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Abstract. The evolution of a hot gas or weakly ionised
plasma —formed as a result of vaporisation of the surfaces
of a solid under the action of high energy fluxes or flow out
of a nozzle —is considered. The expansion of a vapour or a
plasma into the surrounding space leads to its cooling and
is accompanied by a chain of processes involving both
charged (electrons, ions, atoms, charged clusters) and
neutral particles. The evolutionary regimes leading to the
condensation of atoms, accompanied by the formation of
large charged and neutral clusters, are discussed. The
experimental aspects of the generation of intense cluster
beams in such regimes and the applications of such beams
are considered.

1. Introduction

This review provides an analysis of the processes that
accompany the flow of a hot gas in vacuum or of a buffer
gas under conditions such that clusters form in an
expanding gas. The process of formatting clusters in an
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expanding atomic beam is most effective in the presence of
ions which act as condensation nuclei. The simplest method
for the generation of a cluster beam involves irradiating a
surface with laser radiation of moderate intensity so that
the surface temperature reaches several thousands of
degrees celsius. This results in intense vaporisation of
the surface, so that the vapour pressure near the surface
amounts to tens and hundreds of bars. The evaporated
material forms a beam of atoms which, because of the high
surface temperature, contains a small admixture of ions.
These ions then act as condensation nuclei. Another way of
generating a cluster beam involves the use of a source of a
gas or vapour inside a closed vessel out of which a gas
(vapour) flows through a nozzle. Clusters form in this
beam in the course of expansion of the gas jet.

Cluster beams were first generated in Germany [1—3]
during the escape of a vapour, formed in a source, through
a small nozzle into vacuum. The methods of beam analysis
by determination of the mass spectra of the ions formed as a
result of collisions of clusters with electrons were developed
in the course of these investigations. The subsequent
evolution of this technique [5—9] has included both mod-
ification of the vapour source and beam formation
methods, and also methods for the detection of a cluster
beam. Additional ionisation of an expanding vapour beam
by an electron beam has led to the development of the
‘cluster ion (ionised cluster) beam’ method [10—11] and its
various applications. A beam of charged -clusters is
convenient because ions can be accelerated by an external
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electric field so as to reach the required energies of clusters
in the beam. This makes it possible to employ a cluster
beam colliding with the surface of a solid for a variety of
purposes. Figs 1 and 2 demonstrate the nature of the
interaction of an accelerated cluster with the surface, as
a function of its energy [12]. At low energies (Fig. 1) the
clusters are deposited on the surface and form a film,
whereas at high energies (Fig. 2) they create clusters on the
surface and cause its erosion. Therefore, cluster beams are
used not only for the evaporation of films, but also for the
cleaning of surfaces [10]. Cluster beams can be used to grow
films at high rates up to 74 nm s_', as reported for silver
clusters [13, 14], and the maximum rate of erosion by a
focused beam of copper ion clusters is 70nm ~' 115, 16].
The advantages of a cluster beam in the deposition of
films, compared with an atomic beam, is the relatively small
beam divergence because of the large cluster mass, and also
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Figure 1. Model of a collision ofa cluster with a surface, where it becomes
attached and flows along it [12, 195]: (a) cluster disintegrates into single
atoms which diffuse along the surface; (b) cluster behaves like a liquid
drop, which becomes attached to the surface and spreads over it.

Cluster

Figure 2. Collision of a fast cluster with the surface creates a shock wave
which forms a crater on the surface (7 )and a molten zone ( 2 ) at the crater
boundary [12, 195].

the ability to control the beam in the case of charged
clusters. Moreover, the energy released when a film is
formed from clusters is several times less than in the
case of formation of a film from single atoms. There-
fore, the process of film growth from a cluster beam is more
efficient and ‘softer’ than in the case of an atomic beam.
This is the reason for the extensive use of cluster beams in
microelectronics [5, 10, 11, 17-28].

There are also other applications of cluster beams such
as those in thermonuclear fusion [7, 29-31], assembly of
new materials from clusters [32, 33], formation of magnetic
materials from clusters [34, 35], etc.

The purpose of this review is to consider the other
aspect of the problem, which is the nature of the processes
that accompany the expansion of a vapour in space.
Various processes take place during the expansion of a
vapour and formation of clusters, and combinations of
these processes create specific nonequilibrium conditions.
This will be demonstrated by considering the example of
expansion and cooling of a weakly ionised vapour gen-
erated by laser irradiation of a surface. The processes will be
divided into several groups in accordance with the stages of
evolution of a weakly ionised vapour. The first group of
processes, which corresponds to the first stage of the
evolution of a weakly ionised plasma, includes those
involving electron participation such as the ionisation of
atoms by electron impact, the three-body recombination of
electrons and atomic ions, the dissociative recombination of
electrons and molecular ions, and the attachment of
electrons to atoms producing negative ions. On completion
of these processes a plasma containing electrons and atomic
ions is converted into a plasma which consists of negative
and positive ions.

The evolution of charged particles in such a plasma is
important because ions serve as condensation nuclei in a
cooling plasma. The second group of the processes includes
charge exchange between positive and negative ions, which
involves the loss of charged particles in a plasma and results
in mutual neutralisation of ions. The processes of ion
charge exchange occur simultaneously with the processes
belonging to the third group, which represents the growth
and evaporation of clusters. In this case the condensation
represents the growth of charged clusters. In accordance
with the classical theory of condensation [36—40], the
probability of evaporation of a small neutral cluster is
much higher than the probability of its growth. Therefore,
large neutral clusters form in a weakly ionised gas not from
small neutral clusters by growth, but from large charged
clusters by coagulation. Neutral clusters form in a non-
ionised gas when it is strongly supersaturated, because this
process requires a relatively high vapour pressure in the
source.

An essential feature of the system under discussion is its
nonequilibrium in respect of the various degrees of freedom
at different stages of the evolution. By way of illustration,
the ionisation nonequilibrium will be considered first [41—
43]. During the first stage of plasma expansion, when the
plasma temperature is sufficiently high, an ionisation
equilibrium is established so that the densities of electrons
and ions are described by the Saha distribution. The time
needed to establish this equilibrium is inversely propor-
tional to the electron density, i.e. it rises strongly when the
plasma temperature decreases. At some temperature this
time becomes comparable with the plasma expansion time,
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so that at lower tem-peratures the ionisation equilibrium in
the plasma is lost, i.e. the densities of electrons and ions are
governed not by the plasma temperature but by the nature
of the plasma evolution. It is important to stress that the
subsequent processes involving electrons occur in a non-
equilibrium plasma and that the charged particles still act as
the condensation nuclei.

An analysis of the formation of clusters in the course
of the plasma evolution and allowance for the specific
sequence of the processes that occur in the plasma makes it
possible to provide a more or less unified physical picture of
the evolution in spite of the fact that it is controlled by
many processes. This is interesting from the point of view of
understanding the nature of the evolution of the system and
also in respect of the applications, which involve the
optimal organisation of the process. This can be demon-
strated by considering one of the aspects of the problem of
the evolution of a laser plasma. The irreversible decay of the
plasma electrons may occur in two channels: their conver-
sion into negative ions or dissociative recombination with
molecular ions. If the first channel is weak, then at the
subsequent stage of the evolution there are a few ions that
can act as the condensation nuclei in the plasma. Therefore,
efficient conversion of the plasma into clusters requires that
the formation of negative ions should occur in an effective
manner. One example is the plasma-chemical conversion of
metal compounds, which in the first stage are heated to high
temperatures in a plasmatron, where these compounds
dissociate into atoms. Then, the resultant plasma is
allowed to escape. The condensation of metal atoms and
ions transfers the metal to clusters and in this way the
separation of elements is achieved. In view of the above
comments it follows that this process is effective provided
the atoms in the original compounds can form very stable
negative ions. For example, if metal clusters are to be
formed by this method, it is convenient to use metal halides.

The processes occurring in an expanding plasma jet lead
to the formation of charged and neutral clusters. If the
clusters remain for a long time in bounded space, the
process can continue further resulting in the formation of
structures consisting of solid particles in the form of fractal
aggregates
[44—-52] and fractal fibres [53, 54]. The process of forming
fractal aggregates has been investigated quite thoroughly
(there are reviews and monographs on this subject: see, for
example, Refs [52-72]). In particular, the formation of
fractal aggregates in the afterglow of a gas discharge
increases strongly the yield of the radiation from a
decaying plasma and the main contribution to the
radiation power may come, in accordance with the
dimensions of fractal aggregates, from the optical part
of the spectrum (see, for example, the review in [73]).
However, in the discussion below we shall consider only
those stages of the process which are associated with cluster
formation. This applies to systems in which an expanding
gas or a plasma propagates in the form of a beam and in
which condensation takes place, i.e. clusters are formed.
This review provides an analysis of the processes which
then occur.

2. Charged particles in an expanding plasma

2.1 Generation of a weakly ionised vapour near a heated
surface

The initial stage of the processes under discussion is
represented by a relatively dense gas (vapour) or an
equilibrium plasma, which then expands in vacuum or in a
space occupied by a buffer gas. In view of the applications,
it is worth considering two methods for the creation of an
expanding plasma. In the first method, the initial stage is
the formation of a hot vapour (Figs3 and 4) which
expands through a nozzle in vacuum or in a buffer gas. A
skimmer is used to form a gasdynamic beam of atoms from
the vapour flux and ions may be created in this beam by an
external electron source (Fig. 4). In the second method an
ionised gas is formed by the interaction of high energy
fluxes with a surface. The heating of the surface leads to
the evaporation of its material in the form of a weakly
ionised vapour. The energy can be delivered to the surface
in the form of a laser beam, an electric current, an electron
beam, etc.

Figure 3. Source ofan expanding beam of neutral clusters [9]: (/) vapour
flow; (2) deceleration chamber; (3)nozzle; (4) beam boundary.

L J
‘;—:% \ \W T

Figure 4. Source of cluster ions [209]: (/) chamber; (2) heater;
(3) nozzle; (4) skimmer; (5) electron beam; (6) accelerator of cluster
ions. Caesium vapour forms by the evaporation of'a liquid metal which is
in the chamber.

Let us consider the second method of generating an
expanding plasma in greater detail. The laser method is
more convenient for the delivery of energy to a surface.
Although the electric field method can also be used, it is
more complex. In the electric field method the formation of
an evaporated flux of a weakly ionised vapour takes place
in the cathode spot of an arc discharge. The laser radia-
tion creating a flux of the evaporated material does not
interact with this material. This means that the power
delivered is relatively low, so that laser radiation is not
absorbed by the evaporating plasma. At higher laser
radiation intensities, optical breakdown is possible because
of the absorption of laser radiation by an evaporating
weakly ionised plasma [74-76]. To avoid dealing with
breakdown, we shall consider laser radiation intensities
(power densities) not exceeding 10"Wem™ on the sur-
face [74-76].
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One other aspect of the problem should be mentioned.
Interaction of laser radiation with the surface heated by it is
nonlinear. This may give rise to a number of interesting
effects in the spatial temperature distribution on the surface
of the investigated object and to fluctuations of the
temperature with time (see, for example, Refs [77-79]).
These effects will not be discussed and the temperature
distribution on the surface of an object will be regarded as
stable.

Let us consider the processes occurring near the surface.
Let us assume that the range of the evaporating atoms is
much less than the dimensions of the surface. This allows us
to consider the evolution of the evaporating material as a
one-dimensional problem. The energy flux reaching the
surface heats it to a temperaturet Tg.s This temperature
corresponds to a flux of evaporating atoms j(Ty).
Practically the whole of the energy deposited on the surface
is used in the evaporation of atoms: estimates show that
other channels for the removal of energy from the surface
are unimportant. If the distribution of the velocities of the
evaporating atoms is semi-Maxwellian near the surface, the
following relationship is obtained for the energy balance
near the surface:

P = (AH+2Tsurf)j(Tsurf) ’ (2])

where P is the energy flux absorbed by the surface; AH is
the binding energy of an atom in a solid at T, i.c.
the binding energy per atom in a macroscopic system;
AH + 2T, is the average energy lost in the evaporation of
onc atom.

We shall find the value of j(Tq,¢) from the condition
that in equilibrium near the surface the fluxes of the atoms
evaporating from the surface and of the atoms condensing
on it are equal. Let us introduce a parameter &, known as
the accommodation coefficient, and representing the prob-
ability that an atom colliding with the surface sticks to it.
Then, the condition for a vapour equilibrium near the
surface gives

j ‘ 8T guur) 2
'/(Tsu"f) = Z ﬁNsat (Tsurf) (_srf) s

m

(2.2)

where Ny (Tour) is the number density of atoms at the
saturated vapour pressure and m is the mass of an atom.
Eqns (2.1) and (2.2) represent the energy balance at the
surface and they govern the surface temperature at a given
absorbed energy flux. The density of the evaporating atoms
near the surface is ENg (Tourr)-

Near the surface, as long as the distance from the
surface does not exceed the mean free path of atoms, the
distribution of the velocity of the evaporating atoms is semi-
Maxwellian since these atoms move away from the surface.
At larger distances the flux of atoms forms a gasdynamic
beam. The process of formation of such a beam has been
studied [80—82] and the results of these studies will be used
here. The beam parameters depend on the gas pressure in
the phase which the evaporating atoms enter. Let us
consider the limiting case when the pressure of the
evaporating atoms in a beam is high compared with the
buffer gas pressure. Then the evaporating atoms move at
the velocity of sound and the beam parameters correspond

F Throughout this paper the temperature will be given in energy units,
which makes it possible to omit the frequently used factor for conversion
of the energy and temperature units.

to the balance of the flux of atoms and energy near the
surface and in the gasdynamic beam:

1 5
2Tgs = = Mu> += T, ,

: : 2.3)

Jj = uNy,
where Ny is the density of atoms in the beam; Ty is the
beam temperature; u = (yTb/M)]/2 is the velocity of sound;
y is the ratio of the specific heat at a constant pressure and
volume, which is 5/3 for an atomic gas. These expressions
make it possible to establish a simple realtionship between
the parameters of the evaporating atomic gas before and
after the formation of an atomic beam:

Ty = 0.69T g, Ny = 025Ny . (2.4)

Eqn (2.3) gives the parameters of the resultant beam. By
way of demonstration, let us consider an example which will
be useful later in dealing with the various processes
occurring in the system and thus provide an illustration
of a complete physical picture of the effect in question. Our
example will be, here and later, a plasma formed by laser
irradiation of a copper surface. Other examples of the
formation of atomic beams will also be considered. The
following parameters of the interaction of laser radiation
with a surface will be assumed: the efficiency of utilisation
of the laser radiation energy in the evaporation of atoms
(i.e. the fraction of the laser radiation energy expended in
the evaporation process) is 0.3 and the probability of
attachment of copper atoms to the surface after coming
into contact with it is £ = 0.2. Table 1 gives the parameters
of such a copper plasma near the surface for certain
characteristic values of the energy fluxes (power densi-
ties) relevant to the investigated regime. The saturated
copper vapour pressure is the result of extrapolation
[83, 84] to higher temperatures. In the notation used the
subscript ‘surf” identifies the parameters of the evaporating
plasma near the surface, the index ‘b’ is used for the plasma
parameters in the beam, and N}, is the equilibrium electron
density in the resultant beam.

Table 1. Parameters of a copper plasma formed by laser irradiation of a
copper surface, calculated assuming that 30% of the laser radiation
energy is absorbed by the surface and that the probability of attachment
of copper atoms to the surface is £ = 0.2.

Radiation energy flux/W cm~!

107 3 % 10° 10
Tout/K 7340 5440 4410
Ngur/10"” cm™ 11 4.1 1.6
Pgurp/bar 110 30 9.4
T, /K 4910 3640 2950
Ny/10"” cm™ 2.8 1.0 0.4
Py, /bar 19 5.0 1.6
Nep/10" em™ 160 2.1 0.1

We shall use this example to demonstrate the results of
an analysis of various aspects of the investigated phenom-
ena. We shall therefore refine the conditions for the process
being analysed. We shall assume that the laser radiation
power is 10 kW and that focusing of this radiation can
create any energy flux (power density) in the investigated
range 10°-10” W em 2. The characteristic plasma propaga-
tion time is of the order of 107 s and the propagation
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process is quasisteady. This means that the duration of a
laser radiation pulse exceeds the plasma evolution time of
~107° 5. Therefore, the laser used may be pulsed or pulse-
periodic, and the laser parameters given here are readily
attainable. For example, if a laser generates pulses of 1073s
duration, the energy per pulse has to be 10J. The
wavelength of the laser radiation is not of fundamental
importance and it is allowed for by introduction of the
coefficient of absorption of the radiation on the target
surface.

2.2 Loss of ionisation equilibrium in an expanding plasma
A weakly ionised plasma beam formed in this way moves
away from the surface and expands, so that it cools.
Depending on the conditions during the formation of this
beam, and also on the nozzle and skimmer parameters used
in the beam sources, the angle between the boundary of the
beam and the symmetry axis of the beam cone is assumed to
be o = 5°—15° [85]. In future estimates we shall assume that
o = 10°. The law of variation of the density j of the flux of
atoms at a distance x from the surface subjected to laser
radiation is

Jj(x) =j(0)(1 + xtanaRy")*

where R is the radius of the heated spot on the surface.
Bearing in mind that the gas expansion is adiabatic, we can
find the nature of changes in its temperature and density as
the beam moves away from the evaporating surface. If we
assume that the evaporating material consists mainly of
atoms, we find that the relationship between the density of
atoms and temperature in an adiabatic process is [38, 86—
88]

N T .

Since the flux density of atoms is jx NV x T? (v is the
directional velocity of the beam), it follows from the above
expression for the flux in an atomic beam that the beam
temperature varies with distance away from the evaporat-
ing surface:

T =Tyl +xtanaRy')™" . (2.5)

The evolution of the electron density during expansion
of a weakly ionised plasma in space is of fundamental
importance. The later stages of plasma expansion involve
conversion of electrons into negative ions, which together
with positive ions become the condensation nuclei for the
evaporated material. If electrons recombine with ions, the
subsequent condensation is impossible. Therefore, we shall
analyse later the nature of the evolution of the electron
component in the course of expansion of a weakly ionised
plasma.

