
Abstract. The basic theory of the wavelet transform, an effec-
tive investigation tool for inhomogeneous processes involving
widely different scales of interacting perturbations, is pre-
sented. In contrast to the Fourier transform, with the analysing
function extending over the entire axis of time, the two-para-
metric analysing function of the one-dimensional wavelet
transform is well localised in both time and frequency. The
potential of the method is illustrated by analysing familiar
model series (such as harmonic, fractal, and those with various
types of singularities) and the long-term variation of some
meteorological characteristics (Southern Oscillation index
and global and hemispheric temperatures). The analysis of a
number of El NinÄ o events and of the temporal behaviour of the
Southern Oscillation index reveals periodic components, local
periodicity features and time scales on which self-similarity
structures are seen. On the whole, both stochastic and regular
components seem to be present. The global and hemispheric
temperatures are qualitatively similar in structure, the main
difference Ð presumably due to the greater amount of land
and stronger anthropogenic factor Ð being that the warming
trend in the Northern Hemisphere is slightly stronger and goes
first in time.

1. Introduction

The notion of a wavelet (a small wave if taken literally) has
evolved relatively recently Ð it was introduced by Gross-
mann and Morlet in the middle of the 80s as applied to the

analysis of properties of seismic and acoustic signals [1]. At
present, the family of analysing functions dubbed wavelets is
being increasingly used in problems of pattern recognition; in
processing and synthesising various signals, speech for
instance; in analysis of images of any kind (these may be iris
images, X-ray picture of a kidney, satellite images of clouds or
a planet surface, an image of mineral, etc.); for study of
turbulent fields, for contraction (compression) of large
volumes of information, and in many other cases.

The wavelet transform of a one-dimensional signal
involves its decomposition over a basis obtained from a
soliton-like function (wavelet), possessing some specific
properties, by dilations and translations. Each of the func-
tions of this basis emphasises both a specific spatial (tem-
poral) frequency and its localisation in physical space (time).

Thus, unlike the Fourier transform traditionally used in
signal analysis the wavelet transform offers a two-dimen-
sional expansion of a given one-dimensional signal, with the
frequency and the coordinate treated as independent vari-
ables. As a result, the possibility emerges of analysing the
signal simultaneously in physical (time, coordinate) and
frequency spaces. What was said can readily be generalised
to multidimensional signals or functions.

In foreign literature, it is already a conventional practice
to term the Fourier spectrum a single spectrum, in distinction
to the spectrum obtained from the coefficients of wavelet
transform, which is referred to as a time-scale spectrum, or
wavelet spectrum.

The area where the wavelets find use is not reduced to the
analysis alone of properties of signals and fields of arbitrary
nature obtained either numerically, experimentally or obser-
vationally. Wavelets are coming into use in direct numerical
simulations Ð as some hierarchical basis well suited to
describe the dynamics of complex nonlinear processes char-
acterised by interaction of perturbations in wide ranges of
spatial and temporal scales.
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Results of numerous numerical experiments suggest that
for large Reynolds numbers the major part of volume
occupied by a turbulent fluid remains inactive with respect
to energy dissipation and, correspondingly, the inverse energy
cascade. This phenomenon, called intermittency, can be
conveniently explored by wavelet analysis. The latter permits
one to recover spatially distributed features of the object
studied, determine if the intermittency is present and how the
regions of dissipation are distributed, obtain both local high-
frequency and global low-frequency information related to
the object, and a great deal of other information, with
reasonable accuracy and without redundancies.

One faces known difficulties when processing short high-
frequency signals, or signals with localised frequencies. The
wavelet transform proves to be an extremely efficient tool in
adequately decoding such signals since elements of its basis are
well-localised and possess amoving time-frequency window.

It is not a coincidence that many researchers refer to
wavelet analysis as a `mathematical microscope', as this term
accurately conveys the remarkable capability of the method
to offer a good resolution at different scales. The capability of
this microscope to reveal the internal structure of an essen-
tially inhomogeneous process (or field) and expose its local
scaling behaviour has been demonstrated through many
classical examples such as the fractal Weierstrass functions
and probability measures of the Cantor series, to mention but
a few. Application of wavelet analysis to a turbulent velocity
field in a wind tunnel under large Reynolds numbers for the
first time offered a vivid confirmation of the Richardson
cascade. The analogy between the energy cascade and the
structure of the multifractal inhomogeneous Cantor series
was explicitly settled. Even more efficient was the application
of wavelet analysis to the multifractal invariant measures of
several well-known dynamical systems that model transitions
to chaos observed in dissipative systems.

Thus, wavelets can be successfully applied to solve various
problems. They are, however, not widely known to research-
ers dealing with analysis of experimental and observational
data. In this work, an attempt is made to outline, clearly and
simply when possible, the basics of the theory needed in
practical applications of the wavelet transform to processing
signals of various nature.

In Section 2 the analogy between the Fourier series and
wavelet series expansions is shown and basic definitions of the
wavelet transform are introduced. Section 3 describes the
features and properties of functions that could form the basis
of a wavelet transform and gives some examples of the most
widely-used wavelets. In Section 4, the properties of wavelet
transforms are listed, a number of important physical
characteristics are introduced and some potentialities of
wavelet analysis are illustrated. This material is largely
based on monographs and collections of works [2 ± 4] and
on excellent works by Ingrid Daubechies [5] andMarie Farge
[6]. Examples of wavelet transform applications to modelling
signals of various nature are considered in Section 5; Section
6 is dedicated to results of wavelet analysis of observational
meteorological data series.

2. From the Fourier transform
to the wavelet transform

The integral Fourier transform and Fourier series underlie
harmonic analysis. Fourier coefficients resulting from the
transform are amenable to a quite simple physical interpreta-

tion, with the simplicity by nomeans reducing the importance
of the ensuing inferences on the character of the signals
studied. Making use of the integral Fourier transform and
Fourier series (in calculations, analytical transformations) is
straightforward; all necessary properties and formulae can be
written with the help of only two real-valued functions sin t
and cos t (or with a single complex-valued, the sinusoidal
wave exp�it� � cos t� i sin t, i � �������ÿ1p

), and proved relatively
easily.

The wavelet transform is not so readily and widely
recognised because it came into use not such a long time ago
and its mathematical principles are still at the stage of active
development. For that reason, in order to achieve a clear
exposition we will introduce below [4] the necessary concepts
of wavelet method by analogy with the Fourier analysis the
significance and potentialities of which for a wide research
community raise no doubts and are verified by long and
successful practice.

The definitions, properties and corollaries will be pre-
sented for one-dimensional functions or data series. When
necessary, all that can be readily generalised to multidimen-
sional cases. Specifically, we will speak of time-dependent
functions, series, and accordingly, of frequencies. Without
any loss of generality, an independent coordinate can be a
spatial one (with corresponding wave numbers), or any other.

2.1 Fourier series
Let us recall a few concepts which will be needed below. Let
L 2�0; 2p� be the space of square-integrable functions with a
finite energy (norm)�2p

0

�� f �t���2 dt <1 ; t 2 �0; 2p� : �1�

This is the definition of a piecewise-continuous function f�t�.
It can be periodically continued and defined on the entire axis
R�ÿ1;1�:

f�t� � f�tÿ 2p� ; t 2 R :
Any function f�t� belonging to the space of 2p-periodic

square-integrable functions can be expanded into a Fourier
series

f�t� �
X1
ÿ1

cn exp�int� : �2�

The coefficients cn in Eqn (2) have the form

cn � �2p�ÿ1
�2p
0

f�t� exp�ÿint� dt ; �3�

and the series (2) converges uniformly to f�t�:

lim
M;N!1

�2p
0

���� f�t� ÿXN
ÿM

cn exp�int�
����2 dt � 0 :

Notice that

wn�t� � exp�int� ; n � . . . ;ÿ1; 0; 1; . . . �4�

is the orthonormalised basis in L2�0; 2p� constructed with the
help of dilations of a single function w�t� � exp�it� so that
wn�t� � w�nt�.

To summarise, each 2p-periodic square-integrable func-
tion can be obtained as a superposition of scale transforma-
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tions of the basis function w�t� � exp�it� � cos t� i sin t, i.e.
it is a composition of sinusoidal waves with different
frequencies (and with coefficients dependent on the wave
number).

Recall that by virtue of Parseval's theorem coefficients of
Fourier series are constrained by the identity

�2p�ÿ1
�2p
0

�� f�t���2 dt �X1
ÿ1
jcnj2 : �5�

2.2 Wavelet expansion
Consider the space L2�R� of functions f�t� defined on the
entire real axis R�ÿ1;1� and possessing a finite energy
(norm)

Ef �
�1
ÿ1

�� f�t���2 dt <1 : �6�

The functional spaces L2�0; 2p� and L2�R� are essentially
different. In particular, the local mean of every function from
L2�R� should tend to zero at�1. However a sinusoidal wave
does not belong to L2�R� and consequently, the family of
sinusoidal waves wn cannot be the basis of functional space
L2�R�. Let us try to find reasonably simple functions to
construct the basis of space L2�R�.

`Waves' forming the space L2�R� must tend to zero at
�1, and, for practical reasons, the quicker they decay, the
better. Therefore, for the basis functions, let us consider
wavelets Ð well-localised soliton-like `small waves'.

As in the case of space L2�0; 2p� which can be completely
formed with the help of a single basis function w�t�, we
construct the functional space L2�R� relying on a single
wavelet c�t�. Note that the latter can be either a single-
frequency wavelet, or a wavelet with a frequency band. We
begin with discrete transformations.

How can the entire axis be coveredwith the help of a single
localised function which tends rapidly to zero? The most
simple choice is to adopt a system of shifts (translations)
along the axis. For the sake of simplicity let them be integers,
i.e. c�tÿ k�.

We introduce an analogue of a sinusoidal frequency.
Again, for the sake of simplicity and definiteness we take it
as a power of two: c�2 jtÿ k�. Here j and k are integers
� j; k 2 I�.

In this manner, departing from discrete scale transforma-
tions �1=2 j� and translations �k=2 j�; we may describe all
frequencies and cover the entire axis with the help of a single
basis wavelet c�t�.

Let us recall the norm definition:

kpk2 � hp; pi1=2 ;

hp; qi �
�1
ÿ1

p�t�q��t� dt :

The asterisk denotes complex conjugation. Consequently,

c�2 jtÿ k�


2
� 2ÿj=2



c�t�


2
;

i.e., if a waveletc�t� 2 L2�R� is of unit norm, then all wavelets
of the family fcjkg, of the form

cjk�t� � 2 j=2c�2 jtÿ k� ; j; k 2 I; �7�

are also normalised to unity, kcjkk2 � kck2 � 1.

A wavelet c 2 L2�R� is termed orthogonal if the family
fcjkg defined by Eqn (7) is an orthonormalised basis in the
functional space L2�R�, i.e.
hcjk;clmi � djldkm ;

and each function f 2 L2�R� can be represented as the series

f�t� �
X1

j; k�ÿ1
cjkcjk�t� ; �8�

whose uniform convergence in L2�R� implies that

lim
M1;N1;M2;N2!1






 fÿXN2

ÿM2

XN1

ÿM1

cjkcjk







2

� 0 :

The simplest example of an orthogonal wavelet offers the
HAAR wavelet named after Haar, who suggested it. It is
defined by the relationship

cH�t� �
1 ; 04 t < 1=2 ;

ÿ1 ; 1=24 t < 1 ;

0 ; t < 0 ; t5 1 :

8>><>>: �9�

One may readily see that any two functions cHjk and cHlm
obtained from this wavelet by formula (7) with the help of
dilations 1=2 j and 1=2 l and translation k=2 j and m=2 l are
orthogonal and have a unit norm.

Let us construct a basis of functional space L2�R�with the
help of continuous scale transformations and translations of a
wavelet c�t� with arbitrary values of basis parameters Ð the
scaling coefficient a and translation parameter b:

cab�t� � jajÿ1=2c
�
tÿ b

a

�
; a; b 2 R ; c 2 L2�R� : �10�

Based on this, we write the integral wavelet transform:�
Wc f

��a; b� � jajÿ1=2 �1
ÿ1

f�t�c�
�
tÿ b

a

�
dt

�
�1
ÿ1

f�t�c�ab�t� dt : �11�

Adhering to further analogy with the Fourier transform,
the coefficients cjk � h f;cjki of the expansion (8) of function f
in wavelet series can be defined through the integral wavelet
transform:

cjk �
�
Wc f

�� 1

2 j
;
k

2 j

�
: �12�

Below, instead of
�
Wc f ��a; b�, the designations W�a; b�,

Wc f or W� f � will sometimes be used for the coefficients of
wavelet transform (also called the wavelet amplitude).

