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This is an attempt to describe the subject and the methodology of string theory as we understand
them today, i.e., the entire set of problems which attract attention of theorists working in the field.
The string model of Grand Unification of fundamental interactions is briefly discussed along with
abroader string scenario of the unified field theory, a more mathematical concept, designed to
facilitate understanding of the generic features of equivalence classes in different models of
quantum field theory. A concise glossary of the most important notions unusual in physical
literature but frequently used in papers on string theory is also included.

Having safely passed through the times of great enthu-
siasm, unrealized hopes, and unavoidable discouragement,
string theory has entered at last the period of normal devel-
opment and continues to attract attention of theorists. With
the string program of unification of all fundamental interac-
tions remaining at the top of the agenda, it is more and more
widely understood to be rather an application than the con-
tent of the string theory. In fact, many, if not most, of the
problems in this field have but an indirect relation to the
physics of elementary particles. The progress of string theo-
ry is becoming more dependent on its own inner logic rather
than on the need of any particular application. It is this inner
logic rather than the difficulties of alternative approaches
that directs further progress of the string scenario of unifica-
tion, just as it should be with any rational theory. Moreover,
following this logic, more and more various domains of
physics and mathematics are getting involved in the frame-
work of string theory, and this process creates a new basic
construction in the edifice of modern natural science thus
shedding new light on our ideas of the structure and interre-
lation of different sciences.

If one tries to characterize briefly the subject of string
theory as it is currently interpreted, one will have to accept
that it is no longer a specific theory or model but rather a
large set of methods and concepts devised to provide a wide
generalization of the standard formalism of quantum field
theory and opening many new possibilities and applications
for it. In this sense, string theory appears to be a branch of
mathematical physics having its own value irrespective of
any success of particular attempts to use it for constructing a
model of some physical phenomenon. It is worthwhile to
note that the most fruitful applications of mathematical for-
malism often occur where nobody expected them to arise
when it was gaining momentum. Moreover, even the ideas
which seem to have served as a source of this formalism can
now appear irrelevant (suffice it to recall the concept of
ether and its role in the discovery of Maxwell equations).
For these reasons, we believe that the importance of particu-
lar physical ideas and scenarios that contributed to the de-
velopment of string theory should be considered with cau-
tion to avoid overestimation: at best, they will still undergo
numerous modifications; at worst, they will be replaced by
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new ones, absolutely unpredictable today. The actual signifi-
cance of such scenarios is in pointing out a reasonable direc-
tion for further studies and providing criteria for evaluating
the relative importance of various ideas. The existence of
such criteria determines the value of theoretical physics
from the viewpoint of pure mathematics. String theory is
sufficiently productive in serving as a source of new math-
ematical problems and concomitantly indicating possible
methods of solving them.

The purpose of these notes is to give a brief description
of the content of modern string theory by way of illustrating
the diversity of the concepts and methods involved. Each
section of the present article deserves to be discussed at
length in an extensive review (there are some already avail-
able in the literature) and appears to constitute a self-con-
tained branch of knowledge.”’ On the one hand, the scope of
the present review is inevitably restricted by the fact that it
deals with a field of knowledge which is still coming into
existence and in which the importance and the relevance of
different concepts and approaches are frequently revised,
sometimes in the most radical way. This makes the choice of
the material and its appraisal dependent not only on the au-
thor’s taste but also on the time when the text is compiled.
On the other hand, an attempt to embrace the entire scope of
the theory requires all the details to be omitted; what follows
is, in the end, somewhat reminiscent of the synopsis of a
large book that can hardly be written by one author because
it would require deep knowledge in too many disciplines. In
order to make up more or less for the lack of such a book, we
present references to the available publications (books and
reviews as well as original articles) that focus on different
aspects of string theory. Also included is a concise glossary
of specific notions which are frequently used in papers on
string theory. The present notes are intended to help those
who are about to be involved in string studies to find their
way in the ocean of papers and speculations that in some way
pertain to this popular topic.

1. WHY IS STRING THEORY NEEDED?

String theory in the broad sense of the term has come
into being since different fields of theoretical physics have
been incessantly pushing into the foreground new problems
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that inevitably call for solution. These problems are arbitrar-
ily divided into four classes.

A. Strong coupling theory and generic theory of nonlinear
phenomena

“Synergetics” is a term recently coined to denote non-
linear and related phenomena.! In terms of stated objec-
tives, synergetics is very close to the string theory, the differ-
ence being largely reduced to the use of more or less specific
analytical apparatus by the latter which naturally precludes
its universal application (although, nobody seems to know
how serious this limitation may happen to be in the end).
More specifically, nonlinear phenomena examined by string
theory are conspicuous by a certain degree of symmetry,
even if sometimes obscure. For example, an important
breakthrough in string theory has been the interpretation of
anumber of complex nonlinear equations including Einstein
and Yang-Mills equations as the symmetry principle of a
certain quantum field theory (conformal symmetry of the
two-dimensional sigma-model).’

In general, application of the string concept to nonlin-
ear problems is based on the radical reformulation in terms
of quantum field theory. Sometimes, such reformulation
may even allow nonlinear equations to be solved (e.g., the
“integrable” system theory®” ). More frequently, this ap-
proach results in a discovery of common traits inherent in
seemingly different problems and the establishment of new
criteria of “similarity”’ and “‘equivalence.” Generally speak-
ing, it may be expected that a major “output” of string theo-
ry in the future will be a theory of universality classes incor-
porating as its constituent components the “theory of
catastrophes”®'* and the theory of phase transitions.'' The
latter theory or rather the problem of phase transition classi-
fication in two and three-dimensional systems may be re-
garded as one of the immediate sources of two important
sections of string theory: the science of two-dimensional
conformal models and the calculation of random surfaces.

Speaking of strings in the context of the strong coupling
theory, it is worthwhile to mention the “naive’ relationship
between them. That is, true excitations (‘“‘quasiparticles”)
may assume the form of stretched one-dimensional fila-
ments in the strong coupling regime. Moreover, such a situa-
tion is very common in our world largely due to the three-
dimensional nature of space. The interaction between
quantum chromodynamics'? and the theory of strings ap-
pears to provide the most famous example of this kind. It
seems appropriate to note that it was exactly this problem
that gave rise to string theory.'*"'” These “naive” problems
will be discussed in more detail below.