At high temperatures of a weakly ionised gas the rate of
establishing of an ionisation equilibrium is relatively rapid,
so that the electron density is given by the Saha formula and
depends exponentially on the plasma temperature. Since the
frequency representing the establishment of an ionisation
equilibrium is proportional to the electron density, this
density falls steeply when temperature is lowered. At some
temperature the rate at which ionisation equilibrium is
established becomes comparable with the plasma expansion
rate and at lower temperatures the ionisation equilibrium is
lost. My asymptotic theory [41—43, 89] of the evolution of
the electron component will be presented on the assumption

that the ionisation equilibrium is maintained by the
processes

e+ A2+ AT, (2.6)

where e, A, and AT are an electron, an atom, and an ion,
respectively. The three-body recombination rate constant at
low temperatures is [90]

K(T)=cT~°? ,

where C =2.0 x 10" em®K*?s~! [91].

The characteristic time of attaining ionisation equilib-
rium is 7, x (KNg)fl. It follows from Eqn (2.5) that the
expansion-cooling time of the plasma is

7\
Ty = (d(?l > =R(utana)™" ,

where R is the radius of the plasma beam at a given
distance from the surface. Obviously, the ionisation
equilibrium is lost when the time 7, for the establishment
of this equilibrium becomes comparable with the time of a
change in the equilibrium plasma. Here, N o< exp(—J/2T)
is the equilibrium electron density given by the Saha
formula, where J is the ionisation potential of the atoms.
We can see that dInN./dr=—(J/T)/ty, so that the
ionisation equilibrium is lost at temperatures such that

T
TCNTT7 .

2.7)

(2.8)

At lower temperatures the ionisation of atoms by
electron impact can be ignored and, in accordance with
Eqn (2.6), the equation for the balance of the electron
density is (if allowance is made for the quasineutrality of the
plasma)

dNn

—S=—KN] .
dt ¢

Its solution is

1 -1/2
e ([ ka) "
fo

where #, is the moment at which the condition of Eqn (2.8)
is satisfied.

The lower limit in Eqn (2.9) can be found more
accurately from the balance equation for the electron
density

dn,

g = KNV = NG)

2.9)

(2.10)

where N is the equilibrium electron density given by the
Saha formula. When temperature is varied slowly, this
equation yields N, = N, i.e. it corresponds to the ionisation
equilibrium in this system. When temperature is varied more
rapidly, we have Ny € N, so that the ionisation of atoms can
be ignored and the solution of the above equation is given by
Eqn (2.9).

Let us now find the asymptotic solution of Eqn (2.10).
Let us assume that the transition region is fairly narrow and
that in this region we have K =const and either
N, < exp(—ar/2), where a=2J/(Tt;), or N,
exp(—J/2T). Then, Eqn (2.10) becomes

dNn

e 2 2
e KN [N (0) exp(—ar) — N¢| .
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Its solution at high values of 7 is given by the expression
N =2Ka '{at —In2KNZ(0)a"'] - C} , (.11
where C = 0.577 is the Euler constant. We can see that this

solution is independent of the selected initial moment.
A comparison with Eqn (2.9) allows us to find #,:

aty=C +In[2kN;(0)a'] .
At this moment the following relationship is obeyed:

0.28J
TT]' '

KN?2(to) 1y exp (=C) = (2.12)

2
This relationship is identical with Eqn (2.8), but the initial
moment is found more accurately.

We shall now introduce in Eqn (2.9) the temperature
dependence of the rate constant of the process for wide
ranges of variation of temperature and time. It follows from
Eqn (2.5) that T o< 1/R, where R is the beam radius at a
given point. Moreover, dR/df xu x 7' and hence
77 = (dInT/df)™" o T73/2. This dependence allows us to
derive the following expression from Eqn (2.9) if Eqn (2.12)
is taken into account:

ng - %K(T)rcx(T) [‘ - (T10>6]

— 0.093/ [(% - lﬂ [V2(To)T] o

where the temperature T corresponds to the time .

The results obtained allow us to describe the evolution
of the electron component of a plasma when it expands in
space. We shall demonstrate the results by considering the
example of a laser copper plasma mentioned earlier
(Table 1). Its parameters relating to the evolution of
electrons and atoms during the initial stage of the plasma
beam expansion, when condensation of the evaporating
material is unimportant, are presented in Table 2. The
temperature T, given by Eqn (2.12) is the limit of the
ionisation equilibrium. For a given temperature dependence
of the density of atoms N(T) the temperature T is defined
by

N(Tc) = Nsat(Tc) s

(2.13)

(2.14)

where N (T) is the number density of the saturated
vapour at a given temperature. At lower temperatures the

Table 2. Parameters of the evolution of a laser copper plasma.

Radiation flux/ W cm—2

107 3% 10° 10°
Irradiation spot radius/mm 0.18 0.33 0.56
T./K 3740 3910 4100
7 (T:)/107 s 0.96 1.4 2.6
T./K 3270 2720 2360
N/10"® cm™ 15 6.4 2.9
Ne(T)/10" em™ 12 5.8 3.0
No(T)IN(T)]™ 6.8 67 600
T,/K 2990 2670 2400
T,/K 2740 2450 2250
Y(T,) 2.0 1.9 1.6
N;(0)/10™ cm™? 2.0 1.0 0.9
N;(00)/10% cm™ 2.7 33 3.5

condensation of atoms may occur on the copper surface,
which is at the same temperature.

The following notation is used in Table 2: N, is the
electron number density, N, is the equilibrium density of
electrons. We can see that at T, the ionisation equilibrium is
strongly violated, which accelerates the process of con-
densation during the subsequent cooling of the plasma if
ions act as the condensation nuclei of the supersaturated
vapour.

2.3 Electron decay and formation of negative ions
Electrons and ions are converted in the investigated
expanding plasma into cluster ions and become the
condensation nuclei which collect the evaporating mate-
rial. Therefore, the stage of conversion of electrons into
negative ions and of positive atomic ions into molecular
ions is important in the evolution of the plasma. The
following processes occurring during this stage are of
interest:

e+2A A +A, (2.15)
2A+ AT AT 4+ A (2.16)
e+AT A +A. (2.17)

Electrons decay in two channels, described by
Eqns (2.15) and (2.17), and the subsequent evolution of
the plasma depends on the competition between these
channels. In particular, in the limiting case when electrons
decay by dissociative recombination [Eqn (2.15)], the
density of ions during the next stage of the evolution of
the system becomes low and the evaporated material does
not condense.

We shall now consider the case when the times for the
establishment of an equilibrium given by Eqns (2.15) and
(2.17) are much shorter than the plasma cooling time. This
is true in particular of the evolution of a copper plasma,
considered here by way of example. Then at any given
plasma temperature there is a thermodynamic equilibrium
for the processes described by Eqns (2.15) and (2.17), so
that the densities of electrons N, and of negative ions [A7],
and the densities of atomic [A™] and molecular [A7] ions are
related by the Saha formula:

[/}\Vf] = aexp <—%) =X(T),

% - bexp(—?) =Y(T).

Here, EA is the energy representing the binding of an
electron to a negative ion; D is the dissociation energy of a
positive molecular ion; a and b are numerical coefficients
which depend weakly (in accordance with a power law) on
the plasma temperature 7; we shall ignore this dependence
in future because the range of temperatures corresponding
to the stage under consideration is relatively narrow.

In view of the plasma quasineutrality, we shall introduce
the density of positively and negatively charged particles:

Ni=N.+[AT]=[A"]+[A7] .

(2.18)

We can see that the fraction of electrons, relative to the
total density of charged particles at a given temperature, is
X/(1+X), and the fraction of positive atomic atoms is
Y/(1+7Y). Dissociative recombination results in an
irreversible loss of the charge, since the trapping of
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electrons by atoms conserves the total density of charged
particles and changes only their type. The balance equation
for the electron number density is

dN dN
¢ = —aN AT —=
dr a c[ 2]4_((:”)[“t s

where a is the coefficient of dissociative recombination of
electrons and molecular ions. The second term allows for
the transfer of electrons to negative ions. This balance
equation can be rewritten for the total density of charged
particles:

dN; aN?X

dt A+x)1+y)"
The rate of change of the variable X, defined by

dX X EA

dt _TT T

—aN [AT] =

changes the above equation to
dN; VN?
dx (I1+X)(1+7Y)°
where V = a1 T/EA. The solution of this equation is
1
(1+x)1+7Y) "
Hence it follows that as the system passes through the

recombination region, the number density of charged
particles becomes

Nl = (Ni(00)) ™' + vj dx

Ni(t =0)

Ni(t:oo):Wi(t:O) P

(2.19)

where

b 1
J:L X oa+r)

The required integral is J =1, if X = Y. The parameters X
and Y vary from zero to infinity. Temperatures 7, and T,
will be introduced on the basis of the following relationships:

X(T) =1, Y(T,)=1, (2.20)

which represent the temperature range where the investigated
processes occur. We have ¥ = Y (T,)X*, where k = D/EA.
The required integral is readily calculated by numerical
methods. In the case of a copper plasma, it amounts to
J=0.5-0.6.

Table 2 lists some of the laser copper plasma parameters
related to the processes under consideration. Since no
information is available on the recombination of molecular
copper ions, the coefficients of dissociative recombination
of electrons with Arj argon ions [92, 93] are used. There-
fore, the data on the evolution of the density of charged
particles obtained for this range of parameters are approx-
imate.

It is worth noting the following in an analysis of the
data in Table 2. The range of temperatures where the
electron component decays is located below T, at which
condensation of a vapour on a flat surface becomes
possible. Therefore, the condensation of a vapour in the
bulk, accompanied by the formation of clusters, occurs at
even lower temperatures. Moreover, the dissociative recom-
bination of electrons and molecular ions may result in the
loss of a significant proportion of the charged particles.

2.4 Mutual neutralisation of positive and negative ions

Since the condensation rate is proportional to the density
of ions which act as the condensation nuclei, it follows that
the processes resulting in the loss of ions are important in
the condensation stage. We shall now consider the
processes involving charge exchange from positive to
negative ions, resulting in mutual neutralisation of the ions.

We shall consider the process

AT FAT—SA, A, . (2.21)

As a result of it an electron is transferred from a negative
cluster to the field of a positively charged cluster. We shall
consider this process on the basis of an asymptotic model
[94] corresponding to a low energy of binding of an
electron to a negative ion. The electron transfer probability
is then a sharp function of the distance of closest approach
between the clusters. At low collision energies the cross
section of the process (2.21) is
2 2
o=1< Ry, Ry< <, (2.22)
€ €

where e is the electron charge; ¢ is the collision energy; R is
the distance of closest approach at which the probability of
charge exchange is of the order of unity.

An analysis in Ref. [94] shows that at low values of
y = (2m.EA /7’12)'/2 (EA is the energy of affinity of a cluster
to an electron, m, is the electron mass, and 7 is the Planck
constant) the product R,y depends weakly on the other
parameters of the problem. This is because the transition in
question occurs in the tail of the function of an electron
belonging to a negative ion, which falls exponentially as
e "7 with the distance r from a cluster. For this reason the
product R,y can be regarded as an independent parameter
of the problem and under the conditions considered here it
can be assumed that Ryy = 6 [94]. This value and Eqn (2.22)
give the following expression for the mutual neutralisation
rate constant if averaging is carried out over the Maxwellian
cluster velocity distribution:

30 ¢

(wr)'y
where T is the temperature and yu is the reduced mass of a
cluster.
The reduced mass of a cluster consisting of ¢; and ¢,
atoms is

(2.23)

9@+ q
mi2 1l
q1492

— (2.24)
where m is the mass of one atom. This gives us the balance
equation for the density of charged clusters:

dN 30¢° o+ o)\,
dr y(mT) 919>

Here, N, is the number density of charged clusters, which
allows for the quasineutrality of the system and the
averaging corresponds to a given distribution of the
cluster sizes. The simplest form of the distribution of
clusters in terms of the number of atoms ¢ in a cluster is

o exp(—q/q)
fa) = —7

(2.25)

(2.26)

where g is the average number of atoms in a cluster. This
distribution function can be used to transform the balance
equation (2.25) to
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dn,
dr
where k, = 84¢®/[y(mT)""?].

The expression for the neutralisation rate constant is
valid provided the temperature is low and the clusters are
not too large. The distance between clusters, which has to
be traversed by an electron from the field of a neutral
cluster to one of a positive cluster, must exceed the cluster
size.

We shall now give relevant estimates for copper clusters.
The energy of affinity of a copper atom to an electron is
EA =1.23¢eV [95, 96], i.e. y = 0.3/ay, where g is the Bohr
radius. The work function of copper, i.e. the energy of
affinity of an electron to an infinitely large cluster is 4.4 eV
[97], i.e. y =0.57/ay. For clusters with ¢ < 30 the electron
affinity energy is less than 3 eV [98]. We shall therefore
assume that y =0.4/ay, so that the distance between
clusters governing the cross section for mutual neutralisa-
tion of clusters is Ry = 154;. The number of atoms
contained in a cluster of radius R, is q:4nR(3)p/3m,
where m is the mass of an atom and p is the density of
the condensed material. For copper this quantity amounts
to ¢ ~ 100 which is the limit above which Eqn (2.23) is
invalid. In the case of copper the parameter ko is
k. ~ 4 x 108 em’s™! at temperatures from which conden-
sation begins.

For large clusters the distance of closest approach,
corresponding to the mutual neutralisation of clusters, is
equal to the sum of the radii. Then Eqn (2.22) yields the
cross section for mutual neutralisation of clusters:

& &
U:n:(rl +r), n.n< =z

=—kNig ', (2.27)

(2.28)

where r; and r, are the cluster radii. Averaging over the
Maxwellian distribution of clusters yields the rate constant
of the process

8T 1/2
k= (T_u> e2(r| +r2) .

Averaging this expression with the distribution function
(2.26) of clusters in terms of the numbers of atoms in them,
we obtain

(= (81)‘” (3_,,,)1/3 (u>/ 2 o)
Tu 4mp 9192 ! ?

~ 13 ezT—l/zm—l/ap—mq—l/é ’

(2.29)

(2.30)

where m is the mass of an atom and p is the density of the
condensed material. We can represent Eqn (2.30) in the
form

k= krcc_7]/6 5
where
koo = 132T P~ 0p= 113 (2.31)

The balance equation for the density of cluster ions is then

dN __
+ = _krchiq 1/6 .

i (2.32)

Here, N, and N_ are the number densities of positive and
negative cluster ions; Ny =N_.

In the derivation of the balance equation (2.32) it is
assumed that the bending of the paths because of the

Coulomb interaction of ions significantly alters the distance
of closest approach in their collisions [Eqn (2.22)]. In
general, the expressions for the cross section of the process
in question becomes, instead of Eqn (2.22),

Ry
a:nez——f—nR% .
€

(2.33)
According to the liquid drop model of clusters the effective
distance of closest approach is equal to the sum of the radii
of the colliding ions Ry = r; 4+ r,, where r; and r, are the
radii of the colliding clusters. The coagulation rate constant
is then

keoug = (8T (mp) ™12 n(r, + 1)) = 13.57"2m"/5p 72/
(2.34)

Replacement of Eqn (2.22) with Eqn (2.33) for the cross
section of the process modifies the balance equation (2.31)
to

dN __ _
T: = _(krcc q /6 + kcoag L[I/())Ni :

(2.35)
The values of the required rate constants at a temperature 7',
at which the pressure of a weakly ionised plasma is equal to
the saturated vapour pressure at a given temperature, are
listed in Table 3 for the investigated case of a laser copper
plasma. They make it possible to analyse the influence of
the process of charge exchange from a negative to a positive
cluster ion during cluster growth on the nature of
neutralisation in the system. This should be analysed
together with the growth of charge clusters.

Table 3. Parameters and rate constants of processes in an expanding
copper plasma.

Radiation flux/ W cm~—2

10 3% 10° 107

T./K 3270 2720 2360

k /1078 em® 7! 3.7 4.1 4.4
kree/1078 cm® 7! 1.0 1.1 12
Keong/107'% cm® 57! 4.6 42 3.9
ko/107" cm® 57! 6.6 6.0 5.6
S=Np(N+Ny)™ 0.23 0.33 0.44
dor 340 590 900

It therefore follows that the evolution of an expanding
weakly ionised gas, which is evaporated from the surface or
is formed in some other way, consists of a series of
consecutive processes involving charged particles. The
relationship between the times of these processes and the
motion of a gas create specific conditions for the evolution
of the system, so that its state differs considerably from the
state of thermodynamic equilibrium. The survival of
charged particles in such a system is of fundamental
importance for the condensation of the gas at the next
stage of expansion because ions subsequently become the
condensation nuclei.

3. Large clusters in a hot gas

3.1 Equilibrium distribution of clusters
In the course of its expansion a weakly ionised gas reaches
a state with parameters such that its pressure becomes
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comparable with the saturated vapour pressure at a given
temperature. Then, the condensation associated with the
formation and growth of clusters may begin in the
expanding gas and charged particles play the role of the
condensa-tion nuclei. The temperature at which this begins
is denoted by T,.. In reality, the condensation process
occurs at lower temperatures. In particular, Table 3 gives
the fraction s of the molecules in our copper plasma at the
temperature 7, when atoms and molecules are in a
thermodynamic equilibrium. It follows from this table
that the average number of atoms in molecules and clusters
does not differ greatly from unity. Moreover, we recall that
at the temperature 7, listed in Table 2 the densities of
atomic and molecular ions in the system are the same.
Thus, even under equilibrium conditions the transition
from an atomic vapour to one containing clusters occurs at
temperatures well below T.

