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Abstract. Theoretical work dealing with the electron— phonon
interaction (EPI) and its effects on the physical properties of
metals is reviewed. The many-body approach and that using
Landau’s Fermi-liquid theory are briefly described and their
adequacy is demonstrated for low values of the adiabaticity
parameter (wp/ sF)l/ 2, where wp is the characteristic phonon
frequency, and ¢ the Fermi energy. Density functional theory
as applied to EPI calculations are outlined, and for a number of
simple and transition metals, the results of calculating the EPI
spectral densities and EPI-dependent physical properties are
presented. The potentialities and the range of validity for EPI
applications of the density functional method are discussed.

1. Introduction

Electron —phonon interaction (EPI) in metals is a subject of
intensive theoretical and experimental investigation. Interest
in this problem is associated with the role of electron—
phonon interaction in the description of such fundamental
physical phenomena as superconductivity and transfer pro-
cesses in metals. A consistent many-body EPI theory has been
developed to describe both normal and superconducting
states of metals (see Refs [1—4]). Within this approach all
the phenomena caused by EPI are expressed in terms of the
so-called EPI spectral densities. One of them, namely the
Eliashberg function describing the changes in one-particle
properties of electrons in the normal state and the phonon
contribution to superconductivity can be determined experi-
mentally. It can be regenerated from the dependence of the
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tunnelling current flowing between a normal metal and a
superconductor on the voltage applied [5]. The Eliashberg
function is correctly determined only for superconducting
metals and is difficult to evaluate for anisotropic super-
conductors and superconductors with short coherence length.

It would be desirable to calculate the EPI spectral
densities by a consistent microscopic approach. Such efforts
were made earlier (see Ref. [2]), but they were inconsistent in
many respects. As will be evident from the subsequent
discussion, in order to calculate the EPI spectral densities,
one should know the electron and phonon excitation spectra
and the EPI matrix element. In many earlier attempts at EPI
microscopic calculations the phonon spectra of metals were
not calculated ab initio. Instead, they were determined by
various phenomenological models such as the Born—Kar-
man model of force constants. The EPI matrix elements were
also obtained with the help of various simplified approaches
such as the model of the rigid muffin-tin potential [6]. But
perhaps, the most essential problem, however, omitted in
earlier discussions, was concerned with the choice of an
electron spectrum to be used in these calculations.

In most papers on EPI calculation a spectrum found by
the density functional theory (DFT) was used as an electron
spectrum [7, 8]. It is well known [9] that the conventional DFT
is intended to describe the properties of the ground state of
interacting systems. In this regard, the suitability of the DFT
for calculation of phonon spectra is beyond question. The
point is that in order to calculate the phonon spectrum within
the adiabatic approximation, one should find the ground
state energy of the electron subsystem as a function of ion
coordinates. For this purpose the DFT has rather powerful
and effective tools based on the static linear response theory.
These methods have enabled the phonon calculations for a
wealth of metals, the results being in agreement with the
experimental data [10].

The situation with microscopic calculations of electron —
phonon interaction and related effects such as electrical
resistivity and thermal conductivity is quite different. These
effects are not conditioned by the ground state. There are two
ways for the microscopic calculation of these phenomena. On
the one hand, one can use a recent method of a time-
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dependent density functional (see Ref. [11]). Formally, a set of
equations describing a system of interacting electrons and
phonons in an external field has rather a simple form. But
actually, neither exact nor even approximate expressions have
been obtained as yet for the dependences of the exchange-
correlation energy on the ion density. However it is this
dependence that determines the electron—phonon interac-
tion and its influence on the properties of the electron system.
The other way implies the description of the effects of
electron—phonon interaction by the so-called Fermi-liquid
approach. In this paper we will deal with this particular
approach. The paper is arranged as follows. First, we present
the results of a many-body treatment of the EPI effects within
the framework of the Frohlich Hamiltonian. We describe the
ways of deriving this Hamiltonian by the Landau Fermi-
liquid theory and discuss the possible evaluation of the
Hamiltonian parameters by the functional density method.
Then we present the EPI spectral densities and the physical
properties calculated for a number of metals. In conclusion
we discuss the possibilities of further development of methods
for EPI calculation.

2. The many-body theory
of electron — phonon interaction

The many-body EPI theory is presented in numerous books
and reviews and we will not dwell upon it at length. We will
only recall here the main facts of the theory and some
formulas, which will be used in the subsequent discussion.
To start with, notice that in the many-body theory the
electron —phonon interaction is usually described by the so-
called Frohlich Hamiltonian

HIHe-‘erh-‘rHe,ph. (1)

Here H. presents quasi-stationary electron states in a rigid
lattice:

H, = Z ey Ck (2)
k

where g is the energy of electron quasi-particles, ¢; and ¢y are
the operators of creation and annihilation of the quasi-
particles; Hy is the Hamiltonian of noninteracting phonons

1
ph_zqu< qQv qv+§)> (3)

where g, is the energy of a phonon with the polarization v,
by, and b, are the corresponding phonon operators; He_ph is
the Hamiltonian of electron —phonon interaction

e ph = Z gk+q kck+qck(b—q\ + bq‘) (4)
k,q,v

where gk+ x 1s the EPI matrix element. Later on we will
discuss in greater detail the use of the Frohlich Hamiltonian
in describing EPI and calculating the functions involved, such
as the electron and phonon energies and the EPI matrix
element.

Now let us consider the EPI computations with the use of
the Frohlich Hamiltonian. The many-body electron —phonon
interactions are usually calculated by Green’s function
method. Treatment of this method is outside the scope of
this paper: for details the reader is referred to [1, 12], where the

method is thoroughly analyzed. The EPI were first calculated
with the help of Green’s functions by Migdal [13] for the
normal metal state and by Eliashberg [14] for the super-
conducting state. We will start our consideration with
temperature 7 = 0, since in this case all the relevant formulas
have rather a simple form and enable the easy introduction of
appropriate EPI spectral functions. The electron Green’s
function G(k, ) and the phonon Green’s function D(q, v, »)
can be written in terms of electron X(k,w) and phonon
II(q, v, o) self-energy parts as

- 2(k,m), (5)
II(q,v,w). (6)

G (ko) =Gy (ko)

D_l(q,v,a)) :D()_l(quyw) -

Here Gy(k,w) is the Green’s function of noninteracting
electrons, given by the Hamiltonian H.:

1

o) = et ie

(7)

Function Dy(q, v, w) is determined by the Hamiltonian Hpy
and has the form

20qy

Dy(q,v,w) = (8)

w? — w2 +1i6

To anticipate, in the general case the self-consistent calcula-
tion of electron and phonon Green’s functions with the
Frohlich Hamiltonian cannot be rigorously justified. The
exact D(q, v, ) function must be calculated using the total
electron-ion Hamiltonian. However, in a number of problems
one can employ the Frohlich Hamiltonian for self-consistent
calculation of both Green’s functions as well, having specified
bare phonons in the function Dy(q,v, ). In any case, the
phonon damping defined by the imaginary part of the
phonon self-energy I1(q, v, w) is determined properly by this
Hamiltonian (see Ref. [15]). In what follows we will not
concentrate on calculations of the phonon Green’s function,
assuming it to be exact in all the formulas concerned with
electron properties resulted in turn from electron—phonon
interactions. A detailed procedure for microscopic calcula-
tions of exact phonon spectra in metals was given in Ref. [10].

One of the main results of Migdal’s paper is that the
electron self-energy can be calculated with regard to the
simplest first-order EPI contributions neglecting the higher-
order terms as being small relative to wp/er. Here wp is a
characteristic phonon frequency and &g is the Fermi energy.
The analytical expression for 2 (k, w) can be given as

kw-lZde tkk,“Dk k' v,o— oGk o).
K )

For later convenience we present the phonon function
D(k, v, w) in the spectral form

{o¢]

Dk, v,w) = lJ dQIm D(k,v, Q)
T

0

1 1
X<w—9+15*w+9—ia)' (10)

In the adiabatic approximation and without regard for the
phonon —phonon interaction, Im D(k, v, w) is expressed as

ImD(k,v,w) = né(® — wxy) - (11)
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The summation over vectors k' is conveniently presented as

Z:J a6 S 6(e — ). (12)
K - Kk
Using the above notation, X (k, w) can be rewritten as
1 k-k', \
( :E‘[d£Z|gkk’ F_gk/)
!/
x J dQImD(k — k',v, Q) Jd;’ (K, o)
n
1 1
— . (13
% <w—a)’—Q+i5 w—w’—l—Q—ié) (13)

Asitis seen from (13), the absolute value of X (k, w) is of order
wp. [t follows, as Migdal has shown, that the electron Green’s
function in (13) can be replaced by Green’s function Gy(k, »)
for noninteracting electrons. As a result, (13) takes on the
form

(e —ex)

1 \
o) = [ @Sl

do’ 1
2n o' —e—16

200

The analysis of (14), as performed by Migdal, shows that the
essential values of w and w ' are of the order of wp. This means
that small frequencies of the order of wp are also significant
for &. In this case ¢ can be neglected in d(e — ¢ ). After that we
integrate easily over ¢ and finally express 2(k, w) as

o) = [ 00 S lel '

1 1
do’ - . (15
XJ w(w—w’—i—Q—ié w—w’—Q—i—ié) (15)

Introducing the EPI spectral density o (Q) F(Q) equal to

X J dQImD(k—k’,v,Q)J

1 |
x (CO*CU,*Q+i(5_w*w/+Qf

)ImD(k — k',v,Q)

Z|g§k‘,‘ Y%0(e0) Im D(k — k', v, Q) (16)
we derive X(k, w) in the form
S(k,0) = H dQ o} (Q)F(Q)L(»,Q). (17)

Here we placed

L(w,Q)—de (w—w’+Q—i5 w—0 —-Q+i5)"
(18)

Notice firstly that by virtue of the above approximations,
which are valid when wp < &, the function X(k, w) depends
only on the angular part of the vector k lying on the Fermi
surface. Integral (18) can be easily calculated for function
L(w, ), but we will not do it here. It is readily shown that the

expression for self-energy X (k, w) has precisely the same form
as formula (17) at any temperature [15]. The function L(w, Q)
at T # 0 is expressed as

. 1 1 o-
L(0,Q) = —2ni [n(Q) +§} n qf(§+1 TTCO>
1 . Q+w
_W(§_1W>’

where ¥(x) is the digamma function, n(Q) is the Bose-
distribution function. We can determine the function X(w),
which yields the self-energy averaged over the Fermi surface,
as

(19)

(20)

1
= m; o(ex) 2 (k, w

where N(ep) is the density of electron states on the Fermi
surface; then we arrive at

2(o) = [ do a2<9>F<9>{—2“i {”(9) N ﬂ

1 Q—w 1 . Q+w
+‘I’<2+1 o T) '1’(571 211:T>}' (21)

The above-introduced function o2 (Q)F(Q) is usually referred
to as the EPI spectral density or the Eliashberg function and
has the form

AQF) = s e ol (2 — 0)3(0)5ercra)

(22)

This function determines, in particular, superconducting
properties in metals.

