesoscopic system does not reveal purely spatial
symmetry, the symmetry of theHamiltonian is only presented

by gauge transformations and change in sign of time. Thus,
superfluidity, superconductivity and magnetism are the only
possible types of ordering in a mesoscopic system. We are
leaving aside spin nematic type ordering [12] related to the
approximate exchange symmetry [13].

A mesoscopic system, unlike a macroscopic one, does not
show superfluid and superconducting properties such as
persistent currents, the Meissner effect, and long-range
order. However, according to our definition, a system in an
ordered state is characterized by a certain phase non-
invariant with respect to gauge transformations. Therefore,
given a set of systems ordered in the way discussed above and
linked by tunneling leads, persistent currents can arise in the
whole system.

3. Superfluidity in Bose systems

Turning our attention to the elucidation of the origin of
superfluidity and superconductivity in mesoscopic dots, i.e.
the origin of spontaneous breaking of gauge transformations,
assume for simplicity, that they are unique symmetry
transformations and that time reversal is broken by exposure
to rather a strong magnetic field. In this case the only degree
of freedom, which, in general, is not frozen in the systems
under consideration asT! 0, is the total number of particles.

Suppose, jNi and E�N� are, respectively, the ground state
of the system with a certain (integer) number of particles N
and the energy of this state. The set of states jNi for all N is a
complete quantum mechanical set of states. They are all
invariant with respect to gauge transformations, since the
generator of the transformations is the operator N̂ of the
number of particles:

jNi ! exp�iN̂f�jNi � exp�iNf�jNi / jNi : �1�
Let us apply a unitary transformationU � exp

��i=�h�mN̂t
�

and use a frame of reference `rotating' at an angular rate m=�h,
where m is the chemical potential.Wemean rotation not in the
coordinate system, but in the space of the `order parameter',
where the parameter f of gauge transformations plays the
role of the rotation angle, so in the rotating system
f � �m=�h�t. According to the fundamental principles of
statistics, a uniform rotation does not break thermodynamic
equilibrium and at T � 0 the system is in the ground state
corresponding to the energyminimumE 0�N; m� �E�N� ÿ mN
in the rotating system at a given m (the grand canonical
distribution, see Ref. [14]). Under changes of m, the minimum
ofE 0 will correspond to various integerN. Figure 1 shows the
dependencies (straight lines) E 0 � E 0�N; m� at various N
(Fig. 1a) and the dependence of the averaged equilibrium
number of particles hNi � ÿqE 0=qm on m (Fig. 1b) corre-
sponding to the solid line E 0 � E 0�m� in Fig. 1a. The straight
lines corresponding to N and N� 1 intersect at the point
m � mc�N� resulting in hNi � Nc over the interval
mc�Nc ÿ 1� < m < mc�Nc�, where Nc is a certain large integer.

The curves in Fig. 1 demonstrate that the peculiarity of the
thermodynamic behavior of mesoscopic quantum dots is the
fact that any change in the averaged number of particles hNi
under changes of their chemical potential results from
peculiar phase transitions of the first type. The diagram
E 0; m� � in Fig. 1a depicts the points A;B; . . . of phase
transitions between the phases N � Nc ÿ 1, Nc, Nc � 1; . . ..
These points correspond to finite regions (vertical segments
CD and EF) of `phase coexistence' on the diagram

ÿhNi; m� in
Fig. 1b. In amesoscopic system the `phase coexistence' should
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be described by a certain wave function. The points on the
curve EF correspond to the ground states j �Ni with a non-
integral averaged number of particles hNi � �N of the form

j �Ni � ujNci � v exp�ij�jNc � 1i ; �2�

where u > 0, v > 0, u2 � v2 � 1, and j is the phase; the
arbitrary common phase multiplier is chosen so that the
coefficient at jNci is positive. The averaged number of
particles hNi � �N in state (2) is equal to Nc � v2.

The fact that the phase coexistence is described by a wave
function, rather than, for example, a density matrix with zero
non-diagonal elements is associated with the large dimensions
(N!1, V!1) of mesoscopic systems. In any case we can
say that the relative rate of the three limit transitions
determining a mesoscopic system (see Section 2) should be
chosen so that in the limit the phase coexistence takes place in
a pure state. We will discuss this problem in Sections 5 and 6
and now make the following remark.