Another feature of the condensation process is asso-
ciated with the instability of neutral clusters until the
number of atoms in them becomes large. It follows from
the classical theory of condensation [36 —40] and the drop
model of clusters that there is a critical cluster radius or a
critical number of atoms in a cluster corresponding to the
minimum value of the cluster size distribution function
under thermodynamic equilibrium conditions. The equilib-
rium distribution function of the clusters will be determined
in terms of the numbers of atoms in them on the basis of the
following assumptions. First, we shall adopt the liquid drop
model for clusters and assume that the properties of the
surface layer of a cluster are the same as those of a
macroscopic system. Second, we shall postulate that an
equilibrium results from the attachment or evaporation of
single atoms.

The similarity of the surface of such a cluster to a
macroscopic surface can be used to consider first the
attachment and evaporation fluxes for a macroscopic
surface. The attachment flux of atoms from the gaseous
phase to the macroscopic surface is

Ju = [T2mm)™''PNE 3.1

where the first factor represents the average component of
the velocity of atoms normal to the surface; m is the mass
of an atom; N is the number density of atoms; & is the
probability of attachment to the surface of an atom
colliding with it. The flux of evaporated atoms is

&
jcv =A eXp (_ }Lib) 5

where the parameter A depends weakly on temperature and
is governed by the surface properties; &, is the binding
energy of a surface atom, which is identical with the
sublimation energy of a macroscopic system of bound
atoms. When the atom number density N, is equal to the
saturated vapour density at a given temperature, the
attachment and evaporation fluxes become identical [see
Eqn (2.2)], i.e.

Jaw = [TQ@rm) ™" N G (T)E

(3.2)

In the case of clusters which can be modelled by a liquid
drop we have the same expression (3.1) for the flux of atoms
which become attached to the surface, whereas in the
expression for the flux of evaporating atoms (3.2) we
have to use the energy ¢, of binding of a surface atom
to a cluster, which depends on the number of atoms ¢ in a

cluster. Eqn (3.2) for a cluster then becomes

. &y
Jov = A €xp _7

3.3)
= [T(2nm)™' PN o (T)E exp (— —7>

T

Under the conditions of thermodynamic equilibrium
between clusters containing ¢—1 and ¢ atoms, the
frequencies of cluster dissociation and formation are
equal, i.e.

Ngjev =Nyt > (3.4)

gJev

where N, is the density of clusters containing ¢ atoms.
Hence, we obtain

N €, — Eub
— =N. 4w
mtexP< T )

Nq—l N
q

3.5)
The structure of this relationship is identical with the
Saha distribution. It in fact corresponds to the equilibrium

A, +ATZA, (3.6)

where A is an atom, and in this respect it is a full analogue
of the Saha distribution for high values of ¢q. Therefore, the
left-hand side of Eqn (3.5) corresponds to any values of ¢
in the case when the thermodynamic equilibrium is
maintained by the attachment of individual atoms. The
right-hand side of this relationship corresponds to high
values of ¢. It is interesting to consider how this
relationship works at low values of g beyond the limit
of its validity. This is illustrated in Table 4, which gives the
quantity

N? D —¢,
./: = exp gbub b
NmNsat (T) T

where N, is the number density of diatomic molecules and
D is the dissociation energy of a diatomic molecule. The
quantity f is the ratio of the left-hand part of the Saha
distribution in the case of an equilibrium between atoms
and diatomic molecules to the expression on the right of
Eqn (3.5), which applies to large clusters. This ratio would
be equal to unity if Eqn (3.5) were identical with the Saha
distribution for ¢ = 2. Table 4 gives the saturated vapour
pressure in torr at a given temperature. The parameters of
the copper and silver molecules are taken from [100] and
[101], respectively.

3.7)

Table 4.

P, /Torr 1 10 100 1000
Ag Tt /K 1634 1896 2258 2792

f 1.0 0.96 0.88 0.79
Cu Tt /K 1596 1820 2114 2525

f 44 4.1 3.9 3.5

We shall introduce the degree of supersaturation of the
vapour:

N
S=——+. 3.8
N () )
Then, Eqn (3.5) becomes [102]

Ng =S exp (L _ ESUb> .
Nq_] T

(3.9)
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Hence we can obtain the critical size of a cluster ¢, which
corresponds to the minimum number density of the
clusters:

Sexp(m>:1, S>1 . (3.10)

T

We shall find the critical size of a drop in the classical

theory of homogeneous condensation in [36 —40] in which a

cluster is modelled by a liquid drop. Then the number ¢ of
atoms in a cluster is related to the cluster radius r by

4 3

_ ampr. , (3.11)

3m

where p is the density of the liquid, m is the mass of an
atom, and the total binding energy of atoms in a cluster is

(3.12)

where o is the surface tension of the liquid. Hence, the
binding energy of a surface atom in a cluster is
dE,
& =3
q

2
E, = &ypq —4mra ,

= ey — a[32mm(3pq) "' .

Substitution of this expression into Eqn (3.10) gives the
critical number of atoms in a cluster,

e = 320m* 3p°[(T In $) 7P}, (3.13)
or the critical radius of a cluster (drop),
2am
=" 14
Yo = T S (3.14)

These expressions are obtained from the classical theory of
homogeneous condensation. The critical radius corre-
sponds to the minimum equilibrium density of clusters.
This means that in the course of the evolution of a test
cluster it continues to grow when it reaches the critical size.
However, if the size of a cluster is less than critical, its
subsequent evolution involves evaporation. The critical size
of a cluster is fairly large. Table 3 gives the values of ¢, for
a copper plasma near the temperature T, and for the degree
of supersaturation of the vapour § = 2.

Since &y, > T, the critical number of atoms in a cluster
is fairly large. In particular, for the copper plasma in
question expanding in space we have ¢, ~ 103 (Table 3).
Large values of ¢, imply that the condensation in a real
expanding plasma can occur only at ions acting as the
condensation nuclei. Consequently, only charged clusters
grow in an expanding plasma. Neutral clusters can form in
the system only by coagulation of large charged clusters.

Eqns (3.5) and (3.9) make it possible to relate the
equilibrium density of clusters at a given temperature to
the number density of atoms. This relationship can be
established with exponential precision and is given by

ESUI’ ((I)

N, =NS%exp (——) , (3.15)

T

where

q
Esurf(q) = Z(Esub - gk)
k=1

is the surface energy of a cluster.

If E ¢ is expanded in powers of l/q'/3 and only the first
term of the expansion is retained, the result is accurate to
within exp(const x ¢'/%). If two terms of the expansion are
included, the precision is governed by a factor independent

of ¢ and is much poorer than in the case illustrated in
Table 4. The preexponential factor can be found more
accurately if full information on the systems of bound
states is available for all values of q.

It is worth noting the following circumstance: in
accordance with Eqn (3.5), at high values ¢ > ¢, the
number density of clusters increases with the number of
atoms in a cluster; i.e. under thermodynamic equilibrium
conditions in the system, the clusters containing a small
number of atoms (including free atoms) do not contribute
to the total mass of bound atoms.

However, the reality is different. If we use the number
density of atoms to determine the number density of
clusters, we implicitly assume that a complete thermody-
namic equilibrium for clusters, described by Eqn (3.15),
cannot be achieved at high values of ¢. This means that the
evolution times of a system containing atoms and clusters,
when the process begins from a system of free atoms, are
short compared with the typical times of growth of large
neutral clusters. The relationship between the number
densities of clusters of similar dimensions, corresponding
to Eqns (3.5) and (3.9), is valid because the time for the
establishment of equilibrium given by Eqn (3.6) is relatively
short and does not exceed the time for the establishment of
an equilibrium between atoms and diatomic molecules.
These are the conditions under which the distributions
(3.5), (3.9), and (3.15) are valid for large but finite clusters.

3.2 Heat regimes duringexpansion of a condensirg vapour
The main special feature of the condensation process is the
nature of removal of the energy released in condensation.
This energy is relatively high. It is comparable to the
energy lost in the evaporation of atoms and is much higher
than the kinetic energy of atoms. Therefore, the release of
energy as a result of condensation alters the nature of
changes in temperature when a gas expands.

This can be demonstrated by considering the first stage
of the condensation process when molecules form in an
atomic beam. Let us assume that the beam expands in
vacuum, i.e. that the gas pressure in the beam is con-
siderably higher than the pressure of the buffer gas which
the beam enters, and let us find the nature of the change in
temperature in the course of adiabatic expansion of the
beam. When the formation of molecules is ignored, the
change in the beam tem-perature in the course of its
expansion is given by Eqn (2.5).

The change in the internal energy of the system during
expansion is

dE = dQ 4 pdV , (3.16)

where p is the gas pressure, V is the volume of the gas
element under consideration, and Q is the energy of atoms
and molecules contained in this element. Let us assume that
there are n, atoms and n, molecules in this volume
element. Let us assume specifically that fiw < T <€ D, where
Niw is the vibrational energy and D is the dissociation
energy of the molecule. We then have

3 7
Q —ETl’la + (ET_D)nm .

Moreover, assuming that the equilibrium between atoms
and molecules can be described by the scheme

2ACA, ,
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we find that the numbers of atoms and molecules are
related by the Saha formula:

ning! o< T™2 exp(~=D/T) ,

’ dn, B dn,, :ﬂ 2_1
n, My T \T 2/)°
Since the total number of the condensation nuclei is
conserved in this process, it follows that 2dn, + dn, =0,

ie.

dn, 1 1 /D 1

dT — n7' 4+ng' 2T \T 2)°

The total number of atoms and molecules in the gas
element under consideration is n =n, +n,. We have

40 = [<3na " 7nm) +3_T on, N <E _ D) anm] T

(3.17)

2 2 2 0T 2 oT
_[3ny iy 1
T2 2 ny' 4+ ng!

(Do)

Since n = NV, where N is the number density of atoms and
molecules, the second term in Eqn (3.16) is

av 7V
=—nT — .
P N

Hence, it follows from the condition of adiabaticity of the
process, dE =0, that the relationship between the gas
temperature and the number density is

N o T* (3.18)

and since the fraction of molecules in the gas is s = n,, /n,
the power exponent becomes

3 T A
K—5+23+3(]—.S)<D—§)<D—T>T .

If s =0, we have the law of expansion of an atomic gas
characterised by :%. However, since D > T, the devia-
tion from the above law may be considerable even when the
number density of molecules is low. By way of illustration
let us consider how the temperature of atoms changes in a
beam moving from the evaporating surface when the
proportion of molecules in the gas s is low. If s =0, the
relevant dependence is given by Eqn (2.5), which can be
stated in the form T/Ty=R/R,, where R is the beam
radius, and R, and T are its radius and temperature in the
region where the beam is formed.

It follows from the condition jR2 ~ TN R* = const that

dR _ (1 ®\dT _ 1+sD2 dT
R \4 2) T 2712) T °

It is assumed above that D > T. Since s x exp(D/T), it
follows that d7 = T?ds/Ds and the solution of the above
equation is

n (£ o (Do) 422
Ry T 2T

This solution is valid for any value of s € 1 and represents
an expansion in terms of the small parameter 7/D.

(3.19)

(3.20)

Let us consider the thermal regime of expansion of a
gas in which clusters grow. Thermodynamic equilibrium
between atoms and large clusters is lost and a further
parameter associated with the cluster growth rate is needed
in the law which describes the change in temperature with
gas expansion. In view of our interest in the growth of
charged clusters, the problem can be formulated as follows.
It is assumed that the cluster evolution is governed by the
processes of the attachment of atoms to clusters and the
evaporation of atoms from clusters, i.e. by the processes
described by Eqn (3.6). Then the number of clusters in the
selected element does not vary with time and only its
volume increases. Let us assume also that the cluster
size is restricted to a narrow interval Ag < g, where g(¢)
is the average number of atoms in a cluster and Agq is the
width of the distribution function of clusters in terms of the
number of atoms that each of them contains. In addition,
let us assume that the number of clusters n in the selected
element of volume is small compared with the number of
atoms n, in this element. In the case under consideration
when the condensation occurs at charged clusters, this
condition corresponds to a weak ionisation of the gas or
vapour. Let us now see how the gas expands under these
thermal conditions.

The internal energy of the gas element under considera-
tion is now given by Eqn (3.16). Since the gas pressure is
created by atoms, the second term in Eqn (3.16) is, as
before,

T dN,
N,

pdV = —n, + Tdn, ,
where N, is the number density of atoms and n, = N,V is
the number of atoms in the gas element in question. The
first term of Eqn (3.16) is now

3Tn, _
3 L+ d(3Tgng) — dzq:Eqnq .

dog=d (3.21)
The first term in the above expression represents the
kinetic energy of atoms and the second corresponds to the
vibrational excitation of a cluster; ny = " is the total
number of clusters and g is the average number of atoms in
a cluster. The cluster is regarded as a macroscopic particle
and the energy of the vibrational quanta is thus small
compared with the thermal energy. Therefore, the
Dulong—Petit law applies to the specific heat of the
cluster. In the third term of Eqn (3.21) the quantity E, is
the total binding energy of atoms in a cluster consisting of
g atoms. This term includes the internal energy of clusters
regarded as a system of bound atoms.

The third term in Eqn (3.21) can be represented in the
form

dE, _ _
d ZEq”q = d—ql ngdg = &gl dg ,
q

where ¢, is the binding energy of a surface atom in a
cluster. When the value of ¢ is large, so that a cluster
becomes a macroscopic particle, this binding energy is
& = &yp, Where &y, is the sublimation energy of a
macroscopic system per atom. The conservation of the
total number of atoms in the selected volume element,

dn, +nydg =0,
allows us to reduce the third term of Eqn (3.21) to
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d E En, = —&gp dn, .
q

Since g, > T and terms of the order of T /e, are small
compared with unity, the conservation of the total energy
dE =0 yields

dn,

3/ 2gng) dT  dN, ,
2 (1 LA L
2( YL )T TN, by,

This equation gives the relationship between the density
and temperature of the expanding gas at a given rate of
condensation of atoms in clusters. Since this rate depends
on the gas temperature, the problem of determining the
nature of the change in temperature with time becomes
self-consistent.

The formal solution of Eqn (3.22) is given by Eqn (3.18)
where the parameter x is

(3.22)

Esub ﬂ
T dT°

K= %(l +2gc) +¢ (3.23)
and ¢ =ny/n, is the concentration of the condensation
nuclei that does not change during the condensation
process. In the absence of clusters (¢ =0) Eqn (3.23)
corresponds to adiabatic expansion of an atomic gas
(k=3).

The presence of clusters in an adiabatically expanding
gas alters the nature of the heat balance. This occurs in the
expression for the adiabatic expansion parameter (3.2) in
two ways: first, some energy is concentrated in the internal
degrees of freedom of a cluster; second, the attachment of
atoms to a cluster releases an energy equal to the energy of
bond formation.

3.3 Processes of evaporation and coagulation of clusters
Charged clusters grow by the attachment of atoms and
simultaneously some atoms evaporate from the cluster
surface. We shall allow for these processes in the
description of the evolution of a charged cluster in a
supersaturated vapour based on the liquid drop model.

We shall derive the balance equation for the growth of a
large cluster allowing solely for the processes of attachment
of atoms to a cluster. We shall assume that a cluster can be
regarded as a liquid drop, so that an atom collides
effectively with a macroscopic particle of radius r. More-
over, we shall postulate that the cluster size is small
compared with the mean free path of atoms. Then the
cross section for the attachment of an atom to a cluster is
equal to mP¢, where & is the probability that an atom
colliding with a cluster surface becomes attached to it. The
balance equation for the number of atoms in a cluster ¢ > 1
has the following form if only the attachment of atoms is
taken into account:

dq

—2 =Nt

o (3.24)

where v = (8T/1tm)'/2 is the average thermal velocity of the
atoms, m is the mass of an atom, and N is the number
density of atoms.

Let us now include in Eqn (3.24) the evaporation of
atoms with the aid of Eqns (3.1) and (3.3) for the fluxes
representing the attachment of atoms to a cluster and the
evaporation of atoms from its surface. The result is

G (S 2 Nry o[

3.25

The probability of attachment of an atom to a clust(er 03
collision with the latter is assumed to be unity (& =1).
Within the framework of the liquid drop model the cluster
radius can be introduced on the basis of Eqn (3.11):
r= (3q/41tp)'/3, where p is the density of the liquid. If the
balance equation (3.25) is averaged over the number of
atoms in a cluster on the basis of the distribution function
(2.25), Eqn (3.25) becomes

dg _ o3 B (g3 — &)
TR koq N — N (T) exp T ., (3.26)

where
ko = 1.93ET'?m!/p=213 (3.27)

The rate constants for the case of expansion of a laser
copper plasma at a temperature 7, are listed in Table 3 and
typical evolution times of this plasma under condensation
conditions are given in Table 5.

Table 5. Parameters of condensation of a copper plasma.

Radiation flux/ W cm~—2

107 3% 10° 10°
7,/107%s 1.5 1.1 0.8
1./1077 s 1.0 2.5 4.6
Texp/ 10765 42 4.4 4.5
xc/mm 0.08 0.13 0.20
x/10717 cm? 1.0 4.2 9.4
N,/10"cm™ 2.0 1.0 0.6
N,/10" cm™ 1.4 1.4 1.8
1077 3.8 3.2 1.6
ro/nm 4.7 4.5 3.6
roT e 0.9 0.7 0.5

In addition to the growth of clusters by condensation
and evaporation of atoms, some role in the cluster growth is
also played by the coagulation of clusters, i.e. by the
merging of two clusters when they collide. The kinetic
equation for the distribution function of clusters in terms of
the number of atoms in a cluster f(g,¢) has the following
form if the processes of spontaneous dissociation of clusters
into smaller parts (including evaporation of atoms) are
ignored:

of(q, a ‘ .
f(aq, ) JO k(qi, a — @) a1 1) flg — q1,1) dg,

—fg.1) Jo k(q.q1)f(q1,1)dq; , (3.28)

where k(q1,¢q,) is the rate constant of coagulation in which
the numbers of atoms are ¢; and ¢, to form a cluster with
q1 + ¢» atoms and the cluster size distribution function is
normalised to N, which is the total density of clusters:
00

[, st 0dg=ny. (3.29)

Integration of Eqn (3.28) with respect to ¢ yields
dN/dt =0. Therefore, the adopted form of the kinetic
equation corresponds to the conservation of the total
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density of clusters in the course of their coagulation. This is
true of the evolution of charged clusters which act as the
condensation nuclei. Therefore, the kinetic equation (3.28)
describes the evolution of charged clusters.

