зывающих возможность осуществления в кристаллах гелия целого ряда новых квантовых состояний, характеризующихся необычными "сверх"-свойствами.

Общая идея заключается в следующем [1]. Начнем с классического кристалла, содержащего точечные дефекты какого-либо определенного типа. Система является неупорядоченной, так как дефекты расположены в кристалле случайным образом. Квантовая делокализация рассматриваемых точечных дефектов приводит к тому, что каждый из дефектов равномерно "размазывается" по всему объему кристалла. В результате мы получаем идеально периодический кристалл, обладающий, однако, специфическими свойствами, зависящими от характера тех точечных дефектов, которые были подвержены процессу квантовой делокализации. Рассмотрим наиболее интересные примеры.

1. Вакансии.

Квантовый кристалл, характеризующийся конечной концентрацией вакансий при достаточно низких температурах (нулевые вакансии), должен обладать многими необычными свойствами, в том числе свойством сверхтекучести [1]. Полученные до настоящего времени экспериментальные данные [2–4] не позволяют однозначно ответить на вопрос о том, осуществляется ли фактически обсуждаемое квантовое состояние в кристаллах⁴ Не и ³ Не. **2. Изотопические примеси.**

Квантовая делокализация примесей ³Не в кристаллах ⁴Не обусловливает явление квантовой диффузии [5]. В двумерных кристаллах ⁴Не было обнаружено [6] фермиевское вырождение примесей ³Не, ведущих себя как квазичастицы с эффективной массой примерно в 20 раз превышающей массу атома гелия. Это наиболее тяжелые из известных фермионов.

3. Дислокационные петли.

Новым свойством, которым должен характеризоваться квантовый кристалл с делокализованными топологическими дефектами (типа дислокационных петель), является равновесная пластичность [7]. Так можно назвать явление, заключающееся в термодинамически равновесном изменении формы кристалла без изменения формы его элементарной ячейки. Экспериментальное наблюдение эффекта позволило бы выяснить природку "элементарного носителя" пластичности.

4. Поверхностные дефекты.

Квантовая делокализация дефектов на поверхности кристаллов гелия (ступеней и изломов на ступенях) обусловливает явление сверхкристаллизации, непосредственным проявлением которого являются кристаллизационные волны [8, 9]. В настоящее время эти волны используются [10] как весьма эффективный метод изучения термодинамических и кинетических свойств поверхности кристаллов. В области сверхнизких температур (порядка 100 μ K и ниже) на поверхности кристаллов ³Не должны наблюдаться весьма своеобразные магнитные кристаллизационные волны [11].

Список литературы

- 1. Андреев А Ф, Лифшиц И М ЖЭТФ **56** 2057 (1969)
- Wiegers S A J, Kranenburg C C, Jochemsen R, Vermeulen G A, Bedell K S, Frossati G Jpn. J. Appl. Phys. 26 CJ26 (1987)
- van de Haar P G, van Woerkens C M C M, Meisel M W, Frossati G J. Low Temp. Phys. 86 349 (1992)
- 4. Lengua G A, Goodkind J M J. Low Temp. Phys. 79 251 (1990)
- Andreev A F "Quantum Crystals" in *Progress in Low Temperature Physics*, vol. 8 (Ed. D F Brewer) (Amsterdam: North Holland, 1982)

- Saunders J, Mikheev V A, Lusher C P, Cowan B P Phys. Rev. Lett. 69 2807 (1992)
- Andreev A F, Bazaliy Ya B, Savischev A D J. Low Temp. Phys. 88 101 (1992)
- 8. Андреев А Ф, Паршин А Я ЖЭТФ **75** 1511 (1978)
- 9. Кешишев К О, Паршин А Я, Бабкин А В ЖЭТФ **80** 716 (1981)
- Keshishev K O, Andreeva O A in *Excitations in 2D and 3D* Quantum Fluids (Eds A G F Wyatt, H J Lauter) (New York: Plenum Press, 1991) p. 387
- 11. Андреев А Ф Письма ЖЭТФ 58 740 (1993)

PACS numbers: 67.57.De; 67.57.Fg; 67.40.Vs

Механические эксперименты в сверхтекучем гелии

Г.Е. Холл

Механические эксперименты в гелии первоначально привлекли меня великолепной серией опытов, проведенных Капицей и демонстрировавших механические силы, связанные с потоками тепла в He-II. Поэтому моими первыми экспериментами, когда я был студентом, были вариации тех же опытов, предназначенные для демонстрации вклада сверхтекучей компоненты в силу реакции.

До сих пор наиболее плодотворным подходом как в ³Не, так и в ⁴Не было применение усовершенствованных торсионных осцилляторов и аналогичных приборов, берущих начало со стопки дисков, использованных Андроникашвили для измерения плотности нормальной компоненты. Основное техническое усовершенствование высокоточных приборов такого типа было сделано Джоном Реппи и его студентом в Корнелле. Ключевым моментом в этом развитии было изобретение Реппи гироскопа на постоянном токе, позволившее провести высокоточное измерение незатухающих токов в ⁴He, которое привело к поистине фундаментальному эксперименту по выявлению природы сверхтекучести: демонстрации того, что при изменении температуры сохраняется именно скорость, а не угловой момент незатухаюших токов.