As m changes in the vicinity of the critical point
m � mc � mc Nc� � (Fig. 1a) there are two states having close
E 0�m�. One of them corresponds to the ground state (solid

broken line)

E 01�m� �
E 0�Nc; m� for m < mc ;
E 0�Nc � 1; m� for m > mc :

�
The other one (the dotted broken line) is

E 02�m� �
E 0�Nc � 1; m� for m < mc ;
E 0�Nc; m� for m > mc :

�
At m 6� mc only the former state corresponds to thermody-
namic equilibrium, since E 01�m� < E 02�m�. At the critical point
the energies of both the states coincide, but there again only
E 01�m� satisfies the thermodynamic inequality:

qhNi
qm
� ÿ q2E 0

qm2
> 0 :

Thus, at m � mc there is only one stable state for mesoscopic
systems, whose phase j is not determined. This is state (2).

The gauge transformation exp�iN̂f� transforms state (2)
into a state of the same form, but with modified phase j:
j! j� f. Therefore, according to our definition, states (2)
are superfluid. Thus, there are two types of ground states of
mesoscopic systems:

(1) normal ones of the form (1) characterized by a certain
(integral) number of particles (horizontal segments inFig. 1b);

(2) the superfluid ones of the form (2) with non-integral
averaged numbers of particles (vertical segments in Fig. 1b).

Superfluid states are characterized by a nonzero average
hCiwhich can be considered as an order parameter describing
the spontaneous breaking of the gauge invariance. In this
sense mesoscopic superfluidity is similar to macroscopic.
However, in a macroscopic system hCi 6� 0 means the
presence of the one-particle Bose condensate, i.e. the avail-
ability of a c-number part in the C-operator. The latter is
related to the equivalence of states with the numbers of
particles N and N� 1, which holds for a macroscopic
system, but not for a mesoscopic one.

The peculiarity of this case is in the fact that the
degeneracy of the ground state typical for systems with
spontaneously broken symmetry takes place in a rotating
reference frame. State (2) is a linear superposition of the states
jNci and jNc � 1iwith the same energy in a rotating reference
frame. In a laboratory reference frame state (2) is a super-
position of two states with different energies. Thus, the
superfluid ground states are not steady. But, as we have
seen, they are in thermodynamic equilibrium.We arrive at an
interesting conclusion that in a mesoscopic system super-
fluidity occurs with spontaneous breaking of time homo-
geneity. Since in states (2), two (not more) eigenvalues of
energy mix, the superfluid states turn out to be periodic in
time with period 2p�h=DE � 2p�h=mc, where DE is the differ-
ence of the eigenvalues.

Itmight bewell to point out an analogywith rotation in an
ordinary coordinate system, where the rotation angle plays
the role of f, while N is the momentum M, and the angular
rate �ho corresponds to the chemical potential m. Let us
consider a mesoscopic body of irregular shape, which can
rotate around a fixed axis. In thermodynamic equilibrium, at
a given constant non-integral averaged value of M=�h and
T! 0 the body will rotate at an angular rate oc determined
by that the energies of the two ground states with the
momenta

�hMi=�h
�
and

�hMi=�h
�� 1 (where �x� is the integer

part of x) should be equal in the rotating reference frame. The
equilibrium state is not steady, but periodic in time with
period 2p=oc.

A

B

m
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Nc ÿ 1

mc�Nc ÿ 1� mc�Nc�

Nc

E 0 a

F

D

mmc�Nc ÿ 1�

Nc ÿ 1

Nc � 1

Nc

mc�Nc�

hNi

E
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b

Figure 1. Dependencies of the energy (a) and the averaged number (b) of

Bose particles on the chemical potential in the rotating reference frame.
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4. Superfluidity and superconductivity in Fermi
systems

The above considerations, as applied to systems of Fermi
particles, should be modified. In Fermi systems, the ground
state energyE�N� calculated with an accuracy appropriate for
a mesoscopic system contains in an explicit form the number
of particles in the combination �ÿ1�N. In order to deal only
with quasicontinuous functions at large N, we should
introduce two different functions Eo�N� and Ee�N� individu-
ally for odd and even values of the number of particles (the
parity effect). The behavior of crossing of the energy levels in
Fig. 1 is changed. Straight lines corresponding to odd N
should be shifted upwards or downwards (depending on the
character of the interaction) in parallel with respect to the
straight lines with evenN. As a result, the segments with even
N on the solid line representing the ground state will increase
with increasing shift, while those with oddN will decrease (or
vice versa) until they disappear altogether.