Condition (2.21) allows us to represent the rate constant

of coagulation of two clusters in accordance with
Eqn (2.28):
g \!/2
k = (T—ﬂ> & (r +n) =kFlg1.q) . (3.30)
. 8n 1/2ez 3m 2/3
¢ Tm 4np
(3.31)
=317 P o= = 0.04k . ,
1/2
q1+4q
F(g1.02) = <¥> (0" +a") . (3.32)
49142

and the rate constant k. is given by Eqn (2.31).

Multiplication of Eqn (3.13) by ¢ and integration with
respect to dg (which is the number of atoms in a cluster)
gives

d— 00 'q ) ]
T(: = kN UO qdq JOF(% q—a1) a1, ) (g —q,1) dg

00 00
- ["ada [ Flar arta ntan aa (333

We shall use the approximate solution of Eqn (3.28) for
the case when the coagulation rate constant of Eqn (3.31) is
independent of the number of atoms in a cluster, i.e.
F((/I 7(/2) =const. Then f((h t) = Ncl exp(_q/q)/q is the
solution of Eqn (3.28). Substitution of this solution into
Eqn (3.33) yields

dg _
-, = 0'9krcc}VchS/6 p

o (3.34)

where the rate constant k.. is defined by Eqn (2.31).
The divergence between the rate constants in Eqns (2.32)
and (3.34) is a measure of the error resulting from the use
of the approximate solution.

The application of the same procedures to neutral
clusters, in which case the coagulation cross section is
n(r; 4 r,)> —where r; and r, are the radii of the colliding
clusters—gives the following balance equation which
replaces Eqn (3.34):

% = 1.1 kcoag}\/clqw6 p
where kcq,g is defined by Eqn (2.35). Again, the difference
between the coagulation rate constants in the balance
equations (2.33) and (3.35) is a measure of the error
resulting from the approximation adopted to obtain this
result.

Eqns (3.34) and (3.35) are of no practical importance
because the mutual neutralisation of clusters can occur only
once. Nevertheless, the above comparison of the rate
constants in Eqns (2.32) and (3.34), and also in
Eqns (2.33) and (3.35) is useful because it gives an estimate
of 10% for the error of the adopted method.

If condition (2.22) is not obeyed, i.e. if the coagulation
cross section is given by Eqn (2.33), the balance equation
for the average number of atoms in a cluster becomes

(3.35)

dg _ _

E = Ncq5/6(krcc + kcoagq]/3) .

Table 5 gives the evolution parameters of the investigated

copper plasma obtained by the analysis described above.
The rate constants defined by Eqns (2.35) and (3.27)

differ by a numerical factor, so that

(3.36)

Keoug =7.0.
ko

This means that these rate constants can be described by
the same expression k o v,r2, where v, 7:/m)'/2 is the
thermal velocity of an atom and r, oc (m/p)'/* is the radius
corresponding to one atom in a condensed system. The
same dependence of the rate constants kg, and ko on the
parameters of the problem is a consequence of the fact that
only one combination with the dimensions of the rate
constant can be formed from the parameters 7, m, and p.
However, the rate constants are of different nature and are
derived from the balance equations that describe different
processes. In fact, the condensation rate constant kg
represents the rate of growth of a cluster because of the
attachment of atoms to the cluster, which in the absence of
evaporation processes is

4z
(_q) X V, rf]N s
dt con

where v, o< (T/m)"? is the thermal velocity of an atom,
r, ocq] 3"a is the size of a cluster, and N is the number
density of atoms. This equation allows for the increase in
the number of atoms by unity in a cluster when one atom
becomes attached. The balance equation for cluster growth
by coagulation is

dg 2 =
— N,q .
( dt)coag *Yalend

Here, v, va/q]/2 is a typical velocity of a cluster and N, is
the number density of clusters. Allowance is made for the
fact that the coagulation of two clusters increases the
number of atoms in a cluster by ~g. Therefore,

d dg\™! -
()., ()., = vy

coag

(3.37)

Hence it follows that as long as the majority of atoms are
in a free state, the growth of clusters is governed by the
attachment of atoms.

3.4 Lifetime of an excited cluster

The nature of cluster growth depends on the process of
coagulation of two clusters. This process is accompanied by
modification of many bonds and it is therefore effective if the
colliding clusters are liquid. An excited cluster formed by
coagulation of two clusters may split into parts. Let us now
consider the channels of decay of a cluster and its lifetime.

The process under consideration is

Ai + A/_)A:;_)Ak + Aq—ky q = l+] 5 (338)

where A is an atom. The process can be analysed most
simply on the basis of its energy parameters [103, 104]. This
analysis will be demonstrated on the basis of the liquid
drop model of a cluster. In this case the binding energy of
atoms in a cluster containing ¢ atoms is

E=z¢q—Aq" (3.39)
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Figure 5. Energy released as a result of coagulation of two clusters (A + A,_; — A,) with the short-range potential of the interaction between atoms.
The total number of atoms ¢ in a cluster is assumed to be 40 (7), 50 (2), 60 (3), 70 (4), 80 (5). The data arc taken from Refs [105, 106].
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Figure 6. Energy released as a result of coagulation of two clusters (A + A, — A,) with the Lennard-Jones potential for the interaction between
atoms. The total number of atoms ¢ in a cluster is assumed to be 40 (7), 60 (2), or 80 (3). The data are taken from Refs [107, 108].

where &, is the binding energy per atom in a macroscopic
system of bound atoms, and the second term on the right-
hand side of Eqn (3.39) corresponds to the surface energy
and is proportional to the surface area of a cluster. If the
cluster is spherical, the energy needed for its dissociation by
process (3.38) is

AE = A [(q — k)P k- q2/3] (3.40)

The probability of this decay process decreases as the
above energy increases. It follows from Eqn (3.40) that
AE(k) becomes larger when k increases, i.e. the most
probable channels of decay of an excited cluster correspond
to the release of one atom or a small number of atoms.

Eqn (3.40) is valid in the case of large values of ¢ and &,
because small values of k are then of the greatest interest.
We shall therefore use the results of a realistic model for a
cluster consisting of atoms with a short-range interaction,
which describes clusters of rare gases. [f the atoms in a solid
cluster are regarded as hard spheres, the cluster structure is
face-centred cubic or hexagonal. Fig. 5 gives the k dependence
of the energy

AE(q, k) = E(q) —E(k) —E(q —k) , (3.41)
which is needed for the decay process of Eqn (3.38) at
absolute zero when the atoms are close packed in a cluster.
The energy parameters of these clusters are taken from
Refs [105, 106]. In the case of small clusters the icosahedral
structure is preferable and the clusters can then be regarded
as soft spheres. Fig. 6 gives the dependence (3.41) for
clusters with an icosahedral structure when the interaction
between the cluster atoms is described by the Lennard-
Jones potential. The energy parameters of these clusters are
based on the calculations reported in Refs [107, 108]. In
Figs 5 and 6, and below, the binding energies are given in
terms of the dissociation energy D of a diatomic molecule.
Examination of Figs 5 and 6 leads to the conclusion which
also follows from Eqn (3.40) that the liberation of one
atom from an excited cluster is the preferred decay channel.

The lifetime of a long-lived cluster formed by the
coagulation of two clusters will now be calculated. The
statistical model of the distribution of the internal degrees
of freedom of the cluster will be used. A cluster with ¢
atoms has s = 3¢ — 6 vibrational degrees of freedom and
the transitions between these degrees establish a statistical
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equili-brium. Forsimplicity, the frequencies of all these
vibrations are assumed to be the same and equal to .
The total number of states in a cluster with the excitation
energy AE is then

_(pts—=1)!
W = pls—1)! ~°

where p=AE/hiw is the total number of vibrational
excitations in the system and s is the number of vibrational
degrees of freedom.

The distribution of Eqn (3.42) can be derived as follows.
Consider s vibrations (oscillators) and p excitations. The first
oscillator is located at the first position and the other
oscillators and excitations follow in a random manner.
This gives a certain sequence of oscillators and excitations.
We assume that the number of excitations for a given
oscillator is equal to the number of the corresponding
components in such a sequence which follow the oscillator
in question and precede the next oscillator. Then the total
number of variants of the distribution of excitations between
the oscillators is equal to the number of combinationss — 1 of
oscillators which can be formed from the total number of
randomly distributed members of the sequence p + s — 1, and
is described by Eqn (3.42).

The same method can be used to determine the number
of variants such that the excitation energy of the system
does not exceed a given value AE — phiw,. The distribution is
now

(3.42)

W)

ps p| ol
and can be found by adding to the system in question just
one oscillator which takes up the excess energy. Hence, we
find the probability that the energy of this oscillator exceeds
Ae = kliw. The number of such variants is

_(p—k+s—1)!
i

and the probability of this situation is

(3.43)

Wy (pAs—k—1) p

= . 3.44
YW T rs— DT (k) (349
In particular, if £k < p, this gives
s— 1 -k
w, = |1+ - 345
e e

These expressions can be used to find the lifetime of an
excited plasma when the decay involves the release of one
atom. This release is assumed to occur when the excitation
energy of the relevant oscillator, corresponding to the
vibration of an atom in a direction perpendicular to the
cluster surface, exceeds the binding energy of a surface atom
in a cluster.f The average time of a change in this
distribution of excitations between oscillators is #,. The
statistical model then gives the average time after which the
number of quanta for a given oscillator exceeds k:

q:%b+o_n@+§—94r.

T This corresponds to the Einstein model (see, for example, Ref. [109]) in
which cach atom is regarded as a three-dimensional oscillator with
vibrations independent of the vibrations of other atoms.

(3.46)

If a cluster includes ng,; surface atoms with the same
binding energy, the lifetime of an excited cluster before the
release of one atom is

fo ko1\*
= 1 s—1 ——= .
E nsurf[ + (s )<p+2 2>

The nature of the process of coagulation of two clusters
will now be considered. The average kinetic energy of the
relative motion of the two clusters is

_ow? 3T
kin:7:7 5

(3.47)

where p is the reduced mass of the clusters, v is the velocity
of relative motion, and T is the temperature expressed in
energy units. The binding energy of the clusters which
coagulate considerably exceeds their thermal energy.
Therefore, each contact between clusters results in their
coagulation and the formation of a long-lived complex.
The average energy of each oscillator of this complex is T if
T > how. Therefore, the excitation energy of such a long-
lived complex is given by the following expression valid for
g > 1 and accurate to within values of the order of T:

(3.48)

where ¢ is the number of atoms in a cluster and AE is the
energy released as a result of cluster coagulation. The
values of this quantity for the short-range and Lennard-
Jones potentials of the interaction of atoms in a cluster are
given in Figs 5 and 6.

It therefore follows from Eqns (3.47) and (3.48) that the
lifetime of an excited cluster before the release of one atom
is (p=¢/hw, s=3q, ¢> 1):

= tO | + how
N Ngurf T + (Aﬁ/ﬁ(,{))

where Ag is the binding energy of the released atoms. If it is

e =3qT + AE ,

Ae/Tiw
] , (3.49)

assumed —as in Eqn (3.48)—that T > hw, the result
(Ae>T) is
t AE\ ™!
7=-2 exp[As(T—l——) ] . (3.50)
Rgurf 3(1

For large clusters such that ¢ > AE/(3A¢) x ¢*/°, the above
expression gives
to As

eXp— .
Ngurf T

T= (3.51)
We can see that these expressions do not include the
dependence on the parameter 7Zm, which represents the
energy of a quantum of vibrational excitations. The life-
time of a long-lived complex may be expected to depend
weakly on the frequency distribution of the vibrations in a
cluster. Moreover, the temperature dependence of £, is a
power law and it is weak compared with the exponential
dependence of Eqn (3.51) for the lifetime of a complex,
which is governed by the exponential factor exp(Ae/T).
This dependence can be obtained more simply on the
assumption that the release of an atom occurs when the
energy of the relevant vibration exceeds the binding energy
Ag of an atom. It follows from the Boltzmann law that
the probability of this happening is proportional to
exp(—Ae/Ty), where Ty is the effective temperature of
a cluster and is equal to the ratio of the excitation energy
of the cluster to the number of vibrations, i.e.
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T = (3gT + AE)/3q. This gives the temperature depend-
ence in Eqns (3.50) and (3.45).

In the ¢ > 1 case under consideration it follows from
Eqn (3.40) that AE o« ¢’ (k (x/q) and this gives
AE/3q x g ', e (Teir —T) o g~'/°. The temperature of
a long-lived complex formed by the coagulation of two
clusters is therefore close to the temperature of the colliding
clusters if ¢ > 1.

The lifetime of a long-lived complex is determined by its
decay accompanied by the release of one atom, because the
release of molecules requires a higher energy and the
dependence of the lifetime on the energy lost is strong.
Consequently, the relationship between the lifetimes for
different decay channels is

T <THh<13<..., (352)

where 7; is the lifetime of a complex until the release of a
molecule with i atoms. This equality breaks down at high
values of i ~ ¢, but these values of i do not contribute to
the lifetime of a long-lived complex.

The lifetime of such a complex before the release of a
diatomic molecule follows from Eqn (3.52):

AE\ ™
T, = t—oexp [Asz (T +—) ] ,
1y 3q

where n, is the number of ways in which a diatomic
molecule with the surface binding energy As, can be
released from a cluster. The minimum binding energy of a
molecule for the short-range interaction of atoms in a
cluster is

Agy =2Ae—D

(3.53)

(3.54)

where Ag is the binding energy of an atom in a cluster and
D is the dissociation energy of a diatomic molecule. If each
surface atom has p nearest neighbours with the same
energy, the number of ways that a diatomic molecule can
be released is

nsurf!

ot p! (nsurf - p)' '

where ng.¢ is the number of surface atoms with the
minimum binding energy. For close-packed clusters the
number of nearest neighbours which belong to the same
shell is p = 0.1, or 2. If p = 0, the minimum binding energy
of a diatomic molecule exceeds the value given by
Eqn (3.54) and the lifetime of a long-lived complex to
the moment of release of a diatomic molecule becomes even
greater.

Table 6 lists the ratios of the lifetimes of a long-lived
complex before the release of an atom and of a diatomic
molecule when the interaction of atoms in a cluster is of the
short-range type. It is assumed that the configuration of
atoms in a close-packed cluster at a given temperature is the
same as at absolute zero. This is true of solid clusters. The
melting of close-packed clusters occurs at T = 0.3D, where
D is the dissociation energy of a diatomic molecule
[110, 111]. Melting transfers some of the surface atoms
to vacant excited shells. This considerably reduces the
lifetime of a cluster before the release of an atom but
the lifetime before the release of a diatomic molecule is not
affected as much because of the random positions of the
excited atoms. It follows that the decay by the release of a
single atom is even more important in the case of liquid
clusters than for the solid ones.

ny=C" (3.55)

Table 6. Ratio 7, /7, of the lifetimes of an excited cluster with the short-
range interaction of atoms in the case of the release of an atom (t;) and of
a diatomic molecule (7,) [116].

Cluster T =0.1D T =0.2D T =03D
Ass 8 x 1072 6x 1077 2% 1077
Asg I1x107™" 4%x1078 7x107°
As 1x107" 7x 10710 8 x 1077
Asg 1x107% 9x 107" 4%x1077
Aso 1x107% 8 x 107! 4% 1077
Ag 3x107M 1x1077 2%x107°

A long-lived complex formed by the coagulation of two
colliding clusters thus decays primarily by the release of one
atom. Therefore, the collision of two clusters producing a
long-lived complex occurs in accordance with the scheme
[116]

Aj+A—AL—A,  +A—A, ,F2A...,  (3.56)

and the lifetime of this complex increases after each
consecutive decay. Table 7 [116] gives the lifetimes of
intermediate complexes which begin with the formation of
a cluster Ag, at the indicated temperatures. The reduction
in the temperature of a cluster as a result of each
consecutive decay is taken into account.

Table 7. Lifetimes of long-lived complexes formed by the successive decay
of clusters beginning from Ag at the given temperature. The lifetimes are
in units of 7y, which is a typical time in which a given distribution of
excitations at the appropriate oscillators is lost [116].

T =0.2D T =0.3D T =0.4D
Teo 2% 10" 6% 10° 9x10%*
Tso 6 x 10" 1 x 107 9 x 10*?
Tsg 2% 10 1x 108 3% 10%*
Ts7 2% 10" 2% 10° 1x10°
Tsg — 9 x 10%0 6 x 10°
Tss — 1x 10 3% 107

aThis lifetime corresponds to a solid cluster, but it is actually liquid at
this temperature and has a shorter lifetime.

The results given above and general considerations
make it possible to describe the nature of the decay of a
long-lived complex formed as a result of coagulation of two
clusters. The decay involves the consecutive release of
several atoms and after the release of each atom the
temperature of a cluster falls and its lifetime increases.
After the liberation of a small number of atoms the lifetime
increases by several orders of magnitude and the cluster
becomes effectively stable. For example, the excitation
energy of a cluster Agy, at a temperature 7 = 0.2D is
sufficient for the release of seven atoms, but after the
liberation of three or four atoms the lifetime becomes
practically infinite.

The expressions obtained for the lifetime of an excited
cluster include a strong temperature dependence, because a
complex is formed at 7 <€ D. Therefore, in the lifetime
estimates we have to use the real binding energies of the
atoms that are released and approximate models, such as
the model of a liquid drop for a cluster, are unacceptable.
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Figure7. Lifetime ofa liquid cluster A3 with the Lennard-Jones potential for the interaction of atoms: (7 ) Eqn (3.55); results of computer simulation of
the cluster behaviour taken from Ref. [114](2), Ref. [115] (3), and Ref. [116] (4).