Thus every function from L2�R� can be represented by a
superposition of scale transforms and translations of basis
wavelet, i.e. it is a composition of `wavelet waves' [with
coefficients being functions of wave number (frequency,
scale) and translation parameter (time)].

Using a discrete wavelet transform (discrete frequency-
time space formed by integer translations and dilations in
powers of two) enables one to prove many aspects of wavelet
theory [2 ± 5] related to the completeness and orthogonality of
basis, convergence of series, etc. Such proofs are needed, say
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in information compressing or in numerical modelling pro-
blems, i.e. in cases where it is necessary to accomplish the
expansion constrained to a minimum number of independent
coefficients of the wavelet transform and to have an exact
formula for the inverse transform. As applied to signal
analysis a continuous wavelet transform (11) is more con-
venient; although it possesses some ambiguity related to a
continuous variation of the scaling coefficient a and the
translation parameter b, this is rather an advantage here
allowing for more complete and clearer presentation and
analysis of the data.

2.3 Inverse wavelet transform
Sinusoidal wave forms an orthonormalised basis in the
functional space L2�0; 2p�, so the Fourier transform is
reversible and there exists the inverse Fourier transform. The
orthonormality of a wavelet-derived basis in the space L2�R�
depends bothon the choice of the basiswavelet andon theway
the basis is constructed (values of basis parameters a; b).

Undoubtedly, a wavelet can be considered as a basis
function in L2�R� only in the case when the basis derived
from it is orthonormal and the inverse transform exists. It
should, however, be noted that rigorous proofs of complete-
ness and orthogonality are complicated and very involved;
corresponding examples can be found in Refs [2 ± 5] where the
theory of wavelets is elaborated. In addition, for practical
purposes it is frequently enough to have stability and
approximate orthogonality of the system of functions used
for the decomposition, i.e. it suffices for the system to be a
quasi-basis. As a rule, such quasi-basis wavelets are in fact
employed in signal analysis.

For a detailed theory and proofs the reader is referred to
the above-mentioned references. Here we restrict ourselves to
writing inverse transforms in two particular cases described
above: for the basis (7) admitting dilations and translations
�1=2 j; k=2 j�, j; k 2 I, and the basis (10) constructed with
arbitrary parameters �a; b�, a; b 2 R.

With basis parameters �a; b�, a; b 2 R the inverse wavelet
transform is expressed in the same basis (10) as the direct one:

f�t� � Cÿ1c

���
Wc f

��a; b�cab�t�
da db

a2
; �13�

Cc is the normalising coefficient (analogous to �2p�1=2 that
normalises the Fourier transform):

Cc �
�1
ÿ1

��ĉ�o���2jojÿ1 do <1

(the hat designates the Fourier transform).
The requirement for the coefficient Cc to be finite bounds

the class of functions c�t� 2 L2�R� that may be used as basis
wavelets. In particular, it is apparent that the Fourier trans-
form ĉ must be equal to zero at the coordinate origin o � 0,
and, consequently, at least one moment should be zero:�1

ÿ1
c�t� dt � 0 :

Most frequently, only positive frequencies are needed in
applications, i. e. a > 0; accordingly, the wavelet should
satisfy the condition

Cc � 2

�1
0

��ĉ�o���2oÿ1 do � 2

�1
0

��ĉ�ÿo���2oÿ1 do <1 :

A stable basis in the case of discrete wavelet transform is
defined in the following way.

A function c 2 L2�R� is termed an R-function if the basis
fcjkg defined by (7) is the Riesz basis in the sense that there
exist two constants A and B, 0 < A4B <1, for which the
relation

A


fcjkg

224






 X1
j�ÿ1

X1
k�ÿ1

cjk cjk







2

2

4B


fcjkg

22

holds with any (bounded, double square-summed) set fcjkg:

fcjkg

22 � X1
j�ÿ1

X1
k�ÿ1

jcjkj2 <1 :

For any R-function there exists a basis fc jkg dual to the
basis fcjkg (in the sense that hcjk; c

lmi � djldkm) with whose
help the reconstruction formula emerges

f�t� �
X1

j; k�ÿ1
h f;cjkic jk�t� : �14�

If c is an orthogonal wavelet and fcjkg is an orthonormal
basis, fc jkg and fcjkg coincide. Then (14) is the inverse
transform formula. If c is not an orthogonal wavelet, but a
dyadic R-wavelet, then it possesses a double c

�
with whose

help the dual basis to the family fcjkg is constructed in much
the same way as the basis (7):

c jk�t� � c�jk�t� � 2 j=2c
��2 jtÿ k� ; j; k 2 I : �15�

Inageneral case, the reconstruction formula (14)maynot even
be awavelet series in the sense thatc

�
is notawavelet, andfc jkg

may possess no dual basis constructed in themanner of (10).

2.4 Time-frequency localisation
The Fourier transform and Fourier series are an excellent
mathematical tool for the physical interpretation of processes
by analysing signals that characterise them. However there
are cases where their efficiency is insufficient.

A real signal always (or as a rule) belongs to the space
L2�R�. The Fourier transform of a signal f�t� with a finite
energy defined by the norm k f k2 represents the spectrum of
this signal:

f̂�o� �
�1
ÿ1

f�t� exp�ÿiot� dt :

Under some circumstances, the physical interpretation
based on this formula appears to be difficult. For example, to
obtain spectral information at a given frequency one needs to
have both the preceding and future information; moreover,
the formula does not take into account the fact that frequency
may evolve with time. The Fourier transform, for example, is
not capable of distinguishing between the signal composed of
two sine functions with different frequencies and a signal
composed by the same functions switched on in an alternating
way one after another (an example is considered in Section 5).

Besides, it is known that signal frequency is inversely
proportional to signal duration. Therefore, to extract high-
frequency information at a fair resolution one should retrieve
it from relatively short time intervals, but not the entire signal;
conversely, low-frequency information should be extracted
from relatively long temporal intervals.
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Some of the difficulties described can be obviated by
making use of windowed Fourier transform. Still, an infi-
nitely stretched basis function (sine wave) is not fitted to
discriminate actually localised information. In contrast, the
element of basis of the wavelet transform is a well-localised
function rapidly going to zero out of some finite interval thus
allowing for a `localised spectral analysis'. The sense of this
somewhat strange word combination will soon become clear.
In other words, the wavelet transform automatically offers a
variable time-frequency window, narrow for small scales and
wide for large ones.

Which are the parameters of the time-frequency window
associated with the wavelet transform? Since either the
waveletc itself or its Fourier transform ĉ decay quite rapidly,
both can be used as window functions with `centre' and
`width' defined as follows.

For a nontrivial window function z�t� 2 L2�R� [the
function tz�t� should also belong to L2�R�] its centre hti and
radius Dz are expressed as

hti � 1

kzk22

�1
ÿ1

t
��z�t���2 dt ;

Dz � 1

kzk2

� �1
ÿ1

ÿ
tÿ hti�2��z�t���2 dt�1=2 ;

with the window width being 2Dz.
Let hti, Dc, hoi, andDĉ be the centres and radii of wavelet

c and its Fourier transform ĉ, respectively, defined by these
formulae. Then the integral wavelet transform (11) implicitly
uses the `time window'�

wint
� � �b� ahti ÿ 2aDc; b� ahti � 2aDc

�
; �16�

i.e. there is a time localisation with the window centre at
b� ahti and window width 4aDc.

Introduce the function Z�o� � ĉÿo� hoi�which is also a
window function with its centre at zero and radius Dĉ.
Recognising that h f; gi � h f̂; ĝi=2p, one may write the inte-
gral wavelet transform (11) for the Fourier transform f̂ in the
form

W�a; b� � jaj1=2
�1
ÿ1

f̂�o� exp�ibo�Z�
�
a

�
oÿ hoi

a

��
do :

�17�

If we neglect the phase shift for the current moment, it
becomes obvious that the transform (17) gives a localised
information on the spectrum f̂�o� of the signal f�t� with the
`frequency window'�

wino
� � �hoi

a
ÿ 1

a
Dĉ;
hoi
a
� 1

a
Dĉ

�
: �18�

Frequency localisation occurs in the window with centre at
hoi=a and width 2Dĉ=a.

Notice that the ratio of the central frequency to the
window width,

hoi
a

�
2Dĉ
a

�ÿ1
� hoi
2Dĉ

is independent of the exact position of central frequency, and
the time-frequency window �wint� � �wino� of area 4DcDĉ
becomes narrower with higher central frequency hoi=a and
expands at low frequency (see Fig. 1a).

By way of comparison, Fig. 1 shows the localisation in
time-frequency space of transforms with other analysing
functions: the Fourier transform (Fig. 1b) and the Shannon
transform in which the analysing function is Dirac's function
(Fig. 1c).

It is readily seen that the Fourier transform is well suited
to localise the frequency (but at the expense of time resolu-
tion), while the Shannon transform is not capable of
frequency localisation. Contrastingly, the wavelet transform
possesses a variable window localised near a time instant
chosen and expanding with growing scale, a feature most
desirable for retrieving spectral information. All this hinges
on the fact that basis functions of the transforms listed above
are, respectively, a sinusoidal wave localising only the
frequency, Dirac's function localising only the time instant,
and soliton-like wavelet localising fairly well both the
temporal scale and the time instant.

In order to demonstrate the advantages of the wavelet
transform as a method of localised spectral analysis, we
compare the wavelet transform (11) with the windowed, or
short-time, Fourier transform frequently used in signal
analysis,

F�o; b� �
�
f�t�z�tÿ b� exp�iot� dt

Ð the transform of the signal preliminarily multiplied by the
window function z. Therefore F�o; b� is the signal expansion
in the family of functions z�tÿ b� � exp�iot� generated froma
single function z�t� with the help of translations b in time and
translationso in frequency. At the same time, the result of the
wavelet transformW�a; b� is the signal expansion in the family
c
ÿ�tÿ b�=a� derived from a single function c�t�with transla-

tion b in time and dilation a also in time. The wavelet
transform thus looks like a continuous set of windowed
Fourier transforms with different windows for different
frequencies.

Hence the basis functions of a windowed Fourier trans-
form have the same resolution in time and frequencyÿ
z�t�; ẑ�o�� within the entire transform plane, whereas the
basis functions of a wavelet transform possess time resolution

b

t

a3

a2

a1 1=a1

k

1=a2

1=a3

t

k3

k

k2

k1

Dk

Dt

a

b c

Figure 1. Time-frequency localisation of transforms with different analys-

ing functions: (a) wavelets, (b) Fourier harmonics, (c) Shannon functions.
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ÿ
c�t=a�� decreasing with scale a and frequency resolutionÿ
ĉ�ao�� increasing with that scale. This property of the
wavelet transform is indeed extremely advantageous for
signal analysis: rapid variations of signals are well localised
(high-frequency characteristics), while to reveal slowly vary-
ing characteristics a reasonably low-frequency resolution will
do. The wavelet transform owing to its variable time-
frequency window is equally well suited to recovering either
the high- or low-frequency characteristics of signals.

Recall that the Fourier transform of a data sequence
sampled through equal time intervals Dt cannot provide the
frequency discretisation better than Do � Dt=2 (the Nyquist
frequency; this is a particular demonstration of the indeter-
minacy principle with respect to time and frequency localisa-
tions). Analogous constraint on thewavelet transformmay be
expressed through the relation DtDo5 �4p�ÿ1.

One may easily infer that the advantages of wavelets may
be extremely helpful not only in analysing complex signals but
also in solving equations that describe the processes of
interaction between perturbations of different scales.

3. Basis functions of wavelet transform

So far we have used the term `wavelet' to designate some
soliton-like function; concepts associated with it were intro-
duced and pertinent properties were described. In existing
literature we have not encountered any successful conven-
tional definition of a wavelet. To be specific, we present here
the most simple, in our opinion, definition [3] which relies on
the notions introduced above.

3.1 Wavelet definition
Any localised R-function c 2 L2�R� is called an R-wavelet
(or simply wavelet) if there exists a function c

� 2 L2�R� (its
conjugate, double) such that families fcjkg and fc

�
jkg con-

structed in compliance with Eqns (7) and (15) are paired bases
in the functional space L2�R�.

Each wavelet c defined in this way, whether it is
orthogonal or not, allows for an arbitrary function f 2 L2�R�
to be represented as series (8) with coefficients being deter-
mined by the integral wavelet transform of f relative to c

�
.

Wavelet double c
�
is unique and is itself also an R-wavelet.

The pair �c;c�� is symmetric in the sense that c, in turn, is the
double of c

�
.