Therefore, besides states (2) corresponding to the coex-
istence of jNi and jN� 1i (if the parity effect is small), Fermi
systems can also contain (at substantial parity effect) the
states

j �Ni � ujNci � v exp�ij�jNc � 2i ; �3�
describing the coexistence of states with neighboring numbers
of particles of the same parity.

In state (3) spontaneous breaking of gauge invariance
corresponds to the order parameter hCCi 6� 0, while the
transformation of the phase j! j� 2f corresponds to the
pairwise `condensate'. State (3) is what becomes of the
superconducting BCS state when a macroscopic system
changes into a mesoscopic one, though we do not mean
coupled states of the type of Cooper pairs, and the integer
Nc in formula (3) can, in principle, be either odd or even.

Superfluid states (2) in Fermi systems are remarkable not
only for spontaneous breaking of gauge invariance and time
homogeneity. First and foremost, the transformation of the
phase j! j� f and the order parameter hCi 6� 0 corre-
spond to the one-fermion `condensate' (a one-electron super-
conductor!). But an evenmore striking property of such states
is that invariances break spontaneously with respect to
rotations through 2p around any axis in an ordinary
coordinate system and with respect to double time inversion.
Under either of the transformations the wave functions with
an odd number of fermions change sign, while those with even
number of fermions remain unchanged. In both the transfor-
mations the phase j in formula (2) becomes j� p (so the
invariance with respect to the product of these transforma-
tions holds).

5. Occurrence of superfluid and superconducting
states

Let us consider a problem of actual occurrence of superfluid
and superconducting states in quasi-closed systems of the
type of the magnetic traps and metal nanoparticles discussed
in Section 2. Systems of these two types differ in that in
magnetic traps the number of particles is given, while
nanoparticles are connected with macroscopic leads which
are endless reservoirs of electrons, so the chemical potential is
given there.

Let a mesoscopic quantum dot, i.e. a system of a large
number of Bose or Fermi particles, be localized in a trap from

which particles can tunnel into an outside state. Assume that
in the absence of tunneling E�N� is the ground state energy of
the dot with N particles, and e is the energy of the outside
state. Suppose that at a certain integerN � Nc, the difference
E�Nc � 1� ÿ E�Nc� is close to e, so that for a given integral
number of particles Nc � 1, in the absence of tunneling the
total system has two states with close energies. In one of them,
all theNc � 1 particles are localized in the mesoscopic dot. In
the other, the number of particles in the mesoscopic dot is Nc

and one particle resides in the outside state. Considering the
number of particles N in a mesoscopic dot as a quantum
number characterizing the total system, we can express the
Hamiltonian of the total system (with due regard for
tunneling) as

H � E�Nc� � e� 2xjNc � 1ihNc � 1j
ÿ DjNc � 1ihNcj ÿ D�jNcihNc � 1j ; �4�

where D is the complex tunneling amplitude, and 2x �
E�Nc � 1� ÿ E�Nc� ÿ e is a small value.

The ground state of the Hamiltonian (4) of the total
system characterized by the averaged number of particles in
the mesoscopic dot �N � Nc � v2 is written as

j �Ni � ujNci � v D
jDj jNc � 1i ; �5�

where

u2 � 1

2

 
1� x������������������

jDj2 � x2
q !

; v2 � 1

2

 
1ÿ x������������������

jDj2 � x2
q !

:

�6�

The ground state energy is equal to

Eg � E�Nc� � e� xÿ
������������������
jDj2 � x2

q
: �7�

As a part of the closed system in the state (5) the mesoscopic
dot should be described by a density matrix (see Ref. [15], æ
14). However in our conditions the density matrix corre-
sponds to the pure state determined by formula (2) with
u � Nc � 1ÿ �N� �1=2 and v � �NÿNc� �1=2.