The expressions obtained apply to a solid cluster
because the harmonic nature of vibrations is implied.
The lifetimes of liquid Lennard-Jones clusters have been
calculated by computer simulation of the motion of atoms
in clusters [112 —114]. Although the error resulting from the
application of Eqn (3.50) to a liquid cluster is large, we shall
nevertheless use this equation in a comparison with
computer calculations for liquid Lennard-Jones clusters
A5, It is necessary to bear in mind that the liquid state
of a Lennard-Jones cluster A3, which has an icosahedral
structure, corresponds to the transfer of one atom to a
vacant layer and the energy of such a transfer is gy = 2.86D
[108, 115]. The decay of a cluster is governed by the release
of this atom with the binding energy Ag = 3.56D [108].
Eqn (3.50) then becomes

3g—T)A

T = tgexp [M] R 3.57)
Ecxfso

where E, is the excitation energy of a cluster; a

redistribution of the energy between 3¢ — 6 vibrations
(g =13) is taken into account. Use is made of the
expression ¢ :Rc(2D/m)7]/2 for a typical time of a
change in the distribution, where m is the mass of an
atom, and R, and D are the parameters of a diatomic
molecule.

Fig. 7 gives the lifetime of the Lennard-Jones cluster A3
obtained by computer simulation of the cluster and by the
application of Eqn (3.57). The error resulting from the use
of this expression increases with increasing cluster excita-
tion energy. The discrepancy between this expression and
the results of computer simulation increases severalfold if
the nonlinear effects are taken into account. Nevertheless,
this equation is suitable for estimating the order of
magnitude of the lifetime of a liquid cluster. Its simplicity
makes it convenient for this purpose.

We shall use the results obtained to analyse the growth
of clusters during expansion and cooling of a vapour.
Various mechanisms of cluster growth are possible, depend-
ing on the nature of the interaction of atoms and clusters.
We shall consider the limiting cases. If the surface of a
cluster is regarded as solid, then the growth is governed

solely by the attachment of atoms to the cluster and by the
evaporation of atoms in accordance with the scheme given
by Eqn (3.6):

A, +A:Aq+| .
If it is assumed that the surface of a cluster is soft or liquid,

the growth resembles coalescence of liquid drops which
occurs in accordance with the scheme

Ai+AA, itj=q. (3.58)
This analysis implies an intermediate scheme
A +A—A;—A, ,+pA . (3.59)

We shall estimate the number of atoms p released by this
process in the case when i,j > 1. If the decay of a cluster

terminates when its temperature reaches the initial
temperature of the colliding clusters, then
AE = pAe , (3.60)

where AE is the energy released as a result of the
coagulation of clusters and Ae is the binding energy of
an atom in the resultant cluster. The maximum energy AE
for a given value of ¢ corresponds to i =j = ¢/2. Estimates
can now be obtained for clusters with the short-range
interaction of atoms. In this case the surface energy of a
cluster is 7.8D(12/3 [105, 106], where D is the dissociation
energy of a diatomic molecule and ¢ is the number of
atoms in a cluster. For a large cluster, as in the case of a
macroscopic system, we have Ag = 6D since each atom has
12 nearest neighbours. This gives
< AE -1 _ 2/3
P = max(As) - 034(1 . (361)
In particular, p <4 if g=41 and p <5 if ¢ =57. We can
therefore assume that p € ¢ and this makes it possible to
neglect p compared with ¢, which corresponds to the
growth of clusters by coagulation described by the scheme
in Eqn (3.58). This scheme also describes the growth of
clusters with a liquid surface.
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4. Radiation from a hot gas containing clusters

4.1 Radiation from small macroscopic drops

The heat balance may be affected not only by the processes
of gas expansion and condensation, but also by the
radiation emitted from clusters. The formation of clusters
does indeed alter the radiative properties of the system
because large clusters, behaving as macroscopic particles,
absorb in a wide spectral range. Therefore, the emission of
radiation by an expanding gas or a plasma is greatly
enhanced by the formation of clusters. It is therefore
desirable to estimate the contribution made by the emission
of radiation of an expanding gas to its heat balance.

The radiation from an expanding gas, including a weakly
ionised gas, is emitted mainly by the clusters which the gas
contains. In fact, the temperature of such a gas, considered
on the electron energy scale, is low and therefore the density
of excited atoms in the gas is low. Consequently, the power
emitted as a result of radiative transitions involving excited
atoms is very low and it is at least several orders of
magnitude less than the power of the radiation emitted
by a gas discharge. Therefore, in contrast to a gas discharge,
the excitation of atoms in a plasma of this kind makes no
contribution to the emission of radiation. The radiation
generated in such a plasma originates from large clusters
present in it, in the same way as the radiation from
hydrocarbon flames is determined by the soot particles
present in them [117].

Let us consider how the nature of the radiation emitted
by a cluster changes with its growth. The absorption and
emission spectra of atoms consist of separate lines. In the
case of molecules these lines are transformed into bands and
each of them consists of a large number of lines. As the
number of atoms in a cluster molecule increases, the bands
and lines expand and intersect. If the number of atoms in a
cluster is large, the absorption spectrum extends over a
certain range of wavelengths where the absorption prob-
ability (or the power of the radiation emitted by a cluster)
depends smoothly on the wavelength. This means that the
macroscopic limit is reached and we shall therefore assume
that the absorption spectrum does not change as a result of
further growth of a cluster. This simplified analysis of the
nature of the emission from a cluster does not provide a
rigorous analysis of the emission spectrum of a gas
containing clusters, but it is convenient for estimating
the contribution of radiation to the heat balance of the
system.

In this analysis of the radiative parameters of the
investigated plasma, the plasma will be regard as a heated
gas containing clusters. For simplicity, these particles will
be considered to be spherical. Moreover, in the investigated
part of the spectrum (optical and infrared) and for the size
of particles in question, the following condition is obeyed
by the emission wavelength A:

j.>>}’0 N

where ry is the characteristic particle size.

The photon-absorption cross section of a small spherical
particle of radius r, considered in the macroscopic limit, is
[118]

“4.1)

12nwre”
aabs(w) =

e+ e @2

where w is the electromagnetic wave frequency, ¢ is the
velocity of light, and &’ and &” are the real and imaginary
parts of the permittivity of the particle material. We can
now go over to the spectral power of the radiation which,
in accordance with the Kirchhoff law, relates the rates of
the radiation emission and absorption processes [118]

4.3)

where i(w) is the spectral density of blackbody radiation
per unit volume and for unit solid angle:

i(w) = hw3{4n3c3 [exp ('%‘”) - 1] }] .

If the frequency dependence of the permittivity is weak,
we can find the total radiation power emitted by a small
particle:

(@) = 4nco, (w)i(w)

4.4)

P(w) = J](a)) do> = 4nP flw)keT 3 (he) ™" . (4.5)
Here, o is the Stefan—Boltzmann constant, f(w)=
12¢"[(e" +2)> +¢"%"", and the parameter k is given by

o) 4 ? -1
k:J _x de (expx—l)_] dx] =3.83.
0

0 expx —1

The method selected for the representation of the
radiation power emitted by a particle makes it possible to
compare Eqn (3.38) with the expression for the radiation
power emitted by an absolutely black particle Py = 4nr’eT *.
We can see that

Prad . —1 . T

Py kfrT (Fic) —4.9_7‘}Lm ,
i.e. this ratio is proportional to the small parameter r/4,, of
Eqn (4.1) and the wavelength A, =0.29cm (K/T) corre-
sponds (in accordance with Wien’s law) to the maximal
spectral radiation power for an ideal blackbody. The
photon energy corresponding to the maximum of the
spectral power of the radiation emitted by a small particle
is somewhat greater (by a factor of 1.2) than the maximum
photon energy in blackbody radiation at a given
temperature.

Let us now consider this result in relation to the
radiation emitted by a hot gas containing small particles.
It is important to stress that the power of the emitted
radiation is proportional to the volume of a particle. This
means that the radiation power obtained from a unit
volume is proportional to the mass of the particles per
unit volume and is independent of the particle size
distribution. Therefore, the radiation power from a unit
volume can be found simply by considering the mass of the
matter which is present in this volume in the form of large
clusters.

In estimating the radiation power emitted by a plasma
we shall employ the spectral parameters of soot [119]. In
this caset we have f = 0.9 £ 0.1 [120, 121] and the error of
0.1 represents the change in this parameter in the optical
frequency range. The radiation power per unit volume of
the emitting particles is therefore

(4.6)

P,
rad — 'yTS

v , “.7

+1f it is assumed formally that ¢,&” > 0, the maximum value of the
parameter f(w) is f = 3 and corresponds to & =0, &’ = 2.
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where V is the volume of the emitting material which is
in the cluster state, and the parameter of y for soot is
[122, 123]

y=2. . em K7 . .
25+02Wem K™ 4.8

We shall use the above ratio in estimates. We shall
consider the contribution made to the cluster energy
balance by the emisison of radiation. We shall do this
by writing down the energy balance equation per unit
volume of a plasma, associated with the loss of radiation:

dr
C,— =—
Podt

The values of 7, found in this way for our copper plasma
example are given in Table 5. They are calculated from
Eqn (3.42), which gives 1, = C,/4yT 4. on the assumption
that all the copper vapour is transformed into large clusters
and that the process of emission of radiation occurs at
temperatures close to 7,. Moreover, the radiative para-
meter [Eqn (4.8)] of soot is used for copper. The values of
T, considerably exceed characteristic plasma expansion
times.

This means that the emission of radiation makes only a
small contribution to the heat balance of an expanding
plasma.

Our analysis of the radiative parameters of a cluster is
based on the simplest model of the interaction of radiation
with the cluster, which is regarded as a macroscopic particle
with the simplest absorption spectrum. In reality, this
interaction is more complex and fuller information is
needed on the emission spectrum of a particle, which
depends on its dimensions (see, for example, Refs [124—
126]). When radiation is emitted by metallic clusters (and
this review is concerned mainly with such clusters), the
absorption spectrum exhibits a strong resonance at the
electron plasma frequency of the metal. The width of this
resonance is of the order of vg/ry, where vg is the Fermi
velocity of the metal electrons and r, is the radius of a
cluster regarded as a macroscopic particle (see, for example,
Ref. [127]). All this means that the expressions obtained for
the radiative parameters of clusters can be used only in

Prg=—C,Tt;" . 4.9)

estimates. In particular, in the specific case of an expanding
laser copper plasma this simple approach convincingly
demonstrates that the radiation makes no contribution to
the heat balance of an expanding beam.

4.2 Photoabsorption cross section of metallic clusters

This rough model of the emission of radiation by a gas
con-taining small particles is helpful and has become the
first step in an analysis of the process. In the case of
condensation of an expanding gas or of a gas escaping
from a nozzle this model leads to the conclusion that the
radiation emitted by such a system makes no contribution
to the energy balance of the system. Another important
conclusion of this analysis for a transparent system is that
the power of the radiation generated by clusters is
proportional to the total mass of the light-emitting
particles, i.e. it is proportional to the number of atoms
contained in the clusters. Consequently, the absorption
cross section of a cluster is proportional to the number of
atoms in it and, within the framework of the model
adopted earlier on the assumption that f = const, the
absorption cross section of a soot particle is

gpaw

E)

Oabs = (4.10)

Wo
where a is the number of carbon atoms in a particle. If we
select himy, = 3 eV, we find that the absorption cross section
per atom in Eqn (4.10) is

_ mgfmy

=7.7%x 107" cm? R
4cp

0o
where m, is the mass of a carbon atom and p is the density
of soot particles, assumed to be the same as for graphite.

One further conclusion applied to the radiation emitted
by small particles: the emission spectrum of such particles
may differ from the emission spectrum of large systems
composed of the same material. This is demonstrated in
Fig. 8 [124], which gives the absorption cross section of
niobium clusters divided by the number of atoms in a
cluster, alongside the absorption spectrum of the macro-
scopic system.
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Figure 8. Photoabsorption cross section per atom, calculated for niobium
macroscopic niobium (dotted line) [125].

clusters from Eqn (4.2) (continuous curve) and the absorption spectrum of
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Figure 9. Apparatus used in determining the photoabsorption cross
section of silver clusters [128]. The clusters are generated by
bombardment of a silver target (/) with 25 keV xenon ions generated in
asource (2). Theresultant beam of cluster ions is focused and accelerated
by ion optics (3) and selected in accordance with their masses by passage
through a Wien filter (4). In the interaction region (5 ) the charged cluster
beam moves opposite to a laser beam (6). Charged clusters are excited in

thisregion and the beam then passes through a static quadrupole deflector
(7) which works on the principle of energy selection in an electric field.
Therefore, photo-dissociated clusters cannot reach a detector (8). A
pulsed laser is used and the deflection of the cluster beam under the
influence of laser radiation is a measure of the photoabsorption cross
section of the cluster ions.

Methods for the determination of the absorption cross
sections of clusters have been developed recently. These
methods are being applied to metallic clusters, so that we
shall begin with an analysis of the nature of the cross
section of a metallic cluster. We shall begin with Eqn (4.2)
and macroscopic values of the permittivity of a metal.
Bearing in mind that the absorption is due to electrons and
that the metal electrons can be regarded as quasiparticles,
we find that the permittivity of the metal plasma is

-1 w—g 4.11)
(0 +iow/T) '
Here, wg = 4‘rchez/m* is the plasma frequency of the metal
electrons, N, is the number density of electrons, m, is the
effective mass of electrons in a metal, and 7 is the damping
time of plasma oscillations, such that wt > 1.

Corrections allowing for the difference between a cluster
and a macroscopic system are needed in Eqn (4.11). The
first of these corrections should allow for the dependence of
the decay time of a plasmon on the cluster size. This time is
usually represented in the form

. 1 Vg

T T, L’

where 7, is the time constant of a particle of infinite size,
vg is the Fermi velocity, and L is the effective scattering
length, which in this case is governed by the cluster size.
Moreover, the finite cluster size should also be reflected in
other parameters of the interaction of electrons with an
electromagnetic wave. The general nature of the frequency
dependence is conserved and leads to a resonant type of
radiation, with the resonance corresponding to ¢ +2=0in
Eqn (4.2), i.e. it occurs at the frequency w, = wp\/g.
Therefore, the cross section representing the absorption
of an electromagnetic wave by a metallic cluster can be
represented as follows:

O'OIV2

U 4.12
(hw — fiwy)* + I'? @12

aabs(w)

The width I' of the resonance and the resonance frequency
w, depend slightly on the number of atoms in a cluster, and
the maximum absorption cross section g, of a cluster is
quite accurately proportional to the number of atoms in a
cluster.

Figure 10. Apparatus used in determination of the photoexcitation cross
sections of large cluster ions [129]: (1) source of clusters where metallic
vapour is mixed with a helium stream kept at liquid nitrogen temperature;
(2) laser beam for cluster photoionisation; (3) system for acceleration
and focusing a beam of charged clusters; (4) filter for selection of ions in
accordance with their masses; (5) laser beam for excitation of cluster
ions; (6) region of interaction of charged cluster and laser beam; (7) ion
acceleration and deceleration system; (8) time-of-flight mass spectro-
meter.

In particular, if we use Eqn (4.1) for the photoabsorp-
tion cross section and Eqn (4.11) for the permittivity of a
metal, we obtain the following expression for the para-
meters that occur in Eqn (4.12):

2 43
) 4nw
= == (4.13)
ot(w + o) cg

These expressions demonstrate that the radiation emitted
by metallic and dielectric (insulating) clusters is of the same
origin and that the photoabsorption cross section is related
to the permittivity parameters of the cluster material.
The experimental methods for determining the photo-
absorption cross section of clusters utilise the circumstance
that an excited cluster subsequently decays, i.e. that the
excitation is lost in the breaking of bonds in a cluster.
Therefore, the photoabsorption cross section may be found
from a comparison of the mass spectrum of a cluster beam
before and after illumination. Figs 9 and 10 show schemat-
ically the apparatus used in these experiments. We can see
that the principal difference between the apparatus shown
in these two figures is that in the case of the photoabsorp-
tion by small clusters the interaction time of the radiation
with a cluster is increased by directing the incident laser
beam parallel to the cluster beam, whereas in the case of
larger clusters with a relatively large photoabsorption cross
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Figure 11. Changes in the mass spectra of charged potassium clusters
obtained for different laser radiation powers [130]; ¢ is the number of
atoms in the detected ions. Initially the distribution of the cluster ion
masses has the Poisson profile with its centre corresponding to K 3, ions.
The arrows identify the numbers of atoms in cluster ions corresponding to
the maximum of the distribution function.

section the laser beam used to excite clusters is directed
perpendicular to the cluster beam. Moreover, in the case of
large clusters it is convenient to employ multistage excita-
tion. An analysis of the mass spectra of clusters recorded
after excitation is based on the assumption that the
photoexcitation cross section of a cluster is a monotonic
function of the number of atoms in the cluster. The change
in the mass spectrum of the cluster ions can then give
information on the photoexcitation cross section. By way of
demonstration, Fig. 11 [130] shows how the mass spectrum
of potassium cluster ions changes with the power of laser
radiation if during the ini-tial stage the distribution of the
mass of clusters is concentrated near ions with 900 atoms.
We can see that an increase in the laser radiation power
shifts the distribution function of the resultant cluster ions
in the direction of smaller masses.

Let us now consider the results of determination of the
absorption cross sections of clusters, which are given in
Figs 12—14 for small metallic clusters and in Figs 15—17
for large clusters. We shall not go into the details of the
theory (which is given, for example, in Refs [124-126,
135]), but we shall discuss the nature of the excitation of
metallic clusters from practical positions. We can see that in
the majority of cases the excitation of clusters can be
described in terms of the excitation of a plasmon, so
that the excitation cross section is given by Eqn (4.12).

Figure 12. Photoabsorption cross sections of silver cluster ions [128]:
(@) Agg; (b) Agjy.