Современная техника таких экспериментов продемонстрирована на рис. 1, где показаны гироскоп на переменном токе и торсионный осциллятор, созданный Петером Гаммелем для экспериментов над незатухаю-

Рис. 1. Совмещенные торсионный осциллятор и гироскоп на переменных токах

Рис. 2. Схема прибора для измерения взаимного трения вихрей в ³Не: *I* — возбуждающие и регистрирующие электроды, *2* — каппилляр заполнения, *3* — колеблющаяся диафрагма, *4* — квантованные вихревые линии

щими токами в ³He. В его диссертации [1] подробно обсуждаются принцип работы и конструкционные особенности этого прибора. Колебания относительно оси x₁ дают стандартный способ измерения доли сверхтекучей компоненты. Сильно вырожденные моды колебаний вокруг осей x₂ и x₃ были использованы для определения незатухающего углового момента вдоль оси x₁, который возникал благодаря гироскопической связи между этими модами. Вращение криостата вокруг оси x1 использовалось для возбуждения незатухающих токов и для калибровки системы при помощи кориолисовой силы. Эти эксперименты показали, что незатухающие токи влияют на текстурную релаксацию, связанную с колебаниями вокруг x₁. Регистрация этого эффекта оказалась наиболее точным способом обнаружения незатухающих токов в А-фазе, которые существенно меньше, чем в В-фазе.

За последние несколько лет Тим Беван разработал в Манчестере уникальный механический прибор для исследования взаимного трения вихрей во вращающемся ³He. В ⁴Не для этих целей используется второй звук, однако малая энтропия и большая вязкость ³Не приводят к сильному затуханию этой моды. Вместо этого мы использовали большую вязкость для того, чтобы заключить нормальную компоненту в область между двумя дисками с расстоянием между ними порядка 100 мкм, разделенную гибкой диафрагмой из каптона. Когда диафрагма колеблется в моде, показанной на рис. 2, сверхтекучая компонента вынуждена двигаться вдоль дисков. Это приводит к движению вихрей относительно нормальной компоненты и, следовательно, к взаимному трению. Действительная компонента этой силы может быть получена из величины уменьшения добротности диафрагмы. Но так как в этой системе существуют две вырожденные моды с ортогональными линиями узлов, то силу реакции, перпендикулярную $\mathbf{v}_{s} - \mathbf{v}_{n}$ можно найти, измеряя взаимодействие между этими модами. В принципе, измерение силы реакции является ни чем иным, как

регистрацией незатухающих токов при помощи гироскопа на переменных токах. К настоящему моменту мы получили высококачественные данные для обеих компонент силы взаимного трения в *B*-фазе [2]. Наблюдение этого эффекта в *A*-фазе до сих пор было существенно менее воспроизводимым. Мы предполагаем, что это происходит из-за непостоянной текстуры, которой мы пока не можем управлять.

Список литературы

- 1. Gammel P L Ph. D. Thesis (Cornell, 1987)
- 2. Bevan T DC, Manninen A J, Cook J B, Armstrong A J, Hook J R, Hall H E *submitted to Phys. Rev. Lett.*

Перевел С.Р. Заказов

PACS numbers: 67.40.Hf

Проскальзывание фазы в сверхтекучести

Э.Ж.-А. Вароко

Введение

В данном докладе описываются современные эксперименты со сверхтекучим течением в субмикронной щели, где имеют место в сверхтекучем ³Не эффект аналогичный стационарному эффекту Джозефсона и диссипативное проскальзывание фазы в ⁴Не. Современные обзоры на эту тему можно найти в [1].

Первые шаги в исследовании поведения сверхтекучих жидкостей при течении через каналы микронных размеров были сделаны П.Л. Капицей в 1937 г. [2] в серии широко известных экспериментов, в которых он показал, что если ⁴Не и обладает вязкостью, то эта вязкость заведомо меньше 10^{-9} П, т.е. на четыре порядка меньше вязкости жидкого водорода, вещества с наименьшей известной на тот момент вязкостью. Для описания этого замечательного свойства он ввел слово "сверхтекучесть". Его открытие привело к поиску механизма, который может ограничить скорость течения сверхтекучей жидкости, при превышении которой появляется диссипация.

С этих пор данная проблема долгое время приковывала внимание многих физиков. Впервые она была решена Ландау, который нашел предел для скорости. Затем Фейнман пришел к пониманию, что вихри играют основную роль в появлении диссипации при движении жидкости через тонкий канал. Он привел интуитивные соображения, из которых установил скорость *ѝ* формирования вихрей в трубке диаметром d. Требуя, чтобы энергия, необходимая для образования вихревого кольца, по размерам сравнимого с размерами трубки, была бы меньше кинетической энергии текущей жидкости, он получил оценку для критической скорости. Эта оценка дает зависимость критической скорости от размеров трубки, но не от давления и температуры, если не рассматривать очень малый вклад от длины когерентности а₀. Эта зависимость хорошо описывает широкий класс экспериментов с критической скоростью. Но в последнее время появились новые, не укладывающиеся в приведенную схему. Они будут рассмотрены ниже.