6. Superconducting phase transitions

Suppose, m�1�c is a critical value of the electron chemical
potential at which the mesoscopic dot of metal nanoparticle
type transforms from the state N � Nc to the state
N � Nc � 1 and which corresponds to the superconducting
states (2) with one-particle phase. We have
E�Nc � 1� ÿ E�Nc� � m�1�c , where E�N� is the ground state
energy of the dot withN electrons. Let us introduce the energy
E 0 � Eÿ mN in a reference frame `rotating' at an angular rate
m=�h, where m is the chemical potential of the electrons in the
leads (reservoir). As is customary [9], suppose that the
mesoscopic dot resides in an external field induced by the
gate, which leads to a shift of its chemical potential by
mext � aVG, where a is a constant, and VG is the gate
potential [9]. As a result, we have

E 0�Nc � 1� ÿ E 0�Nc� � m�1�c � mext ÿ m � 2x : �8�

Let the gate potential be close to the value given by the
condition x � 0. In this case there are two states, jNci and
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jNc � 1i, with close energies (in the rotating reference frame);
the other states can be neglected. Ignoring the tunneling into
the leads, the Hamiltonian of the dot H0 is diagonal with
respect to N. Choosing the reference point of the energy such
that E�Nc� � 0, we have

H0 � 2xjNc � 1ihNc � 1j : �9�

A similar formula

H0 � 2xjNc � 2ihNc � 2j �10�

can be written near the point mext � mÿ m�2�c of the transition
between the states of the same parity jNci and jNc � 2i,
corresponding to superconducting states (3) with the pair-
wise phase.

6.1 The ND1N system
The interaction between the mesoscopic dot D1 occurring
near the transitionNc ! Nc � 1 and the leads is described by
the tunneling Hamiltonian

HT �
�
K�R; r�C��R�C�r� d3R d3r� h:c: ; �11�

where the integration with respect to r is performed over the
quantum dot volume, the integration with respect to R Ð
over the volume of the leads, and K is a core.

Let us consider a possibility for the occurrence of super-
conducting states (2) with the one-electron phase in the
quantum dot D1 in the ND1N system where the leads are in
the normal state. Due to the proximity effect the one-electron
anomalous value



C�r�� averaged over the dot volume leads

to a nonzero average


C�R�� in the lead region immediately

adjacent to the dot. In the mean field approximation we
replace the operatorC��R� in Eqn (11) by its averaged value
Z��R� � 
C��R��:

�HT �
�
K�R; r�Z��R�C�r� d3R d3r� h:c: �12�

Operator (12) has nonzero matrix elements

D � ÿ
Nc � 1j �HTjNc

�
; D� � ÿ
Ncj �HTjNc � 1

� �13�
for transitions as N changes, where

D � ÿ
�
K ��R; r�Z�R�F��r� d3R d3r ;

F�r� � 
NcjC�r�jNc � 1
�
: �14�

The nonzero parameter D and its associated field Z�R� cause a
change in the energy of the leads. Since in the equilibrium
state of the leads not interacting with the mesoscopic dot the
field Z�R� is zero, this change in the energy is positive and at
small D can be written as jDj2=2x0, where x0 is a positive
constant energy. Thus in view of Eqns (9) and (13), the total
Hamiltonian of the system consisting of the dot D1 and leads
is equal to

H � 1

2x0
jDj2 � 2xjNc � 1ihNc � 1j

ÿ D�jNcihNc � 1j ÿ DjNc � 1ihNcj : �15�

The ground state jgi of the Hamiltonian (15) and the ground
state energy Eg are

jgi � ujNci � v D
jDj jNc � 1i ; �16�

Eg � 1

2x0
jDj2 ÿ ÿjDj2 � x2

�1=2 � x ; �17�

where the amplitudes u and v are expressed in terms of x andD
using relations (6). Requiring Eg to be minimum, the
equilibrium value of jDj is found as the function of the gate
potential:

jDj � �x20 ÿ x2�1=2 for jxj < x0 ;
0 for jxj > x0 :