B. Theory of multiphase systems and interphase fluctuations

The scope of this problem is closely related to that of the
previous one. In fact, the problem of strong coupling, at least
if we are able to solve it or have an idea of how to attempt a
solution, can be reduced to a choice of a viewpoint from
which the examined system looks like a weakly interacting
one. In physical terms, it means that a strongly interacting
system can exhibit collective states (excitations, quasiparti-
cles) which almost do not interact with one another. To put
it in formal language, there may be a change of variables
which turn the system of equations into a linear one (“inte-
grable” case) or a weakly nonlinear one. In the latter case,
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the altered parameters may convert the system back to a
highly nonlinear one. In other words, the interaction be-
tween quasiparticles may be strong again in a certain domain
of parameter space. This calls for a search for other collec-
tive variables or other quasiparticles adequate to describe
this region in parameter space. Such substitution of one set
of quasiparticles by another makes up the substance of the
science of phase states and interphase transitions. However,
the classical field of theoretical physics devoted to this sub-
ject (statistical physics) confines itself to simple situations,
that is it largely examines systems with a limited number of
phase states and readily distinguishable interphase transi-
tions. Recently, however, more complicated problems have
acquired greater importance. In the first place, very interest-
ing physical systems have been discovered having an infi-
nitely large number of phases; moreover fluctuations be-
tween different phases are also large. It is assumed that
reasonable universality classes for such systems are to be
defined based on some new principles. The best known sys-
tems of this type are spin glasses and neural networks. '#2%2

Another class of problems can be traced back to formal
statistical physics that studies the correlation between micro
and macrodescription. The notion of phases is certainly an
essentially statistic, rough notion. One phase always under-
goes either quantum or temperature fluctuations related to
the formation of virtual rudiments of other phases. For this
reason, any accurately measured parameter in one of the
phases inevitably bears information about all other phases
which can not be ignored unless it is for a certain degree of
approximation. The importance of such information is a
subject of endless discussions provoked from time to time on
different occasions (the problem of scattering from a coher-
ent state, the problem of ““an exact renormgroup,”’ and many
other issues also lie within the scope of the theory of multi-
phase systems). Another situation (unification of interac-
tions) subject to examination in the framework of this theo-
ry will be discussed in section C below.

An approach to a study of multiphase systems as im-
plied by the string theory is based on the aforementioned
reformulation of various nonlinear equations (e.g., state
equations in different phases) in new terms smoothing such
essential differences between phases and equations as the
number of variables, the order and the number of equations,
and even the dimension of the space in which they are de-
fined. Such reformulation allows smooth interpolation be-
tween absolutely different types of equations, i.e. exactly
what is necessary for the description of continuous transi-
tion of one phase to another. It should be indicated, however,
that the use of practical implications of string theory is a
matter of distant future and its applied value remains to be
elucidated.

C. Unification of fundamental interactions

This problem deserves a special discussion, in the first
place due to its crucial importance for natural science, and
also because the development of a comprehensive theory of
all fundamental interactions (‘“the theory of everything”)
appears to be the most ambitious project related to string
studies.>'*? Indeed, there are two projects, not one, which
are complementary rather than mutually exclusive, each
having its own value. Due to this, if one of the two scenarios
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fails in the end, the other is not necessarily doomed to the
same fate.

The first scenario may be considered as a naive and
straightforward application of string theory to unification of
interactions. It treats strings as fundamental entities and
considers one-dimensional extended objects rather than
point particles to be the elementary units. From the point of
view of the conventional theory of elementary particles, this
amounts to the hypothesis of an infinitely large variety of
particles with a regular mass spectrum, spins, and interac-
tion patterns. Surprisingly, such a hypothesis is not in con-
flict with the available experimental data (the majority of
additionally introduced particles have very high masses and
are virtually unobservable). Nor does it deteriorate “the
quality” of the theory as a quantum field theory despite the
introduction of a new infinity (an infinite number of parti-
cles). Moreover, such an approach allows the original theo-
ry to be improved because the new infinity helps overcome
long-standing ultraviolet divergences! Apart from the possi-
bility to develop renormalized quantum gravity theory, this
scenario makes it possible to reject the principle of renormal-
ization which has been a real nuisance for many generations
of scientists. In other words, there is a chance to suggest a
Jinite fundamental theory. Also, it is gratifying to think that
the above approach provides an opportunity for a further
natural development of the Kaluza-Klein ideas***® which
allow the entire structure of the unification model (gauge
symmetries, field content, coupling constants) to be encod-
ed in geometric and even topologic properties of a certain
manifold (the idea known as “compactification” formal-
ism). A major drawback of the approach in question inherit-
ed from “pre-string” concepts of unification of interactions
is the lack of selectivity: string unification models appear to
be as numerous as conventional ones and impose practically
no limitation on the selection of the gauge group, (string)
field content, etc. On the other hand, the faith in the exis-
tence of a uniquely valid and truly fundamental “theory of
everything” free from arbitrary interpretation makes up a
major impetus to a search for Grand Unification®*"** al-
though this inference may be questioned by advocates of the
anthropic principle.®

Most of the “model-builders” showing interest in the
unification theory believe that many models are inherently
discrepant, i.e. they may have anomalies,**** be non-renor-
malizable or suffer from the “zero-charge” problem,*® etc.
Moreover, there was a time when it seemed absolutely im-
possible to devise a non-trivial consistent theory comprising
both the standard model and quantum gravity. Anyway, one
could hardly expect to have a broad selection of such theo-
ries. That was how matters stood on the eve of the 1984
“string boom” following the failure of the synthesis of the
Kaluza-Klein approach with D = 11 supergravity which at
that time was considered the most likely claimant to the role
of the “theory of everything.” At approximately the same
time,*”*® it was shown that a certain string model (“E, X E,
superstring”*® ) may play the role of a self-consistent unifi-
cation model.*® This model was distinguished from the var-
iety of string theories known at that time by the criteria of
finiteness and lack of anomalies. The further course of events
demonstrated that what was initially regarded as the invinci-
ble pathology of alternative theories proved to be pathology
of a specific formalism used for their analysis. (Today, theo-
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rists hardly need more evidence to confirm the feasibility of
self-consistent theories with anomalies; finite models appear
to be equally common in string theory). Moreover, the num-
ber of alternative string models including anomaly-free and
finite ones has grown enormously. As a result, a great variety
of models are now available instead of a unique self-consis-
tent model—the naive string scenario has not become the
last link in the vicious chain. Now, its advocates seem to
have the only hope to cherish: that the analysis of non-per-
turbative behavior of strings may reveal, when completed,
new unpredicted pathologies in the majority of the remain-
ing models. However, this is but a delusive hope and, still
worse, it is in conflict with that little which is already known
about non-perturbative string theory. We shall see later that
available evidence appears to support another, less-naive
scenario.