As noted above, the Frohlich Hamiltonian, though being
inappropriate for the calculation of exact phonon spectra in
the general case, nevertheless is suitable for finding the
phonon damping. To do this, one should calculate the
imaginary part of the phonon self-energy I1(q, v, ). Similar
calculations were performed by Allen in Ref. [16], where the
phonon damping y,, , for a given energy wq, , was shown to be

voo2
Vqy = 2Ty Z|gg+q,k| 0 (&) 0 (8xcrq) - (23)
X

Comparing formulas (22) and (23), we see that the Eliashberg
function can be presented in terms of phonon damping as

1 yqv
P (Q)F(Q) = NG qz oo 3(Q — 0g)-

(24)

The self-energy component X(w) incorporates real and
imaginary parts and it can be given in the form

i

2(w) = —oMw,T) - Yo )

(25)

It is well known that the function A(w,T) characterizes
renormalization of the electron mass conditioned by the
electron—phonon interaction, while t(w, T) is the electron
lifetime. We can easily see it, having rewritten the expression
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for Green’s function in the form

m*(w, T) i -

Gk = |—w- —_— 26
(k, ) s Sk+2f(w7T) : (26)
which involves the notation
* T
% =1+, T). (27)

Here m is the mass of noninteracting band electrons. At 7= 0
and w = 0 the function A(w, T) presents the electron — phonon
coupling constant

de ,

= zJo 5 LQFQ). (28)

The quasi-particle energy is determined by the pole of Green’s
function and we have

m . i
m (B, T) X 2%(E, T)

Ey = (29)

where 7(w, T) = t(w, T)m*(w, T)/m. Clearly, well-defined
quasi-particles exist only on condition

1

< E.
W(ET) K

(30)

As we will see subsequently, this inequality is not valid in
metals for rather a wide energy range near the Fermi surface.
However expression (26) for the electron Green’s function
can be applied to the EPI systems in a wider range and holds
true provided that the small parameter wp/ep prevails. The
imaginary part of Green’s function can be measured directly
in experiments on photoemission with angular resolution [17].

Using the Froéhlich Hamiltonian, we can calculate the
electric conductivity ¢(w) caused by EPI in metals. (A
detailed review of appropriate calculation methods is given
in Ref. [18].) To do this, one must find the electromagnetic
kernel K,,(w) = 4noy(w)/w, where u = x,y,z. In metals
with cubic lattice, which will be dealt with in this review, this
tensor is reduced to the scalar K(w). In the temperature
Green’s function method K(w) is given by

Vm = 4me TZZU Gk wn Gk wn + Vm)

Wy kyu
(31)

Here v,, = 2nTm and w, = nT(2n + 1); v{ are the electron
velocity components; I 1’:(w,,7 wy, + vyy) 1s the vertex function,
which, in turn, can be presented as the integral equation

Fﬁ(wm Wy + Vm) = Ul’: + TZ Z W(k»k/)Gk’(w;;)

o/ ’
, k

X TE(wn, 0p + Vi) -

X Gy xc(@n — o)) T (@, 0 + Vi) - (32)

Here W(k, k') is the electron — phonon interaction energy
Z| k-k',v 20y 'y
8k k'

7 -
kfk'v - ((U,, - w/lz)

(33)

The equation for the vertex function I'f (w,, w, + v,,) can be
solved by a variational method, with the probe function for

I'!(wy, 0y + v) chosen in the form

I (o, 0p 4+ vin) = vl floon, 00 + Vi) . (34)
Bearing in mind, as we did in considering the one-particle
Green'’s function, that EPI is localized near the Fermi-surface
where all the quantities, except for the one-particle Green’s
function, change only slightly, we arrive at the ultimate
expression for electric conductivity ¢(w) in a form closely
resembling the one-particle Green’s function:

2
“p !

o) = 4 So t su(e)

(35)

The function X (w), by analogy with the self-energy part
2(w), can also be written in terms of renormalized mass and
relaxation time:

(36)

Su(w) = io {1 _mi(o, T)} I

m + tu(w, T)

Broadly speaking, expressions for the transport renormalized
mass and relaxation time differ from those given by formula
(21). At T = 0 the formulas for

i (w,T) 1

and ————
m an (0, T)

were first obtained by Allen [19]. Subsequently they were
extended to the case of finite temperatures [20, 21]. In the
general case these formulas have the form

Tu(w) = —2i [:C de ocfr(Q)F(Q)K(z;U—T : %T) .3
where
i y—Xx . . .
K(x,y) —;—i— { e [P(1 —ix+iy) — P(1 +1y)]}
—{y—-rr. (3¥)

In describing the transfer processes, particularly optical
conductivity, one more EPI spectral density o?(Q)F(Q)
arises, which can be presented as

(QF(Q) = 2, (QF(Q) - 2 (QF(Q), (39)
where
oui(iny (Q)F(2) = ka; ek Pos)ve (k)
x a(w—wk_;f»é(ek)a(skf)} (40)

Here (v2) is the averaged electron velocity squared on the
Fermi surface. This quantity is closely related to the plasma
frequency w, entering the equation for optical conductivity:
2 2 2

w, = 4ne"N(er)(vy) - (41)
To conclude this section, we will give for reference the
Eliashberg equations describing superconducting properties
in metals, omitting their derivation. These equations contain

two functions: the order parameter 4(w), and the renormali-
zation function Z(w). In a normal state A(w) is clearly equal
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to zero, while the renormalization function Z(w) transforms
to the earlier introduced mass renormalization function
ZN(w, T)= m*(w, T)/m:

, Ao’
Z(w)A(w) = Lw do Re{i[w,2 - ;2(;,)] 1/2}

= fl=0) +n(Q) | flo')
xL onc2(Q)F(Q)[ oto—o t

[1—Z(w)|w= L dw/Re{W_jW}

> fzo) +n(Q)  f=o') +n(Q)
XJO anz(Q)F(Q)[ 0'+Q+0 0 +Q-o

flw) +n(Q)  flo') +n(Q)
+fa)’JrQeri—a)’Jerco}' (43)

Here f(w) is the Fermi distribution function, and u(er) is the
averaged Coulomb interaction between electrons. Unfortu-
nately, to date no reasonable methods for calculating u(er)
have been developed and most commonly u(ep) has been
considered as a phenomenological constant.

3. Application of the Landau Fermi-liquid theory
to the electron—phonon interaction

The EPI contribution to the one-particle electron Green'’s
function can formally be calculated using the many-body
perturbation theory for the total electron—ion (or, more
precisely, electron-nucleus) Hamiltonian. Within this
approach the EPI contribution to the self-energy part
2 (x,x’) can be written as [1, 22]

Soh = Jrev VDGV VT, . (44)

To avoid complicating this formula, we will not mark all the
indices and only clarify the meaning of the notation used.
Here G and D are the electron and phonon Green’s functions,
respectively, VIV is the screened gradient of the electron—ion
potential V:

VY= ZJe_IVVei(r—R,,,). (45)

m

Here ¢ is the dielectric constant of the electron subsystem,
such that

c=1+ J Vel GG, (46)

Ve is the Coulomb interelectron interaction, and
I'e = I'e(x1, x2,x3) is the three-point vertex function deter-
mined, in turn, by a complicated integral equation.

A detailed analysis of (44) shows [1, 22] that the phonon
contribution to the self-energy part formally coincides with
that given by the Frohlich Hamiltonian. The EPI matrix
element presents rather a complicated expression involving a
screened gradient of the bare Coulomb electron —ion poten-
tial and the vertex function of the Coulomb interelectron

interaction. But, as was already noted, the EPI matrix element
can be derived by another approach based on the theory of
the Landau Fermi-liquid which we will present below. To
start with, we will show that this approach yields precisely the
same expression for the EPI matrix element as the conven-
tional Green’s function theory dealing with the total
electron—ion Hamiltonian. Another aim of this approach is
to determine a relationship between the exact expressions for
the EPI matrix element and various approximations, widely
used nowadays for numerical calculations.

It is well known that according to the Landau Fermi-
liquid theory, the low-energy and low-temperature properties
of strongly interacting Fermi particles can be described by
weakly-interacting quasi-particles with a changed (due to the
interaction) excitation spectrum [23]. In this case the total
number of quasi-particles is equal to the total number of
particles. The ideas of the Fermi-liquid theory were used in
some papers (see, for example, Refs [24, 25]) to study the EPI
effects. Essentially, this approach to the EPI theory is as
follows. Since the EPI effects are significant only near the
Fermi surface, assume that we have somehow determined the
electron excitation energies, or equivalently — the Hamilto-
nian with full regard to the Coulomb interaction for an
arbitrary ion arrangement. Suppose, it is H(p,r,7,{R,}),
where p is the electron momentum, r its coordinate, ¢ the
time. This notation takes into account that the energy
H(p,r,t,{R,}) is a functional of the ion arrangement {R,,}.
After that the function H (p7 r,t, {Rn}) can be expanded in
small ion displacements u,, from the equilibrium position R,?:

H(p,r,1,{R,}) = Ho(p.t) + Z% ‘. (47)

The quantity 0H/0R,, can be determined by various approx-
imate methods such as the method of deformation potential.
Knowing the Hamiltonian, we can write the kinetic equation
for the electron distribution function and then evaluate the
EPI influence on the physical properties of electrons,
particularly on the electron transfer processes.

We will not dwell on the above-mentioned Fermi-liquid
approach to EPI, but concentrate on the microscopic
justification of the Landau Fermi-liquid theory. This analysis
will enable, in particular, a more consistent formulation of the
Fermi-liquid approach to EPI. To accomplish this, let us
consider the one-particle Green’s function G(r,r’, w) giving
an insight into the quasi-particle excitation spectrum:

G l(r,rw) = v V. R,) — Z(r,r’
(r,r',w) = w+%—; si(r—Ry) — 2(r, v’ o) — p.

(48)

Here X(r,r’,w) is the self-energy part. In papers [26, 27]
Luttinger and Ward introduced the functional & which
enabled them to present X(r,r’, w) as

0P

/ j—
2(r,r', o) ~3Ge o)

(49)

The same authors suggested a method for approximating the
functional @ in the framework of the self-consistent perturba-
tion theory. The pertinent technique for a homogeneous
electron gas was presented in a recent paper [28]. We will not
discuss it in detail but restrict our consideration to the
problems relevant for our further discussion.
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Notice that the one-particle Green’s function G(r,r’, )
cannot be diagonalized at finite w in the representation of the
Bloch wave functions, not even for a periodical lattice. We
can, however, introduce a concept of an electron band
structure, using Green’s function G(r,r’,0):

v 0
3t XVl =R

+J dI‘,Z(I‘,I'/,O)lI/k,l(I‘,) = sk;“Pk;v(r) . (50)
In Ref. [29], Eliashberg called this band structure kinematic
and discussed some of its properties. We will outline them in
what follows. On the one hand, as was noted by Luttinger
[27], the band structure given by Eqn (50) determines the
Fermi surface of a metal using the condition

(51)

where kg is the Fermi momentum at which the energy 1 of
electrons from the band intersects the level of the chemical
potential. Another significant property of the band structure
is that the so-called Luttinger theorem of equal numbers of
particles and quasi-particles is valid:

N_ o

Sk]:/l = :u7

- . . 52
Q- %:fk (exz) (52)
Here
L g <,
fk/l o {0, k) > M. (53)

Besides, the band structure is responsible for the density of
electron states on the Fermi surface (and only on it!):

N(eg) = —%Zlm G(k,7,0) =Y find(ew — ). (54)
ki ki

It should be emphasized that the corresponding electron band
structure has never been evaluated for actual metal systems.
The only exception is work [30], where it was numerically
found for the one-dimensional Hubbard chain with ten points
and was shown to possess a wide range of quite specific
properties in strongly correlated systems. However, a detailed
discussion of this problem is outside the scope of this review.