The parameters in this equation are listed for some clusters
in Table 8. The maximum photoabsorption cross section of
clusters of this type is proportional, within the limits of the
experimental error, to the number of atoms in a cluster.
Moreover, this cross section decreases when the energy of a
resonance or its width are increased. It follows from Table 8
that the parameter g4I fiw, depends weakly on the nature of
the cluster. A statistical analysis of Table 8 yields the

average value of this param-eter:
ool fiwy = (1.9 +0.5) x 107 cm? eV? . (4.14)

It also follows from Table 8 that the photoabsorption cross
section is proportional (within 25%) to the number of

Table 8. Parameters of a plasma resonance for metallic cluster ions.

lon  Ref  fiwy/eV TI'/eV ]O_fff’cmz 101’?/ Zml 10_'172?“ /chvl
Agd [128]  4.02 0.62 884 1.0 2.4
Agl  [128] 3.82 0.56 16.8 0.8 1.7
K& [132] 193 0.22 26 2.9 12
K3 [132] 1.98 0.16 88 42 1.3
Kdo,  [130] 2.03 028 1750 3.5 2.0
Kdo  [130]  2.05 0.4 2500 2.8 2.3
Lify  [133] 292 0.9 62 0.45 12
Lit, [133] 3.06 115 120 0.44 1.6
Lif, [133] 3.17 132 280 0.64 2.7
Lid [133] 3.21 110 440 0.54 1.9
Lifso [133] 325 115 830 0.55 2.1
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Figure 13. Photoabsorption cross sections of sodium cluster ions [131];
() Nag: (b) Nafj; (¢) Naj.

atoms in a cluster. This is of the same order as the error in
determining the absolute values of the cross section.

In some cases (Figs 13 and 16) the photoabsorption
cross section of clusters, considered as a function of the
photon energy, has a doublet structure [131, 134, 135].
The simplest model that can account for this process
[131, 135] introduces not only a plasma resonance at a
frequency gy, but also a one-clectron resonance at a
frequency .. Then, the permittivity of a cluster can be
described by

2 2
PO R — (4.15)
o +iol o; — o —iwy

where the widths of the plasma I" and of the one-clectron F
resonances are in frequency units. In particular, for a Naj;
cluster the parameters in the expression describing the
measured cross section are

liwy = 2.62eV, fiw, =2.65¢V, I'=0.17¢V,
y=0.01leV, F=6x107*
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Figure 14. Photoabsorption cross sections of potassium cluster ions [132]:
(@) K§; (b) K.

We can see that the correction due to intrinsic oscillations
of the valence electrons occurs in the above expression, but
its relative weight is small.

4.3 Cluster ions in light sources
The above information on the radiative properties of
metallic clusters makes it possible to analyse the feasibility
of using clusters or cluster ions as the radiative components
in light sources. As long as the cluster size is considerably
less than the radiation wavelength,} the radiation emitted
by a cluster is generated by all its atoms. In this respect, a
cluster is a more effective light source than an incandescent
element where the radiation is generated on the surface.
Another advantage of a cluster as a radiative component is
its ability to operate at higher temperatures, particularly if
clusters can evaporate, i.e. if they are under nonequilibrium
conditions. These advantages of clusters make them
promising light sources. Therefore, prototypes of cluster
lamps are currently being developed: for example, light
sources with clusters in the form of compounds of tungsten
and thorium have been described in the literature [136].
We shall now consider the general problems of non-
equilibrium light sources when the light-emitting particles
are clusters. It should be stressed that the condition for the
operation of such sources is that the lifetime of a cluster
should be considerably longer than the time during which

T It is more correct to compare the radiation wavelength with the depth of
penetration of the electromagnetic radiation into a metal.
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Figure 15. Photoabsorption cross sections of lithium cluster ions [133]:
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the cluster emits energy comparable to the binding energy
of its atoms. This condition governs the efficiency of a
proposed light source. Hence, in particular, it follows that
cluster beams formed during the expansion of a vapour
escaping from a nozzle can be used as light sources because
in this case the cluster lifetime is governed by the cluster
transit time in the source and is short compared with the
characteristic radiative times. For this reason the contribu-
tion of the emission of radiation to the heat balance of a
vapour expanding beyond a nozzle is relatively small.
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+
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+

Figure 16. Photoabsorption cross sections of sodium cluster ions [134]:
(a) Naj; (b) Najj; (c) Naj.

Therefore, a cluster light source should be constructed
on the basis of the following principles. The zone of cluster
generation should be separate from the zone of light
emission. A cell must be constructed in which the tem-
perature distribution is inhomogeneous: clusters are formed
in a cold zone and are directed to a hot zone where they
emit and evaporate. The vapourised atomic vapour returns
to the cold zone. Obviously, it is convenient to use cluster
ions for two reasons. First, clusters act as the condensation
nuclei; second, it is easier to control ions and direct them to
the hot zone by an electric field. If such a light source is
made (for the sake of simplicity) in the form of a cylindrical
tube, then such a device should have the following
schematic form. A high temperature is maintained at the
centre of the tube, but at the peripheries a vapour is
converted into ions, which are then directed to the centre
of the tube in a buffer gas under the influence of an external
field. During their motion these ions are converted into
cluster ions, which reach the hot zone, where they emit
radiation and evaporate. The atomic vapour is returned to
the cold zone. This creates an inhomogeneous distribution of
the vapour across the tube cross section and this distribution
is governed by the balance between the flux of cluster ions to
the centre under the influence of the electric field and the
diffusion of atoms in the buffer gas to the cold region, where
the density of atoms is lower. Such circulation ensures that
each atom in the vapour is displaced repeatedly within cluster
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Figure 17. Photoabsorption cross sections of large potassium cluster ions
[130]: (a) K s (b) Kiyo.

ions towards the centre of the tube and in the free state
towards the tube walls.

We can also employ a simpler configuration in which a
beam of cluster ions is generated in the cold zone and
directed to the hot zone, where it emits in such a way that
the cluster atoms are used only once. This method is less
effective than that discussed above and it requires that the
time spent by clusters in the hot zone should be sufficiently
long.

We shall now consider the capabilities, in principle, of
such a system and make the relevant estimates for tungsten,
for which the necessary parameters have been deter-mined
up to ~3600K [84]. Table 9 gives the corresponding
parameters of a cluster containing 10* atoms (its radius
is 3.3 nm), although the ratio of the time constants of the
processes is independent of the cluster size on the basis of

Table 9. Radiative parameters of a tungsten cluster containing 10* atoms
and located in a hot buffer gas.

the models discussed earlier. The evaporation time of
a cluster at a given temperature is calculated from the
solution of Eqn (3.25) in which the condensation is
ignored.

The parameters of the evaporation flux near a macroscopic
surface are taken from Ref. [84]. The radiation emission
time is the time during which the emitted energy becomes
equal to the binding energy of atoms in a cluster. If this
time is short, then the formation of clusters is preferable
from the point of view of the energy in a light source, even
if the clusters are used once. In estimates we shall use the
model of a grey cluster (4.10) with the parameter
gy =3 X 10718 cm2, which agrees with the data given in
Table 9. It corresponds to the parameter f=1.7 for
tungsten.

In an analysis of the results presented in Table 9 we may
reach the conclusion that a light source based on cluster
ions is unpromising. Such a light source can be constructed
by directing a beam of cluster ions into the hot zone, i.e. the
light emission zone, in the case of single and multiple
utilisation of the vapour atoms as the cluster ions. If the
motion of ions in a buffer gas is controlled by an electric
field and is related to it through the ion mobility, the
process of transporting cluster ions may last for a fairly
long time, so that the lifetimes of clusters are governed by
the evaporation time in the hot zone and not by displace-
ment time. A source of this kind is characterised by the high
quality of the emitted radiation in view of its high
temperature and because the radiation is emitted by all
the atoms in clusters. Moreover, in accordance with this
parameter, such a source is better than a lamp with an
incandescent wire. Therefore, a light source based on
clusters is promising. Although it is much more complex
than many other existing light sources and its construction
will require additional information on clusters, a source of
this kind may have better output parameters.

5. Growth of clusters in an expanding gas

5.1 Formation of molecules in an expanding atomic gas

Condensation in an expanding gas or vapour is a
nonequilibrium process. The nature of this process
depends on the relationship between the expansion and
cluster-formation times. In particular, if the density of a
vapour or a gas is low, it expands before the compensation
takes place in the interior, so that a beam of an atomic gas
is obtained at the exit. The influence of these times on the
nature of the process is easiest to consider when molecules
are formed in an expanding atomic beam. If such a system
consists of a single compo-nent (including the part inside
the buffer gas), the process represents the first stage of
cluster formation and we can understand the relationship
governing the process. In the plasma-chemical method
when some compound is converted into a one-component
system (for example, Ti from TiCly), the decomposition of

Temperature/K

3400 3600 4000 4400
Evaporation time/107 s 0.2 0.003  0.0003 3 x 107
Radiative time/107*s 3 2 1 0.8
Colour temperature/K 4400 4700 5300 5700
Luminous efficiency” / Im w! 61 68 79 88

aDetermined on the basis of the colour temperature

this compound in a plasmotron, and the later release of the
dissociated component into the buffer gas or into vacuum,
makes the process of formation of molecules competitive
with the main process of the condensation of one of the
components (metal) on ions.

We shall assume that the formation of molecules during
the expansion of a gas is the result of the three-body
collision of atoms:
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A+B+C—AB+C . 6.1
We shall analyse this process in order to obtain informa-
tion on its rate constant. We shall begin with general
comments about the process in question. Since the atomic
particles A, B, and C are in this case atoms, long-lived
spontaneously decaying states of molecules are not formed
and the mechanism of the process is in agreement with the
Thomson theory (see, for example, Refs [137, 138]). An AB
molecule then forms as a result of the simultaneous
collision of three atoms. The third atom, C, carries away
the excess energy, so that the atoms A and B form a bound
state and the binding energy is of the order of the thermal
energy T of the colliding atoms. Therefore, the process can
occur in a certain range of distances, of the order of b,
between the atoms A and B and the critical size is given by
the relationship U(b) =T, where U(R) is the potential of
the interaction of the atoms A and B. The rate constant of
the three-body process has the dimensions of cm®s™' and
can be estimated from

K x vob® , (5.2)

where v is a typical velocity of the colliding atoms, and o is
the cross section for an elastic collision of the atom C with
the atom A or B, which is accompanied by an exchange of
energy of the order of 7.

In particular, if the long-range interaction between
atoms is described by the van der Waals potential,
U x R7%, the temperature dependence of the rate constant
of the three-body process is

KT ' . (5.3)

This dependence is fairly weak against the background of
the errors involved in estimating this quantity. Therefore,
in simple estimates of the rate constant of the three-body
process its temperature dependence can be ignored.

We do not have sufficient information on the rate
constants of the three-body process involving the atoms
of interest to us in the relevant temperature range.
However, understanding of the nature of this process
helps one to approach correctly the task of estimating
its rate con- stant. Since in view of the simple structure of
the colliding particles, the association of atoms is governed
by the simultaneous elastic collisions of three atoms, the
rate constant of the process depends weakly on temperature
and on the nature of the colliding partners. This is
demonstrated in Table 10, which lists the rate constants
of the formation of chlorine and nitrogen molecules by
three-body collisions at room temperature [139]. It follows
from this table that the average rate constant of the

Table 10. Rate constants of the process 2A +C — A, +C at room
temperature [139].

A C K/lO_32 em®s7!
Cl Cl, 5.6

Cl He 3.9

Cl Ar 1.2

cl N, 4.1

N N 2.2

N N, 15

N He 2.2

N Ar 0.93

2C1+A — Cl,+A process is 3.2 x 103 (in units of
10°2em®s™"), the rate constant of the process
IN4+A —N,+A is 1.6 x 1052 and the average value
that allows for both processes is 2 X 10%%3. Since later we
shall consider higher temperatures at which this process
takes place, we shall use the average value of the rate
constant of the process:

K=1x10"2cm®s™ x 10%%3 . (5.4)

Next, we shall determine the fraction of the molecules
which are formed from an atomic vapour during its cooling
when the rates of cooling and expansion of the vapour are
high under nonequilibrium conditions. For simplicity, we
shall consider only the model process

3ATTA, + A (5.5)

and determine the fraction of atoms that are converted
into molecules by rapid expansion of the mixture if initially
there are no molecules in a hot gas. Since the analysis is
qualitative and we are interested in how the evolution of the
whole process depends on the relationship between the time
constants of the individual processes, we shall assume for
simplicity that the fraction of molecules in the final stage is
small. The equation for the balance of the number density
of molecules N,, in accordance with the scheme (5.1) is

d N m

dr = —kgisNmNa + KNi 5

(5.6)
where N, is the number density of atoms, kg (T) is the rate
constant of the dissociation of the molecules owing to
collisions with atoms, and K is the rate constant of the
formation of molecules by three-body collisions of atoms.

Under equilibrium conditions it follows from the Saha
formula that N2/N,, o« exp(—D/T), where D is the dis-
sociation energy of a molecule. Hence, kgis/K
exp (—D/T) « exp(—yt), where y=|dT/d¢t|D/T?. The
dissociation rate constant therefore decreases exponentially
with time. Against this background we shall ignore the
dependence K(f). Next, since the number density of
molecules is low, the process of formation of molecules
does not affect the number density of atoms. We shall
assume that the number density of atoms in
N, = Ngexp(—vt), where the parameter v is governed by
the gas expansion rate and its value is v < 7. The parameter
v is related to the gas expansion time 7, used earlier:

v=1/74.
On the basis of the above, Eqn (5.6) becomes
dN
Tl‘m = kgisstNO exp[—(y + V)t]

+ KN§ exp(—3vt) — N, (5.7
Here, kY is the initial value of the dissociation rate
constant and N is the initial number density of atoms. The
last term on the right allows for the gas expansion.

Let us now analyse the nature of the evolution of the
system described by Eqn (5.7). Initially, the rate at which
equilibrium is established is described by Eqn (5.5). At the
beginning this rate, described by Eqn (5.5), greatly exceeds
the gas expansion rate kgissNo > v. Therefore, during the
first stage of the evolution of the system the density of
molecules is the equilibrium value at a given temperature,
which corresponds to the solution of Eqn (5.7) by neglect of
its left-hand part. During the subsequent evolution of the
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system the rate of establishment of the dissociation
equilibrium falls exponentially with time and the equilib-
rium is lost when the time needed to establish it becomes
comparable to the gas expansion time. When this happens
the process of formation of molecules is weakened, so that
the density of molecules does not vary with time during the
subsequent expansion. It is therefore convenient to rewrite
Eqn (5.7) in terms of the relative proportion of molecules
Cm = Nm/Na = Nm CXp(Vt)/N():

d Cm
dr

= _kgisscmNO exXp [_('Y + V)t] + KN% exp(_ZVt) .

The asymptotic solution of this equation subject to the
inequalities kS Ny > 7 > v is

2 /10 20/ (+v)
noe) = 0 (M) (58
v Y+

The second factor on the right-hand side of Eqn (5.8) is
always smaller than unity, and its dependence on the
parameters of the problem is weak. It allows for the fact
that the molecules form mainly at the moment when the
characteristic times of the processes become comparable and
the relative fraction of the molecules which are formed is
proportional to the square of the number density of atoms
N? at that moment. The small parameter of the problem is
therefore KNi/v. This is obtained by bearing in mind that
v=dInN/dtx dInT/dt and y=~(D/T)dInT/dt, ie.
y>v.

The results obtained allow us to draw conclusions about
the nature of the process of formation of molecules in an
expanding gas. If the number density of atoms is low,
molecules cannot form and this is even more true of the
condensation, because the expansion of the gas is faster than
the processes of the association of atoms. It follows that the
investigated condensation processes in an expanding gas and
in a plasma occur at relatively high gas pressures or relatively
low expansion rates.

5.2 Cluster evolution in an expanding ionised gas

The balance equations obtained above can be used to
analyse the nature of the evolution of an expanding plasma
in the course of the formation and growth of clusters. We
shall later make this analysis for an expanding ionised gas,
bearing in mind that only charged clusters can grow during
the condensation process, i.e. that ions are the condensation
nuclei. Under the optimal condensation conditions the cluster
ions then contain a large number of atoms g > 1. We shall
assume that this condition applies to the process itself.
Moreover, we shall specifically consider the parameters of a
laser copper plasma.

A comparison of the balance equations (3.26) and (3.31)
shows that the contribution of coagulation to the cluster
growth is slight. In fact, this is true if

(N = NaNG' > koecki'g71¢ (59

It follows from the data in Table 3 that, in accordance
with the above condition, the number density of atoms in a
plasma should exceed by four orders of magnitude the
number density of ions, which is indeed true in view of the
weak ionisation of the plasma. Hence, dividing Eqn (2.32)
by (3.26), we find the nature of the changes in the number
density of cluster ions during their growth:

dN, kN2 Kreo
=—— =—. 5.10
dg g’*’ * T koM. (5.10)
The solution of this equation gives
Ny
N,=— | 5.11
T+ 6KNyG /0 (5.11)

where N is the number density of charged particles before
the onset of condensation. We can see that the nature of
the evolution of ions depends on the magnitude of the
parameter ﬁ:6KNoﬂ'/6. If B> 1, the number density of
cluster ions when the condensation is complete is
independent of the initial density. Table 5 gives the values
of this parameter for the investigated regimes of the
evolution of a laser copper plasma, and also other
evolution parameters of a laser plasma obtained on the
assumption that the dissociative recombination coefficient
of electrons and copper molecular ions is zero.

Let us consider the evolution of large clusters. It follows
from Eqns (2.31) and (2.35) that the balance equation for
the number density of neutral clusters N, is

dn,
dr

:krch?{—q_]/é _kcoagNﬁql/ﬁ . (5.12)
Estimates show that in this regime the coagulation of

neutral clusters is unimportant, so that Eqns (3.22) and
(3.11) yield

ANy _ KV (5.13)
A7 koN.g/®
The approximate solution of this equation is
6krooN2G '/
Ny =t N2 glle (5.14)

kONc

Let us consider the specific case of the evolution of the
system under investigation, which leads finally to the
conversion of all the evaporated material into clusters.
This case is of special interest in applications. The
condensation time is then not very long so that the whole
of the evaporated material, forming during the first stage a
beam of atoms with a small admixture of charged particles,
becomes converted into clusters in the final stage and the
clusters are mainly charged. The average number of atoms in
a cluster g is then related to the final number density of
clusters N, and the initial number density of atoms N by

(N +2N, )G =N, , (5.15)

and the characteristic condensation time deduced from
Eqn (3.26) is
3513

to = a__
kONc

(5.16)

Table 5 gives the values of the parameters for the
investigated laser copper plasma deduced within the
framework of the adopted model. An analysis of these
values shows that the assumptions made are obeyed
qualitatively. Moreover, Table 5 gives the values of the
parameter e2r0/T (ro is the radius of the resultant cluster),
which is assumed to be small within the framework of the
simplified version (2.22). We can see that it is more correct
to assume the smallness of this parameter by replacing
Eqn (2.22) for the cross section describing collisions of
positive and negative ions with Eqn (2.33).
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This analysis makes it possible to construct a physical
picture of the investigated process, which is as follows. The
plasma expansion and cooling results in the condensation of
vapour atoms on ions. The evaporated material, which
consists mainly of atoms during the first stage of the
process, is in the form of cluster ions at the last stage.