The latter scenario is based on the ideas suggested at
least simultaneously with the ““naive” scenario. An obvious
alternative to the identification of the “theory of everything”
with the “‘unique self-consistent” model of the quantum field
theory or string theory is its identification with a certain
unification of all such models. In other words, different
models can be interpreted as corresponding to different
phases of a single theory. (Perhaps, it is worthwhile to men-
tion the concept of “hadron democracy” or bootstrap as an
analog of such an approach even if in a somewhat different
context. Note that the formalism of “‘conformal boot-strap”
suggested for more specific purposes may even prove to be a
very effective calculation tool). It seems appropriate to ob-
serve that realization of such an idea of a priori equality of all
conceivable models of field theory (or string theory for that
matter) would impart literal meaning to the terms “theory
of everything” and especially “‘unified field theory.”

Practical implementation of such a scenario would re-
quire a uniform description of quite different models and
their embedding into a certain unified “configuration” (or
*“phase’) space of the “unified field theory.” The next step is
specification of dynamics in this space. Finally, such dynam-
ics should distinguish individual points ( phases) in this con-
figuration space under certain conditions (e.g., at “low ener-
gies”). In a word, this scenario implies that the “theory of
everything” has a complicated phase structure while known
properties of the Universe are interpreted as a result of dy-
namic selection of one of the many a priori conceivable mod-
els of the quantum field theory. The string theory suggests at
least a theoretical possibility to realize such a scenario***!
even though there is a large distance between such a possibil-
ity and practical implementation, not to mention the high
probability of modification of the scenario in the course of
the work. Remarkably, there is already indirect evidence of
the adequacy of such ideas for the string theory formalism. A
series of string models differing at the perturbative level has
been shown to be naturally unified in the non-perturbative
domain. (This is exactly what is stipulated by our scenario:
given that different models are naturally unified into a
whole, quantum fluctuations, possibly non-perturbative,
must intermix them).

It would be a gross exaggeration to state that the second
scenario (unlike the first one) draws much attention of theo-
rists. Nevertheless, it does exist and, besides, it agrees better
with the intrinsic nature of the string theory. It seems safe to
prognosticate that the popularity of this scenario or one of its
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modifications will further increase among those interested in
string theory.

D. Quantization of algebro-geometric structures

The importance of this problem in physics can be ac-
counted for by the puzzle of quantum gravity. It still remains
in the spotlight although there is no serious reason for com-
bining the general theory of relativity with quantum me-
chanics. In most of the attempts to address this issue, the
paradigm of quantum mechanics is given preference over the
idea of space-time geometry.*

This fully refers to the string scenario which treats
space-time as no more than an effective object apparent un-
der certain conditions. Such a property appears to be intrin-
sic in any theory designed for the desription of all conceiv-
able features of quantum gravity including
topology-changing fluctuations. It is remarkable that the re-
lationship between geometry and dynamics becomes even
closer in string theory, and that the Yang—M ills fields appear
naturally and exhibit a deeply rooted connection with gravi-
ty.

The relationship between strings and gravity deter-
mined by the specific role of fwo-dimensional gravity in
string theory is of a quite different aspect. Two-dimensional
gravity is conspicuous for its totally quantum nature, and its
investigation (indispensable in developing string theory)
may throw light on the quantum gravity structure at large.

Finally, the mathematical slant of the problem should
be mentioned. Many string models are remarkable for their
algebro-geometric characteristics. In fact, almost any alge-
bro-geometric object may be associated with a specific string
model.¥

On the other hand, string theory being a quantum theo-
1y, it is no wonder that in many cases evaluation of string
fluctuations and/or interactions reveals deformation of the
initial algebro-geometric structure. This apparently leads to
the natural description (or definition) of quantum groups,
quantum spaces, and other objects of interest for modern
mathematics. In this context, the specific position of string
theory among other physical theories allows, on the one
hand, various algebro-geometric objects to be easily asso-
ciated with dynamics (a form of two-dimensional action) of
string models and, on the other hand, string interactions to
be accurately evaluated, most of the problems in string theo-
ry lending themselves to exhaustive solution within a finite
period.

To summarize, we have tried to demonstrate who could
possibly be interested in string theory, to identify reasons for
such interest, and to define the sort of results to be expected.
The next step is to provide even a more brief survey of the
constituent components of the theory and indicate where the
answers to selected questions should be sought. The follow-
ing discussion is designed to illustrate the historic develop-
ment of the theory in order to make obvious its inner logic.
To a certain extent, understanding of this logic helps to di-
vine further trends whereas past experience shows that non-
trivial problems offered by the string program normally find
solution sufficiently comprehensive to give rise to new ones
which, being also solved, will raise... . We do not know how
long and successful this chain of developments may happen
to be nor can we predict if it breaks before the entire con-
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struction is close to completion. In the meanwhile, string
theory has been fortunate...

2.STRINGS AS QUASIPARTICLES

To begin with, we enumerate situations in which strings
make ‘“‘spontaneous” appearance regardless of human wish
and will. The feasibility of such a situation in itself requires
string theory to be constructed and investigated. It is there-
fore natural that their description should precede both more
speculative scenarious considering strings as fundamental
objects and a description of mathematical formalism.

In the most naive sense of the word, a string is an ex-
tended one-dimensional object with tension which means
that its energy & increases with increasing length L:
d% /dL > 0. The string of musical instruments (a non-rela-
tivistic string) that gave the name to the entire theory is
characterized by the “dispersion” law # = const + kL 2
which is converted to linear A% ~ AL for small oscillations.
Rewritten in terms of the amplitude 4 for small transversal
oscillations, it again assumes the form of a quadratic expres-
sion A% ~A4 % The theory of musical strings can hardly be
expected to bring much surprise, but it had to be mentioned
to make the picture complete. Polymers including protein
molecules may be cited as another important example of
non-relativistic strings.