Notice that the band energy ¢, given by (50) does not
determine the spectrum of quasi-particles even in proximity to
the Fermi surface. The one-particle Green’s function
G(k,Z,w) at close range of the Fermi surface can be
presented as [12, 31]

7
Gk, 1, 0) = "% 4 flk, 1, 0),

55
W — &) (55)

where f(k, A, ) is an incoherent part with no peculiarities
near the Fermi surface. The excitation spectrum &, of quasi-
particles in the neighbourhood of the Fermi surface has the
form

ékg = Zkiek;_ . (56)

The function Z,, characterizes a residue in Green’s function
pole and can be written as

1

Z_k/{ =1- <'I’k;,(r)

0X(r,r’, w)

sy (57)

W=ty

It was shown in the microscopic justification of the Landau
Fermi-liquid theory [12, 31] that Zy, can be omitted due to the
appropriate renormalization of effective interactions.

Now we will act in conformity with the spirit of the
Landau Fermi-liquid theory and early papers on its applica-
tion to the EPI theory. With this object in view we will
introduce the Hamiltonian for electrons interacting with
ions slightly displaced from the equilibrium position:

~ aéki k'/l’{Rn}
H= pt ) — s, |, 58
;(81“ + Zx ZI: R, u ) (58)
where
RS <'{/ki(r)|G‘1(r,r’,O)I'Pk/;g(r’)> . (59)

Green’s function G(r,r’,w) is defined by the following
equation written in the operator form

Vz " n
[—%—i— ; Vei(r = Rpy) + Z(r, ", 0) | G(r", r, )

=46(r—r'),
R,=R) +u,.

To find the exact Hamiltonian, we must calculate the function

Z< Py (r)

n

oG (r,r',0)

R, (62)

Pl

To this end, we will use equation (60) for Green’s function and
rewrite the self-energy part X(r,r’, ®) in the form

2(r,r',w) = Zu(r) + Zy(r, v’ o). (63)
Here Xy (r) stands for the Hartree contribution
n(r’)
2 = ¢? ! 4
u(r)=e J|r—r’| dr’, (64)

2y (r,r’ ) is the exchange-correlation contribution. Then
(60) transforms to

oG !(r,r',0)

6Rn = VVei(I‘ - Rn)

dr’ On(r’)
2
te J|r7r’| oR,

02 (r,r’,0)
oR,

(65)

According to the definition of electron susceptibility
%(r,r’ ), we can write [22]
on(r)
oR,,

= J dr” y(r,r",0)VVe4(r — R,). (66)

Combining the first and the second terms in the right-hand
side of Eqn (65), we have

aG_l(rarlvo) no—1 "
Tfjdr € (r,r",0)VVi(r — Ry,)
02yc(r,r’,0) 0G(ry, 15, )
dr;dr,d . (67
*J e ) R, )
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Here ¢ !(r,r’,0) is the inverse permittivity of the electron
system, which equals, by definition,

"

e, e’ 0)=d(r—r') + ¢ Jm z2(x”,r’0).  (68)
Using the identity
0G(r,r",w
(GTI) = —J dr; dr, G(r,r;, o)
-1
LG (1), 0) G(rar', o), (69)

oR,

we can write the ultimate equation to determine the function

aG’l(r,r’,O)
R,
in the form
aG_l(rvrl70) n —1 "
R, J dr” e (r,r",0)VVii(r — Ry,)
02y(r,r’,0
— J dr] drz dI'3 dr4 dw W G(I‘z,r37w)
oG !
(OG54 ®) G ). (70)

oR,

This equation is easily solved by the previously introduced
three-point vertex function I'(x,x’,x;), which can be pre-
sented in the coordinate space as

I(x,x’,x1) =6(x — x")d(x — x1)

02xc(x,x")
dx;dxs;dxgdxs —————
—|—J Xp dx3dx4 dXxs aG(xz7X3)
X G(X27X4)F(X4,X5,xl)G(X57X3) . (71)
As a result, we have
oG '(r,r’,0
# = J dridre, I'(r,r’,0 = 0,1y)
x € 1(r1,15,0)VVe(ra — R,). (72)

Comparing the expression obtained for

oG~ !(r,r',0)
oR,

with formula (44) for the self-energy part caused by EPI, we
see that the EPI vertex function determined by the Fermi-
liquid approach is precisely the same as that given by the
many-body Green’s function theory. Unfortunately, the EPI
matrix element is unlikely to be calculated exactly at the
moment. The inverse permittivity ¢ !(r,r’,0) and the elec-
tron vertex function I'(r,r’,w = 0,r;) cannot be calculated
on their own by the Fermi-liquid theory, since they are
determined not only by properties of electrons on the Fermi
surface, where, in fact, the theory applies, but also by
properties of electrons away from the Fermi surface. Never-
theless, the Fermi-liquid approach as well as the many-body
Green’s function theory, provides reasons for using the
Frohlich Hamiltonian to describe the EPI influence on

electron properties in metals both in normal and super-
conducting states. But it is possible only when the adiabatic
parameter of the theory wp /¢ is small. It should be reiterated
that the EPI matrix element itself and the EPI spectral
densities resulting from its adoption remain undefined
material parameters of the system and should be calculated
from some experimental data, for example, from the
measurements of tunnelling spectra.

Recently, some success has been achieved in calculating
Green’s functions and vertex functions of a homogeneous
electron gas [28]. This could enable the calculation of the
properties of some simple metals with a weak electron-ion
pseudopotential. However, little progress, if any, has been
made in this direction. Most computations of the EPI matrix
element performed to date have been based not on the many-
body Green’s function but on quite different approaches. In
the next section we will dwell upon the technique of these
calculations and discuss their validity for the problems where
they are used as well as the limits of their applicability.

4. The density functional method
and electron—phonon interaction

Most EPI calculations performed until now have been based
on the density functional theory (DFT) which was first
introduced by Hohenberg, Kohn, and Sham [7, 8] (for details
see Ref. [9]). Essentially, the approach implies that the energy
and other properties of the electron system in the ground state
are a single-valued functional of the density distribution n(r).
The equilibrium density is given by the minimum of this
functional

SE{nr)} _ 73)
on(r)
Kohn and Sham [8] suggested defining the density of
interacting electrons as that of some effective system of
noninteracting electrons occurring in an effective field. In
this case n(r) can be represented as

n(r) =" fir () Vi), (74)
K.
where
I, e&u<up,
fo={o) 2 Sh 79

The wave function of the effective system is described by the
following Schrodinger equation (in this case usually referred
to as the Kohn—Sham equation)

VZ
[—% =+ Veff(r):| 'Pki(r) = Skg'f’k;h(r) . (76)
Here Ve (r) is an effective potential defined as
(77)

Verr(r) = > Vei(r = Ry) + Vua(r) + Vie(r) ,

where Vy(r) is the Coulomb part of the Hartree potential of
electrons, given by equation (64), Vy(r) is the exchange—
correlation potential

B SEXC{n(r)} '

Viele) = g (78)
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The exact exchange —correlation energy functional Ey. {n(r) }
is, broadly speaking, unknown. In practice, the so-called local
approximation is usually used for Ey.{n(r)} when employing
the DFT:

Ex{n(r)} = Jn(r)sXC (n(r))dr.

Here &y (n(r)) is the exchange-correlation energy per particle
in a homogeneous electron gas with a given density n = n(r).
We will not discuss here all the advantages and disadvantages
of the local approximation, for details the reader is referred to
Refs [9, 32].

Formally the technique for calculating the EPI matrix
element by the DFT is as follows. Suppose, the displacement
u,, of ions from the equilibrium position R,? is specified. It
results in the changed effective potential Vegr(r) in the Kohn—
Sham equation:

(79)

Veff(r) = Veoff(l‘) + BVeff(r) . (80)
In this case 8 Vegr(r) can be represented as
3Vu(
6Veff Z VVel u, + Z H u,
) VX
+ Z <, (81)

Taking into account that Vg (r) and Vi (r) depend on n(r),
Eqn (81) is rewritten in the form

ZVVE,
+ ZJ dr/

) 8Vxe(r) On(r’)
+Z[d nr’ R,

Within the linear response theory dn(r)/3R,, can be given by
the expression which was used earlier [see (66)]:
dn(r)
SR,

3 Veff

(r) dn(r’)

-y,

‘. (82)

= J dr’ x(r,r)VVa(r' — Ry).

The DFT enables another form for dn(r) /R, viz.

61’1(1‘) . /. ’ SVeff(I',)
SR, = J dr’ yo(r,r") TR,, ,

(83)

where y,(r,r’) is the susceptibility of noninteracting electrons,
described by the Kohn —Sham equation (76):

XO(rv I‘,)

kil q Ek+qi’ — €kA

(84)

Using the above formulas, we can easily find the expression
for 8 Ver(r)/8R,, which resembles closely the one obtained for
3G~ !(r,r')/8R,, in the previous section [see (72)]:
6 Veff(r)
BRH

= J dry dr; Iz(r?rl)f1 (r1,12,0)VVei(ro — R,) (85)

3 (icra,z” = /1) Vig (0) Pra (0) Vi g (1) Wiy g (1)

where the vertex function I'(r, ) satisfies the equation

Flru) = e =)+ [ amas S0

Z0(r2,13) T (v3,11) .
(86)

The function ¢ !(ry,r3,0) is nothing but a standard inverse
permittivity of the system coinciding with that introduced in
the previous section, namely

y(ry,r’,0)

(rr',0) :5(r—r')+e2Jdr1 A L@

|r — 1]

and y(r,r’,0) is the susceptibility of the electron subsystem,
given within the DFT by the equation

X(l", rl7 0) = XO(r7 I‘/)

82
+Jd1‘1 dr, |: +
|r — 1]

The expression for the change in the effective potential and,
consequently, for the EPI matrix element obtained by the
DFT significantly resembles that found earlier by the Fermi-
liquid theory. At the same time, there are substantial
discrepancies between these expressions. Let us begin with
the pleasant point. As distinct from the Fermi-liquid theory,
the effective potential change can be calculated completely by
the DFT. The inverse static permittivity ¢! (r;,r>,0) and the
vertex function I'(ry,r;) are found as solutions to (86), (88).
Moreover, to get the function Ve (r)/8R,, one need not
calculate (by rather a complicated procedure) functions
¢ '(r1,r2,0) and I'(ry,ry). The Sternheimer method [33]
extended to crystals [34, 35] is suitable at this point. The
essence of the method is as follows. Let us consider the
Kohn—Sham equation (76) and specify the ion displacements
u,,. Then the equation transforms to