For an R-wavelet c exhibiting property of orthogonality
c
� � c, and fcjkg � fc

�
jkg is the orthogonal basis.

Formany practical applications it suffices for waveletc to
be semiorthogonal, i. e. to have the Riesz basis fcjkg
satisfying the condition hcjk;clmi � 0 at j � l, j; k; l;m 2 I.

An R-wavelet is termed non-orthogonal if it is not a
semiorthogonal wavelet. However, as an R-wavelet, it has a
double and the pair �c;c�� offers the possibility of forming the
families fcjkg and fc� jkg that satisfy the biorthogonality
condition hcjk; c

�
lmi � djldkm, j; k; l;m 2 I and allow for

construction of valid wavelet series and the reconstruction
formula.

The need for an inverse wavelet transform (or reconstruc-
tion formula) entails most of the constraints a wavelet is
subject to.

3.2 Wavelet criteria
For practical applications it is important to know the criteria
which a function should satisfy in order to be a wavelet; we
present them here and also consider, by way of examples,

certain well-known functions, inquiring whether they observe
these criteria.

Localisation. Unlike the Fourier transform, the wavelet
transform is based on a localised basis function. A wavelet
must be localised both in time and frequency.

Zero mean:�1
ÿ1

c�t� dt � 0 : �19�

In applications it is frequently necessary to have additionally
first m zero moments:�1

ÿ1
tmc�t� dt � 0 : �20�

Such a wavelet is referred to as an mth-order wavelet.
Wavelets possessingmany zeromoments enable one to ignore
most regular polynomial components of signals and analyse
their small-scale fluctuations and high-order features.

Boundedness:���c�t���2 dt <1 : �21�

The estimate of good localisation and boundedness could
be written as��c�t��� < ÿ1� jtjn�ÿ1 or

��ĉ�o��� < ÿ1� jkÿ o0jn
�ÿ1

;

whereo0 is the dominant frequency of a wavelet; the integer n
should be as large as possible.

Basis self-similarity. A characteristic feature of a wavelet
transform basis is its self-similarity. All wavelets of a given
familycab�t� have the same number of oscillations as the basis
wavelet c�t� does Ð they are derived from it by scale
transforms and translations. It is for this reason that the
wavelet transform is successfully used in fractal analysis (see,
for example, Ref. [7]).

This can be illustrated by examples from Ref. [6] which
presents a number of functions and their Fourier transforms.
For comparison, among them there are both wavelets and
functions which cannot bewavelets for one reason or another.

For instance, the d-function and sine function do not
satisfy the necessary condition of being localised in both time
and frequency domains: the d-function well-localised in the t-
space does not possess this property in the k-domain;
conversely, a sine function well-localised in the k-space does
not show this property in the t-space.

The Gabor function

G�t� � exp
�
iO�tÿ t0� ÿ i#

�
exp

�
ÿ�tÿ t0�2

2s2

�
1

s�2p�1=2

is defined as a modulated Gaussian function with four
parameters: the shift t0, standard (root mean square) devia-
tion s, modulation frequency O and phase shift #. Expansion
in the Gabor functions is that in modulated fragments of sine
functions. The duration of fragments is the same at different
frequencies which yields different number of oscillations for
different harmonics. Hence it follows that the Gabor func-
tion, being localised in both t and k spaces, cannot be chosen
as a basis function for the wavelet transform since the basis
created with it will not exhibit self-similarity.

The HAAR wavelet [see Ref. (9)] exemplifies an orthogo-
nal discrete wavelet giving birth to an orthonormalised basis.
Its drawback is non-smoothness Ð the presence of sharp

1090 NM Astaf'eva Physics ±Uspekhi 39 (11)



boundaries in the t-space manifested as infinite (decaying as
kÿ1) `tails' in the k-space and form asymmetry. There are
applications for which these drawbacks are immaterial, and
sometimes the one-sidedness of wavelet serves as an advan-
tage. One may often encounter another very similar, also
discrete but symmetric FHAT wavelet, better known as the
`French hat' (it looks like a top hat):

c�t� �
1 ; jtj4 1=3 ;

ÿ1=2 ;1=3 < jtj4 1 ;

0 ; jtj > 1 ;

8>><>>:
ĉ�k� � 3Y�k�

�
sin k

k
ÿ sin 3k

3k

�
;

here Y�k� is Heaviside's function [Y�k� � 1 at k > 0 and
Y�k� � 0 at k4 0].

The FHAT wavelet, behaving irregularly in the time
domain and decaying too slowly in the frequency domain, as
well as the LP wavelet (named after Littlewood and Paley, see
Ref. [6]), conversely, with sharp boundaries in the k-space and
improperly decaying in the t-space, could be attributed to
limiting cases; practically all wavelets fill in between them.

3.3 Examples of analysing wavelets
Since the wavelet transform is a scalar product of analysing
wavelet with a given scale and a signal explored, coefficients
W�a; b� contain combined information on both the analysing
wavelet and the signal (similar to coefficients of the Fourier
transform which bear imprints of both the signal and
sinusoidal wave).

The choice of analysing wavelet is as a rule dictated by the
character of information to be derived from the signal. Every
wavelet has specific features in time and frequency domains
and sometimes by applying different wavelets one may reveal
more fully or emphasise one or other signal characteristic.

If the analogy mentioned with the `mathematical micro-
scope' is pursued further, then the translation parameter b
fixes the focusing point of the microscope, the scale factor a,
the magnification, and finally, the choice of the basis wavelet
c determines the optical quality of the microscope.

Real-valued bases are frequently constructed from deri-
vatives of Gaussian functions

cm�t� � �ÿ1�m qmt
�
exp

�
ÿ t 2

2

��
;

ĉm�k� � m�ik�m exp
�
ÿ k2

2

�
(here qmt � qm�. . .�=qtm, m5 1). Higher derivatives have
more zero moments and permit one to retrieve information
on features of higher orders contained in signals.

Figures 2a, b show wavelets obtained for m � 1 and
m � 2, respectively. Due to their shape they came to be
known, respectively, as the WAVE wavelet and the MHAT
wavelet, or the `Mexican hat' (looks like a sombrero).

TheMHATwavelet, with its narrow energy spectrum and
two zero moments (zeroth and first) is well suited to analyse
complex signals. Generalised to the two-dimensional case, the
MHATwavelet is frequently taken to analyse isotropic fields.
If the derivative is taken in one direction, an anisotropic basis
can be obtained, with a good angular resolution [6]. To create
it, rotations should be added to scale transforms and
translations. In this case mathematical microscope gains

also the potentialities of a polariser with the polarisation
angle being proportional to the angle of wavelet turn.

Based on the Gaussian function, there is the well-known
DOG wavelet (difference of Gaussians):

c�t� � exp

�
ÿ jtj

2

2

�
ÿ 0;5 exp

�
ÿ jtj

2

8

�
;

ĉ�k� � 1

�2p�1=2
�
exp

�
ÿ jkj

2

2

�
ÿ exp

ÿÿ2jkj2�� :
Examples of complex-valued wavelets are presented in

Fig. 2c, d (only their real components are shown). Of them a
complex-valued basis derived from the Morlet wavelet well-
localised in both k- and r-spaces is most frequently used:

c�r� � exp�ik0r� exp
�
ÿ r2

2

�
;

ĉ�k� � Y�k� exp
�
ÿ�kÿ k0�2

2

�
:

c

t

c

t

t

c

t

c
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Figure 2. Examples of widely used wavelets: (a) WAVE, (b) MHAT, (c)

Morlet, (d) Paul, (e) LMB, (f) Daubechies. Left and right columns show

wavelet in time and Fourier representations, respectively.
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It is a plane wave modulated by a Gaussian of unit width.
Figure 2c shows the Morlet wavelet for k0 � 6. With an
increase of k0, the angular sensitivity of the basis also
increases, but at the expense of the spatial one.

The Paul wavelet [8], frequently employed in quantum
mechanics,

c�t� � G�m� 1� im

�1ÿ it�m�1 ;

ĉm�k� � Y�k��k�m exp�ÿk�

is shown in Fig. 2d for m � 4 (the greater m, the more zero
moments the wavelet has).

The complex-valued wavelets presented above are pro-
gressive. In thismanner one calls the wavelets which have zero
Fourier coefficientswithnegativewavenumbers.Theyarewell
fitted to analyse signals for which the causality principle is
important: such wavelets preserve the time direction and do
not introduce a spurious interference between the past and
future.

Notice that in analysing a complex-valued one-dimen-
sional signal, or making use of a complex-valued analysing
wavelet, the wavelet transform results in two-dimensional
arrays of the module and phase of coefficients

W�a; b� � ��W�a; b��� exp�iF�a; b�� :
Figures 2e, f show examples of wavelets which are often

employed to create orthogonal discrete bases [of type (7)] with
the help of the Mallat procedure [9]: the LMB wavelet,
suggested by Lemarie, Meyer, and Battle [10, 11] and one of
the Daubechies wavelets [5]. These are biorthogonal wavelets
possessing a conjugate (double) required to obtain the
reconstruction formula. In the works cited, the reader may
find additional examples of such wavelets and corresponding
procedures of their construction.

4. Properties and potentialities
of wavelet transform

The one-dimensional Fourier transform offers one-dimen-
sional information on relative contributions (amplitudes)
from different time scales (frequencies). The wavelet trans-
form of one-dimensional series leads to a two-dimensional
array of wavelet amplitude Ð the magnitude of coefficients
W�a; b�. Its distribution in the space �a; b� � (time scale, time
localisation) supplies information on the evolution of compo-
nents with different scales in time and is referred to as the
wavelet transform coefficient spectrum, time-scale (-fre-
quency) spectrum, or wavelet spectrum, to distinguish it
from the single spectrum of the Fourier transform.

4.1 Result representation methods
The spectrumW�a; b� of a one-dimensional signal represent a
surface in three-dimensional space. There are different
methods for visualising such surfaces. Instead of presenting
these surfaces themselves, one often resorts to presenting their
projections on the plane ab by drawing isolines, or isopleths,
which enable the changes in the wavelet amplitude intensity to
be followed as functions of scale and time. Another approach
is to draw patterns of local extremum lines (so-called
`skeleton') which distinctly shape the structure of the process
under analysis. The term `skeleton' reflects properly the

structure of local extremum line patterns (see examples), and
we shall adopt it for brevity.

In those cases where one needs to display a very broad
scale range, it can be more preferably done by using
logarithmic coordinates, for example �log a; b�, rather than
linear ones.

We illustrate these methods by taking a specific signal as
an example. A corresponding physical interpretation will
not be touched on. Results shown in Fig. 3 were obtained
for the time series of solar wind ion flux (data were collected
with MONITOR detector [12] installed on Prognoz-8
satellite; results of their analysis are partly published in
Ref. [12]). In calculations, the MHAT wavelet was
employed.

Figures 3a ± c demonstrate, respectively, the series ana-
lysed, the pattern of wavelet transform coefficients and the
skeleton, two latter projected on the plane ab (time scale,
time); the abscissa shows the time (or translation parameter),
and the ordinate corresponds to the time scale.

In Figure 3b, dark areas correspond to positive, and light,
to negative values ofW�a; b�; the gray scale is used to outline
ranges of values taken by W�a; b� within respective areas.
Apparently, the magnitude of wavelet amplitude at a point
�a0; b0� is the greater (by absolute value) the stronger is the
correlation between a wavelet of a given scale and the signal

a

b

e

d

c

Figure 3.An example of wavelet transform applied to a real signalÐ solar

wind ion flux: (a) signal subject to analysis, (b) pattern of coefficients

W�a; b�, (c) pattern of local extremum lines, (d) time dependence of

coefficientsW�a; b� for scales marked by arrows in (b), (e) energy density
distribution EW�a; b� for a fragment within the frame in plate (c).
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behaviour in the vicinity of t � b0. The pattern of coefficients
reveals that the process is composed of components of
different scales: the W�a; b� extrema are seen at different
scales, their intensity varies both with time and scale.

Figure 3c shows a corresponding picture of local extre-
mum lines Ð those that join, from scale to scale, the extrema
of each feature of the surface (the crest or valley) separately.
Many authors believe that the skeleton not only visualises the
structure of the process explicitly and without unnecessary
details, but de facto contains complete information concern-
ing it. In Fig. 3c, the solid lines denote the positions of
maxima ofW�a; b�; the minima are shown by the dotted lines.

We have already mentioned that the wavelet transform
decomposes a process analysed into waves that make it up,
the components of different scales, and additionally, offers
time-localised information about the process. A horizontal
section of the pattern given in Fig. 3b, with scale a being
specified, shows the temporal course of the scale chosen;
Fig. 3d displays the behaviour of three components in the
vicinity of values of scale a indicated in Fig. 3b. A vertical
section of the coefficient pattern at a particular moment t0
demonstrates how the process behaves in the vicinity of that
moment (one may determine whether an irregularity is
present, its order, and the set of scales involved, see the
analysis of local regularity in Section 4.3).