More interestingly, strings can function as stable quasi-
particles and have to be considered in studies of non-trivial
phase states, e.g., in symmetry breakdown. Occurrence of
strings in such situations is not at all infrequent, ratheritis a
rule, the most illustrious cases including vortices (tornados)
in laminar flows, dislocation lines in a crystal lattice, Abri-
kosov lines in superconductors, Dirac lines attached to mon-
opoles in gauge theories, “cosmic strings” in various models
with a specific Higgs sector, etc. The high incidence of
string-like entities in theories dealing with structural fea-
tures of the world may be attributed to the three-dimensional
nature of space. In order to answer the question about the
structure of elementary topologically stable quasiparticles,
it is necessary to know what should be eliminated from R>to
make it multiply connected. The obvious answer is one-di-
mensional lines. This means that stable string-like quasipar-
ticles are sure to occur at least in situations with a character-
istic (“‘order parameter’’) taking on values within a circle.”’
Moreover, in such situations, the energy of quasiparticles is
directly proportional to their length: & ~ L, as follows from
the equality of all fragments of the line, i.e., constant energy
density. This dispersion law is characteristic of “relativistic”
strings, and we see that relativistic strings originate natural-
ly in non-relativistic systems. The dynamics of strings, as
that of any other mechanical object, is determined not so
much by the energy but by the action, i.e. an integral charac-
teristic of the fwo-dimensional world surface swept over by a
moving one-dimensional string. Integration of energy over
time may provide an insight into what the action looks like.
Having this in mind, it is not difficult to understand that the
dispersion law & ~ L implies that the action is proportional
to the world surface area .« ~S. This formula certainly re-
flects equality of two dimensions, time and space, on the
world sheet. Hence the term “relativistic string.”

As a matter of fact, string theory begins with a study of
quantum relativistic strings. Now that we have come to
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know the origin of “relativism,” it is high time to address the
problem of quantization. Certainly, the easiest way is to state
that we are interested in the quantum mechanics of quasipar-
ticles discussed in the previous paragraph. This would bring
us to the problem of integration over their trajectories, i.e.
(random) world surfaces taken, with weights ™% = %,
True, in the above examples this problem is of purely aca-
demic interest because quantum effects in such situations are
insignificant. Other (temperature) fluctuations acquire far
greater importance although there is practically no formal
difference between quantum and temperature fluctuations:
it is sufficient to substitute a real exponent for the imaginary
one in the functional integral.

Now, take a step back to note that the solution of the
“equation” “R’ — ? = multiply connected” is as important
as that of the equation “R® — ? = non-connected.” This
problem may be considered in terms of phase separation. Of
course, the solution is “? = two-dimensional surface” be-
cause in the three-dimensional world the phases are separat-
ed by surfaces. In a fwo-dimensional world, R*-phases would
be separated by lines. A study of these lines is useful because,
for instance, in systems with phase transitions of the second
kind the energy densities of the different phases coincide and
the total free energy of the system turns out to be associated
with phase-separating lines. Moreover, in a locally interact-
ing system, energy is concentrated on the separation line and
is in fact proportional to its length which brings us back to
the dispersion law £ ~ L familiar from the above discussion.
Further calculation of the partition function of the theory
consists in summation over arbitrary (random) distribution
of phase separation lines with weights e ~#" (line intersec-
tion may be allowed or forbidden depending on the model
under examination). A classical example of such problem is
the Ising model, one of the most popular ones among those
examined by string theory on different occasions. Coming
back to the three-dimensional world R*, one obtains separa-
tion surfaces, free energies proportional to the area, and
sums over random surfaces with weights e =45,

To summarize, the problem of calculating Ze ~#* may
need solution in studies on (i) thermodynamics of (2 + 1)-
dimensional multiphase systems and (ii) quantum mechan-
ics (thermodynamics) of (relativistic) point particles. Due
to (ii), these problems are included for examination in the
theory of particles to be solved by standard methods of the
conventional quantum field theory (QFT). Similarly, the
problem of Ze ~# computation pertains to studies of (i)
thermodynamics of (3 + 1)-dimensional multiphase sys-
tems and (ii) quantum mechanics (thermodynamics) of rel-
ativistic strings. Already this aspect of string theory) ap-
pears to be a generalization of the theory of particles and the
conventional quantum field theory (QFT).

This hierarchy is open for further elaboration. It seems
appropriate to design a theory of membranes, (2 4 1)-di-
mensional objects, and a general theory of p-branes,
(p + 1)-dimensional systems. Within this scheme, the usual
way of cognition of the world by means of analysis of
(3 + 1)-dimensional field theories falls under (ii) for 3-
branes. However, string theory has the advantage of addi-
tional options, i.e. some problems of higher hierarchical lev-
els can be solved at lower levels. Studies of the most general
(p + 1)-dimensional QFT models in terms of strings rather
than p-branes will be discussed later. As a matter of fact,

675 Sov. Phys. Usp. 35 (8), August 1992

such a possibility is not unexpected since any local QFT may
be described, apart from other modes, in terms of point parti-
cles. Such a description is referred to as first quantization
formalism (or, to use the equivalent term, the Feynman dia-
gram technique). However, its efficiency is low excepting
some specific (and very important!) cases when the analysis
may be confined to the perturbative regime. It is remarkable
how rapidly the efficacy of this formalism grows with the
switch-over from particles to strings. Even more remark-
ably, this formalism can still be applied to a study of conven-
tional local QFT. It is understandable that the transition
from strings to p-branes with p > 1 would result in a further
complication which makes strings a sort of “the golden
mean”’: their formalism is sufficiently rich and sophisticated
to describe adequately the important features of the exam-
ined models but remains relatively simple to ensure practica-
bility.

Before advancing to new topics, it is worthwhile to ad-
dress a few more problems involving either strings or other
important elements of string theory. To begin with, it should
be emphasized that the above discussion of string functions
in the capacity of quasiparticles was largely confined to the
**generic situation” when their appearance was due to reli-
able topologic factors.