5.3 Kinetics of condensation processes in a cooling gas
We have analysed the nature of condensation in an
expanding ionised gas when the condensation occurs
only on ions acting as the condensation nuclei and
involves the attachment and evaporation of just one
atom. Then, under favourable conditions, all the atoms
become attached to ions, so that the whole of the atomic
vapour is converted into charged clusters. Since the
processes of coagulation involving the resultant clusters
are not very effective under the investigated conditions, the
concentration of neutral clusters at the final stage of the
process is relatively low.

This regime describes the evolution of a laser plasma
formed as a result of irradiating a surface. The concentration
of ions in such a system is governed by the processes of
evaporation of the irradiated surface and the subsequent
evolution of an expanding ionised gas. This concentration
is relatively low and determines the nature of the subsequent
condensation processes. Generation of an expanding beam of
atoms alters the conditions of condensation in the sources of
beams. The temperature in the source is lower than the
temperature of the laser-irradiated surface, so that there are
practically no ions in the expand-ing atomic beam. lons may be
generated later and they may accelerate the process of beam
clusterisation. An analysis of the processes occuring in the
beam makes it possible to select the optimal distance from a
nozzle for clusterisation. However, even in the absence of
ionisation, beam clusterisation occurs at neutral particles,
because the vapour in the beam is strongly supersaturated.

Let us consider the condensation involving neutral
particles when a dense atomic beam expands and cools. In
addition to the attachment and evaporation of single atoms,
let us consider the merging and decay of clusters in various
channels:

k(l,m)

A1+Am :Al+m s

v(l,m)

(5.17)

where v(l,m) is the decay frequency of a cluster containing
m+1 atoms into two clusters with m and / atoms and
k(l,m) is the rate constant of coagulation of two clusters,
which is related to the decay frequency v(/,m) of a cluster
containing m + [ atoms into two clusters m and [ (including
the evaporation of one atom) by the principle of detailed
equilibrium:

V([, m) — N;:qNI(;? ex _Eiurf - E;‘er + Ei-l.'l—l’”?‘ (5 ]8)
kGm) NI T o

where the index eq means that the number densities of
clusters correspond to thermodynamic equilibrium and are
therefore given by Eqn (3.15). The quantity N (7) in
Eqn (5.18) is the saturated vapour density at a given
temperature and E? . is the surface energy of a cluster
containing ¢ atoms.

The balance equation for the density of clusters in
accordance with the scheme (5.17) is
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N0 (g, iyes! ~ of(g, 1
g—1
+ ) _kla=p.p)fla—p. )f(p. 1)
p=I
g—1 0
—f(g: ) _va—p, p) —Ffa )Y kg, p)f(p: 1)
p=1 p=I1
+Y fp+a. 0v(p. q) . (5.19)
p=I

The first term on the right-hand side of the above equation
allows for the expansion of a gas in the course of its
evolution and 7., is the gas expansion time. The second
term on the right takes account of the method of
normalisation of the cluster distribution function. If this
function is normalised to the number density of clusters
Nch
o0

flg, t)=Ng , (5.20)
g=1
the second term is absent (a =0).

We shall use the system of equations (5.19) to consider
the evolution of an ionised gas discussed in the preceding
subsection, when the condensation occurs on ions and
results in the formation of large charged clusters and the
processes of coagulation during collisions of charged
clusters are unimportant. The system then has two compo-
nents: atoms and large charged clusters. We shall assume that
the gas expansion does not affect the nature of the evolution
of the system and we shall ignore the coagulation processes,
i.e. we shall limit our discussion to the scheme given by
Eqn (3.6). Then, multiplication of the balance equation
(5.19) by ¢ and summation over ¢, gives

d 00 00 A 3
2l 0= fa. 1), [N — N (T) exp (— %)] :
q=2 g=1

(5.21)
where Kq = k(]7(/ - 1) and qu = Esurf(q+ ]) _Esurf(q)
=&, — &qp- It is assumed here that large values of the
number of atoms in a cluster ¢ dominate the distribution of
clusters in terms of ¢ and that the number density of free
atoms N may be related in any way to the number density
of atoms in clusters gNy = 3. qf(q,1).

If the width of the distribution function of clusters in
terms of the number of atoms they contain is considerably
less than g, which is the average number of atoms in a
cluster, Eqn (5.21) can be written as follows:

dN dg

— =N =N [N — Neu(T) exp (— A;q)] (5.22)

Here, N; is the number density of ions that are
condensation nuclei. The changes in the number densities
of atoms and clusters as a result of the gas expansion are
ignored and the density of ions N; is assumed to remain
constant in time. This gives )  gN, + N =gN; + N = const.
Eqn (5.22) is identical with Eqn (3.25) when a suitable
selection is made of the rate constant of the process and the
averaging is carried out over the distribution of clusters in
terms of the number of atoms in a cluster. This comparison
allows us to understand better the conditions which
correspond to the investigated nature of the evolution of
cluster ions.
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Let us now consider the nature of growth of neutral
clusters in the course of the expansion and cooling of a
neutral gas. Then under thermodynamic equilibrium con-
ditions the distribution function of clusters in terms of the
number of atoms each contains has a minimum at the
critical number of atoms in a cluster ¢, which is given by
Eqn (3.13). A typical condensation time at a given tem-
perature is inversely proportional to the distribution
function of clusters (3.15) at its minimum and is fairly large.

This is also true when a gas or a vapour expands in
space, but the manifestation of this relationship is some-
what different. As a vapour expands and cools, the degree
of its supersaturation increases and the value of the
supersaturation factor of Eqn (3.8) reaches hundreds.
The critical size of a cluster decreases correspondingly.
The processes of attachment of atoms to clusters whose size
exceeds the critical value are more effective than the
evaporation processes. Therefore, such clusters grow quite
effectively and their number rises strongly with increase in
the degree of supersaturation of the vapour. In the final
stage of this process the possibility of formation of large
clusters depends on the cluster growth and gas expansion
rates.

Since the cluster growth rate is proportional to the initial
number density of atoms in a gas, the results of expansion of
a neutral atomic gas in space depend on its initial density and
on the expansion time. If the initial number density of atoms
in a gas is low, then the scheme considered in Section 5.1
applies. The final product contains an atomic gas with a small
admixture of molecules and the proportion of molecules
increases with the initial density of the gas atoms. At high
number densities of atoms in a gas the final product is in the
form of clusters whose dimensions increase with the initial
number density of gas atoms and with the expansion time.

Let us consider an asymptotic regime of cluster
formation when the clusters are sufficiently large and the
nature of the growth is described by the scheme given in
Eqn (5.17). We can then ignore the evaporation compared
with the coagulation. If the liquid drop model is applied to
clusters, the growth of clusters by coagulation is described
by Eqn (5.19) and the balance equation for the cluster
density is given by the following Boltzmann equation:

g 1)

5 =1 ta —af(q, t)

+ Jk(ql» q—q1)flg—qi, 1) f(q, t)dg,

100 [#a. ) lar. ) da (523)
Here, k(q1,q,) is the rate constant of coagulation of two
colliding clusters containing ¢; and ¢, atoms, respectively.
Moreover, the distribution function f(g,?) is normalised by
the condition

v = [asta. 04q (524)
where N is the total number density of atoms in clusters.
The parameter a in Eqn (5.23) can be deduced from the
normalisation condition (5.24). We shall find this para-
meter on the assumption that 7, = 0, i.e. we shall assume
that the total number density of free and bound atoms
remains constant in time. Then, multiplication of

Eqn (5.23) by ¢ and integration with respect to ¢ gives,
on the basis of the above condition, the product

aN = j‘“ Y9 41, 1) fla 1) day day (5.25)

> -
For an arbitrary value of 7., the resultant equation assumes
the form

dN N
_— = 5.26
dt Tex (5.26)
and has the following solution:
t
N = Ny exp (——) . (5.27)
Tex

Multiplication of Eqn (5.23) by q2 and integration with
respect to ¢ yields

% “(ff(q’ 1)dg <Jf1f(q, 7 dq)fl]

:J[(fh + )

1 . .
7 +(11(12—505(611+(12)]f((11»1)f((12,t) dg,dq, .

(5.28)

We shall later to describe cluster
evolution.
Let us calculate the rate constant of coagulation of two

colliding clusters with soft surfaces:

A, +A, —A

q1 q2

use this equation

(5.29)

If the clusters are spherical and their density p is equal to
the density of a macroscopic system of bound atoms p, the
rate constant for the coagulation of two clusters deduced
from Eqn (2.35) is

Q7 \1/2
k(q1, 42) = =
(91> ¢2) = n(r +12) (nﬂ>

=ko(a)? + 4V (a1 + @) a7 a5 L (5.30)

Q+q

where the rate constant k, is given by Eqn (3.27):

2/3 1/2
ko = n(3—m) (8—T> = 1.937 269723 | (531)
4mp m

Here, r; and r, are the radii of the colliding clusters
containing ¢, and ¢, atoms, respectively; m is the mass of
an atom; p is the density of the macroscopic system; the
radius (3m/41tp)]/3 corresponds to a single atom; and u is
the reduced mass of the colliding clusters. This expression
is based on the liquid drop model of a cluster and will be
used later to analyse the nature of cluster growth in an
expanding gas.

We shall use the simplest cluster size distribution
function [compare with Eqn (2.26)]:

f(g,t) = Ngexp (— %) <%) ,

where g(t) is the average number of atoms in clusters at a
given moment. The use of Eqns (5.32) and (5.30) reduces
Eqn (5.28) to

(5.32)

99 _ grog'len .

o (5.33)

The solution of Eqn (5.33) that allows for the nature of a
change in the density of atoms in clusters of Eqn (5.27)
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leads to the following expression for the average number of
atoms in clusters at the end of the process:

g =10(koNo7e)”, G 1 . (5.34)

Eqn (5.34) is an asymptotic expression for the average
number of atoms in clusters, which is valid if there is a
small parameter

NOkOTcx >> 1. (535)

Subject to this condition the cluster growth time exceeds
greatly the gas evaporation time, which justifies the use of
asymptotic relationships between the parameters. Applica-
tion of the liquid drop model to a cluster is made with
refer-ence to the fact (see Section 3.4) that the decay of a
large excited cluster, formed by coagulation of two clusters,
does not alter the nature of cluster growth in an expanding
gas.

We shall allow for the influence of slowness of the
process described by Eqn (5.5) on the nature of cluster
growth. We shall introduce the fraction of gas atoms which
form molecules:

2¢ KN§
é — Cm (OO) — OT;)( ) (536)
142¢c,(00) 1+ KN}t
If only these atoms participate in the formation of clusters,
we can replace Ny in Eqn (5.34) with &N:

7=10(koNolte)*, g>1 . (5.37)

Eqn (5.37) also corresponds to a large value of the
parameter kyN,T., but if this parameter is not sufficiently
large, the cluster growth process is limited to the first stage
of Eqn (5.5). In fact, the process of Eqn (5.5) is of the three-
body nature, whereas the process of Eqn (5.30) involves
pairs. Therefore, the rate of the process of Eqn (5.5) is
considerably less than that of Eqn (5.30) and, therefore, the
former may delay the growth of clusters in an expanding
gas. In the limit of very high values of the parameter
koNoTex» Eqns (5.34) and (5.37) become identical.

Application of the liquid drop model to a cluster is made
on the assumption that any contact between two clusters is
accompanied by a modification of the bonds within them
and results in the formation of a stable spherical cluster.
This is a simplified description of the collision of two
clusters. In reality, the process is more complex for two
reasons (see, for example, Refs [103, 104, 140]). First, the
modification of the internal bonds in a cluster may be
hindered and in any case requires a relatively long time.
Second, the resultant complex may be unstable and may
split into fragments before it becomes fully modified. The
liquid drop model therefore does not work when collisions
of two clusters of similar size are considered. The above
circumstances reduce the value of the rate constant of the
process compared with the corresponding liquid drop
models and delays the process.

The influence of these factors can be estimated by
considering the other limiting case when the processes of
coagulation involving clusters are forbidden, so that
transitions occur as a result of attachment and evaporation
of individual atoms in accordance with the scheme
described by Eqn (3.6). Then the number density of atoms
falls during growth and free atoms involved in clusterisation
may form as a result of decay of molecules and small
clusters. Therefore, the average size of clusters at the

completion of the process is small even if the density is
high at the onset of the process.

This is illustrated in Figs 18 —20, which give the results
of calculations describing the evolution of our system under
the assumed conditions [141]. Fig. 18 shows how the
average size of a cluster depends on the initial number
density of atoms, Fig. 19 gives the dependence of the
average size of a cluster on the actual temperature during
the evolution of the system, and Fig. 20 is a plot of the
distribution function of clusters in terms of the number of
atoms they contain at various moments during cluster
growth. For large values of the initial gas density this
regime, corresponding to the scheme described by
Eqn (3.6), differs fundamentally from the regime corre-
sponding to Eqn (5.37) when the coagulation of clusters is

Ny=8x 10" cm™?

1000 1500 2000 2500 T/K

Figure 18. Average number of atoms in a cluster plotted as a function of
the temperature during expansion of a silver vapour beyond a nozzle. The
initial number density of atoms is given. The initial vapour temperature is
2300 K [141].
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Figure 19. Avcrage number of atoms in a cluster after the end of the
process, plotted as a function of the parameter x = Nok(Te, [141].
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Figure 21. Apparatus used in laser generation of a beam with metallic
10 F cluster ions: (/) laser radiation used in target evaporation; (2) wire
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Figure 20. Distribution function of clusters in terms of the number of
atoms in them, plotted for points a, b, and c in Fig. 18. The total number
densities of clusters and atoms at a given moment are given.

described by the liquid drop model. In fact, in this regime,
at the completion of the process the average number of
atoms in a cluster depends weakly on the initial density of
atoms, in contrast to the result given by Eqn (5.37) which
corresponds to the merging of two clusters as a result of
collision, in the same way as is true of liquid drops.

6. Experimental aspects of cluster formation in
free jet expansion

6.1 Cluster beams in cluster physics
Supersonic expansion of a gas is the basic process in the
generation of cluster beams. The beam formed in this way
can have a higher intensity and a lower temperature than
those generated by the effusion sources. Therefore, cluster
beams formed by gas expansion are used not only for
technological tasks, but also in studies of the properties of
the clusters themselves when a cluster beam has to satisfy
different requirements. In an analysis of these problems we
shall concentrate our attention on the sources of metallic
clusters and begin with a description of the sources of
clusters and cluster ions which are used in the determina-
tion of the cluster parameters.

Two types of vapour sources are used in the formation
of metallic clusters. In the case of alkali metals and a
number of transition metals the vapour is generated in an
oven or in a heated crucible, which is followed by the
injection of a buffer gas stream, usually helium. The
subsequent passage through a nozzle and expansion of
this beam in vacuum leads to the formation of metallic
clusters [142—146]. Metal evaporation is used for the
majority of transition metals. A typical experimental setup
used for this purpose is shown in Fig. 21
[147—-151]. Laser radiation is usually focused on a metal
wire or a disk, and the evaporated atoms enter the stream
of a buffer gas, where they form clusters. The cluster size
may be controlled by the parameters of the source,
including the buffer gas pressure. Cluster ions of a given
size are extracted from a beam by standard methods
involving the use of suitable filters and mass spectrometers.

A metal target may be evaporated not only by laser
radiation, but also by ion bombardment. Fig. 22 shows a
typical arrangement used in this case [152]. lons of a rare
gas used to sputter a metal target are accelerated to 22 keV
and pass through a Wien filter for purification. This filter is
an ion-velocity selector. It may include a magnet and a
deflecting field perpendicular to it. This technique has been
used in studies of spontaneous and collisional decay of
cluster ions.

Clusters and cluster ions formed by these methods can
be used to analyse their various parameters, and the
processes involving them. Earlier (Section 4) we considered
the photoabsorption by cluster ions formed by such
methods. Beams of clusters and cluster ions make it
possible to measure the cluster ionisation potentials, the
electron affinity of clusters, the binding energy of atoms, the
excitation energies, the optical parameters of clusters, etc.,
providing information on clusters and cluster ions with
different numbers of atoms. Fig. 23 shows schematically the
apparatus used in photoelectron spectroscopy of clusters
[153—155]. In this case a beam of negatively charged cluster
ions forms as a result of laser irradiation of a surface and
the evaporated material is carried away by a buffer gas
stream, which passes through a nozzle. These negative
clusters are then accelerated to energies of several hundreds
of electron volts and selected by a time-of-flight mass
spectrometer. The negative cluster ions with a given
number of atoms are dissociated in a drift chamber under
the action of laser radiation. The drift time of electrons in a
strong magnetic field is determined by their energy, so that
a time-of-flight spectrum of electrons gives the electron
energy distribution. This method can therefore be used to
determine both the binding energy of an electron in a cluster
for the optimal configuration of atoms in it and the
distribution of clusters in terms of the binding energy of
electrons for different configurations of atoms in a cluster.