6617/1)&(13)} Zo(r1,12)y(r2,1") (88)

[Z; + Veoff(r) + SI;eIf{,Er) - u"} V1 (r)
_ <3k) o ) P (r) . (89)
We will seek its solution in the form
Pio(r) = P, (r Z S'PM U - (90)

Substituting the expression for ¥y, (r) into (89) and collecting
the first-order terms in u,, we arrive at the equation for
¥}, (r) as well as that for the changing wave function:

V? 8%ii(r) _ [Bews  8Venr(r)
{‘T* Ven(r )] 3R, _ |5R, R,

and dV(r)/0R,, is expressed by (82). According to the
conventional rules of quantum mechanics, dn(r)/dR,, can be
written as

} W, (x). (O1)

o OPia(r SV, (r
= 3 o i P i)

SR ] .(92)

Solving the initial Kohn-Sham equation for an ideal crystal in
combination with equation (91) for changes in the wave
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function, we can also find 8V,g(r)/dR,,, using formulas (82)
and (92). Moreover, as was detailed in Ref. [10], within the
DFT we can calculate the dynamic matrix as well. It is
expressed as

@ZEm[ _ [ dr 5(1’1 + f’lexl) 6Vext
MyuqOMyrg Muqg Mg
8 Vext
+ J dr (n + next) =5 —— 93
(1 + next) Sl (93)

within an accuracy of a multiplier related to nucleus mass.
Here p is the coordinate subscript, #ey is the point charge
density of nuclei. Thus, the DFT seemingly provides all the
components necessary to calculate the EPI. The electron
spectrum is given by Kohn — Sham equation (76). The phonon
spectrum of a metal can be calculated from equation (93) for
the dynamic matrix. Finally, equation (82) for the change in
the effective potential enables the easy calculation of its
matrix element using the wave functions ¥y;(r) and
¥y qi(r). However, there is at least one substantial and
unpleasant difference between the DFT and the Fermi-liquid
theory in consideration of electron—phonon interactions.
Suppose we have calculated changes in the effective potential
within the DFT and found an appropriate matrix element,
but we do not know how to treat it within this method. The
point is that the conventional DFT only describes the proper-
ties of the ground state of the system. At the same time,
electron transitions caused by EPI and defined by the
corresponding matrix element are not determined by the
ground state. They are associated with excited states of the
system. As already noted, the DFT can be formally extended
to nonequilibrium processes. However, no adequate proce-
dure has been developed so far to do proper calculations on a
coupled electron — phonon system.

Since the early attempts to compute the EPI matrix
element by the DFT [6, 36, 37] the conventional approach to
the problem has been as follows. The matrix element of the
effective potential change has been found from the Kohn—
Sham equation in the framework of the DFT. Then the result
obtained has been used to calculate physical properties of
metals using the conventional many-body theory based on the
Frohlich Hamiltonian. As was shown in the previous section,
this approach is a priori appropriate within the Fermi-liquid
theory. How far would the given approach with the use of the
DFT be justified? Clearly, both the matrix elements coincide
if the excitation spectra of the one-particle Green’s function
(50) and those of the DFT (76) do. The fact that in a general
way these spectra differ is readily demonstrated by the
example of a homogeneous interacting electron gas. The
DFT yields in this case the spectrum of the form

k2
" 2m

&k —H, (94)
where m is the free electron mass. At the same time, the
excitation spectrum of the one-particle Green’s function even
close to the Fermi surface takes the form

k2
2m*

&k = — U, (95)

where m* # m. At least both the Fermi surfaces arising in
Green’s function method and in the DFT coincide in a

homogeneous electron gas. But it is not generally the case.
Thus in metals with a complicated Fermi surface not only the
excitation spectra but both the Fermi surfaces can differ [32].
As is evident from considerable experimental data, the Fermi
surface dissimilarities from that dictated by DFT and even the
differences in the spectrum are insignificant for a number of
metals [32], becoming noticeable in metals with strong
exchange-correlation effects [30, 32, 38]. Unfortunately, this
problem has not as yet been studied fully.

In this connection, direct and consistent calculations of
EPI effects employing the DFT and their comparison with the
experimental results seem all the more interesting. Many
previous attempts to describe EPI in the framework of the
DFT were rather inconsistent. In some of them only the
electron contributions were calculated [6], while the phonon
frequencies wq, and eigenvectors eq, were fitted from experi-
mental data on inelastic neutron scattering. Notice that the
change in the effective potential was therewith determined by
the rigid ion displacement approximation, i.e. VVey(r — R,)
was actually calculated. For isotropic metals with high
density of states on the Fermi surface this approximation is
valid in many cases, since due to strong screening the
potential changes only near a displaced ion. However, in
transition metals satisfying this criterion in many respects the
above approximation of rigid ion displacement sometimes
appears inadequate [37]. For example, it does not enable the
description of anisotropic renormalization of the electron
mass in Nb.

Recently an approach based on the linear response theory
was developed [39], where a basis corresponding to the linear
MT-orbital method (LMTO) [40] was used for the first-order
correction to the wave function 8¥y;(r). A substantial
advantage of this method is that systems with narrow bands,
such as d-bands, are considered in just the same way as wide-
band systems without deterioration of the convergence. The
method developed was used to calculate the phonon spectra
of many metals [39, 41] (see also Ref. [10]) and to find EPI and
its influence on the physical properties of metals [42, 43]. In
the next section we will consider this method at length and
present the calculated data on many properties of metals,
determined by EPI.

5. The linear response theory
and calculations of electron—phonon
interactions in particular metals

The central problem in the calculation of the EPI matrix
element and the dynamic matrix lies in determining 6 Vegr/ an,
where &V is the change in the electron Hamiltonian, caused
by the atom displacement

u, = ngexp(iq - R,) + ngexp(—iq-R,).

As was detailed in our previous review [10], the calculation of
8Veir/0n, is promoted by the fact that the change in the
external potential &Vex /an transforms as the Bloch-like
wave under r + R, augmentation. This means that if we
know the change 6 Ver/ 617q in one cell, we can easily calculate
it for the whole crystal. Thus, equation (91) for changes in the
wave function as well as the initial Kohn —Sham equation (76)
for an unperturbed wave function should be solved only in
one unit cell. The Kohn —Sham equation (76) with potential
Veir(r) of arbitrary shape is usually solved through a
variational principle. One constructs a functional and
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minimizes it under the variation of one-electron functions,
deriving as a result, the Schrodinger equation. In doing so the
one-electron wave function is represented as an expansion in
terms of a certain basis y¥(r):

Prei(r) =Y AN (r),

n

(96)

where AX* are the expansion coefficients, which display the
variational parameters of the functional for the fixed basis
7%(r) and can be found as a solution to the matrix eigen-value
problem

Z<X,]L{—V2 + Veir — ks (97)

74(x) ) A = 0.

According to the LMTO method, the crystal space is broken
into nonoverlapping spheres centred on each atom (muffin-
tin or MT-spheres) and the remaining interstitial regions.
Within the MT-spheres the basis functions are linear
combinations of numerical solutions to the Kohn-Sham
radial equation, where the spherical part of the potential is
employed, multiplied by spherical harmonics. This represen-
tation provides fast convergence of the basis for both
delocalized and localized states. In the interstitial space
where the potential is rather smooth, the basic functions are
chosen as a solution to the Helmholtz equation
(=V? — k) f(r) =0 for free electrons, where x? is the
electron kinetic energy in the interstitial space. In order to
calculate EPI and phonon spectra, we should consider
carefully the nonspherical contributions to the crystal
potential, especially in the interstices, since vibrations of
atoms in the direction towards each other significantly
distort the electron density in this region. An approach to
the solution of this problem was suggested in [41], where
spherical harmonics were used in the MT-spheres as well as in
the interstitial region. The crystal space was broken into
polyhedral cells of Wigner—Seitz type, and MT-orbitals
were represented as concentric expansions in terms of
spherical harmonics up to the spheres around the polyhe-
drons. Such concentric expansions describe the electron
density properly only in the atomic cell regions. Therefore,
in order to solve the Poisson equation and calculate the
matrix elements of the potential in the interspherical space,
one should find an effective method for integrating functions
over the region between the sphere and the polyhedron
surface. The latter can be achieved by reducing the volume
integrals to surface ones with the help of the Gauss theorem
[41]. The advantage of this approach is the unified representa-
tion of all the quantities in terms of spherical harmonics for
both the space regions. The processing rate of the method is
only several times slower than that for the conventional
LMTO method.

Let us consider the construction of linear MT-orbitals in
more detail. The space is broken, in a way, into polyhedral
cells of Wigner—Seitz type, circumscribing each atom.
Inscribed MT-spheres and spheres circumscribing the poly-
hedra are introduced for these atomic cells. Both the spheres
are centred at the lattice sites. Let us consider the so-called
shell function. In the LMTO method this is the singular
Hankel function K (r, — R) centred at the site R +t and
determining the energy ¢ = x”. (Hereinafter we assume that
all the radial functions involving vector notation in the
parentheses are multiplied by spherical harmonics, L stands
for the combined subscript /m, the subscript ¢z on r means the

difference r — t, where {t} are the positions of atoms in a unit
cell, and {R} are the primitive translations.) Inside the self-
sphere centred at R +t, the diverging part of the shell
function is replaced by a linear combination of numerical
radial functions smoothly joined onto the sphere boundary.
Here the radial functions are the solutions ¢, (r, — R, &) to
the Kohn—Sham equation taken with the spherical part of the
potential and at certain energies ¢, from the range of interest,
as well as their energy derivatives ¢, (r, — R, &,;). Inside
other atomic cells centred at R’ 4 t’, the concentric expan-
sion in terms of the Bessel functions is used for the tail of the
shell function:

KL(I‘, — R) = Z]L/(I‘[r — R,)S,/L/tL(R, — R) N (98)

T

where Jr(r, — R) is the Bessel function, S, (R) are
structural constants in the direct space. Bearing in mind that
Hankel and Bessel functions are given by the expressions

i(rew)™!
K(r)=—- Q=10 hy(xr), (99)
1) =5 i), (100

where /; = j; — in; are conventional Hankel spherical func-
tions, and j;, n; are the Bessel and Neumann spherical
functions, respectively, the expression for structural con-
stants takes the form

82" =D
Sewn(R) =D 1y — 1yn e (<)

L//
X Ki(IR =t/ +t)(=0)" Y7, (R —t' +t)(101)

where w is the average Wigner — Seitz radius, and C%, , are the
Gaunt coefficients. Finally, the linear MT-orbitals are
obtained by substituting linear combinations of ¢, and ¢,
for the Bessel functions into all the MT-spheres, ¢,; and ¢,
being chosen so that LMTO would be continuous and
differentiable.