At the same time, there is room for more complicated
(and more interesting, for that matter) motifs, e.g. dynamic
ones. The most important example of this kind is the con-
finement phase of (3 + 1)-dimensional non-abelian gauge
theories including QCD. In this phase, the force lines of the
gauge field due to mutual attraction form narrow tubes with
a practically constant linear energy density. Therefore, in
this phase, relativistic strings function as quasiparticles (ha-
drons in terms of QFT). In more than one aspect, they are
reminiscent of Abrikosov lines in superconducters but differ
from them in that they result from a purely dynamic process.
Unlike the superconducting (Higgs) phase, the confinement
phase involves an intermediate stage, i.e. formation of con-
densates which first cause a spontaneous “breakdown” of
gauge symmetry and thereafter induce, for topologic rea-
sons, the appearance of string-like quasiparticles. Due to
their dynamic nature, strings in the confinement phase are,
first, essentially quantum, and second, their “thickness”
that controls the accuracy of the description in terms of
string theory is not an independent parameter.

The latter case constitutes one of the most difficult
problems in application of string theory to the confinement
phase: only sufficiently long (excited) strings or hadrons
with high spins and masses are easy to describe. The problem
of hadron strings in QCD is not merely an example illustrat-
ing the application of string theory to the description of the
strong coupling regime (the confinement phase in the Yang—
Mills formulation of QCD). This is the problem that gave
rise to string theory: an attempt to formulate QCD (astrong
interaction theory) in terms of string theory (the so-called
dual resonance models'*'” ) preceded by several years its
formulation in terms of Yang—Mills fields.

In this section, we have already mentioned statistic sys-
tems, their different phases, and interphase transitions with
special reference to situations with phase transitions of the
second kind. There is one more unexpected aspect of the
relationship between phase transitions of the second kind
and string theory. The correlation radius tends to infinity

A. Yu. Morozov 675



during such transitions and at points of phase transitions of
the second kind any system acquires an additional symmetry
(conformal).

Conformal symmetry is rich (infinite-dimensional)
only in two (and one)-dimensional situations, and this class
of conformal theories is readily distinguishable among var-
ious two-dimensional QFT models. More than that, confor-
mal statistic systems a priori defined on lattices rather than
in the R? continuum are very easy to describe in terms of
local QFT due to the infinite correlation radius. The prob-
lem of phase transitions of the second kind in (2 + 1)-di-
mensional systems that can otherwise be referred to as the
problem of two-dimensional conformal theories is a classical
problem of modern theoretical physics that has been an ob-
ject of numerous studies. On the other hand two-dimension-
al conformal systems are considered to be a key subject in
string theory specifying the form of the string action on the
world sheet (in the simplest situation, i.e., for the so-called
bosonic strings, the action is merely a surface area).

As regards two-dimensional statistic systems (i.e. phys-
ics of thin films), the theory of the quantum Hall effect and
the closely related theory of anyons are worth special consi-
deration. At least the former theory warrants description in
terms of multiple phases, with interphase transitions (de-
confinement transitions) usually being associated with res-
toration of conformal invariance. It is both interesting and
difficult to go beyond the scope of static approximation to be
described by the (2 + 1)-dimensional Chern-Simons mod-
el, yet another important participant in string theory. This
range of problems draws much attention due to striking
qualitative effects such as quantization of Hall conductiv-
ity*>* and anyonic superconductivity.*’

There are several other fields of theoretical physics
awaiting reformulation in terms of string theory. The feasi-
bility of such reformulation is beyond any doubt. In the first
place, this concerns the theory of polymers and biological
membranes. Theoretically, string theory appears to be spe-
cially designed for such application because it traditionally
populates lines and surfaces with various auxiliary objects
and examines the resulting effects. However, there have been
few serious attempts in this direction. Another field is chaos
theory.**® Efforts to construct a similar theory based on
the science of fractals*® have been numerous because it is
closely related to the quantum gravity doctrine and hence to
string theory. A further survey of this correlation will be
developing in parallel to the investigation of the relationship
between chaos and quantum theory which is in fact one of
the main objectives of chaos studies. Multiphase systems
such as spin glasses and neural networks'®?° are also related
to the problem in question. Although their direct links with
string theory at present remain unclear, the few available
items of evidence of parallelism (e.g., the p-adic formal-
ism'%3%1 ) are really impressive.

Moreover the string theory may prove a useful tool for
reformulation of various problems of discrete mathematics
in terms of continuum (analytic) mathematics and vice
versa. The first success was marked by progress in quantum
mechanics which admits two equivalent formulations, ma-
trix (discrete) and functional (continuous) and is best re-
flected in the Wiener-Dirac-Feynman concept of path inte-
gral.®? From this point of view, a major contribution of
string theory consists in the suggestion to examine a broader
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class of path integrals, i.e., random surface (not only line)
integrals, in order to substantially extend the range of prob-
lems amenable to formulation in these terms. This sole pros-
pect may keep up interest in string theory because the impor-
tance (and the difficulty) of developing effective discrete
mathematics for further progress of natural science especial-
ly in the fields of biology and artificial intelligence can hard-
ly be overestimated.

This is the end of the story about “spontaneous” strings
in problems that a priori have nothing to do with them. We
could see that such problems are not few. Let us now turn to
speculative issues and discuss the problem of fundamental
strings. These strings, unlike those examined earlier in this
review, are purely hypothetical, the basis for the hypothesis
of their existence being purely speculative. More than that,
no experimental evidence can be anticipated in the foresee-
able future. Indirect items of evidence, if any, would hardly
constitute proof, but even they are unlikely to be obtained.
No matter how disappointing this inference may seem, there
is every reason to arrive at it. It is at present still beyond the
power of human civilization to attain a really interesting
(Planck) energy level at which quantum properties of gravi-
ty could be fully manifested (conventional approach would
require increasing the energy of modern accelerators by 16
orders of magnitude!). It may be consoling to think that we
can hardly imagine what would befall mankind if this task
were accomplished. It should not be forgotten that the above
conditions are reminiscent of those in which the Universe
came into existence, and nobody can be expected to be so
bold as to predict the consequences of reproducing them.®’

It is therefore not only the lack of material means but
also common sense that favors reasoning rather than experi-
mentation in this field in an attempt to perceive the funda-
mentals of the Universe within at least the next few decades.
In the meanwhile, the fundamental string hypothesis re-
mains the best product of the human mind for this purpose.
At this point, it appears most appropriate to pass to the de-
scription of this hypothesis.