It is noteworthy that the value taken by a function
analysed at a point t0 influences the magnitudes of transform
coefficients in a temporal domain that grows with the scale,
within a so-called angle of influence (Fig. 4a). It seems clear
that the influence angle looks different if the scale varies
according to some other law (logarithmic, algebraic) which
does not coincide with the linear one.

In turn, the coefficientW�a; b� at a point �a0; b0� depends
on the magnitudes of series terms from the temporal domain
(or integration domain) near b0 falling within the same angle
of influence (Fig. 4b). The domain becomes broader as the
scale a0 grows, i.e., high-frequency (or small-scale) informa-
tion is computed based on small portions of the series, while
low-frequency information, is based on the large portions.

Themaximum angle of influence (reliability angle) singles
out the reliability domain out of which the coefficients
W�a; b� are calculated over intervals extending beyond the
series boundaries (by complemented series). Since any series

analysed is always finite and one always needs maximum
information, the approximate data obtained outside the
influence angle (with some uncertainty) are often retained.
In order to diminish the error the series is supplemented in one
way or another with account taken for its behaviour (bymean
value, known temporal course, etc.).

The wavelet transform can also be expressed through the
Fourier transforms of signal f̂�o� and wavelet ĉ�o�. It is an
easy matter to show that the influence of Fourier component
f̂�o0� is experienced by coefficients W�a; b� belonging to a
horizontal strip omin < ao0 < omax (see Fig. 4c); in turn
coefficient W�a; b� at point �a0; b0� is influenced by all
Fourier components of the signal f̂�o� for which
omin < a0o < omax.

The span of the influence angle and the width of the
influence band are dependent on the basis wavelet. For
instance, the conventional MHAT wavelet (see Fig. 2b) is
well-localised in time and possesses a narrow power spectrum.
This favourable property specifically implies that the coeffi-
cients W�a; b� depend on a fraction of wavelet frequency
range, i.e. the width of influence band �omin;omax� is not
large.

Questions related to numerical algorithms remain outside
the scope of this study. We shall restrict ourselves to giving
merely several brief and useful, in our opinion, practical
recommendations.

The discrete wavelet transform is well-fitted to a fast
numerical algorithm (see, for example Ref. [13]) based on
widely disseminated fast Fourier transform procedure.

The continuous transform is usually implemented
through direct numerical integration. The most simple (and
quick) verification of the numerical algorithm is to compute
the wavelet transform of Dirac's function (as a result, the
analysing wavelet should be reproduced at every scale), or a
Gaussian function (the result to be found numerically can be
readily derived analytically). That the discretisation has a
sufficient density for a particular scale can be tested by
computing the wavelet transform of the analysing wavelet
itself and checking that there are no spurious marginal
effects.

In subsequent analysis we will need the properties of the
wavelet transform. They all follow from the material already
presented in Section 3.

4.2 Wavelet transform properties
We have already mentioned that coefficients of wavelet
transform contain combined information on analysing wave-
let and a signal analysed. Nonetheless, the wavelet transform
allows one to recover unspoiled information on the signal,
since some of its properties are independent of a specific
choice of the analysing wavelet. This independence makes
these simple properties very important.

We write out basic elementary properties of the wavelet
transform of function f�t�. The designation W� f � �W�a; b�
will be adopted for brevity.

Linearity:

W
�
a f1�t� � b f2�t�

� � aW� f1� � bW� f2�
� aW1�a; b� � bW2�a; b� : �22�

It follows therefore that the wavelet transform of a vector
function is a vector with components which are wavelet
transforms of the respective components of the vector
analysed.

a

a

tt0

b

t; b

a
�a0; b0�

1=omax

1=omin

o

o0

a

t; b

c

Figure 4. The angle of influence (a, b) and the band of influence (c).
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Translational invariance:

W
�
f�tÿ b0�

� �W�a; bÿ b0� : �23�

This property leads to the commutativity of differentiation, in
particular, qtW� f � �W�qt f � (here qt� q=qt). Together with
the first property it implies the permutability for vector
analysis derivatives.

Invariance to dilations (contractions):

W

�
f

�
t

a0

��
� 1

a0
W

�
a

a0
;
b

a0

�
: �24�

This property makes it possible to determine whether a
function analysed has singularities and to investigate their
character (see Section 4.3.1).

Aside from these three elementary properties independent
of the choice of analysingwavelet, thewavelet transform has a
few others. In our opinion, the most important and helpful
among them are the following.

Time-frequency localisation and existence of time-fre-
quency window and influence angle (it would be more correct
to speak of time-scale localisation). The parameters of time-
frequency window are given in Section 2.4.

Differentiation:

W
�
qmt f

� � �ÿ1�m �1
ÿ1

f�t� qmt
�ÿ
c�ab�t�

��
dt : �25�

Thus to ignore, for example, large-scale polynomial compo-
nents and analyse singularities of higher order or small-scale
variations of function f one may perform differentiation of
either the analysing wavelet or the function itself. This is a
highly useful property, especially if one remembers that the
function f is often defined through a sequence of values while
the analysing wavelet is given by a formula.

For the wavelet transform there exists an analogue of
Parseval's theorem and the identity�

f1�t� f �2 �t� dt � Cÿ1c

��
W1�a; b�W �

2 �a; b�
da db

a2
�26�

holds. Hence it follows that the signal energy can be
calculated in terms of amplitudes (coefficients) of wavelet
transform, just in the manner it is computed through the
components of the Fourier transform

Ef �
�
f 2�t� dt �

���A�o� ÿ iB�o���2 do :
The definitions and properties of one-dimensional con-

tinuous wavelet transform can be generalised to multi-
dimensional and discrete cases. Each of them has its own
peculiarities. We shall not address them here because further
we will only exploit a continuous wavelet transform of one-
dimensional functions.

4.3 Some applications of wavelet analysis
Having wavelet spectra available one may compute useful
characteristics of the process under study and analyse many
of its intrinsic properties. We shall describe in more detail
what information can be obtained on signal singularities and
power characteristics.

4.3.1 Analysis of local regularity [6, 13]. Consider some
consequences of the scale invariance property (24).

If f 2 Cm�t0�, i.e. the function analysed has continuous
derivatives up to m-th order at a point t0, its wavelet
transform coefficients at b � t0 comply with the inequality

W�a; t0�4 am�3=2

as a! 0.
If f 2 La�t0�, i.e. the function analysed belongs to the

space of Holder functions with the exponent a (it will be
recalled that this implies the function f to be continuous, not
necessarily differentiable at t0, but satisfying the condition�� f�t� t0�ÿ f�t��� � cjt0ja, a < 1, c � const > 0), the coeffi-
cients of its wavelet transform at b � t0 should obey the
relation

W�a; t0� ' ca a�1=2

as a! 0.
The wavelet transform has an inherent property that

W�a; t� is a regular function even with f�t� being irregular.
Total information on a singularity f�t�may possess (localisa-
tion t0, intensity c, exponent a) is contained in asymptotic
behaviour of coefficients W�a; t0� at small a. If coefficients
diverge at small scales then f has a singularity at t0 and the
exponent of the singularity a is wholly determined by the
inclination of the dependence log

��W�a; t0��� with respect to
log a. Conversely, if they are close to zero at small scales in the
vicinity of t0 then this implies f to be regular at t0.

The property outlined is often successfully used when
analysing fractal and multifractal signals [14, 15]. A typical
property of fractal sets is their asymptotic self-similarity.
When looking at f near point t0 at different magnifications
one sees practically the same function:

f�lt� lt0� ÿ f�lt� ' la�t0�� f�t� t0� ÿ f�t�� :
Basis of the transform is self-similar; one may easily deduce
that the coefficients of the transform also scale with the same
exponent as does the function analysed:

W�la; t0 � lb� ' la�t0�W�a; t0� :

Hence the scaling exponent a�t0� can be derived. As is known,
it is closely related to the fractal dimension of the set. In this
fashion the analysis of multifractal set may provide the
spectra of exponents and dimensions.

It should be emphasised that the analysis of local
regularity is in a certain sense universal Ð it does not depend
on the choice of analysing wavelet.

4.3.2 Energy characteristics [6, 16]. Consider some conse-
quences of identity (26). The existence of the analogue of
Parseval's theorem for the wavelet transform implies that in
the space of real-valued functions the total energy of the
signal f can be expressed in terms of the amplitude of wavelet
transform as

Ef �
�
f 2�t� dt � Cÿ1c

��
W 2�a; b� da db

a2
: �27�

The signal energy density EW�a; b� �W 2�a; b� charac-
terises energy levels (the excitation levels) of the signal f�t�
explored in the space �a; b� � (scale, time).
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Figure 3e shows the pattern of energy density distribution
obtained for a portion of the solar wind ion flux series. In that
pattern, the lightest areas correspond to largest values of
EW�a; b�, denser colour, up to black, corresponds to decrease
of EW�a; b� down to zero. To better illustrate the details, the
distribution of the energy density is shown for a portion of the
series and only for the upper third of the scale range (this
fragment is singled out by the frame in Fig. 3c).

The fragment shown illustrates that the energy is dis-
tributed inhomogeneously over scales Ð there are some
particular scales. Both patterns display the nonstationary
structure of the process analysed with elements of quasi-
periodicity, evolving frequencies and local periodicity ranges
at different scales.

Local energy spectrum. One of the main features of the
wavelet transform is its capability to reveal localised char-
acteristics and local properties of processes. Paradoxical as
the words `local power spectrum' may sound, the nature of
wavelet transform is nevertheless such that this term has valid
grounds for existence. Let us clarify this point.

Given the energy density EW�a; b� we may, with the help
of window, determine the local energy density at a point b0
(or t0)

Ex�a; t0� �
�
EW�a; b�x

�
bÿ t0
a

�
db :

Window function x `shapes' the range near t0 and satisfies the
equality�

x�b� db � 1 :

Choosing Dirac's delta for x we arrive at the following
expression for the local energy spectrum

Ed�a; t0� �W 2�a; t0� :

This quantity makes it possible to analyse time behaviour
of the energy cascade over scales Ð the exchange in energy
between components of the process possessing different scales
at any given point in time.

Global energy spectrum. The total energy is distributed
over scales in compliance with the global energy spectrum of
the wavelet transform coefficients:

EW�a� �
�
W 2�a; b� db �

�
EW�a; b� db : �28�

This quantity is also called the scalogram, or wavelet
variance.

Figure 5a shows the power spectrum EF�o� of the solar
wind ion flux (see Fig. 3a) and the scalogram EW Ðthe global
energy spectrum of the wavelet transform coefficients
obtained for the same signal. The spectra match each other
quite satisfactorily, however the spectrum computed by
wavelet transform coefficients is considerably smoother. The
reason is that the wavelet spectrum of signal energy EW

corresponds to a smoothed power spectrum EF. One may
see that by expressing the energy spectrum EW�a� through the
signal power spectrum in the Fourier space EF�o� �

�� f̂�o���2:
EW�a� �

�
EF�o�

��ĉ�ao���2 do :

Now it becomes apparent that the scalogram EW corresponds
to the power spectrum EF smoothed at each scale by the
Fourier spectrum of analysing wavelet.

The wavelet transform, by supplying us with the time-
scale spectrum, allows for more localised information to be
obtained. Figure 5b displays four scalograms EW�a�, each
found by a convolution with a corresponding quarter of the
series, instead of the entire series (see Fig. 3a). For
comparison, the same figure shows the global spectrum (in
Fig. 5a it is plotted as a function of frequency; in Fig. 5b
scalograms are plotted against the scale which increases to
the top). The scalograms obtained for particular ranges
make it possible to follow the evolution of energy distribu-
tion by scales.

The signal energy is expressed through the energy spec-
trum as

Ef � Cÿ1c

�
EW�a� da

a2
: �29�

Thus the quantity Ef is proportional to the area under the
curve EW�a�=a2, while the scalogram reflects relative con-
tributions from different scales to the total energy and reveals
the energy distribution over scales.

The function under analysis is of finite energy and the
analysing wavelet is of zero mean. Therefore the energy
spectrum EW�a� should tend to zero at both extremes of the
scale domain and consequently exhibit at least a single
maximum. The positions of maxima (peaks) of that kind in
the Fourier spectrum EF�o� are conventionally associated
with frequencies and corresponding intrinsic modes of the
signal analysed, in which the main fraction of signal energy is
contained.Maxima of energy spectrumEW�a� are treated in a

EW

EF

0.1 Frequency0.010.001

1

0.1

0.01

0.001
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Figure 5. Power spectra of solar wind ion flux: (a) the power spectrum EF

and the scalogramEW vs. frequency, (b) scalograms for four time intervals

(in the frame) and for the whole process vs. scale (increases to the top).