The final step is the summation over the grid of MT-
orbitals centred at different lattice sites with the phase shift
exp(ik - R) so that the base functions would satisfy the Bloch
theorem. It is easily obtained by summing only the structural
constants (101), since now the orbitals constructed are every-
where the concentric expansions. As a result, the base
functions are expressed as

2z (vir) = D[ (v1)dur + Z @ (e)Sfip for ri <spr,
L/

X?L(I‘ﬂ) = K[L(I‘,)énf + ZJI'L'(I"’)SII{’LUL for ry € Q,ir,n,
T

(102)

where s, are the radii of MT-spheres, and SX, ,; is the Fourier
transform of structural constants (101):

Sk =Y _exp(ik-R)S; 1 (R). (103)
R

Here the radial functions @ (r,), ®;; (r;) are linear combina-
tions of solutions ¢,; and ¢,; smoothly joined with Hankel
and Bessel functions on the sphere boundary.

Let us consider again the problem of the DFT lineariza-
tion, characterizing the basis incompleteness. It results in high
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errors for the atomic forces and dynamic matrix calculated by
the exact density functional theory, in particular, by expres-
sion (93) for the dynamic matrix. The point is that in practice
the wave functions are found not as an exact solution to the
Kohn—Sham equation (76) but calculated approximately
with the aid of the variational principle. In order to describe
properly the changes in a wave function and related quantities
under varied external parameters, the basis should be
appropriate for the construction of the wave function with a
certain accuracy over the whole range of the varied external
parameters. Otherwise the derivative of the error could be
large, which does happen in practice. In particular, the
LMTO orbitals are centred at the sites of an unperturbed
lattice and do not suit the description of wave functions in the
presence of phonons. They must be reconstructed to include
the specific atomic displacements. In other words, a reason-
able dependence of the basis set on the displacement
parameters is needed and some new terms dy¥ /dR, char-
acterizing the changes in the basis due to the nucleus
displacement R + t = R, must be introduced into the expres-
sion for derivatives. In the LMTO method this dependence
results immediately from the way of orbital construction.
Considering the atomic coordinates as parameters rather
than constants, we easily derive that the change in the basis
set includes the ‘rigid’ orbital shift —8R, - Vy¥ (r,) in each
atomic cell plus the contribution given by the changed
structural constants. The ‘soft” part 8% associated with the
8¢ and &'} variations is not taken into account. This
contribution is rather small at a certain choice of parameters
&, [10]. Thus, the alteration of the LMTO basis set is reduced
to proper inclusion of the explicit dependence of an orbital on
nucleus coordinates and can be easily calculated by differ-
entiation of formulas (102) for MT-orbitals. Determining the
atomic forces and the dynamic matrix at a fixed basis, we
should bear in mind that the coefficients 4 ¥* are only varied
in the total energy functional presented by expansion (96) and
the total energy shows an extremum under variation of these
quantities only, so that the derivative dE/dR is defined by

dE  d{4}}

d{A¥}  dR ’

while contributions of the type

dE dyk,
dAKIL dR

£0

are included as the so-called corrections for the basis set
incompleteness.

Now let us turn to equation (91) governing the change in
the effective one-particle potential. The matrix analog of this
equation is the matrix Schrédinger equation (97), with the
parametric dependence of the basis set taken into account.
Varying successively all the quantities of the matrix equation
(97) in the presence of the phonon ug, we have

N
SV P Yo

o

N
+Z[<X;§+q’6quff‘X§> < /(/; TV 4 Ve — 1
o

)

v Vo) 0. oy

The last two terms are associated with the variation of the
basis set and represent the additional perturbation respon-
sible for a change in the wave function

= > {394, 15 (r) + 4,7895(x) }

n

3P, (r) (105)
This raises the question of what is meant by the matrix
element of the electron—phonon interaction and how the
correction for the basis set incompleteness shows up in this
quantity. The simplest way to understand it is to consider the
definition of the EPI spectral function (24) in terms of phonon
linewidths (23). The phonon linewidth is determined by the
Fermi ‘golden rule’, which describes the rate of transition of
the initial unperturbed wave function ¥y; into the final
perturbed state ¥y, and follows from the analysis of the
overlapping integral squared

|<‘sz|§’kz> |2 .

Since the final state corresponds to the disturbed lattice, the
best variational estimate will be obtained with the basis,
whose orbitals are centred at new atomic positions and
include the peculiarities of the perturbing potential. Repeat-
ing the standard quantum-mechanical derivation of (23) for
the finite space of probe functions {yx,} depending on
displacements, we easily find the EPI matrix element in the
form

gk+q/ ki <lPk+qA |8 Veff|'Pk2>

+ <Z SV kAl at| 2y y gy — 3k)~|q/k),>
n

<lPk+q4| V2 4 Verr — sk+qi|28q‘ A“>.(106)

Thus, the EPI matrix element must take into account the total
perturbation responsible for the change in the wave function
in Eqn (104), including the terms resulted from the basis set
variation.

Now let us consider the numerical results produced in the
framework of the above approach, which takes into account
all the peculiarities discussed.

The band structure of Fcc metals such as Al, Cu, Pb, and
Pd as well as that of Bcc metals including Mo, Nb, Ta, and V
was calculated in an unperturbed lattice at 256 k-points of the
Brillouin zone with the help of the spd-LMTO basis set at two
different energies x for the tails of wave functions. Spherical
harmonics up to /ln.x =8 were used for the concentric
expansion of the wave function and the potential. The same
basis set was chosen to calculate the phonon frequencies wgq,
in Al, Nb and Mo metals by the linear response theory. The
phonon frequencies proved to be rather sensitive to the
quality of the basis set, which motivated the choice of the
above parameters for the LMTO-basis. Fortunately, wg, is a
relatively smooth function of q and can be calculated on a
rather rough g-grid. The dynamic matrix was computed at 10
irreducible g-points of the Brillouin zone, then the former was
transformed to the direct space: summing over g-points with
factor exp(iq - T), we constructed a dynamic matrix on the T
grid in the direct space. Using the inverse Fourier transform
and diagonalizing the dynamic matrix, we obtained the
phonon fundamental frequencies and vectors for any q-
point. Initially, we used experimental values of force con-
stants to find phonon frequencies and vectors in Pb, V, Ta,
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Pd, and Cu metals (see Ref. [44], Table 13a), since the
procedure of the lattice dynamics calculation is time and
labour consuming. Subsequently the lattice dynamics of these
metals was examined theoretically with the help of the
improved full-potential LMTO method, using a planar wave
function in the intersphere space [43]. The results of all the
calculations practically coincide, but in the current review we
use the earliest ones. Necessary comments concerned with
possible correction of the data presented will be made in what
follows.

A few words must be said of the lattice parameters used in
the calculations. It is well-known that the equilibrium volume
calculated by the local density functional theory is somewhat
less than the experimental one. As a consequence, the phonon
frequencies calculated from the experimental lattice para-
meter are somewhat less than those observed. The theoretical
lattice parameter often provides better agreement between the
phonon spectra involved. In principle, this procedure is
theoretically justified. However the calculated phonon line-
widths and EPI spectral functions do not show a very good fit
to the experimental data. The reason is that these quantities
are rather sensitive to the shape of the Fermi surface. It turned
out that the use of the Fermi surface calculated from the
experimental lattice parameter significantly improved the
agreement. Therefore, the lattice dynamics and the EPI
matrix element were calculated with the aid of the theoretical
lattice parameters, while the electron band structure involved
in the definition of phonon linewidths and EPI spectral
functions were computed from the experimental lattice
parameter.

As distinct from wg,, the self-consistent screened potential
8V is less sensitive to the basis set. However, to integrate
properly one must know it for a great deal of points from the
Brillouin zone. We calculated the phonon linewidths y, (24)
at 47 g-points. The potential 8V, was calculated at each
point, using a simpler basis set (47 k-points instead of 256 and
one energy x> for the tails of the LMTO-basis functions),
which increased the error only by 1-2%. Integration in (24)
over the k-space involved two J-functions and was taken over
a great number (752) of k-points by the full-band method of
tetrahedrons [45]. Data on y,, in Nb and Al metals, calculated
along high-symmetrical directions are listed in Table 1.
Similar results were obtained for Nb within the approxima-
tion of the MT-potential rigid shift (RMTA). They are in full
agreement with data of Refs [46, 47] and confirm by the
example of Al the earlier conclusion that approximations of

this type are invalid for sp-metals. For reference, Table 1 lists
experimental data on phonon linewidths for Nb [46]. These
data correlate within experimental and calculation errors.
Unfortunately, the experimental error is so large that no
decisive inference can be made from this correlation. Our
results obtained for Al correlated in general with the data
found by the method of ‘frozen’ phonons with supercells [49]
except that our result for the [110] longitudinal mode twice
exceeded the data given in Ref. [49]. This discrepancy can be
explained by different integration method used in Ref. [49],
where 6 functions were replaced by the corresponding
Gaussian functions in (23). However, the relative contribu-
tion of y into the integral values is very small.

Since phonon linewidths change significantly under varia-
tion of the wave vector, summation of &> F(w) over q in (24)
should be performed on a rather dense grid. As was
mentioned above, we used 47 q-points and the maximal
numerical error in o> F(w) resulted from the integration in g-
space. We estimated the error to be about 6%, having
integrated phonon and electron d-functions only (i.e. having
put wq, |gE:—qA’,k/l‘2 = const) at 47 and 752 g-points, respec-
tively. Thus, the total numerical error is estimated to be close
to 10%. The function o> F(w) thus obtained for Alis shown in
Fig. la (solid line). The positions of the maxima are
determined by the shape of the phonon state density, the
low-energy peak being suppressed by the coupling function o>
(dashed line). The width of the phonon spectrum in Al metal
is characterized by the maximum frequency wmax =~ 470 K. As
was noted in the previous section, the data calculated for Al
by the method of ‘frozen’ phonons [49] correlate well with our
results, and despite some discrepancy in the data on phonon
linewidths, the curves for the EPI spectral density obtained by
both the methods practically coincide.

The qualitative agreement of our curves with the tunnel-
ling data on Pbisillustrated in Fig. 1b . A small discrepancy in
the positions of the low maxima and additional theoretical
peaks arising between the maxima in Pb are associated with
the drawbacks of our calculation of the phonon spectrum.
The tunnelling data better correspond to the observed density
of phonon states. The errors in the calculation of Pb lattice
dynamics result in overestimated frequencies of the transverse
phonon mode near the band boundary at point X. This
drawback does not fit into those discussed earlier in
connection with the necessity of using different equilibrium
volumes, since the experimental lattice parameter in Pb is
correctly reproduced. It is not associated with the description

Table 1. Phonon linewidths y; and y; for longitudinal and transverse modes in Nb and Al metals in comparison with calculations in the rigid shift

approximation (RMTA) and experimental data [46].