3.FUNDAMENTAL STRINGS AS AMODEL OF FUNDAMENTAL
INTERACTIONS

Development of string scenarios for unification of fun-
damental interactions (electromagnetic, weak, strong, and
gravitational) is motivated by disadvantages of more tradi-
tional methods. It is worthwhile to recall what is known
about fundamental interactions to enable the reader to un-
derstand some difficulties inherent in the conventional ap-
proach. The first three interactions in the above list (except-
ing gravitational) can be comprehensively described by the
so-called standard model'>*’*? which is in fact a combina-
tion of the Glashow—Weinberg-Salam (GWS) model and
quantum chromodynamics (QCD).”

The only thing we know for sure about gravity is that
classical gravity does exist and is adequately described by the
general theory of relativity with the Einstein—Hilbert action
M2 §\JGZd*x. The limited capacity of our experimental
tools does not allow observation of any effect of quantum
gravity or a correction, if any, to the action such as
SNG#*d*x. In other words, there is perfect harmony if
viewed from the standpoint of conventional physical meth-
odology: the theory available agrees with experimental ob-
servations. Pending new experiments, one may hope that the
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results will not in the end conform to the theory which would
require amendments and create a new job for theorists. How-
ever, there is actually no need to wait for new experiments to
be conducted—it is time now to think of which amendments
may possibly be needed. There is a great deal of confidence
that all corrections will be restricted to minor changes in the
gauge group and field content, at most to introduction of a
new hierarchy in the degree of symmetry breakdown.

It is less safe to conjecture that at a more fundamental
level, the standard model will be replaced by some kind of a
supersymmetric (?) model of Grand Unification. There is
no reason to reject an alternative variant that all or most of
the fields in the standard model will resemble hadrons con-
stituted by the fields of a different and more fundamental
model with confinement. Also, it is conceivable that there is
a hierarchy of such models because the lack of information is
fraught with a great variety of permitted variants. However,
it should be emphasized that none of these suggested modifi-
cations bring entirely new ideas or lead us beyond the limits
of renormalizable gauge models. This is not at all accidental
because renormalizability is the highest demand to be made
of the local (3 + 1)-dimensional theory, but even this is un-
attainable without gauge symmetry due to the presence of
vector bosons.'>?7#

Certainly the property of renormalizability in the ab-
sence of finiteness in the ultraviolet domain does not give
much cause for enthusiasm with respect to a true fundamen-
tal theory designed to describe the physical world at arbi-
trarily small distances. However, instead of lamentation,
one could do better by inquiring why the standard model
must be a renormalizable and a gauge theory. Dismissing the
notorious answer that man is unable to think of anything
better (such an answer would suggest narrow-mindedness
and inadequacy of the employed formalism rather than indi-
cate properties of the Universe), there is the only explana-
tion available to the effect that the standard model is an ef-
Sfective low-energy theory. Such an answer indeed implies a
lot, in particular it emphasizes that all effective theories are
usually renormalizable and always possess specific symme-
tries, gauge symmetry being one of them. Phonons in solids
provide a typical example of an effective theory. Specific
structure of the crystal lattice and its interaction with elec-
trons can be infinitely complex, but its trace remaining in the
phonon sector is merely a small number of effective interac-
tion constants. Events that occur at small distances (of the
order of the length of the crystal lattice are immaterial for
phonon physics. This is an immediate analog of the renorma-
lizability principle. Of crucial importance for such univer-
sality is isolation of the phonon sector from all the others: in
the long-wave (low-energy) approximation, gapless (mass-
less) excitations, phonons, are split off from all the others
(massive ones). It remains, however, to be explained why
complicated interactions at the micro—level do not influ-
ence the very existence of phonons, that is, why are they not
mixed with other excitations and converted to massive ob-
jects. The explanation is that there is a symmetry that main-
tains masslessness. With special reference to phonons, this is
translational invariance spontaneously broken by the pres-
ence of crystal lattice. In other words, phonons are Gold-
stone particles. Other symmetries, besides the spontaneous-
ly broken global one, that can ensure masslessness and
therefore the very existence of the low-energy sector are
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gauge and chiral symmetries, and also supersymmetry. Evi-
dently, the number of such symmetries is limited, and the
occurrence of any of them may be considered as an indica-
tion that we are dealing with an effective theory. Moreover,
such a view of the standard model allows one more of its
remarkable properties to be accounted for, that is it explains
why all its equations are second order differential equations.
This is a really intriguing puzzle for everyone who had once
completed a course of general physics, but it is very easy to
solve if one assumes that it is merely a property of a low-
energy approximation rather than a fundamental natural
law which is actually nonexistent.”

To sum up the results of this speculative analysis, the
key properties of the standard model (such as those of any
other model of Grand Unification) are themselves most reli-
able indicators of its nonfundamentality. The “fundamental
theory of everything” should be sought elsewhere. It is an
analysis of gravity problems that may possibly indicate the
direction of further search if it proceeds from the assumption
of the absolute value of the quantum paradigm, i.e. aims at
the construction of quantum gravity. Such striving could be
justified already by the fact that there is no known way to
combine quantum matter with classical gravity, at least in
the case of matter capable of emitting and absorbing gravita-
tional waves. However, unlike classical gravity, quantum
gravity has serious intrinsic problems. One of them is the
unlimited growth of interaction between virtual gravitons
with increasing energy which makes gravity nonrenormali-
zable. This phenomenon which distinguishes gravity from
other (3 + 2)-dimensional gauge models can be attributed
to the fact that the function of the charge is performed by the
energy momentum tensor and this results in additional am-
plification of interactions with an increase in energy. Due to
nonrenormalizability, gravity can not be adequately inter-
preted as an effective low-energy theory. In fact, it is devoid
of the ability to “forget” details of its own organization at
ultra-short distances. Nevertheless, the structure of gravity
needs to be properly understood if the existence of massless
gauge gravity is to be explained. This implies knowledge of
the fundamental theory itself.

There is no need to mention that a somehow quantized
GTR can not assume the role of such a theory due to irrepar-
able ultraviolet divergences. The in-depth reason for ultra-
violet divergences is known to originate from a desire to have
alocal quantum field theory, i.e., a theory dealing with point
particles. The most natural radical approach to combatting
divergences (and seemingly the only acceptable one in the
case of gravity) implies renunciation of the locality concept
and assumption of nonlocal models as a substitute for funda-
mental theory. Vague criteria of causality and unitarity and,
more important, the lack of effective methodology are major
difficulties encountered in dealing with such theories. Cur-

- rently, string models are the sole class of basic concepts

available for analysis that may actually have a claim to be-
coming a nonlocal but causal fundamental theory. String
models, of all known theories, contain fields subject to inter-
pretation as gravitons and also ensure self-consistent cut-off
of divergences near the Planck energy. It should be empha-
sized once again that without such cut-off quantum gravity
would remain a strong coupling theory which, even if not
pathologic, is unlikely to allow existence of massless excita-
tions (gravitons). Such a theory appears to realize a topolo-
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gic rather than a Goldstone phase.'”