Plots are in log-log axes.
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similar way Ð they define those scales of the process which
contribute maximally to the total energy Ef.

Using a simple example, let us illustrate the links between
the scale emerging as a result of wavelet transform and that
recovered from the Fourier spectrum. Let

f�t� � sin�o0t� � sin
2pt
T0

;

its wavelet transform expressed through the Fourier trans-
forms [see, for instance, Eqn (17)] is

W�a; b� � i

2

�
exp�io0b�ĉ�ao0� � exp�ÿio0b�ĉ�ÿao0�

�
;

while EW�a� �
��ĉ�ao0�

��2 is its spectrum. The necessary and
sufficient condition for the presence of peak at a scale a � a0
is that of derivative dĉ�ao0�=da being zero at a � a0. This
condition is satisfied at a0o0 � oc, where oc is a constant,
dependent on the wavelet c, with dimension of frequency.
For many wavelets the constant oc yields to analytical
calculations: given HAAR and MHAT wavelets, it is equal
1:484p and

���
2
p

, respectively.
In practice, if scalogram EW�a� shows a peak at a � a0, a

characteristic scale is defined as d � T0=2 � a0p=oc. A factor
of 1/2 appearing here is responsible for the fact that one is not
looking for a period, but for a scale of elementary event or
detail. In this sense a sine function shows two elementary
details over a period.

The constant oc is found for a simple function. Expand-
ing the result on arbitrary, even non-harmonic signals we
assume that the location of the maximum of the spectrum
EW�a� (i.e. the scale revealed) could be interpreted as the
mean duration of an elementary event (events) contributing
most efficiently into the energy of the process under study.
This fact is verified for numerous known signals with different
wavelets and is recognised to give a very good approximation
(see, for example, Ref. [16]).

We present two more characteristics that are expressible
in terms of energy density Ð the measure of local inter-
mittency and the contrast measure of the signal under
analysis.

Measure of local intermittency

IW�a; t� � EW�a; t�

EW�a; t�

�
t

is the measure of local deviations of the spectrum at each
scale from themean field; it enables one to assess the degree of
nonuniformity of energy distribution over scales (the angular
brackets denote averaging).

That IW�a; t� � 1 for all a and t implies that energy is
distributed uniformly and all local energy spectra are similar;
IW�a; t0� � a implies that the contribution coming from a
component with scale a at a point t0 exceeds a times the
average over t.

Time-scale contrast measure

CW�a; t� � EW�a; t�
E 0W�a; t�

; E 0W�a; t� �
�a 0�a
a 0�0

EW�a 0; t� da 0

serves to detect even the slightest variations in a signal when
one needs, for example, to reveal the structure of a weak
signal or weak variations against the background of extended
structure (build-in structures).

5. Applications of the wavelet transform
to model signals

In this section we show the utility of the wavelet transform as
regards visualising various typical features contained in
signals. The wavelet transform is applied to model signals
composed of functions with well-known properties (see also
Ref. [17]).

For each example we present a plot of the series analysed.
The coefficientsW�a; b� are shown as projections on the plane
ab (time scale, time). Time is plotted against the abscissa, and
time scale (it grows linearly to bottom), against the ordinate.
Similar to Fig. 3b, light and dark areas correspond, respec-
tively, to positive and negative values of W�a; b�, with gray
scale used to show the ranges ofW�a; b�magnitudes. Patterns
of local extremum (or local maximum) lines are presented in
the same coordinates.

The results presented are obtained with the MHAT
wavelet. Calculations were carried out for a rectangular area
in the plane of parameters a; b. Data series were continued to
achieve that. Particular ways of continuation are shown in
plots of functions analysed. In patterns of local maxima lines,
the reliability triangle, or the angle of influence are shown.

5.1 Harmonic function
The wavelet transform was applied to series of sine functions

f�t� � sin
2pt
T1
� a sin 2pt

T2
:

The results of wavelet transform of such a function can be
easily compared with those given by the conventional Fourier
transform. Magnitudes of periods T1 and T2 as well as
constant a for the signals analysed are given in Table 1. It
also displays the numbers of the respective figures and signals.
Coefficients of wavelet transform are expected to provide
scales D1 � T1=2 and D2 � T2=2.

Signal 1. It is shown in Fig. 6a and is composed by sine
functions with noticeably different frequencies (as one may
see from the plot, the series is continued by the mean value).

The pattern of coefficient magnitudes, Fig. 6b, reveals
multiple periodically recurrent details in its upper part (at
small values of scale a) which evolve from a resonance
between high-frequency component of the signal and small-
scale wavelets, as well as three dark and two light areas at
large scales (positive and negative values of W�a; b�, respec-
tively), which are the result of a strong correlation between
large-scale wavelet and low-frequency component of the
signal containing only two and a half of period.

Figure 6c displays lines of local extrema; the solid lines
denote local maxima and the dotted ones correspond to local
minima. The pattern of local maxima (Fig. 6d) shows only the

Table 1. Parameters of harmonic functions.

T1 T2 a Number
of égure

Number
of signal

200
200
50
25
25
25
25
25

10
10
ë
ë
50
50
23
23

0.4
0.4
ë
ë
1
1
1
1

6
ë
ë
8
9a
9a
10a
10b

1
2
3
4
5
6
7
8
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lines related to positive extrema. Both patterns reveal a
periodic structure of the signal analysed and represent the
time-scale skeleton of the process described by the signal.
Lines marking off the positions of local extrema of wavelet-
transform coefficients are related to the extrema of function
studied Ð points where its derivative changes sign.

In what follows we will demonstrate only one of the
skeletons; if lines of local minima bear no particular informa-
tion and only complicate the pattern, as they do for signal 1,
they will be excluded and only the pattern of local maxima
lines will be illustrated.

Signal 2 represents a part of signal 1. The pattern of
wavelet transform coefficients permits one to speak of the
large-scale component in the signal despite its entire extent is
covered by only a single period of the large-scale component
of signal 1.

Energy spectrum EW�a� in this simple case allows for
determining even the extension of the large-scale component
in the signal, though it is represented by a single period.
Figure 7 shows the energy spectrum EW�d�; it will be recalled
that for the MHAT wavelet the typical time-scale d is linked
with the scale a of wavelet transform as d � ap=

���
2
p

. The solid
line in this figure plots the energy spectrumof signal 2, dashed
line plots the same for signal 1. In both cases the peaks
corresponding to scales of 5 and 100 are easily discernible; the
small-scale part of the spectrum is given in more detail in the
insert in the upper right corner of the figure. Given the
Fourier spectra, one is able to recover only the high-frequency
constituent in these signals.

Signals 3 and 4 are sine functions with periods of 50 and
25, respectively. Figure 8 presents signal 4 and patterns of
wavelet transform coefficients and local maxima lines
obtained for it. Upper parts of the patterns demonstrate a
periodic behaviour of signals. Dark and light large-scale
details in the lower part of coefficient pattern are due to
boundary effects and are of very low intensity; in patterns
this may be recognised by noting that these large-scale areas
have substantially fewer colour levels than basic periodic
details (here Ð only a single level), and wave lines of local
extrema.

Both the same length of local maxima lines (within the
reliability triangle) and the periodicity with which they appear
point to a single typical frequency of the signal and a fixed
period. This is also supported by a peculiar kind of a `hatched'
structure shown by the skeleton in the bottom part of the
reliability triangle; if there were a few frequencies present (see
results for signal 6 and 8) it would change to an `interference'
structure.

a

b

d

c

Figure 6. Signal 1 (a) and the results of its wavelet transform: patterns of

coefficients (b), local extremum lines (c) and local maximum lines (d).
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Figure 7. Power spectra EW�d� of signals 1 (dashed line) and 2 (solid line);
in the upper right corner the small-scale part is displayed at magnification.
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Figure 8. Signal 4 and patterns of coefficients and local maximum lines.
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That distinctive interference (or hatched, as for signal 4)
structure of skeleton appears in cases when the length of series
is sufficient for all inherent scales to be realised within the
reliability triangle (this holds for all signals except for the first
one) and owes its existence to the fact that after realisation of
all scales the coefficients W�a; b� decrease abruptly, become
very small and approach zero in an oscillating manner (hence
wave lines of local maxima).

The spectra EW�d� computed by magnitudes of wavelet
transform coefficients for signals 3 and 4 exhibit peaks at
scales 25 and 12.5, respectively.

Signal 5 and 6 are in fact different combinations of 3 and
4. Signal 5 is composed of 3 and 4 switched on in turn while
signal 6 is their sum. Signals 5 and 6 are of interest since they
are indistinguishable for the Fourier transform: one may
easily verify that their Fourier spectra EF�o� practically
coincide. For the wavelet transform they are quite different,
as may be concluded from the patterns of coefficients and
local maxima lines computed for them and given in Fig. 9a
and 9b.

In contrast, wavelet energy spectra of these signals as well
as their Fourier counterparts are very similar because they are
obtained by convolution over the entire series length. They
possess broad maxima covering both scales. We note that
nonstationary properties of signals, say, evolving frequencies
(scales) could be well resolved with the help of localised
spectral analysis when, in calculating spectra EW�d�, the
convolution of wavelet transform coefficients is performed
over a fraction of series instead of its total length.

Signal 7. Figure 10a displays results found with a signal
that differs from 4 only in a phase shift by p in the middle of
the series. Clearly, the Fourier transform of this signal differs
from that for the signal without phase shift by showing
additional peaks. The explanation is that any detail of the
signal influences all Fourier coefficients and frequencies.

The presence of such details in a signal, with account for a
direct link between frequencies in spectrum and characteristic

scales of the process, may noticeably distort the interpreta-
tion. Commonly, the presence of additional peaks in spectra
is attributed to the existence of several scales which are
completely absent in the example considered: there is only a
single scale.

The wavelet transform copes with a singularity of that
kind by localising it (see patterns of coefficients and local
maxima lines in Fig. 10a).

Signal 8. Figure 10b shows results obtained for a signal
composed of two sine functions with very close frequencies;
that the second frequency is present is only seen in tilted local
maxima lines. Similar tilts may also appear due to low-
frequency modulation, however in that case there will be no
distinctive skeleton interference pattern which indicates that
all scales present in the signal are realised.

5.2 Signal with a singularity
Signals frequently contain isolated singularities in the form of
pulse, jump, power-like singularity, etc. These may be either
the details intrinsic to the process in hand, or spurious details
caused, say, by instrumental failures. The Fourier transform
of a signal that is regular everywhere except for a single
singular point bears information about that point in all its
coefficients. Isolated singularities are practically not amen-
able to filtration and thus distort both the spectrum and the
signal recovered.

The wavelet transform was applied to signals with
singularities of some types mentioned above. Figure 11,
along with signals, presents local extremum line patterns
(they are more informative) and several isopleths of coeffi-
cients W�a; b� drawn schematically (positive and negative
values are represented by solid and dashed lines, respec-
tively).

All point singularities contained in signals are accompa-
nied by local maximum lines emanating from these points.
Their number depends on the type of the singularity and
analysing wavelet.

a b

Figure 9. Signals 5 (a) and 6 (b) Ð the same as in Fig. 8.
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Examples from Section 5.1 have indicated that if the
derivative of function analysed changes its sign, this is seen
as a local extremum line of distributionW�a; b�.

Figure 11a shows the transform of a signal with d-like
singularity. Two next examples (Fig. 11b, c) contain singula-
rities in which the change of derivative sign is accompanied by
the function discontinuity (algebraic singularities of jt 5j and
t 2=3 forms, respectively). In this case the point of singularity
localisation is associated with three lines of skeleton. The
central line is that of minimum or maximum depending on
whether the signal attains its maximum or minimum at this
point. Results of wavelet transform for the d-function look
similarly.

Singularities of lower order, such as inflection of function
t 1=3 (Fig 11d) or jump (Fig. 11e) bring about two local
extremum lines, and a break of derivative (Fig. 11f) leads to
a single line.

Thus the wavelet transform is capable of revealing the
location of singularity Ð wavelet transform coefficients of a
smooth function are small and increase abruptly as a
singularity is encountered, visualising it by local extremum
lines. The character of singularity at the point can be
determined from the asymptotic behaviour of wavelet trans-
form coefficients as the scale tends to zero. For example, the
coefficients of the wavelet transform of d-function are
maximal at small scales and decay abruptly with scale
growing, tracing the behaviour of the singularity itself. An
isolated singularity influences wavelet transform coefficients
locally and can be easily eliminated from the signal or
corrected.