The magnetic time-of-flight photoelectron spectrometer
is worth special mention, because it can be used to measure
the electron energies with a satisfactory precision. The
cyclotron nature of the motion of electrons in a strong
magnetic field is the basis of the spectrometer [156, 157]. An
electron moves freely only in the direction of the magnetic
field and if its initial direction of motion is almost
perpendicular to the field, the motion of an electron along
the magnetic field is slow. A time-of-flight electron
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Figure 22. Apparatus used in a study of fragmentation (spontancous or

collisional) of cluster ions formed by sputtering a target with a beam of

rare-gas ions with kiloelectron-volt energies: (/) ion source; (2) Wien
filter for ion beam purification; (3) chopper; (4) target; (5) ion optics;

(6) Wien filter for separation of cluster ions; (7) region of collisions of
cluster ions with atoms or molecules of an injected gas; (8) time-of-flight
reflectron for detection of cluster ions.

Figure 23. Apparatus used in generation of selective cluster beams,
intended for the analysis by photoelectron spectroscopy of clusters [153 —
155]: (1) buffer gas flux; (2) laser for metal target vaporisation;
(3) skimmer; (4) accelerating grids; (5)ion optics; (6) magnet;
(7) laser; (8) ion detector; (9) electron detector.

spectrum can be used to determine the electron velocity
along the magnetic field and hence the energy distribution
of electrons.

Extensive information is available on the ionisation
potentials of clusters. The dependence of the ionisation
potential on the cluster size makes it possible to identify the
most stable cluster structures and the corresponding magic
numbers. A photoelectron spectrum of a cluster beam
containing neutral clusters of different sizes can also be
used to determine the magic numbers of clusters. Experi-
ments on various modifications have been carried out for
many clusters, including clusters of alkali metals and their
compounds [143 — 145, 155—-166], silver [167], copper [168],
alkaline earth metals [169, 170], aluminium [170-171],
indium [172, 173, 177], nickel [180], iron [181], vanadium
and niobium [182], etc. These experiments have provided
information both on the vertical ionisation potentials of
clusters and on the mass spectra of the resultant cluster
ions. Fig. 24 gives the vertical ionisation potentials of
copper clusters [168].
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Figure 24. Vertical ionisation potentials of copper clusters [168].

Another way of analysing the stability of clusters is
based on studies of their chemical activity, which depends
both on their structure and size. The chemical activity of
clusters is correlated with their ionisation potentials. The
relationship between the chemical activity of clusters and
other cluster parameters has been studied for clusters of
transition metals. Fig. 25 shows the dependence of the
chemical activity of vanadium and niobium clusters,
compared with that of the deuterium molecule, on the
cluster size [182]; Fig. 26 shows how the growth rate
constant of cluster ions, compared with that of the
deuterium molecule, depends on the cluster size [183].

It should be pointed out that the problem of heat release
from a beam is not so severe in the generation of a beam of
ions with a given size as in the formation of a cluster beam
from a beam of atoms. In fact, if a beam of cluster ions of a
given size is to be used later, it is necessary to ensure that its
intensity exceeds the threshold in a given experiment.
Therefore, it is unimportant if the main contribution to
the intensity of a beam generated in this way comes from
atoms and the clusters with a given size represent the tail of
the distribution function. For this reason, the conditions for
generating selective cluster beams are not the same as the
optimal conditions for generating intense beams, because the
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Figure 25. Chemical reactivity of vanadium (a) and niobium (b) clusters
with a deuterium molecule, plotted as a function of the cluster size [182].
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Figure 26. Rate constants of the chemical reaction of iron clusters with
deuterium molecules [183], plotted for different cluster sizes: (1) cold
clusters; (2) heated clusters.

prime aim is to carry out ‘clean’ experiments and not to ensure
a high intensity of a beam of cluster ions with a given size.

By way of example, let us consider the determination of
the mobility of cluster ions of a given size in helium, which
has been carried out for carbon [191], silicon [192, 193], and
aluminium [194]. This example is interesting for two
reasons. First, it establishes a relationship between the
methods for the generation of cluster ion beams reviewed
here and the measurements of the parameters of both the
cluster ions themselves and the processes in which they
participate. Second, it makes it possible to determine
whether the liquid drop model, used above in an analysis

of various processes involving clusters, is applicable to
given clusters.

The method for determining the mobility of cluster ions
with a given number of atoms consists of the following
operations. The cluster ions are formed as a result of pulsed
laser irradiation of a wire which is in continuously flowing
helium. The helium is kept at a low temperature (~180K),
which reduces contamination and increases the output
signal. The cluster ions formed in this way are focused
on the entrance of a quadrupole mass spectrometer, which
selects cluster ions with a given size from the beam. These
ions are then focused on the entrance to a drift chamber
into which they are injected with different initial energies.
The ion mobility is deduced from the time of the motion of
these ions in the drift chamber.

Fig. 27 gives the values of the relative mobility of
aluminium cluster ions Alq+ with ¢ =5-73 at room
temperature [194]. These values will be analysed later.
We can see that the cluster ion mobility, considered as a
function of the number of atoms in a cluster, has an
oscillatory structure, which does not agree with the liquid
drop model used in Ref. [194]. The degree and nature of this
discrepancy of the mobility of cluster ions from the
theoretical predictions is analysed in Ref. [194]. According
to the liquid drop model of a cluster the process of collision
of a helium atom with a cluster ion is regarded as a collision
between a hard cluster whose radius is given by Eqn (3.11)
and a helium atom which is a hard sphere of 0.11 nm
radius. Let us denote the mobility of a cluster ion found in
this way by K,. Fig. 28 gives the ratio of the measured
mobility of a cluster ion K to this quantity at room and
liquid nitrogen temperatures.
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Figure 27. Relative mobility of aluminium cluster ions in helium at room
temperature [194].

It follows from Fig. 28 that at some values of the
number of atoms in a cluster ion the measured mobility
differs greatly from the corresponding value obtained for
hard spheres. This discrepancy disappears at higher tem-
peratures. It follows that there are nonspherical cluster ion
structures at low temperatures. Fig. 29 is the temperature
dependence of the ratio of the mobilities measured and
calculated on the basis of the spherical model, plotted for
the number of atoms in a cluster when this ratio is largest.
The temperature at which the ratio of these mobilities
becomes unity corresponds to the energy of transformation
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Figure 28. Ratio of the measured mobility of aluminium cluster ions in
helium to the mobility calculated on the basis of the hard sphere model,
plotted as a function of the number of atoms in a cluster at two
temperatures [194].
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Figure 29. Temperature dependence of the ratio of the measured mobility
of Alf; and Al cluster ions in helium to that calculated on the basis of the
model of hard spheres [194]. The arrows identify the temperatures
corresponding to modification in the cluster structure.

Table 11. Excitation parameters of spherical aluminium clusters [194]
when the ground state of a cluster has a different structure.

Number of atoms Excitation temperature of Activation
in a cluster ¢ spherical struclurc/K cncrgy/c\/
27 245 0.49
45 345 0.71
46 275 0.55

from the optimal nonspherical structure to the spherical
structure. The relevant data are given in Table 11 [194].

Our example thus shows how the methods for gen-
erating cluster beams from an expanding vapour or a gas
can be used in specific measurements on beams of clusters
of the same size. In measurements of this kind there is no
need for very intense cluster beams, but ‘cleaner’ experi-
mental conditions are required. Moreover, this example
shows that although the liquid drop model used for clusters
in this review is approximate and not always valid, on
average it works quite well. The model comes closer to
reality as the cluster size increases and as the temperature
increases.

6.2 Experimental studies of intense cluster beams

Cluster beams are used widely in microelectronics in the
fabrication of coatings and the formation of surfaces and
contacts with specific properties (see, for example,
Refs [10, 11, 17—-28]). These beams are used in the
deposition of metallic, semiconducting, and insulating
films consisting of metal oxides, carbides, and halides.
The cluster beam technique can be used to form organic
coatings on insulating substrates [22]. The acceleration of
charged clusters to high energies provides opportunities for
other applications when the collisions of clusters with the
surface erode it. These applications include cleaning of
surfaces by the removal of a surface layer of atoms
[10, 12, 195], the sputtering of a material or a change in its
structure [9, 12, 195], and procedures used in thermonu-
clear fusion studies [29-31, 196, 197].

In all these cases the cluster beams are formed from a
flux of hot atoms when the vapour escapes through a nozzle
into space. The simplest source of this type is shown in
Fig. 4. The processes which can occur are simpler than in
the evaporation of an atomic vapour from the surface.
However, in the region of formation of a beam near a
nozzle the relevant parameters depend on the distances both
from the nozzle and from the beam axis. These parameters
have been modelled for an atomic gas [4, 198]. The velocity
of a beam immediately after it is formed has the following
value for an atomic gas:

(STO)‘/2
v=|— ,
m

where T is the temperature in the chamber employed, m is
the mass of a gas atom, and the asymptotic expressions for
the number density of atoms N and the temperature 7T far
from the nozzle (at a distance x from it) are [4, 198]

2 4/3
N=0.15N0<€> , T:0.28270(§>
X X

Here, Ny is the initial number density of atoms in the
chamber, d is the nozzle diameter, and the above
expressions are valid if x > 4d.

These expressions apply to an atomic gas. They should

be modified when the clusterisation takes place in an atomic
beam. In particular, the release of energy in the course of
clusterisation alters the beam energy balance because the
beam temperature is higher than that given by Eqn (6.2)
even when the beam expands in the buffer gas. Moreover,
the expressions in Eqn (6.2) describe the asymptotic
behaviour of the beam parameters at relatively large
distances (x > 4d) from the nozzle. Closer to the nozzle
the distribution of the mean parameters over the cross
section is inhomogeneous and it is here that the beam
clusterisation takes place. One should add that the beam
parameters near the nozzle depend on the nozzle profile
[199].
They are slightly different for hyperbolic and straight
conical nozzles [199]. All these factors complicate the
theoretical analysis of the beam parameters when the
clusterisation takes place.

A convenient method for analysing clusterisation in an
expanding beam was developed by Hagena [13, 14, 198 —
202] who suggested a scaling law for a beam on the basis of
the experimental data. Hagena introduced a reduced scaling
condensation parameter, which will be called the Hagena
parameter:

6.1

6.2)
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Here, Ny and T, are the gas parameters at the exit from the
nozzle; m is the mass of an atom; d is the nozzle diameter;
p is the density of the condensed material; and T, is the
characteristic (species-specific) sublimation energy of a
material per atom, expressed in kelvin. On average the
values of ¢ are within the range 0.5—1 and are selected so
that the scaling law is the optimal approximation to the
experimental data. The best results are obtained for
g = 0.85. Table 12 lists the values of I'y, for a range of
gases [201] obtained assuming this value of ¢g. An analysis
of various gases shows that the clusterisation occurs when
r* > 200.

Table 12. Values of the Hagena reduced parameter of some vapours and
gases [200].

Gas, vapour I"C,,/IOI4 m~ 2P K Gas, vapour I"Ch/lo'4 m 2B K

Ar 347 Ga 5.8
Kr 210 In 5.6
Na 11.5 Ge 34
K 9.1 Rb 6.4
Cs 7.8 Fe 5.0
Cu 6.3 Ni 6.6
Ag 6.0 Zn 17.8
Au 4.3 Cd 16.9
Al 55 Hg 324

The Hagena reduced condensation parameter is the
ratio of the rate of condensation to the rate of expansion
of a beam, both obtained by a semiempirical method. Let
the reduced clusterisation parameter be x = v 7o, Where
Veon 1S the frequency of condensation (clusterisation) in a
beam and 1, is the beam expansion time. The condensation
(clusterisation) frequency can be found from v, = Nk,
where N is the initial number density of atoms in the beam
and the rate constant ko is given by Eqn (2.35). It then
follows from Eqn (2.7) that

R
utana

TCX

where R is the beam radius, u is the beam velocity, and o is
the beam aperture angle. Therefore, the dimensionless
parameter representing the clusterisation in an atomic
beam is

_ CNyd

= 6.4
YT tana ©4)

where the constant in the case of silver is C=
2.9 x 107'%cm?. The dimensionless parameter x should
obviously correspond to the Hagena parameter. In fact, the
Hagena parameter is introduced as a semiempirical
quantity in order to summarise the experimental results,
whereas the dimensionless parameter x follows from a
theoretical description of the process on the basis of the
liquid drop model of clusters. The two parameters
therefore represent the same process, but are based on
different information on the process. It follows that if the

liquid drop model of clusters used in the theoretical
analysis correctly describes reality, the dimensionless
parameter x should correspond to the Hagena para-
meter. The two parameters have similar numerical
values. For example, under the conditions of Hagena’s
experiments [202] on the clusterisation of a beam of silver
atoms (T, =2200-2400 K, p, = 18140 kPa, d = 0.35—
I mm, o = 5°-8.5°) the ratio of these parameters is

T =1.0+02 6.5

=1 2. 6.5)

This correspondence between the dimensionless para-
meter x and the Hagena parameter demonstrates that the
liquid drop model of clusters can correctly describe the
nature of the clusterisation of an atomic beam as it expands
and cools after passing through a nozzle.

Let us now compare the experimental data for the
clusterisation of argon with the theoretical models con-
sidered in Section 5. We shall use Eqn (5.36) for the
condensed fraction and Eqn (5.39) for the average cluster
size. The asymptotic expressions of Hagena [4, 198] for the
parameters of a gas beyond a nozzle [see Eqn (6.2)] and the
boundary conditions near the nozzle, allow us to approx-
imate the gas parameters in the intermediate region by the
following expressions:

SRR A\ 21

(6.6)

where x is the distance from the nozzle and d is the nozzle
diameter. The flow of velocity is assumed to be
vp = (5T/m)"/?, where m is the mass of an atom. The
influence of heat release as a result of clusterisation is
allowed for by replacing the initial gas temperature Ty with
the quantity T + (2¢/3), where ¢ is the binding energy of a
cluster per atom. This is equivalent to the replacement of
the initial kinetic energy of an atom 37T,/2 with (3T,/2) + ¢
(all the temperatures are in energy units). In particular, the
initial argon temperature T, =300K is replaced with
T, =780K in the case of large-cluster formation.

On the basis of the available data [139] for the rate
constant of the three-body process of Eqn (5.5) (see also
Table 10), we can select in accordance with Eqn (5.4) the
value of K = 1 x 1032 cm® s_], which is accurate to within a
factor of 2. Fig. 30 gives the dependence of the fraction of
the condensed phase on the Hagena parameter and makes it
possible to estimate the validity of the assumed quantity.
Fig. 31 gives the dependence of the average size of argon
clusters on the Hagena parameter if the clusters are formed
as a result of free gas expansion beyond the nozzle. If the
cluster temperature is taken from Ref. [203], it follows that
the clusterisation temperature is within the range 30—40 K.
Then the parameter 7, should be determined at such a
distance from the nozzle where the gas temperature reaches
this value.

Let us now consider the results of a comparison of the
experimental and theoretical data. Both theory and experi-
ment demonstrate a strong dependence of the average size
of argon clusters on the Hagena parameter, i.e. the simple
model is capable of describing the main features of the
process. The threshold nature of the clusterisation process is
accounted for, on the basis of this model, by the small rate
constant of the three-body process of formation of
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Figure 30. Fraction of the condensed phase (molecules, clusters) formed
on expansion of argon and xenon after passage through a nozzle, plotted
as a function of the Hagena parameter. Experimental results: (1) [203];
(2) [204]; (3) [205]. Calculations based on Eqn (5.36): (4) three-body
rate constant K =1 x 1072 cm®s7; (5) three-body rate constant
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Figure 31. Average number of atoms in argon clusters formed by freejet
expansion of argon from a nozzle, plotted as a function of the Hagena
parameter. Experimental results: (7) [203]; (2) [206], (3) [207].
Calculations based on Eqn (5.37): (4) three-body rate constant of

formation of molecules K =1x 1072 em®s7!; (5) three-body rate

constant K =2 x 1072 cm®s7.

molecules [Eqn (5.5)], compared with the rate constant of
coalescence of two liquid clusters [Eqn (5.30)]. The char-
acteristics of this model may be included in the general

description of the clusterisation in an expanding gas [141].
On the other hand, this comparison shows some discrep-
ancy between different sets of experimental results
considered on the basis of the Hagena model. This requires
a more careful analysis of the experimental data and their
dependences on the conditions during experiments.

In analysing the formation of a cluster beam from a
vapour source we shall assume that this vapour consists of
atoms when it flows through the nozzle. The clusterisation
of atoms then releases their binding energy, so that
complete clusterisation of a vapour requires the presence
of a buffer gas whose atoms or molecules take up the excess
energy released during crystallisation. A buffer gas is used
in practically all sources of cluster beams. The exception is
the case of the formation of caesium cluster beams
[208, 209] by electrical heating of liquid caesium with the
resultant vapour flowing by a nozzle (Fig. 4). Evidently the
conditions during evaporation are in this case such that the
resultant vapour contains droplets. Then the clusterisation
of the vapour beyond the nozzle does not result in a release
of a large specific energy but leads to a redistribution of the
cluster sizes.

Large clusters can be produced in the absence of a
buffer gas if the surface is irradiated by a beam of ions of
kiloelectron-volt energies (see, e.g. Refs [12, 152, 210—
216]). Then, fragments which represent large clusters are
detached from the surface. Although this method has been
used to form clusters of metals and salts, the resultant
cluster beams are of low intensity. When this method is used
to form cluster beams, the cluster kinetics discussed above is
unimportant.

7. Conclusions

The flow of a gas or a vapour into the surrounding space is
a convenient method for the formation of intense cluster
beams. This method involves the participation of a number
of nonequilibrium processes and the nature of these
processes affects the final results. Experimental investiga-
tions together with a theoretical analysis of the processes
that occur have demonstrated the considerable capabilities
of this method for the generation of intense cluster beams
needed in various applications, and also potential improve-
ments in the current methods used in the determination of
the parameters of cluster ions and processes in which they
participate. Since the transition from an expanding gas to a
cluster beam is controlled by universal laws, it is natural to
expect that the same processes also occur in nature, giving
rise to specific natural phenomena. Moreover, under-
standing the processes of clusterisation in expanding
beams will help in a more successful use of these beams
in scientific research and in practical applications.
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