Another important problem of quantum gravity is the
occurrence of fluctuations and transitions with altered to-
pology that is difficult to describe in terms of gravitons, i.e.
in terms of the naive field approach. Alteration of topology
as well as any other change in background geometry means
in the graviton language formation of a specific graviton
condensate. Field theory encounters no difficulty in describ-
ing isolated condensates, but it is not so easy to discuss many
of them taking into account their numerous reciprocal fluc-
tuations (think of the aforementioned multiphase systems!).
This problem resembles attempts to describe a single con-
densate in the formalism of first (but not second) quantiza-
tion for particles: such a description is theoretically feasible
but hardly makes any sense. This analogy suggests expe-
diency of transition from the second quantized theory to the
“third quantized” theory. Such is one of the characteristic
methods in string theory illustrated by an attempt of its di-
rect application to topologic fluctuations in four-dimension-
al quantum gravity that resulted in the theory of ‘“‘baby uni-
verses.”!!

One of the conceptual implications of this theory is an
inference of the unavoidably effective nature of both funda-
mental interactions per se and their parameters (charges,
masses). This confirms apprehension aroused in the course
of the foregoing discussion, i.e., before the analysis of quan-
tum-gravity effects. Certainly, the sources of these fears are
different, but there is every reason to believe that the way out
in either case is the same while the most important criterion
of fundamental nature of the theory is its ability to overcome
difficulties inherent in quantum gravity.

Let us now set aside for a time the problem of topologic
fluctuations to return to the subject of divergences and
modes of their elimination. This implies examination of non-
local models which may specifically originate from string
theory. There are several questions to answer. First, how and
under what conditions can the structure of the local quan-
tum field be recovered? Second, how is the conflict between
nonlocality and causality resolved? Third, how is the quan-
tum string theory organized and what are its potential pros
and cons? The latter issue will be discussed at length in the
following sections. But to begin with, it is necessary to an-
swer the first two questions.

String tension that restricts their length is crucial for
the existence of a local low-energy limit. Although the total
energy of relativistic strings is believed to be due to their
tension (which implies that the absolute energy minimum
corresponds to point strings), they may have a certain char-
acteristic length due to quantum fluctuations (uncertainty
principle) which is defined in the unification models by the
Planck scale M 5 '.'»

Examined from large distances (compared to M ;'
that are the only ones available with current experimental
techniques, such strings are indistinguishable from points
and their extended structure is practically unobservable.
There is reason to think that elementary particles generally
assumed to be points are actually extended strings. The
proof of such an inner structure would be the possibility to
excite internal oscillations of the strings, say, if the energy
conveyed by a probe particle scattered by the string might be
transformed into the energy of such an excitation instead of
altering the motion of the string as a whole or creating new
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string-particles. Fortunately, the actual energy spectrum of
an internal string excitation is discrete which allows (in
agreement with the general logic of the theory of elementary
particles) each excitation to be regarded as a new “‘elemen-
tary” particle and the scattering process with ensuing inter-
nal string excitation to be interpreted as mere conversion of
one sort of particles into another, different types of internal
oscillations being associated with specific particle varieties.
String oscillations differ by the number of the harmonic
(“number of nodes”), polarization patterns (‘“‘direction”),
and amplitude. The number of the harmonic and the (quan-
tized) amplitude are related to the oscillation energy. Since
the latter is in fact the energy of internal string oscillations, it
is responsible for the particle rest-mass: different harmonics
correspond to different masses.

Polarization in its turn appears to be related to the par-
ticle spin or, more precisely, direction of spin depends on
polarization whereas its magnitude is a function of the num-
ber of the harmonic, that is the zero (unexcited) level has
spin 0, polarization of the first harmonic is defined by the
vector (direction of oscillations) and corresponds to spin 1,
polarization of the second harmonic is defined by the second
rank tensor (spin 2), etc. Half-integer spins are encountered
in more complicated string models in which one-dimension-
al lines bear additional structures. To conclude, from the
standpoint of the theory of elementary particles, a noninter-
acting string is organized as a collection of particles with
different spins and masses. The mass spectrum m in the ma-
jority of string models is defined (before the interactions are
included) by the simple formula

m? ~ M¥a, + N),

where N are nonnegative integers. However, this formula
must not be considered to offer an exhaustive characteristic
of the spectrum because the same ‘“‘tree” approximation
shows a higher degree of degeneracy and different particles
may have identical masses. The entire spectrum can be con-
veniently characterized by the generating function

Z(t) = E e—btt(m/M)Z,

where the sum is over all string excitations. This function
containing information about mass degeneracy can also be
used as a source of spin information (especially pertaining to
low level spins). The following formulas for the simplest
classes of string models, i.e., open and closed bosonic strings,
give an idea of the shape of the generating functions:

Zog(0 = [¢'/41(1 - 1O~ 2200),

+1/2 (h

Z, (1= f | Z,p( = is)|%ds,
-1/2

where D is the space-time dimension and g=e ~*™. Factor
Z . is responsible for corrections associated with the two-
dimensional Liouville field x°(£) that describes the time co-
ordinate of the string in space-time. The main difference of
this factor from other two-dimensional fields x'(£)
(i = 1...D — 1) describing space coordinates lies in the sign
which it has in the formula for two-dimensional action on
the world surface:
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of = M2me(x)aa,\~“aax”d2§ +o (2)

the tensor G,,, (x) (the space-time metric) has the signature
(—,+,+,.»+)."” Formula (1) suggests that G, = §,,.
One of the corrections to the naive picture of string particles
is that the factor Z # 1 whenever the D-dimensional Lorentz
invariance is broken due to additional terms which are not
explicitely shown in Eq. (2). Traditionally, models with
Z , = 1 (more precisely, free from any quantum anomaly as
two-dimensional field theories) are referred to as “critical”
string models. The above example indicates that critical
strings have more “‘naive” and predictable properties. It will
be shown below that the property of criticality is closely as-
sociated with the interesting low-energy limit in string mod-
els which predetermines the specific role of critical strings in
the unification theory.