The results given here were obtained with the help of
MHAT wavelet possessing two zero moments (zeroth and
first). The wavelets with only one zero moment are not
capable of distinguishing singularities of derivatives. The
wavelet transform coefficient distribution obtained with
such wavelets exhibits less local extremum lines. For
example, for the first three signals there will be no central
lines; the singularity shown by the derivative of a signal with
inflection (Fig. 11d) will not be seen at all, and the jump in
signal (Fig. 11c) will lead to a single extremum line.

The higher the order of analysing wavelet and the greater
the number of zeromoments, the better the wavelet transform
distinguishes between singularities.

Note that specific features of wavelet transform with
different order wavelets can be advantageously used to reveal
the presence and behaviour of trends, the largest-scale
components in signals. On applying the reconstruction
formula to coefficients and subtracting the resultant signal
from the original one, such large-scale component can be
separated out: since wavelets have zeromoments they convert
to zero a constant contribution, linear or polynomial trends,

a

d e f

b c

Figure 11. Wavelet transform of a signal with a singularity given by d-
function (a), jt 5j (b), t 2=3 (c), t 1=3 (d), jump (e) and break in derivative (f).

a b

Figure 10. Signals 7 (a) and 8 (b) Ð the same as in Fig. 8.
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etc. In this way, subjectivity can be avoided which is almost
always present if trends are determined by other means.

5.3 Fractal set
The wavelet transform owing to its hierarchical basis is well-
suited for analysing cascade processes, fractal and multi-
fractal sets which have a hierarchical nature.

We present an example concerning analysis of a fractal set
formed on the basis of a homogeneous triadic Cantor set. As
known, when constructing the first generation of this set, an
interval is divided into three parts and the middle of them is
excluded; for the second generation the same procedure is
applied to two remaining intervals, and so at each subsequent
stage, to infinity. Figure 12a displays the first stages of this
construction.

Based on the set constructed, the Cantor dust, a numeric
set, is created from zeros and ones (zeros correspond to
excluded parts of the interval).

Figure 12b presents the patterns of coefficients and local
maximum lines. They are reasonably detailed, however linear
scale sweep does not allow for presenting a broad scale range.
To demonstrate general character of the process, Fig. 12c
shows the skeleton in logarithmic axes.

The pattern of coefficients displays the hierarchical
structure of the set presented. Even more clearly it is seen in

the patterns of local maximum lines. The skeleton not only
reveals the hierarchical structure, but also shows how the
fractal measure was constructed on which the set is formed.

Every stage of the cascade process, every scale subdivision
ismarked off on the local maximumpattern by branching, the
appearance of a peculiar `forge': the line marking the local
maximum position bifurcates into two independent local
maximum lines. This is the invariably recurrent feature since
the measure is self-similar and monofractal.

It is known that the fractal dimension, or self-similarity
dimension of the homogeneous Cantor set Df � lnm= ln s,
where m is the branching rate and s is the scale factor. In the
case of triadic set Df � ln 2= ln 3. The dimension can also be
assessed by using wavelet transform coefficients as the limit
(with scale going to zero) of ratio lnN�a�= ln a; here N�a� is
the number of local maxima. The higher the order of the
Cantor set generation used, the more accurately its dimension
can be determined; for 10th±11th generations the value
computed by wavelet transform coefficients coincides practi-
cally with that found analytically.

For comparison, Fig. 12d pictures local maximum lines of
a random process. One may see how different, even qualita-
tively, are the `tree-like' structure of the skeleton of the
cascade process and the `grass-like' skeleton of the random
process (they could be compared with periodic skeletons of
harmonic functions and `bushes' of lines marking off the
singularities of signals).

6. Analysis of meteorological time series

In this section we present results that ensue from the analysis
of real dataÐ long-term observations of variations in certain
meteorological parameters.

6.1 El NinÄ o and Southern Oscillation
The Southern Oscillation is a large-scale process that devel-
ops over the extent of the Pacific ocean. It is closely related to
the El NinÄ o phenomenon, the sudden warming of oceanic
waters along the Pacific coast of Central America. The global
process of planetary scale in the atmosphere±ocean system, El
NinÄ o and the Southern Oscillation (ENSO), has a pro-
nounced impact on the dynamics of the entire planet's
climatic system, by influencing the Hadley and Walker
circulations and the locations of regions of active convection
in the tropics.

Processes in the tropics, supposedly, have an important
bearing on the climate dynamics on scales of decades or more.
We shall describe briefly this extremely interesting and
important phenomenon, the ENSO, a peculiar kind of
dialogue between the wind and the sea.

El NinÄ o (Spanish for the Christ Child) is the name the
fishmen from Ecuador and Peru use to call a warm stream in
the ocean that appears most frequently close to Christmas
and persists during a certain period. There is no fishing during
that time since near-coast upwelling is suppressed. The warm
stream (and vacancies) may appear in May, or even in June,
but the name El NinÄ o for it and associated phenomena has
become conventional.

In 1920s a known British scientist Gilbert Walker worked
in India on the problem of forecasting monsoons that some-
times bring devastating rainfalls. In particular, while studying
barometric data he discovered a dependence between data
recorded at stations in the western and eastern Pacific. The
term `Southern Oscillation' was introduced by him to

a

b

c

d

Figure 12. First generations of a homogeneous triadic Cantor series (a),

fragments of patterns of coefficients and local maximum lines (b), patterns

of local maximum lines for a triadic homogeneous Cantor series (c) and a

random process (d) in logarithmic scale.
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designate anomalies in atmospheric surface pressure along
the tropical belt. The alteration of anomaly signature
resembles a gigantic pendulum pumping air masses between
the Eastern and Western Hemispheres.

Near the action centres of the Southern Oscillation where
its signature has opposite signs there are stations located on
Tahiti island (17� S, 150�W) and in Darwin (12� S, 150� E). It
is agreed that the time series of difference in normalised
pressure anomalies at these stations [the Southern Oscillation
indexC�t�] is themost pertinent characteristic of the Southern
Oscillation time behaviour.

That there exist coupling between these two phenomena,
El NinÄ o (in the ocean) and the Southern Oscillation (in the
atmosphere) was perceived much later, after a strong El NinÄ o
of 1957. For long, this coupling was interpreted using the
Wyrtki hypothesis [18], well illustrated in Ref. [19]. Its essence
is as follows.

Under normal conditions, C � 0, north-east and south-
east trade winds drive warm water into the western Pacific;
the sea level there is 40 cm above that in the eastern part. The
circulation is accompanied by upwelling Ð the rise of deep
water, which is cool and rich in nutrients, near the Pacific
coast of South America. If C > 0, the phenomena outlined
are more pronounced.

When the index C decreases and becomes negative the
pressure gradient between the eastern and western zones of
the tropical Pacific weakens noticeably. Without opposing
wind drag, warmwaters flow to the east, reach SouthAmerica
and split into northward and southward currents and a
reflected wave propagating westward. The region of warm
water quickly broadens.

The increase in temperature in the eastern and central
Pacific changes locations of convective regions in the atmo-
sphere. Convection is usually bounded to Indonesia and the
western Pacific. As the index of the Southern Oscillation
diminishes, a period of very dry weather begins in the area of
Australian-Indonesian centre of activity, while in the central
and eastern Pacific, normally poor in rains, heavy rainfalls
begin. The population of coastal South America suffers from
floods and squalls; due to the cessation of the near-coast
upwelling and transport of water rich in nutrients, the fishes,
birds, and animals migrate or perish. These periods happen to
be persistent and then bring about a real ecological disaster.

The change in location of atmospheric convective regions
involves not only the Pacific, but also the entire tropics. Dry
weather comes to the western coast of Africa and South
America where the precipitation level is usually normal. The
displacement of tropical cyclone tracks is observed.During El
NinÄ o the number of days with tropical cyclones considerably
decreases in the Atlantic and increases in the French Poly-
nesia.

A nice illustration to the coupling between the Southern
Oscillation and El NinÄ o is suggested by results of Ref. [20]
which shows the time-latitude section of temperature anoma-
lies at the equator and a synchronous course of the Southern
Oscillation index for 1979±1989. Isotherms there are plotted
using the data from the Washington Center for Climate
Analyses. The time span considered includes three warm
and three cool episodes.

Comparison of latitude-time sections of surface tempera-
ture anomalies at the equator with the synchronous course of
the Southern Oscillation index C�t� reveals certain regula-
rities. There are at least three points worth mentioning. There
exists a negative correlation between C and the oceanic

surface temperature: the greater C the lower is the tempera-
ture, and the larger the absolute value of negative C the
greater is the temperature. Positive temperature anomalies
are more persistent than the negative phases of index C:
during El NinÄ o the decrease in C begins simultaneously with
the appearance of positive temperature anomaly in the
eastern Pacific, whereas the increase of C after passing a
minimum begins 3 ± 4 months prior to the temperature drop.
The temperature in the equatorial zone of the Atlantic varies
independently of anomalies in the Pacific, while temperature
oscillations in the west and equatorial Indian ocean and in the
eastern Pacific correlate.

Anomalous warming of waters in the Pacific and Indian
oceans entails the warming of the equatorial atmosphere and
sharpens the pole±equator temperature contrast. In turn, this
intensifies zonal circulation.

The unusual localisation of regions of augmented convec-
tion perturbs the circulation of the atmosphere not only
within the equatorial belt, but over the globe. Weather
anomalies caused by that are observed also in middle
latitudes. Thus, a strong El NinÄ o of 1982±1983 resulted in
extraordinary strong cyclones passing during winter of 1982/
83 from the northern Atlantic across Scandinavia to the east.
It will be recalled that storms associated with them smeared
theKursh spit.Many natural phenomena occurring during El
NinÄ os led to very severe consequences both ecologically and
economically.

It is therefore not surprising that this fascinating process,
the Southern Oscillation ± El NinÄ o, and its outcomes are for
many years the subject of constant scientific interest. The last
decade was dedicated to its thorough study in the framework
of the TOGA program. New data have been obtained and the
interpretation of coupling between the Southern Oscillation
and El NinÄ o, based on the Wyrtki hypothesis, did suffer
certain modifications. It was established that the periodicity
and scenarios of the ENSO alter with time noticeably. For
example, the surface temperature anomaly can migrate not
only westward, but also eastward, the pool of warm water
may not reach the Ecuador and Peruvian coasts and remain
bounded within the central Pacific, and so on.

There is a large volume of publications dealing with El
NinÄ o and the Southern Oscillation, however, many details
still have not received rigorous treatment; especially this
concerns the scales exceeding decades and less than a few
months.

The following time series are the object of our study : the
data that bear witness to the dynamics of El NinÄ o events for
the past 500 years from Ref. [21] (Section 6.2), monthly mean
magnitudes of the Southern Oscillation index C�t� for a
period from 1882 to 1992 from Ref. [20] (Section 6.3) and
daily magnitudes of indexC�t� for a period from 1981 to 1991
(Section 6.4) collected by collaborates of D M Sonechkin
(Gidrometeorological Centre of Russia); partly the results of
analysis of the Southern Oscillation index dynamics are
published in Ref. [22].

To reveal the coupling between the global warming and El
NinÄ o we analysed the Jones series [23] Ð those of anomalies
in semiannual surface air temperatures (both global and
hemispheric) for a period from 1854 to 1990 (see Section 6.5).

6.2 500 years of El NinÄ o history
Data on pressure anomaly and surface temperature embrace
a period slightly exceeding a century since regular observa-
tions began in the recent past. There have been numerous
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attempts to reconstruct more than a thousand-year-long
history of the ENSO. In these attempts one resorts to indirect
evidence which may shed light on El NinÄ o events (fossil
remnants, chronicles, etc.). For example, this may be
accounts about droughts and floods, snow and ice layer states
on mountain tops, data on fossil microflora, the growth rate
of corral skeletons, rings of tree growth, etc.

In our opinion, the data in Ref. [21] on frequency of El
NinÄ o events for the last 500 years seem to be the most reliable.
They are presented in Table 2 of Ref. [21] and depart from the
evidence on the number of typhoons in South China, cold
winters inWesternAsia, droughts in Australia, floods onNile
and in Peru which might be caused by El NinÄ o events.

The series analysed consists of zeros (for years when, as
the author of Ref. [21] suggests, all indirect data point to the
absence of El NinÄ o) and ones (in El NinÄ o years). For a period
lasting from 1470 to 1987, 114 El NinÄ o events were dis-
covered, with amean interval between themof about 4.5 years
(Table 2 lists these particular years). The author of Ref. [21]
plausibly suggests that there may exist a 70-year cycle and as
an illustration gives data averaged by decades and arranged in
order presented in Table 3.