�
�18�

At jxj < x0 the phase of D remains indeterminate, and the
ground state is degenerate with respect to its values. The
equilibrium energy Eg and the averaged number of electrons
hNi in the dot D1 are

Eg � ÿ�x0 ÿ x�2
2x0

; hNi � Nc � x0 ÿ x
2x0

: �19�

At x � �x0, the second order phase transitions from the
normal states jNci and jNc � 1i into a superconducting state
with the one-electron phase take place. Since the anomalous
averaged value



C�r��, which, according to Eqns (16) and

(14) is equal to

C�r�� � uv

D
jDj F�r� �

F�r�
2x0

D ; �20�

is proportional toD, this parameter can be treated as the order
parameter of these transitions.

6.2 The ND2N system
In ND2N systems the conditions for the occurrence of
superconducting states (3) with pairwise phase at mesoscopic
dots D2 in the vicinity of the transition Nc ! Nc � 2 can be
considered in a similar way using the Hamiltonian

H
�2�
T �

�
K2�R;R0; r; r 0�C��R�C��R0�

�C�r�C�r 0� d3R d3R0 d3r d3r 0 � h:c: ; �21�

corresponding to the second approximation of the perturba-
tion theory for the tunnel Hamiltonian. Introducing themean
field F ��R;R0� � 
C��R�C��R0�� instead of Z��R�, we find
the matrix elements of the total Hamiltonian, which are non-
diagonal with respect to N, similar to Eqns (13):


Ncj �H �2�T jNc � 2
� � ÿD�

�
�
K2�R;R 0; r; r 0�F ��R;R 0�F�r; r 0� d3R d3R 0 d3r d3r 0 ;

�22�
where

F�r; r 0� � 
NcjC�r�C�r 0�jNc � 2
�
: �23�

The total Hamiltonian

H � 1

2x0
jDj2 � 2xjNc � 2ihNc � 2j

ÿ D�jNcihNc � 2j ÿ DjNc � 2ihNcj �24�
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differs fromEqn (15) only in that the term jNc � 1i is replaced
by jNc � 2i and the phase of the parameterD is pairwise.With
regard to this replacement all the formulae retain their form,
except the expression for the averaged number of electrons at
the dot, hNi � Nc � �x0 ÿ x�=x0.

6.3 The SD2S system
Let us consider the superconducting states with pairwise
phase at the dot D2 when the leads are bulky superconduc-
tors. In this case the function F�R;R 0� is nonzero due to the
superconducting leads. The total Hamiltonian is determined
by formula (24) with x0 !1, so that the second order phase
transitions disappear at x � �x0. Formally, superconducting
states can occur at any x. In view of Eqn (22) the modulus of
the parameter D is determined by the tunneling transparency,
and the pairwise phase of the parameter D coincides with the
phase of the order parameter in a bulky superconductor.

Let us consider a SD2S system consisting of a mesoscopic
dot D2 between two bulky superconductors (we denote the
left one L and the right one R). In this case D � DL � DR,
where DL;R � jDL;Rj exp�ijL;R�, jDL;Rj are determined by the
transparencies of the barriers separating respectively the left
and the right superconductor and the dot; jL;R are the
respective phases of the left and the right superconductors.

The ground state energy Eg and the averaged number of
electrons at D2 are

Eg � ÿ
ÿjDj2 � x2

�1=2 � x ;

hNi � Nc � 1ÿ xÿjDj2 � x2
�1=2 ; �25�

and

jDj2 � jDLj2 � jDRj2 � 2jDLjjDRj cos y ; y � jR ÿ jL :

The superconducting Josephson's current flowing
through the system is

J�y� � 2e

�h

qEg

qy
� 2e

�h

jDLjjDRj sin y�������������������������������������������������������������������������
x2 � jDLj2 � jDRj2 � 2jDLjjDRj cos y

q :

�26�

Notice that this formula is coincident with the result of Ref.
[15] obtained by K AMatveev et al. for the current in an SSS
system, where the intermediate superconductor is described
by the BCS theory under a considerable Coulomb blockade.