Nb(¢,¢,0) =01 £=02 £=03 E=04 £=05

L 0.133 0.180 0.279 0.404 0.370
yRMTA 0.091 0.138 0.291 0.485 0.444

P 0.13£0.05 0.21£0.05 0.31:£0.06 0.48-:0.09 0.43+0.13
P71 T2 0.019; 0.021 0.043; 0.032 0.057; 0.043 0.067; 0.068 0.109; 0.122
PRMTA; yRMTA 0.014; 0.021 0.037; 0.027 0.053; 0.053 0.070; 0.116 0.127;0.211
PP 0.02:£0.02 0.06-:0.04 0.12:0.04 0.11£0.06 —
Al(£,0,0) £=02 £=04 £=06 £=08 E=1.0

7 0.039 0.072 0.095 0.112 0.071
JRMTA 0.012 0.012 0.014 0.018 0.012

1 0.007 0.032 0.021 0.023 0.024
yRMTA 0.006 0.020 0.010 0.010 0.011




April, 1997

The electron—phonon interaction and the physical properties of metals 349

of the core states either, since 5d-states were considered in our
calculation as energy bands rather than as atomic levels.
Drawbacks of this sort in the calculation of the Pb phonon
spectrum were noted earlier in Ref. [51], where the pseudo-
potential method was used within the linear response theory.
Besides the error traditionally referred to the local density
functional approximation, the anharmonism effects can also
be mentioned as a possible reason of the discrepancy between
the theoretical and experimental data on the Pb lattice
dynamics.

V and Mo metals also possess rather a wide phonon
spectrum (Fig. 1c, f) with wpax ~ 370 K and 390 K, respec-
tively. The coupling function & in these metals differs slightly
from the constant over a wide range of the spectrum. The
approximation o> = const is especially valid for Nb (Fig. 1d)
and Ta (Fig. le). This qualitative result enables us to factorize
the electron—phonon coupling constant in multipliers each
depending on electron and phonon quantities only [52]. The
latter are characterized by frequency moments determined
solely by the spectrum of phonons, which have been studied
much better than electrons. The calculated mean square of the
phonon frequency in Ta (w2>l/ 2 =170 K exceeds the value
~ 145 K obtained in the tunnelling experiments [50] by
approximately 20%. Bearing in mind that frequency
moments are mainly determined by the phonon spectrum,
this 20% discrepancy can be assigned to drawbacks of the
tunnelling data (where the high-frequency phonon peak can
be underestimated) rather than to errors in theoretical
considerations. The experimental function «?F(w) is found
from tunnelling spectra by inversion of the Eliashberg
equation and depends strongly on the method of handling
the tunnelling data. Qualitative agreement between the
obtained curves and tunnelling data for transition metals is
readily seen in Fig. 1c,d,e. This agreement is not surprising
since, as indicated above, the function o« F(w) is close in shape
to the calculated density of phonon states. Aside from the
value / itself, the main difference between the theoretical and
experimental curves for Nb and Va is in the peak heights.
Assuming that o> = const is really valid in this case, we may
conclude that the shape of the theoretical EPI function is
more correct, since it merely reproduces the phonon density
of states observed in experiments.

The most important characteristics pertinent to the EPI
spectral density and its physical effects is the inverse
frequency moment of the spectral function, or the electron—
phonon coupling constant 4 (28). Experimental values of this
quantity can be immediately found from the EPI spectral
functions restored from tunnelling data. On the other hand,
according to definition (27) the electron—phonon coupling
constant determines the EPI-caused renormalization of the
electron mass. The change in the electron heat capacity given
by the expression

3y

l+lgg=——"——
+ /sH 212k N(ep)

(107)

is a manifestation of this relation. Here 7y is the linear
coefficient in the temperature dependence of the electron
heat capacity. The notation Agy is introduced to emphasize
that this quantity relates to the phenomena associated with
electron heat capacity. Now we will discuss the theoretical
evaluations of the electron —phonon coupling constant 4 as
compared with estimations of Ay, based on tunnelling data
and values of Agy calculated by formula (107) with the use of

experimental coefficient y and our findings as regards the
band computations of the phonon density of states N(eg). All
the data are listed in Table 2.

Table 2. Calculated EPI constants A, the tunnel-based estimations Ay,
[50, 53—55], and Asy found from the experimental linear coefficient y [56,
57] entering the temperature dependence of electron heat capacity, with
the use of calculated data on the phonon density of states N(er) [values of
N(er) are given per atom allowing for spin degeneracy].

Parameter Al Pb V Nb Ta Mo Cu Pd

Acale 044 1.68 1.18 1.24 0.85 0.49 0.19 0.35
Atun 0.42 1.55 0.82 092;1.22 0.78 — — —
AsH 043 1.64 1.17 1.16 0.83 045 — 0.69
N(eg), Ry™! 549 6.87 26.14 20.42 18.38 8.34 4.36 34.14
y, mJ/(K>mol) 1.36 3.14 9.82 7.66 5.84 2.10 0.69 10.0

Tunnelling experiments on Al estimate the coupling
constant as Awy, = 0.42, which is very close to our value
A = 0.44. The calculations by the method of ‘frozen’ phonons
[49] and by earlier versions of the linear response theory [48]
yield 2 =0.45 and 4 =0.38, respectively. To verify the
assumption of the inapplicability of the RMTA-type approx-
imation in sp-metals, we used this approximation in our
calculations and indeed found Agrmta = 0.14. Thus, the
screening effects arising in the EPI effective potential are of
considerable importance in sp-systems. Therefore, theoretical
calculations taking proper account of these effects give
similar results for the coupling constant close to the experi-
mental data. Besides Ay, the value of Asg = 0.43 calculated
using formula (107) can serve as an experimental estimation.
The experimental coefficient y and the theoretical density of
states N(er) are listed in Table 2. Another example to support
the suitability of the EPI theory for sp-metals is Pb. The
choice of this metal was motivated by the fact that it was
thoroughly studied experimentally due to its rather high
superconducting transition temperature 7. = 7.19 K. The
calculated value 2 = 1.68 for Pb turned out to exceed the
available estimate Ay, = 1.55 by 8% and Asy = 1.64 by only
2%, the latter value being obtained from the measurements of
the electron heat capacity (Table 2). Thus, within the
numerical error of our calculations the theoretical and
experimental data for Pb are also in complete agreement.

Now let us pass on to transition metals. Of most interest
are V, Nb, and Ta which have long been studied by tunnelling
methods due to their rather high critical temperatures
(especially in Nb where 7. = 9.25 K). The main problems in
the study of Nb and V by the tunnelling spectroscopy are
associated with oxidation processes in surface layers. The
resultant oxides possess lower critical temperatures and
distort the tunnelling spectrum due to the proximity effect.
Tunnelling estimates of the coupling constant in Nb fall in the
broad range from abnormally low values 0.58 —0.68 [58, 59]
to 0.9 [60]. So a wide variety of results can be attributed to the
fact that in some early experiments the role of surface effects
was not taken into consideration. Proper account of the
proximity effects yields the estimate Ay, = 0.92—1.22 [54].
The same is true of V metal. High chemical activity of this
metal hampers its study by tunnelling methods. The calcu-
lated EPI coupling constant of V exceeds by approximately
40% the available tunnelling estimate Ay, = 0.82 4+ 0.05 [55].
A similar situation holds for Nb, if setting Ay, = 0.9, as is
customary. Of special interest in this respect is Ta. Having
superconducting properties closely similar to those of V and
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Figure 1. Calculated spectral electron — phonon coupling functions & F(w) (solid line) and «? () (dashed line) in Al (a), Pb (b), V (c), Nb (d), Ta (), Mo (f),
Cu (g), and Pd (h). Tunnelling data for Pb and Nb [50] are shown by circles.




April, 1997

The electron—phonon interaction and the physical properties of metals 351

Nb, this metal is less prone to oxidation, and therefore is more
suitable for tunnelling experiments. In Ref. [53], Aw, was
found to be 0.78 which agrees with the theoretical results
within the accuracy of our calculations, i.e. 10%. The
agreement between the theoretical value and Agy = 0.83 is
still better. With this evidence in hand we cannot consider the
drawbacks of the linear response technique or the DFT local
approximation to be responsible for the discrepancy with the
tunnelling data for V and Nb. This is supported by the
alternative estimates of EPI constants Agy = 1.17 for both V
and Nb, which were obtained from the data on heat capacity
measurements. This value is well within the indicated limits of
10%. Moreover, the renormalization of a cyclotron mass in
experiments on de Haas—van Alfvén effect [61] corresponds
to Aguva = 1.33 for Nb, which is also close to our value of
1.26. Besides, our calculations reproduce anisotropy of the
renormalization parameter on various sheets of the Fermi
surface in Nb metal: (1) octahedron, A" = 1.44; (2) ‘jungle’,
A? =137; (3) ellipsoid A =1.08. These values can be
compared to those given in Ref. [61]: Ay, = 1.71;
;“<<12l-)lvA =1.43; ),(ﬁ_}vA = 1.10. (Notice that the anisotropy of
the renormalization parameter obtained in RMTA calcula-
tions differs considerably from the results of Ref. [61]
indicated above.) Subsequently some other evidence to
support the suitability of the EPI approach in hand for Nb
and V metals will be shown. But even now the difference
between the theoretical and tunnelling results does not seem
crucial if we take into account the current state of tunnelling
experiments in Nb and V metals and the tendency of the
tunnelling estimates of the coupling constant to increase as
the procedure of the tunnelling data processing further
improves.

Another two objects to which the suggested EPI descrip-
tion can apply are Mo and Cu metals. Tunnelling data on
these metals is not available on account of weak electron—
phonon effects and rather low critical temperatures. Our
results for Mo calculated by both the linear response theory
and the RMTA approximation coincide with the data of Ref.
[62], and the coupling constant is estimated as A = 0.42, which
correlates with Agy = 0.45, obtained from the heat capacity
measurements. The calculated value for Cuis 4 = 0.14. So far
experimental estimates of this quantity in Cu are lacking.

Palladium provides the last illustration. This metal is
noted for its strong spin fluctuations, so it is not a super-
conductor. Tunnelling data on Pd are also lacking. The
paramagnon contribution into the mass renormalization
shows up in the electron heat capacity Asy =
A+ Zspin = 0.69, which makes impossible the direct compar-
ison of data related to EPI effects. Comparing this value with
the calculated EPI constant 4 = 0.35, we estimate the para-
magnon contribution as Agin = 0.34, which agrees well with
the previous estimates at a level of 0.31 obtained by RMTA
calculations [63]. We will return to this problem when
discussing the superconducting state and now let us consider
how the approach suggested applies to the description of
kinetic phenomena in the normal phase.