Figure 13a plots the dependence of El NinÄ o events against
time. For the sake of convenience, numbers presented are
averaged over decades Ð it is seen that for a decade there
occurs from one to four El NinÄ o events. The pattern of
wavelet transform of the basic series, consisting of zeros and
ones, is shown in Fig. 13b. In this figure the time axis is
aligned with the abscissa of the plot, and the scale increases to
the bottom, up to values of 300 years (to make explicit all
large-scale details that can be recovered with the finite series
available).

In Figure 13b, one's attention is called to the fact that a
scale of about a century subdivides the coefficient pattern into
two noticeably different regions. In the lower part of the
pattern, one may discern only two and a few more of large-
scale details (with a scale surpassing 150 years). A completely

different structure is seen in the upper part of the pattern: the
dynamics is almost entirely bounded to scales below 100
years.

The distribution of energy density EW�a; b� shown in
Fig. 13c for the upper third of the scale range (up to 100
years) reveals in more detail how the process behaves with
time. Despite the apparent nonstationarity, a structure
resembling a periodic one can be discerned on certain scales.
Both at the beginning and the end of the time interval
analysed there are three details with scales of 40 years (they
are less intense at the end of the series). In the middle of the
pattern this 40-year periodicity is interrupted Ð here only
several details with scales of 25 ± 30 years are seen which form
two large-scale details (approximately of 85 ± 90 years).
Additionally, we may distinguish a few ranges of local
periodicity with scales ranging from 8 to 11 years (or even
less).

A scale of 9 ± 10 years is conventionally attributed to an
18.6-year moon cycle which is present in the dynamics of
droughts and floods, and is seen in the temperature course in
North America [24]. A scale of nearly 40 years may be
connectedwith 70 ± 80 year cycle of El NinÄ o eventsmentioned
in Refs [20, 25]; its origin is still unclear. Attempts to relate it
to volcanic activity do not seem to be well substantiated. The
third typical scale of about 150 years (three details of largest
scale in Fig. 13b) may be of limited accuracy due to the finite
extent of series analysed and hence considered doubtful.

Thus the wavelet transform, one of whose most potent
features is the ability to analyse the structure of inhomoge-
neous processes, shows the following. There exist local
periodicities of El NinÄ o events with scales in between 8 and
11 years. A special study is needed to clarify whether they are
dominated by an 18.6-year moon cycle or the 22-year cycle of
Sun's activity. As for scales less than 7 ± 8 years, there is no
sense to discuss them based on yearly data.

The wavelet analysis does not reveal a stable 70 ± 80-year
El NinÄ o cycle: there are several long epochs of similar
duration (about 40 years) whose periodicity breaks in the
middle of series. The reasons for this are as yet obscure. They
may be either real physical reasons or those due to the data
compiling procedure: the data analysed have been recon-
structed by the author of Ref. [21] from a huge volume of
indirect evidence, and the absence of some data (for the

Table 2. El NinÄ o events from 1470 to 1989 [21].

Years Events Sum Years Events Sum

1470s
1480s
1490s
1500s
1510s
1520s
1530s
1540s
1550s
1560s
1570s
1580s
1590s
1600s
1610s
1620s
1630s
1640s
1650s
1660s
1670s
1680s
1690s
1700s
1710s
1720s

73-74, 79
84, 87-88
90,93, 96-97, 99
09-10
17-18
20-21, 25-26, 29-30
32-33, 39
41, 45, 47
52-53, 59-60
65, 67-68
78
85-86
90-91, 95-96
00, 04, 07
10, 14-15, 18-19
24-25
34-35, 37-38
40-41, 47
50
60-61
71, 74
80-81, 84, 87-88
92, 96
01, 04, 07
15-16
20-21, 23, 25

2
2
4
1
1
3
2
3
2
2
1
1
2
3
3
1
2
2
1
1
2
3
2
3
1
3

1730s
1740s
1750s
1760s
1770s
1780s
1790s
1800s
1810s
1820s
1830s
1840s
1850s
1860s
1870s
1880s
1890s
1900s
1910s
1920s
1930s
1940s
1950s
1960s
1970s
1980s

36
40, 42, 44, 47
54, 56
61, 63, 65-66, 69
71, 73, 75, 78-79
82-83, 86-87
91, 98
03-04, 06-07
12-13, 15, 17
21, 24-25, 28
31-32, 36-37
44-45
50, 54-55, 57-58
64, 66, 68
77-78
80-81, 84, 88
91, 96, 99-00
02, 04-05
11, 13-14, 18-19
25-26
30
40-41, 44-45
51, 53, 57-58
63, 65, 68-69
72, 76
82-83, 86-87

1
4
2
4
4
2
2
2
3
3
2
1
3
3
1
3
3
2
3
1
1
2
3
3
2
2

Table 3.Occurrence of El NinÄ o events per decadeÐ the demonstration of
70-year cycle [21].

Years,
events

1500s
1

1510s
1

1520s
3

1530s
2

1540s
3

1550s
2

1560s
2

1570s
1

1580s
1

1590s
2

1600s
3

1610s
3

1620s
1

1630s
2

1640s
2

1650s
1

1660s
1

1670s
2

1680s
3

1690s
2

1700s
3

1710s
1

1720s
3

1730s
1

1740s
4

1750s
2

1760s
4

1770s
4

1780s
2

1790s
2

1800s
2

1810s
3

1820s
3

1830s
2

1840s
1

1850s
3

1860s
3

1870s
1

1880s
3

1890s
3

1900s
2

1910s
3

1920s
1

1930s
1

1940s
2

1950s
3

1960s
3

1970s
2

1980s
2

Sum 11 12 12 20 20 15 17
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period that corresponds to the middle of series) could lead to
pattern distortion. There are some indications (for example,
the preserved phase of oscillations) pointing to the existence
of a stable 70 ± 80-year cycle of El NinÄ o events. More
extended periods cannot be addressed because of finiteness
of the series.

When interpreting the results one should remember that
the data analysed are reconstructed by indirect evidence and
aside from that, do not contain information on the duration
and intensity of the process (they only `resolve' whether an El
NinÄ o event occurred during a particular year) as well as on
anti-El NinÄ o and La NinÄ a which are inseparable parts of the
ENSO process. Much more information of incomparable
higher reliability is contained in observational data on the
Southern Oscillation index variations collected for the last
century.

6.3 Monthly mean magnitudes of the Southern Oscillation
index
Recall that the Southern Oscillation index C�t� is the
difference in pressures, normalised in some particular way,
measured at sea level at stations located near the Southern
Oscillation action centres. Conventionally it is computed in
the following way. At input there are pressure series at Tahiti
and Darwin py;m (the indices y, m denote year and month).
They serve to compute series of normalised pressure at
stations Py;m �

ÿ
py;m ÿ hpmi

�
=e, here hpmi is the long-term

mean (norm) calculated by monthly means for a period of
1951 ± 1980; e is the standard mean deviation calculated by
all pressure anomaly data for the same period. Next, one
computes normalised pressure anomalies between Tahiti
(index T) and Darwin (index D) stations
dy;m � PT

y;m ÿ PD
y;m. Finally, the index of the Southern

Oscillation is calculated: Cy;m � dy;m=d (with d being the

standard deviation of all differences dy;m for the same
reference period from 1951 to 1980). Negative values of this
index are closely related to El NinÄ o, and positive, to La
NinÄ a.

Figure 14 shows variations in monthly mean magnitudes
of C�t� for the last 108 years (Fig. 14a) and the pattern of
wavelet transform coefficients (Fig. 14b) in a scale range
chosen to enclose, where possible, all large-scale details of the
process described by this finite series ( the scale grows linearly
to bottom, up to 97 years). Figure 14c shows the distribution
of energy density for monthly mean magnitudes of C�t� in a
smaller-scale region, the scale varies up to 10.5 years.

Of notice are two large-scale minima almost at series
boundaries and the branching `tree' of positive extrema
between them. The tree trunk and two of its branches,
emerging just near the base, single out two practically the
similar periods Ð between El NinÄ os at tree margins and the
trunkÐ of 39.8 years (which complies with a scale of 40 years
found with 500-year series and testifies in favour of existence
of 75 ± 80 year cycle).

Energy density distribution (Fig. 14c) suggests that small-
scale constituent of the process contains ranges of local
periodicity and, besides, that the process exhibits qualitative
differences in time intervals belonging and not belonging to
the tree. The inner part of the tree largely contains details with
characteristic scales of 30 and 12 months, whereas the outer
parts are composed of details with a scale of 18 months.

The presence of ages with different temporal structure
could be a plausible explanation to the change in character
of El NinÄ o scenarios after the middle of the 70s, as noted by
many authors. In this respect it should be mentioned that
when studying the ENSO process (and perhaps not only it)
one should avoid drawing very stringent conclusions based
on observations of the last few decades. An analysis of

200

100

300
years

100
years

50

1450 1550 1650 1750 1850 1950 Years
0

2

4 a

b

c

Figure 13.Dynamics of El NinÄ o events for 500 years (a), patterns of coefficients (b) and energy density distribution (c).
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considerably more representative data is needed (in our
case, for example, a series for the last 30 years would be
too short).

We however return to the structure of the coefficient
pattern. Two large-scale minima at the tree boundaries and
one between them correspond to intense and persistent El
NinÄ o events of 1899 ± 1902, 1940 ± 1941, and 1982 ± 1983. By
making comparison with 500-year data it can be easily
inferred that these strongest El NinÄ os of the current century
are quite ordinary events. Despite the fact that 500-year data
are averaged over 12 months and do not bear information on
process intensity, the details of patterns match reasonably
well. Onemay consider the ElNinÄ o chronology reconstructed
for the past 500 years as being able to describe the dynamics
of the Southern Oscillation fairly well for large time spans (of
the order of several decades).

The branches of the tree are shown in Fig. 14d in more
detail; here the scale grows up to 29 years. The patterns of
coefficients (and local maximum lines) exhibit an intricate
hierarchical structure. If, near the tree base, we see only the
growth of scale in the form of period doubling, the two main
branches of the tree bifurcate each in its own manner: the left
one into three branches and the right one into two branches.
At finer scales one may observe that alterations in doubling
and tripling, seemingly irregular, persist. One may also
encounter branching of a watershed type when several
secondary local maximum lines progressively join the main
one as scale increases.

Branching that looks similar can be modelled by the
Cantor set when from a unit interval (in our case this

corresponds to approximately 80 years) a middle part is
eliminated, next the operation being applied to the parts
remained, and so on (model of doubling the local maximum
lines); or two fifths of the unit interval are eliminated, with the
same procedure being applied in every generation (the model
of tripling).

In our case the process is more intricate in two respects.
First there are branchings of two (or even more) types
alternating in an irregular manner Ð this is indicative of an
irregular or multifractal set. Second, unlike the standard
construction of the Cantor set in which that part of the
interval which is eliminated never appears again in any
generation, here we encounter the case when branching of
both signs is seen, as if in an interval excluded some of its
parts are recovered in subsequent generations. Whether the
result of such a cascade process will be the Cantor dust, or
any other fractal set, depends on the entire set of branching
rules which can hardly be deduced with a finite data set
available.

Thus the wavelet analysis of monthly mean values of the
SouthernOscillation index reveals the self-similar structure of
the data and the presence of a process resembling a cascade
one on scales from a month to several decades (up to 70 ± 80
years). Whether the resultant `tree-like' structure of local
maximum lines is indicative of the cascade of period doubling
or tripling, quasiperiodic or any other behaviour exhibited by
the system, and whether the branching of both signs in local
extremum lines observed at small temporal scales implies that
there is a cascade at scales on the orders of month or less, can
be elucidated only by further investigations. This in turn will
require the analysis of series with a refined resolution.

6.4 Daily magnitudes of the Southern Oscillation index
The series under analysis of daily mean magnitudes of the
index C�t� embraces a decade (unfortunately out of the tree
described in Section 6.3). Figures 15a, b show the series C�t�
itself and the pattern of its wavelet transform coefficients (the
scale grows up to 3 years).

1910 1940 1970 Years

97
years

10.5
years

29
years

a

b

c

d

Figure 14. Monthly mean magnitudes of the Southern Oscillation index

(a), pattern of coefficients (b), pattern of energy density distribution (c),

and pattern of coefficients (d) for a fragment within the frame in plate (b).