6.4 The SD1S system
Finally, let us consider the most interesting case of the SD1S
system when the mesoscopic dot occurs in the vicinity of the
transition Nc ! Nc � 1 corresponding to superconducting
states with the one-electron phase.

The Hamiltonian of the system differs from Eqn (15) for
normal leads by the first term. Expanding the energy of
superconducting leads in powers of the small parameter D
characterized by the one-electron phase j, we should bear in
mind that besides jDj2, there are some other terms which
satisfy the condition of gauge invariance, i.e. the expressions
exp�ÿijL;R�D2 and their complex conjugates (jL;R are, as
above, the superconducting phases of leads). Such terms
remove the degeneracy with respect to j. For an appropriate
choice of the origin of coordinates thej-dependent part of the

total energy can be written as

Hj � ÿ b

4
jDj2�cos�2jÿ jL� � cos�2jÿ jR�

�
� ÿ b

2
jDj2 cos�2jÿ �j� cos y

2
; �27�

where b is a constant, �j � �jL � jR�=2, y � jR ÿ jL. For
simplicity we assume the system to be geometrically sym-
metric with respect to the replacement L$ R.

The energy (27) does not change under the transformation
j! j� p for a given jL;R, so the degeneracy with respect to
j is not completely removed, and a two-fold degeneracy
having a simple physical meaning still remains. The super-
conducting states with the one-electron phase correspond to
spontaneous breaking of the invariance with respect to spatial
rotations through 2p and double time reversal. Under these
transformations the state with the phase j changes to the
state with the phase j� p, so the two-fold degeneracy is a
direct consequence of the spontaneously broken symmetry.

Depending on the sign of the expression b cos�y=2�, the
minimum of the energy (27) is achieved for two different pairs
of j: �j=2, �j=2� p and ��j� p�=2, ��j� p�=2� p. In both
cases the minimum is equal to

Hj � ÿ 1

2
jDj2

����b cos y2
���� : �28�

The total Hamiltonian of the system is determined by
Eqn (15) if we treat the parameter x0 involved in Eqn (15) as a
function of the phase difference y:

x0�y� �
�
aÿ

����b cos y2
�����ÿ1 ; �29�

where a is a constant such that a > jbj. All the results of Eqns
(16) ± (20) hold true.

The derivative of the energy Eg with respect to y given by
the first formula from (19) determines the superconducting
Josephson's current J�y�. The current J�y� is periodic with
respect to ywith period 2p and over the intervalÿp < y < p is
equal to

J�y� � 2e

�h

qEg

qy
� ejbj

2�h
�x20 ÿ x2� sin y

2
: �30�

A characteristic feature of function (30) is that its
analytical continuation from the interval �ÿp; p� to the
whole real axis of y is a function with period not 2p, but 4p.
The 2p value of the period is due to breaks in the current

DJ � J�p� ÿ J�ÿp� � ejbj
�h

�
x20�p� ÿ x2

� �31�

at y � pk, k � �1;�2; . . . This peculiarity is a result of the
unusual physical nature of J�y�, which is a superconducting
current of Cooper pairs only in the regions far away from the
dot D1. In the regions adjacent to D1, this current is
transformed into one of single electrons and flows through
D1 as a superconducting current of single electrons.

7. Magnetism

Recall that starting with Section 3 we have assumed gauge
transformations to be the only elements of symmetry of
mesoscopic systems, which actually arise under the condi-
tions of a strong external magnetic field. Suppose now that
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the external magnetic field is zero and the Hamiltonian of the
system is invariant with respect to time reversal. Then all the
states corresponding to an odd number of fermions are
characterized by the Kramers degeneracy. In the simplest
andmost commonly encountered case, when the properties of
the system are mainly determined by exchange interaction
and relativistic interactions are negligible, the Kramers
doublet corresponds to the two-dimensional presentation of
the purely spin rotation group characterized by the total spin
of the system, equal to 1=2. The mechanism of spontaneous
breaking of time reversal (and spin rotations), or, according
to our definition, the mechanism of magnetic ordering is
absolutely similar to the superconducting ordering discussed
in the previous section.