The electron — phonon scattering contributes significantly
to the electrical and thermal resistivities of metals outside the
rather low temperatures at which the processes of impurity
and electron —electron scattering come into importance. The
EPI influence on the transport properties of metals is
described by the transport spectral function which was
introduced earlier by (39), (40). In the lower order approx-
imation of the variational solution to the Boltzmann equation

the expressions for electric and thermal resistivities have the
form [64]

chellkBTJOC dw xz 2
= Blel®B (OO X 2 p), 108
6Qcell J"’O do 2
W= —
nkgN(er)(v2) Jo @ sinh®x
4 2 2 2
< Py + 2 o) + 25 )| (109)

where x = w/2kgT. The expression for electric resistivity
completely coincides with that given by the generalized
Drude formula (35) at @ = 0. Determining the upper limit
estimate of the electric resistivity as a variational solution,
expression (108) nevertheless is sufficiently accurate to treat
the electron—phonon interaction and calculate o F(w) by
comparing theoretical and experimental data at intermediate
temperatures. We calculated electric and thermal resistivities
using formulas (108), (109) and our theoretical EPI spectra
(40). It follows from (108), (109) that at high temperatures

_ nQcenkpT

= DB 1
Ner) (02) (10
6chll
o Ol 11
W Tk N(er) (v2) (1)
where /- is defined as
e = 2J 49 2 Fw). (112)
0 w

Expressions for o2 F(w) and o F(w) are very similar and differ
only in the factor 1 — v(k) - v(k')/|v(k)|", which is charac-
teristic of backscattering processes. Nevertheless, these func-
tions can differ significantly in the case when the Fermi-
surface areas are near parallel (‘nesting’) [65]. Despite the
complicated shape of the Fermi surfaces in transition metals,
our functions o2 F(w) are very similar to those shown in Fig. 1
(they are not presented in this review). Values of A, are listed
in Table 3. Comparison of these values with the data on EPI
constants (Table 2) yields the difference between 4 and A ata
level of about 20% for all the studied materials. This
completely agrees with the earlier made conclusion A, ~ 4
[64] concerning transition metals. The temperature depen-
dences of the electric resistivity p(7) and thermal conductivity
w~1(T) as compared to experimental ones are shown in Fig. 2
and Fig. 3, respectively. Of special interest is the intermediate
temperature range /5 < T < 20, where @ ~ /(»?),,. The
expected lower-order corrections to the variational solution
of the Boltzmann equation are small here, whereas the

Table 3. Theoretical transport constants A, compared to experimental
values determined from the data on electric resistivity and band calcula-
tions of plasma frequency wy, and average frequency © = \/(w?),,.

Parameter Al Pb \' Nb Ta Mo Cu Pd

jcute 037 119 115 116 083 035 0.3 043
i 039 152 115 L11 093 040 0.2 0.50
wp, eV 1229 1493 7.95 947 905 881 875 734
0.K 330 75 260 200 170 290 230 190
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Figure 2. Temperature dependences of the phonon component of electric resistivity, calculated in the lower-order approximation to the variational

solution of the Boltzmann equation in Al (a), Pb (b), V (c), Nb (d), Ta (e), Mo (f), Cu (g), and Pd (h) (solid lines). The experimental values (see Ref. [44],
Table 15a) are shown by squares, circles, and triangles.

corrections for anisotropy and inelastic scattering can con-
tribute considerably at low temperatures [64]. We have not
analyzed the low-temperature p(7) since a reliable value of

o2 F(w) at @ — 0 is obtained by highly precise integration
over the Brillouin zone, which is unattainable with our
computer resources. The description of transport properties
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at high temperatures (7 > 20), in turn, requires the anhar-
monism and diffusive structure of the Fermi surface to be
taken into account. Thus, the intermediate temperature range
is best suited to study the relation between the transport
properties and electron —phonon interaction. We determined
the experimental values of A" by polynomial interpolation of
the experimental data shown in Fig. 2:

p(T) =Y aT™™

i=1

(113)

within the intermediate temperature range @/2 < T < 0O,

n = 2. Increasing parameter n changes the coefficient ¢; of

the linear term to within 3%. Experimental values of ;"

were determined from the resultant coefficients ¢; and the

data of our band calculations of plasma frequency wf, =

16TEN(8F) <'U3>/QC€H :
jexp Clwf)

An’ = 620wk (114)
The plasma frequencies, the calculated value of A", and
theoretical transport coupling constants A, are listed in
Table 3.

The experimental resistivity of Al (Fig. 2a) agrees with the
theoretical one over the whole range of intermediate
temperatures. The corresponding values of transport con-
stants are ;" = 0.39 and A = 0.37. The difference of these
constants from the EPI constant (4 = 0.44) just exceeds 10%.
The curves of thermal conductivity (Fig. 3a) are also in good
agreement at temperatures over © /5 ~ 60 K. As distinct from
Al, the transport coupling constant of Pb equal to /A, = 1.19
is noticeably less than the electron—phonon coupling con-
stant A = 1.68. This small value is probably caused by
anisotropy effects which were neglected in the description of
the kinetic properties of Pb, probably resulting in a more than
20% relative error in the calculated transport coupling
constant with respect to the experimental one, A’ = 1.52.
As noted, the anharmonism effects can be significant in Pb.
For lack of calculations based on a more exact solution to the
Boltzmann equation we cannot identify the main cause of the
discrepancy.

Of special interest is the description of kinetic properties
of Nb, V and Ta metals, since comparison with the tunnelling
data does not give an idea of the accuracy of our approach to
the EPI calculation. The resistance measured in Nb exhibits
saturation at high temperatures. Actually, this effect is
noticeable (Fig. 2d) at temperatures over 2@ ~ 400 K and is
not seen in the intermediate temperature range, where the
resistance is slightly different from that predicted by the
Boltzmann theory. Comparison between the calculated
value /A = 1.16 and the empirical value Z5° = 1.11 yields
the agreement to be about 5%. Vanadium also shows good
agreement between experimental and theoretical data in the
intermediate temperature range (the calculated value is
® ~ 260 K). The theoretical estimate A, = 1.15 practically
coincides with the derived value of A", despite the fact that
resistivity measured in V also reveals the saturation effect at
high temperatures (not indicated in Fig. 2¢). The suitability of
formulas (108), (109) with a realistic spectral function for
describing transport properties both in Nb and V metals is
also supported by the data on thermal conductivity
(Fig. 3d,c). These data yield similar estimates for A;;° and
numerical agreement between theoretical and experimental

values, since the measured Lorentz number approaches the
Sommerfeld one in the intermediate temperature range for
T > ©. The agreement between the resistivity and thermal
conductivity calculated for Ta (Fig. 2e and Fig. 3¢) and those
from measurements is not so good as for Nb and V. While the
experimental and theoretical data on thermal conductivity
correlated closely, our electric resistivity was underestimated
by approximately 10—12%. As a consequence, the obtained
value 15" = 0.93 exceeded the theoretical estimate (0.83) for
the Ta transport constant. This discrepancy can be attributed
to high-temperature effects near the upper limit of the
temperature range considered (2@ ~ 320 K). Besides, the
estimate of A{," obtained from available experimental data is
not quite reliable, since the accuracy of detecting the
electron—phonon component of the resistance depends on
the sample purity and must be confirmed by several
experiments.

For these reasons we did not consider the resistivity at
temperatures over 300 K, shown in Fig. 2f for Mo metal.
Interpolation over the range T' < 300 K (the value calculated
for Mo was @ ~ 280 K) yields the empirical transport
constant to be A;" = 0.40, which coincides with our predic-
tion. The agreement between data on thermal conductivity
was satisfactory over the whole temperature range shown in
Fig. 3f. For lack of tunnelling data on Cu we were not able to
compare the electron—phonon coupling constants for this
metal immediately. The agreement between the transport
constants J, = 0.13 and 45" = 0.12 was quite satisfactory.

The achieved accuracy 10—13% of calculated transport
properties in Pd metal (Fig. 2h and Fig. 3h) and the
corresponding coupling constants (see Table 3) is just higher
than the accuracy of our numerical estimates. As distinct
from Ta, this discrepancy can be most likely explained by
additional resistance mechanisms occurring in Pd.

It follows from the above data that the observed
behaviour of p(7) and w(7T) corresponds to relationships
(110) and (111) over the intermediate temperature range, and
the theoretical curves calculated with realistic transport EPI
functions are largely in good agreement with the experimental
data. More precisely, the values of A" obtained from the
experimental data with the use of band calculations of the
plasma frequency w, correlate with the theoretical estimates
of transport constants to within 10%. For Nb, V, Mo, and Al
metals the discrepancy is even less than 5%. Actually, the
ratio Ay / wf) was compared to the experiment. In the metals
considered, except for Cu, the band calculations yield a good
estimate of plasma frequency. Thus, we believe that the
theoretical values of A, do agree with the experimental ones,
though the calculation accuracy could be further improved.
Drawbacks of the lower-order variational solution of the
Boltzmann equation, which does not include the anisotropy
of electron —phonon scattering, along with the anharmonism
effects could be responsible for the discrepancy observed in
Pb metal. In treating the data on Pd, a possible additional
mechanism of resistance was not taken into account either.
Nevertheless, in view of the agreement between other
parameters we believe the description of the electron—
phonon interaction to be quite satisfactory for all the studied
metals.

Now let us discuss the results of calculating the electron
relaxation times caused by EPI. One of the most-used and
available methods for the study of relaxation time is the
optical measurement in the infrared region. Until recently,
optical measurements were usually described by the so-called
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Drude formula for conductivity [66]:

2
_% 1

o(w) (115)

S An —iw 1

where 7! is the inverse relaxation time. This quantity was
usually considered a constant. Since the measurements were
generally taken at energies of optical quanta w greatly
exceeding the phonon frequencies and at rather high tem-
peratures, the independence of 7' from ® was beyond
question. This fact was substantially confirmed by theoretical
calculations of the relaxation time being involved in the one-
particle Green’s function [see formula (26)]. It is well known
[3] that the corresponding function ~! sharply increases with
w and tends to constant at @ =~ Wpax, Where wmax 1S the
maximal frequency of phonons.

In this regard the measurements of optical relaxation
times gave surprising results in high-temperature supercon-
ductors (HTSC) [67]. The inverse relaxation time was shown
to rise linearly with the energy w over a wide energy range
from 0.02 eV to 0.4 eV, though wy,y is of the order of 0.1 eV in
these compounds. Many researchers interpreted this beha-
viour of the function t~! (w) as evidence for the existence of an
electron relaxation mechanism in HTSC, other than EPI. In
particular, a model of a marginal Fermi liquid was suggested
[68], whose behaviour at low energies differs drastically from
that of a standard Landau’s Fermi liquid. In truth, as was
demonstrated in Ref. [69], such a behaviour of the relaxation
time can easily be explained within the conventional EPI
approach. The main reason of this phenomenon is that the
one-particle relaxation time given by (21) and (25) differs
significantly from the kinetic relaxation time involved in the
generalized Drude formula (35) and determined with (36) and
(37).