3
years

1
year

a

b

c

Figure 15.Daily magnitudes of the Southern Oscillation index for a period

marked out with line in Fig. 14b (a), the pattern of coefficients (b) and

energy density distribution (c).
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The comparison shows that monthly mean magnitudes
describe interannual variability very accurately, and the
annual course, fairly well. The interannual variability is
much better described by the detailed series, however most
of typical features are seen in patterns of wavelet transform
coefficients for both series.

The pattern of energy distribution calculated for the
Southern Oscillation index (see Fig. 15c, the scale varies up
to 1 year there) exhibits a clearly defined yearly course and an
essentially nonstationary structure of the process at smaller
scales. Rigorous analysis reveals ranges of local periodicity in
this nonstationary structure with scales measured by a week
(most maxima occur at scales � 5 and � 9 days), a month
(� 25 days), 8 ± 9 months, and about 2 years (� 22 months).

These scales as well as those described in Sections 6.2 and
6.3 can be discerned in power spectra shown in Fig.16. Here
we present power spectra computed both by Fourier trans-
form coefficients (Fig. 16a), EF, and by wavelet transform
coefficients (Fig. 16b), EW, of monthly mean (dashed) and
daily mean magnitudes of C�t�. The power spectrum EW [see
(28)] corresponds to the Fourier spectrum smoothed at each
scale. Both spectra contain relatively long intervals of power-
like behaviour across the scales from several days to a month
and from two ± three months to a year.

Thus the process described by the time series C�t�, as
most processes encountered in the nature, evolves in a very
broad range of time scales. Fourier spectra of the series
investigated exhibit the presence of noise with fairly high
amplitudes, however the peaks at particular typical periods
(which coincide practically with those in power spectra
obtained by wavelet transform coefficients) stand out
clearly. The patterns of energy distribution EW�a; b� pre-
sented above show intricate nonstationary behaviour of the
process, the presence of periodic and aperiodic constituents
at different scales.

Such a process could be formed by superimposing a
stochastic component on several regular ones. We take
advantage of Takens' procedure (embedding theory for
nonlinear dynamical systems [27]) to construct the phase
space corresponding to a given time realisation and to create
a feasible attractor.

In compliance with Takens, we construct an m-compo-
nent state vector from C�t� in the following way:

Xi �
�
x1�ti�; x2�ti�; . . . ; xm�ti�

	
:

Here xk�ti� � x
ÿ
ti � �kÿ 1�t� and t is the time lag. The

distribution of state vectors composes the reconstructed
phase space of dimensionality m.

Two-dimensional projections of the trajectories are pre-
sented in Fig. 17 for different values of the lag parameter t.
The first three portraits are based on the daily series, and the
last two, on the series of monthly mean magnitudes. All
trajectories are finite, but do not show any explicit periodic
structure. Peculiar loops are seen in the first two portraits, yet
they disappear with a lag of onemonth and reappear for t � 3
months. Except for that the portraits with lags of one and
three months practically duplicate each other.

A portrait with the time lag t � 12 months, i.e. con-
structed for a marginally long or even too long lag for the
realisation available, differs from the preceding ones and is of
interest in that its trajectory possesses three axes (one could
imagine a dynamical system with three stationary points).

The boundedness of trajectories and not too large
dimensionality of the system suggest that a model of the
process could be created and its behaviour could be predicted,
at least in principle, over not very long intervals. It is however
apparent that the duration of the realisation available does
not allow for rigorous conclusions to be made, while the form
of the last projections hints at least at the need for analysing
more representative data.

6.5 Global temperatures and the ENSO
Figure 18 presents the plot of annual mean values of air
surface temperature anomaly for a period from 1854 to 1990
and the pattern of corresponding wavelet transform coeffi-
cients in a scale span that covers practically all large-scale
details of the process described by the series in question (the
scale grows linearly to 85 years).

It is noteworthy that a scale of 25 ± 30 years separates the
coefficients pattern into two noticeably different domains. In
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Figure 16. Power spectra (a) and scalograms (b) for meanmonthly (dashed

lines) and daily (solid lines) magnitudes of C�t�.
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Figure 17. Projections of phase space obtained on the basis of series of

daily and mean monthly magnitudes of C�t�: t1 � 1, t2 � 3, t3 � 30 days;

t4 � 3 months.
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the lower part of the pattern, only two large-scale details are
seen. An entirely different structure is seen in the upper part
where practically the overall temporal dynamics of the data
analysed is comprised.

The lower part of the coefficient pattern reflects the fact
that the data analysed contain a large-scale component
resembling a positive trend Ð the light area to the left
corresponds to negative values of coefficients which increase
with time (to the right), and in the right lower part of the
pattern almost a similar region (dark) is formed where
coefficients are positive.

A much more involved and, at first sight, exhibiting no
definite order structure is observed across scales of 25 ± 30
years. A closer examination permits one to discriminate
typical recurrent details: there exists a range of temporal
scales within which the pattern has almost a quasiperiodic
structure. One may argue that while the largest-scale compo-
nent of the process analysed looks like a linear positive trend,
at mesoscales the process resembles one composed of several
harmonic oscillations.

Figure 19 with the same scales, and for the same time
interval, presents the plot of annual mean values of air surface
temperature anomaly for the Northern (Fig. 19a) and South-
ern (Fig. 19b)Hemispheres separately, and wavelet transform
coefficient patterns for hemispheric data: Fig. 19c and 19d
refer, respectively, to the Northern and Southern Hemi-
spheres.

Qualitatively, the coefficient patterns of hemispheric data
display a similar structure. The most apparent difference
between the Hemispheres is in the time lag of the trend in
the Southern Hemisphere: global warming begins earlier and
is more pronounced in the Northern Hemisphere. The basic
reason for that can be the inhomogeneous distribution of land
which is mostly contained in the Northern Hemisphere. An
anthropogenic factor, whose influence is most pronounced
there, should also not be ruled out. Account should also be
taken for the fact thatmeteorological stations are sparser over
the Southern Hemisphere and the data are probably less
representative there.

We note that the trend obtained by subtracting the series
reconstructed by the inverse wavelet transform from the
original data does not exhibit, at the beginning of the current
century, a discontinuity of derivative usually attributed to
anthropogenic impact.

Like the global temperature anomalies, the temporal
dynamics of analysed hemispheric data is entirely contained
across scales approximately up to 25 ± 30 years.

Figure 20 shows fragments of hemispheric patterns with a
better temporal resolution: the scale grows up to 30 years in
Fig. 20a and to 8 years in Fig. 20b (time axis remains the same
as in Figs. 18, 19). To facilitate the comparison of hemispheric
data the patterns are arranged tomatch by side of small scales
Ð in lower parts of both plates there are patterns for the
Southern Hemisphere, while in the upper one, the mirror
images for the Northern Hemisphere (correspondingly, the
scale grows to the top of the pattern there).

Well pronounced cyclicity in periods of warming and
cooling on scales of nearly 10 ± 11 years (Fig. 20b) forms
more extended epochs of warm and cold climate. The
recurrent, relatively large-scale details in Fig. 20a bear
witness to more or less persistent epochs (with duration
between 10 and 30 years), with enhanced or reduced mean
annual temperature, replacing each other during the whole
period analysed without exhibiting any apparent regularity.
The warming epochs can be seen in the 60s and 80s of the last

b

a

1880 1910 1940 1970 Years

25

50

85
years

Figure 18.Anomalies of yearlymean global temperature and the pattern of

wavelet transform coefficients.
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Figure 19.Anomalies of yearly mean global temperature for the Northern

and Southern Hemispheres and respective patterns of wavelet transform

coefficients.
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Figure 20. Fragments of the coefficient patterns for the Northern and

Southern Hemispheres.

1106 NM Astaf'eva Physics ±Uspekhi 39 (11)



century, at the turn of the century, in the middle of this
century, and at the end of the series.

Here, as in the results of analysis of ENSO characteristics,
local periodicities stand out clearly. A relatively stable 10 ± 11
year cycle is seen at the beginning of the series. Then its
structure is subject to some changes, yet one may observe as a
relatively stable 5 ± 6 year cycle settles (this is especially seen in
the pattern for theNorthernHemisphere). This period of time
corresponds to the tree branches in the wavelet transform
coefficient pattern for the SouthernOscillation index (Section
6.3). The larger-scale dynamics of mean annual temperature
anomalies does not exhibit any stable periodicity.

A wide interest in the ENSO history is due to the fact that
sometimes the occurrence rate of El NinÄ o is associated with
global climate warming [28]. The author of Ref. [21] however
mentions that he has not discovered any close links between
these processes.

In actual fact whether there is a direct link between the
occurrence of El NinÄ o events and global warming is difficult
to answer, since, as one may suggest, not only the occurrence
alone, but also the duration of events and their strength are of
importance. As mentioned previously, changes in these
characteristics of El NinÄ o are well reflected in the behaviour
of the Southern Oscillation index.

Figure 21 presents, in the same scales for handy compar-
ison, patterns of wavelet transform coefficients for series of
temperature anomaly in the Southern Hemisphere (it is in the
upper part of the figure, the scale increases to the top) and the
coefficient pattern for the Southern Oscillation index (it is in
the lower part, scale increases to the bottom). The patterns are
black-white; black areas correspond to positive values of
coefficients (and are related to warm epochs in the pattern
for temperature anomalies), white ones refer to negative
values (negative values of C�t� are associated with El NinÄ o
events).

Triangles mark only the most significant El NinÄ os for that
period which occurred in 1899 ± 1900, 1902, 1913 ± 1914,
1940 ± 1941, 1970, and 1882±1983. It is easy to see that all
more or less persistent warm periods are tied with the most
intense El NinÄ os (even the structure of black details in the
upper pattern repeats that of white details in the lower one).
However seemingly the occurrence of El NinÄ o does not
influence decisively the global warming.

If spoken generally, El NinÄ o can influence the climate
either directly or indirectly. A direct influence (through the
atmosphere) occurs at time scales of 1 ± 2 years Ð during El

NinÄ o itself. Indirect influence (through the ocean) as it turned
out [29] can occur on scales of decades or even more.

Satellite observations indicate that waves of planetary
scale, reflected from the coast of America during the
extremely strong El NinÄ o of 1982 ± 1983, crossed the Pacific
and ten years later perturbed theKuroshio. As a result, a large
volume of warm water penetrated from the southern coast of
Japan into the middle latitudes of the Pacific thereby
increasing noticeably the surface temperature at high lati-
tudes of the north-west Pacific. Hence, the consequences of El
NinÄ o events assimilated by the ocean could appear to be long-
lived.

7. Conclusions

Using simple examples of the utility of the wavelet transform
in analysing one-dimensional functions with well-defined
properties, we have shown the potentialities of this relatively
new mathematical tool that enables one to reveal and
explicitly expose the structure (quasiperiodic, self-similar,
etc.) of the process described by a function under analysis,
giving simultaneously information on typical scales of the
process.

That the model examples were one-dimensional does not
impose any restrictions on the applicability of the wavelet
transform: the definitions and properties can be easily
generalised to multidimensional cases, and dimensionless
variable (time in our case) can be any scalar or vector
quantity.

Time-scale sweep resulting from the wavelet transform of
a signal reveals not only oscillations with well-expressed
period, but also nonstationary oscillations, localised periodi-
cities, etc.

The energy (or variance) of the wavelet transform
coefficients EW�a� is proportional to the variance of data
subject to the analysis and gives the distribution of process
energy over scales. The availability of this characteristic at a
local level allows one, for instance, when dealing with
turbulent processes not only to retrieve a set of typical
scales, but also to rigorously determine the scales related to
coherent structures and explore the intermittency of the
process.

Based on wavelet transform coefficients, or the behaviour
of local extrema, one can calculate the dimension of the set
analysed, or the spectrum of dimensions if it is multifractal.

Filtering and reconstruction properties of the transform
allow information processing (smoothing, decomposition
into components, convolution) without losing significant
details. Breaks in continuity, jumps or other irregularities
due to variations in characteristics measured, and faults or
noise introduced by measuring instruments, can be easily
detected, localised, and, if necessary, cut out or corrected.

The potentialities of wavelet transform have also been
shown on examples of several observational time series.

The wavelet transform seems to be a very promising
mathematical tool not only in tasks that involve signals of
different nature but also for solving equations describing
complex nonlinear processes with interactions in broad
ranges of scales.

It should be emphasised that the wavelet transform can by
no means replace the existing harmonic analysis or diminish
its advantages. It is simply another tool which enables looking
at a process from a somewhat different viewpoint Ð that of
other analysing function (or the family of functions).

50
years

50
years

Figure 21. Fragments of wavelet transform coefficient patterns for

monthly mean magnitudes of the Southern Oscillation index and yearly

mean magnitudes of the Southern Hemispheric temperature anomalies.
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