Let us consider the exchange Hamiltonian

HT � ÿ
�
J�R; r� s�R�s�r� d3R d3r �32�

for the interaction between the mesoscopic dot and the leads.
Here s�R�, s�r� are the operators of the electron spin density of
the leads and the dot, respectively, and J�R; r� is a core. Due
to the proximity effect the spin polarization



s�r�� to be

expected in the mesoscopic dot generates a nonzero average

s�R�� in the region of the leads immediately adjacent to the
dot. In the mean field approximation, we can replace the
operator s�R� in Eqn (32) by its mean value



s�r��:

�HT � ÿ
�
s�r�b�r� d3r ; �33�

where b�r� � � J�R; r�
s�R�� d3R.
Let the indices n;m � 1; 2 number the states of the

Kramers doublet corresponding to the projections of the
total spin of the system equal to �1=2. According to well-
known selection rules [15] the spin density operator s�r� has
the following matrix elements between the degenerate states:


nj s�r�jm� � rnmF�r� ; �34�

where rnm are the elements of the Pauli matrices

F�r� � 1

6
r nm



mj s�r�jn� : �35�

The Hamiltonian (33) has the same matrix elements of
transitions between degenerate states n � 1; 2 as the matrix
operator

Heff � ÿmrBi ; �36�
where m is the Bohr magneton, and

Bi � 1

m

�
b�r�F�r� d3r

� 1

6m

�
J�R; r�
s�R���rnm



mj s�r�jn��d3R d3r

is an effective internal field acting on the spin of the system.
Since the leads uncoupled with the mesoscopic dot are not
magnetic, the polarization



s�R�� and its associated field Bi

increase the energy of leads by a value which at smallBi can be
written as �m=2B0�B2

i , where B0 is a positive constant. So the
total effective Hamiltonian is

Heff � ÿmrBi �
�

m
2B0

�
B2
i : �37�

Expression (37) is absolutely similar to Eqn (15) at x � 0. The
effective field Bi plays the role of the parameter D; the
parameter B0 plays the role of x0.

The ground state of Hamiltonian (37) is completely
polarized (pure):

hri � n ; �38�
where n is the unit vector directed along the effective field Bi.
The ground state energy

Eg � ÿmjBij � m
2B0

B2
i �39�

is independent of n. The minimum energy condition (39)
yields jBij � B0. The effective field direction n remains
arbitrary. The equilibrium energy of the system is equal to
Eg � ÿ�m=2�B0.

The degeneracy of the ground states with respect to the
directions of the effective field and spin polarization is
removed under the conditions of relativistic interactions and
an external magnetic field. If the external field B5 jBij � B0,
the n-dependent part of the energy can be written as

Eg � ÿmnB� 1

2
aiknink ; �40�

where the first termmeans the energy of magnetic moment mn
in the external field B and the second term stands for the
anisotropy relativistic energy depending on the anisotropy
tensor aik. The anisotropy energy is determined with the
accuracy of the additive constant. Let us choose it putting
azz � 0, where the z-axis is aligned with the major axis of the
symmetric tensor aik, corresponding to the smallest eigenva-
lue of azz. We also have aza � 0, a � x; y.

In the range of weak magnetic fields mB5 a, the direction
of n is close to n0 � �0; 0; 1�, corresponding to theminimumof
the anisotropy energy. Considering the first term in Eqn (40)
as a small correction, we find the correction to the vector n
from the condition of the minimum of this expression, such
that na � m aÿ1

ÿ �
abBb, where a

ÿ1 is a matrix 2� 2 inverse of a.
The minimum energy will be

Eg � ÿm nBÿ m2

2
�aÿ1�abBaBb : �41�

Differentiating expression (41) with respect to the magnetic
field, we find the equilibrium value of the total magnetic
moment of the system:

M � ÿ qEg

qB
� m n0 � m2�aÿ1�abBb : �42�

In the range of strong magnetic fields mB4 a (but
B5B0), we may believe the directions of the vectors n and
B in Eqn (40) to coincide, so that

Eg � ÿmB� 1

2
aikhihk ; �43�

where h � B=jBj. The magnetic moment is equal to

M � ÿ qEg

qB
� mhÿ aikhk ÿ hihlalkhk

B
: �44�

In the range of fields mB � a, which are small relative to the
exchange field B0, the magnetic moment varies from m n0 to
m h.