As is easy to see, both the inverse relaxation times behave
similarly at high temperatures 7 > wn.x and energies

Here () and (w),, are the corresponding average phonon
frequencies determined as

2

@)= [ o (@)Fw). (118)

Atr

As already noted, in metals 4 ~ A, though in some cases they
can differ considerably. The behaviour of functions ()
and 7! () can differ widely in the limit 7 — 0 and & — 0,
but they both vanish in this limit. The most essential
difference between these functions is observed in the inter-
mediate range of energies and temperatures. Using the above
calculated functions ¢ (w) F(w) and o2 (w) F(w), we computed
functions t~! () and 7' (w) for Pb, Nb, and Al metals [70].
Figure 4a shows the frequency-dependent inverse relaxation
times for Pb at temperatures 7= ©/10,0/2, 0. We do not
present dependences for Nb, since they are virtually indis-
tinguishable from those for Pb in the scale used. Figure 4a
also shows the data for 7! (w) given by

1 m 1
o)~ (@) @) (119)

According to the analysis of Section 2, these data more
adequately represent the idea of an inverse relaxation time,
as well as being more usually obtained in experiments [67].
As seen from the figure, the behaviour of functions 7! (w)
and 7! (») does differ drastically in the range of intermediate
energies. Thus, for example, 7,,! does not reach its maximal
value Tl (w),, even at energies w ~ 100. Moreover, in the
energy range ©/5 < w < 30 the function 7 !(w) increases
quasi-linearly with @. The same behaviour of these functions
is exhibited by Al (Fig. 4b), though the EPI constant of this
metal is much less than that of Pb. The only point to be
mentioned is that the region of quasi-linear behaviour of the

function 7! () is slightly more narrow in this case. As shown

W > Omax: in Ref. [69], in HTSCs, where the EPI constant A can be of the
order of 2, the region of the quasi-linear dependence for
1 ~ 1 .
— =2uT, T > Oma, (116) % (w) can extend up to w ~46. Thus, the quasi-linear
Ttr dependence of 7! (w) is a common property of all metals,
1 . caused by EPI. The difference between metals is only due to
) = Thr(®)y s O > Omay. (117) " the various energy ranges determined by the EPI constant and
the maximal phonon energy.
3.0
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Figure 4. Effective lifetimes 7! () (dashed lines) and kinetic inverse relaxation times 7;;! () (solid lines) in Pb (a) and Al (b). The calculated data were
gleaned from the theoretical EPI spectral functions depending on the frequency w at three different temperatures 7: © /10, © /2, ©. The dimensionless

frequency is quoted in wm,x units.
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To conclude this section, let us discuss the results of the
numerical solution to Eliashberg equations with theoretical
spectral functions ¢?F(w). Notice that in the case of the
linearized Eliashberg equation, the transition temperature
T. has long been known to be expressed by McMillan’s
interpolation formula derived in calculations with the model
spectral function:

(@10g) 1.04(1 + 2)

Te =5 P | " T i 1 0.620)) -

(120)

It is seen that the first inverse moment of the spectral function
Aand the quantity u* have a profound effect on 7¢. As already
noted, the Coulomb pseudopotential u* is poorly known, and
actually can be used as a fitting parameter. We determined the
quantity u*, taking the critical temperature equal to the
experimental one and numerically solved the Eliashberg
equation for T¢, or more precisely, for u*. The parameter w,
was chosen to be 10wmax. Thus, the Coulomb repulsion
parameter was referred to the same frequency value, i.e.
w*(we). To consider the Coulomb pseudopotential para-
meter in the context of expression (120), the parameter
w*(w:) actually used in solving the Eliashberg equation,
must be reduced to u* = p* ({wiog)) by the formula

1 1 e

LIV S
W (o) (@iog)

(121)
Our calculated results are presented in Table 4, which also
lists the values of TM computed using formula (120). The
energy gap 4o at 7 =0, obtained numerically from the
Eliashberg equation for the gap, was taken as a parameter
to be compared with experiment. The parameter u* was
already specified by the correct value of 7.

Table 4. Calculated values of p* fitting experimental data on 7, under the
numerical solution to the Eliashberg equation with theoretical spectral
functions o? F(w). Data on TM are determined by McMillan’s formula to
detect the difference between the exact numerical solution and interpola-
tion. Calculated and experimental [S0] energy gaps 4.

Parameter Al Pb A\ Nb Ta Mo Cu Pd

u 0.12  0.17 0.30 021 0.17 o0.16 0.11 —
TS, K 1.18 7.19 540 925 447 092 >0 —
TM, K 140 690 6.68 10.12 491 107 >0 —
AP meV 018 1.35 0.84 1.53 0.70 0.14 — —
A5°, meV  0.18 1.33  0.81 1.56 0.71 — — —

The tunnelling data available for Al yield 4y =0.18
meV, which coincides with our result. The corresponding
value 24,/T. = 3.54 practically matches that given by the
Bardeen — Cooper —Schriffer theory. Besides, the value
u* =0.12 corresponds to the usual estimates for simple
metals. The difference between the exact solution 7, = 1.18
K and that predicted by McMillan’s formula, i.e. TM = 1.22
K, is less than 5%, which is not surprising, because a simple
spectrum of Al (Fig. 1a) is well approximated by the model
functions. Of still more interest is the result obtained for Pb,
where the spectrum already exhibits distinct double peaks
(Fig. 1b). Nevertheless, formula (120) is still accurate to
within 5% and yields TM = 6.81 K, whereas T, = 7.19 K.
Known as a system with strong electron—phonon coupling
among the studied metals, Pb possesses the maximal ratio
24¢/Tc ~ 4.3. The numerical solution to the Eliashberg

equation yields the energy gap 4y =1.35 meV, which
practically coincides with the tunnelling estimates
A5 =1.33 meV. However, our value u* =0.17 could be
regarded as too high. The same situation holds for transition
metals.

We used p* = 0.17 for Ta and got 49 = 0.70 meV, which is
comparable with the experimental finding of 0.71 meV. In the
transition metals of interest, which have a pronounced
double-peak EPI spectrum (see Fig. 1) with rather a large
amplitude, McMillan’s formula yields an accuracy of less
than 10%. This necessitates an exact solution to the
Eliashberg equation for 7.. In Ta (7,=4.47 K), V
(T, = 5.40 K), and Nb (7, = 9.25 K) metals the correspond-
ing values of TM are 5.11, 6.68, and 10.5 K, respectively.
Despite the difficulties in making tunnelling experiments on
Nb and V metals, and the ensuing variety of results (which
was mentioned in discussing the data concerning the estima-
tion of the coupling constant 2), the energy gap is almost the
same in all the experiments. Thus, for V the experimental
energy gap is 4" =0.81 meV. The calculated value is
0.84 meV, exceeding the experimental one by only 4%. In
Nb, the experimental value 1.56 meV practically coincides
with the theoretical 1.53 meV. The Coulomb pseudopotential
parameter u* is the most difficult to study in these metals.
According to our scheme, we took the Coulomb pseudopo-
tential parameters in V and Nb to be 0.29 and 0.21,
respectively. It must be said that the parameter u*, whose
magnitude was evaluated from the tunnelling data, is over-
estimated due to the fact that theoretical data on the coupling
constants A exceed the corresponding tunnelling estimates. As
a consequence, higher values of y* are required to yield the
proper transition temperature. This problem has been
discussed in literature (see, for example, Ref. [71]), in
particular, in the context of the possibility of spin fluctua-
tions in Nb and V metals. Since paramagnons suppress the
critical temperature, the observed values of T, for high
theoretical EPI constants can probably be explained without
assuming large values of y*. But in this case a contribution of
/spin tO the renormalization of the electron mass should also
arise due to electron-paramagnon interaction. As seen from
Table 2, the experimental values of Asy exactly coincide with 4
calculated for phonons, leaving no room for the paramagnon
contribution Ay, (except for Pd). On the other hand, the
values of u* < 0.3 can still be considered appropriate.

In conclusion, let us discuss the results for Mo, Cu, and Pd
metals. Tunnelling data on Mo are lacking due to its small
critical temperature. The calculated value is 49 = 0.14 meV,
which is not surprising bearing in mind that superconductiv-
ity in Mo is close to the Bardeen — Cooper — Schriffer model,
and results in 24, /T, = 3.53. The estimate 0.14 for u* is also
commonly accepted. The Coulomb repulsion parameter
calculated for Cu (which is sufficient to suppress the super-
conductivity) is p* = 0.11. As for Pd, the earlier calculated
value of Agpin = 0.34 practically coincides with the electron —
phonon coupling constant A = 0.35, which corresponds to the
commonly accepted idea of superconductivity suppression in
this metal.

6. Conclusions

In this review we have shown that in standard metals with
small adiabatic parameter (wp /sF)l/ 2, the EPI problem can
be solved practically exactly in the framework of the many-
body Migdal — Eliashberg theory for both normal and super-
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conducting states. This fact is not new, having been known
since the earliest papers by Migdal [13] and Eliashberg [14].

As was repeatedly emphasized in Rainer’s recent papers
[2, 72], in the framework of Landau’s Fermi-liquid theory the
electron—phonon interaction and its contribution to the
physical properties of metals is completely described by
several spectral densities, in particular, by the Eliashberg
function o?(w)F(w). Within the Fermi-liquid theory these
densities remain undetermined material parameters (more
precisely, functions) of a particular metal. We have shown
that the EPI calculations using the DFT [39, 41 —43], which
have been developed recently, enable one to calculate the
spectral densities with rather high accuracy. We have also
demonstrated that the hybrid calculation methods based on
the substitution of the EPI matrix element (calculated by the
DFT) into the formulas of the many-body theory, apply only
for standard metals. The question arises of how we can
identify a particular metal as standard or nonstandard and
what are nonstandard metals. Above all, the standard metals
are, in a sense by definition, the ones in which the adiabatic
parameter is met a priori. The adiabaticity can be violated as a
result of rather trivial reasons. For example, in the case of
degenerate semiconductors the Fermi energy of conduction
electrons can appear comparable to the characteristic phonon
frequencies. This can give rise to various hybrid electron—
phonon excitations and other nonadiabatic phenomena.
Another reason of nonadiabaticity, which is also rather
trivial, can be intensive interband transitions with energies
comparable to phonon frequencies. Clearly, ab initio calcula-
tions of the phenomena arising even in these simple cases are
impossible at the moment. Moreover, the possibility of using
the Frohlich Hamiltonian with a specified EPI matrix element
does not seem obvious even for the qualitative study of these
nonadiabatic phenomena.

Even more uncertain is the situation with systems display-
ing strong exchange-correlation effects. The studies per-
formed to date [73—76] have used a semiphenomenological
approach, where interelectron interactions are described by
the Hubbard model. In these circumstances it is difficult to
establish a relation between the results of the band DFT and
the data of model calculations. No less difficult is to reveal a
real difference between the EPI calculations by the DFT and
the experiment in such systems, since the methods described
in this review have been used so far to calculate only one
system, i.e. CaCuO; [77], suspected of possible strong
exchange-correlation effects. However, little evidence has
been accumulated on the kinetic and optical properties of
this system.

In conclusion the authors express their gratitude to many
colleagues for the discussion of this review. We are especially
grateful to O V Dolgov, K A Kikoin, M Kulich, and D Rainer.
This work was supported by the grants of INTAS (93-2154)
and the Russian Foundation for Basic Research (96-02-
16134a).
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