Thus, the normal states jNi of mesoscopic dots with an
odd number of fermions N are (ferro)magnetic. Therefore,
following the reasoning of Section 4, we conclude that the
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states of the Fermi systems (2) at any Nc are magnetic and
superconducting (superfluid) for a time. States (3) possess this
property at odd Nc.

8. Experiments

Let us discuss possible experiments which could provide
support for the above suggested treatment.

For systems of neutral atoms inmagnetic traps it would be
interesting to observe phenomena associated with sponta-
neous breaking of time homogeneity, i.e. with nonstationary
nature of the ground state of the system. Suppose e�N� is the
energy of excitation of the system for a given integral number
of particles N. These quantities can be measured in spectro-
scopic experiments, for example, on inelastic light scattering.
Transitions from superfluid states (2) or (3) give rise to
doublets of closely spaced lines in the scattered light
spectrum, which correspond to pairs of excitation energies
e Nc� �, e Nc � 1� � or, respectively, e Nc� �, e Nc � 2� �. In fact, the
presence of doublets and the associated beating of the
scattered light amplitude is a direct result of the nonsta-
tionary nature of the ground state. To observe the doublets
one should cool the system after each scattering event in such
a way that the change of the number of particles in the system
is negligible (if dealing with `evaporation' type cooling). It is
required that the change in �N during cooling compensating
one scattering event, be much less than one.

Themost interesting property of superfluid Fermi systems
(2) which can be followed experimentally, is that they change
their state upon rotation through 2p around any axis in an
ordinary coordinate system. To observe such a change in
systems with spontaneously broken symmetry, one should
have at least two similar systems. Schematically, the experi-
ment is as follows. Suppose two identical magnetic traps are
connected for a long time by a weak link (a Josephson's
junction). In this case the systems have the same phase j.
Then the traps are disconnected and one of them slowly
rotates around a certain axis. After the rotation the link is set
up anew. Since the phase of the rotated trap has changed by p,
while that of the immobile one remained the same, the phases
should be equalized by relaxation, which can be registered. A
similar process should take place upon rotation through 2pn
with odd n, but it should not be observed upon rotation
through an angle multiple of 4p.

This experiment resembles in many ways{ a remarkable
experiment [17] on the interference of two neutron beams, one
of which passes through a region with nonzero magnetic field
with the resulting turning of the spins of neutrons through 2p.
This experiment straightforwardly demonstrates that the
phase of a neutron wave function changes by p as the spin
turns through 2p. However, there is a point to be made.
According to conventional quantum mechanics, any state of
any system does not physically change as the system turns
through 2p. The experiment with neutron beams is consistent
with this statement. The change in the phase of the wave
function is not a physical change of state. In our case the state
of the superfluid system of type (2) physically changes upon
rotation through 2p, so a positive result for the suggested
experiment may signify that the traditional views on the
physical properties of space and time should be revised. An
alternative standpoint implying the introduction of super-
selection rules [18] to forbid linear combinations of states with

odd and even numbers of fermions does not seem adequate, in
view of what was said in Sections 5 and 6.

The one-electron character of the phase of superconduct-
ing states of mesoscopic dots D1 should be observed
experimentally as a peculiar dependence of the Josephson's
current on the phase difference of superconductors described
by Eqns (30) and (31). Evidence of breaks in the current
would provide support for the conclusion that linear
combinations of states with even and odd numbers of
fermions could take place. In this connection, it is interest-
ing, however, to note that such a dependence of the
Josephson's current on the phase difference was predicted
[19, 20] for point leads in ordinary superconductors.

Finally, a specific ferromagnetism for mesoscopic dots
with odd numbers of fermions considered in Section 7 would
be confirmed experimentally if we could observe a typical
nonlinear behavior of the magnetic moment of the system at
weak magnetic fields, of the order of anisotropy field. As the
field changes, the direction of the magnetic moment substan-
tially changes, with no virtual change in the absolute value of
the magnetic moment.
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