It ensues from formula (1) that the particle spectrum in
the open string model contains tachions, particles with nega-
tive m? at D> 2, while massless (m”> = 0) particles occur
only at D = 2, 26,..., having zero-spin at D = 26 and being a
(24 = D — 2)-component vector at D = 26. Of primary im-
portance for the theory of unification is the strictly massless
sector of the string model whereas all other string-particles
have masses of the Planck scale and can not be produced in
modern accelerators. This approach implies that the dimin-
utive (in this scale) masses of leptons, quarks, and Higgs
bosons are beyond the bounds of the tree approximation or
are even more likely due to non-perturbative effects of string
interaction. For this reason only the case D = 26 of all open
string models with tree characteristics defined by formula
(1) may be of phenomenological interest for the purpose of
unification (analysis of string models with D > 26 can not be
conducted by currently available methods). It has been
shown that in this case, G,; in (2) may be assumed to be
equal to O which makes Z . =1 in Eq. (1). Therefore, the
above inference that the massless sector is represented by the
(D — 2 = 24)—component vector is not in conflict with
Lorentz invariance. Existence of the (D — 2)-component
vector-particle is compatible with D-dimensional Lorentz
symmetry only in the case of this particle being represented
by a gauge massless boson. Thus, having started from the
assumption of massless particles in the tree approximation
as a condition for the existence of a nontrivial low-energy
sector, we come to the conclusion that the string must be
critical. This implies that the massless sector has an addi-
tional gauge symmetry which is in turn capable of maintain-
ing masslessness of the particles even after interactions are
included.

The open “‘superstring” model contains additional two-
dimensional fields on the world surface and may be defined
by an action principle more complicated than (2). Also, the
action has an apparent two-dimensional supersymmetry.
The principle of two-dimensional supersymmetry alone de-
fines fermionic strings whereas an additional selection of
states, the so-called GSO-projection, is necessary to obtain a
“superstring.” The generating function of the tree spectrum
for the open “superstring” has the form:

Zop. ) = (0= DI + 01 = )™ P20

+ %([0—1/161—]1(] + qn--(l/2))(1 _ qn)—l ]D—2
n=
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_ [q—1/16ﬁ(1 — gDy - gy~ ]D‘z}Zéf_)%(t)-

n=1

(3a)

The model becomes critical at D = 10. In such a case, the
first linein Eq. (3a) that describes the fermionic sector of the
model (Ramond sector) coincides with the second line de-
scribing the bosonic sector (Neveu-Schwarz sector).'®
Then, the generating function may be reduced to

Z ()= 1601 + aM(1 — g1, (3b)
n=1

op, su
Co-incidence of two constituents of the generating function
is one of the manifestations of space-time supersymmetry of
the critical superstring. Unlike two-dimensional supersym-
metry, space-time supersymmetry occurs only in the critical
dimension of D = 10 and only after GSO projection (here,
we come across a common feature of critical strings: peculiar
duality of properties on the world sheet and in space-time; in
the examined case, such a property is represented by super-
symmetry). It follows from Eq. (3b) that this model does
not include tachions while the massless sector contains 8-
somponent gauge bosons and 8-component gauginos, their
gauge partners. The model would have every prospect to
play the role of the fundamental theory if it were not for
some quantum anomalies, the condition D = 10 being neces-
sary but not sufficient. The true critical superstring contains
a large number of fields with non-abelian gauge symmetry
(SO(32) in one of the simplest cases) at the massless level
and tensor particles with properties identical to those of gra-
vitons (the latter feature is common for all critical models of
closed strings). We shall discuss different string models after
a brief review of string interaction.

Interaction between strings is of primary importance
for explanation of casuality of the theory. We have already
agreed that noninteracting strings can be regarded as a col-
lection of different sorts of particles (Lorentz symmetry
may be broken in non-critical models). Hitherto, the sole
evidence of non-locality of the theory is an infinite number of
particle varieties. It is essential to stop at this point to have
interactions represented as interactions between point parti-
cles without any a priori action at a distance. This would
remove all difficulties associated with causality as is the case
with the conventional local QFT. String theory has chosen
the simplest way to attain this goal because it permits only
local string interaction in a single point. This means that a
string can break into two only in a certain point rather than
split lengthwise along its entire length or along a certain
portion. This considerably restricts the choice of interaction.
An immediate analog of such a limitation in the theory of
particles is that splitting of particles is forbidden, in fact that
there is an absolute ban on any interaction. In this context,
interacting strings are directly analogous to free particles
which accounts for marked simplification and (not infre-
quently) for solvability of problems in string theory.

From a more formal point of view, locality of interac-
tions (that warrants causality and readily distinguishes
strings from other non-local QFT models) means prohibited
branching of world surfaces and implies that the world sheet
for interacting strings is a smooth two-dimensional surface.
Conversely, string interaction is reminiscent of branching of
their world lines that breaks smoothness. This may be con-

A. Yu. Morozov 679



sidered to provide another formulation of analogy with free
particles. It is conceivable that from the mathematical point
of view smooth surfaces are much easier and more efficient
to work with than singular ones. This accounts for successful
application of the mathematical formalism of string theory.
Also, it seems appropriate to note that strings hold a unique
position in the p-bran series. For mathematical purposes, it
is quite natural to define p-bran interaction with the same
limitation and confine it to smooth (p + 1)-dimensional
world hypersurfaces. However, it is insufficient to ensure
locality of interactions and hence a physical interpretation of
the theory at p > | when they are concentrated on sub-mani-
folds of codimension 2 (i.e. on (p — 1) rather than O-dimen-
sional ones).

Speaking of locality of interactions, one can not but em-
phasize its role in eliminating ultraviolet divergences. Local-
ity of interaction along with string extent ensures that inter-
action occurs only between string fragments with a
characteristic length 1/E, after the transferred momentum
and energy E have exceeded the characteristic value M (in-
verse string size). For example, only the fraction M /E of the
total string mass interacts with a graviton. This serves to
assure additional supression of interactions with increasing
energy and, in the end, finiteness of the theory.

Description of a specific interaction, e.g. emission of a
particular string excitation (a particle), is of paramount im-
portance in the string theory formalism. To this effect, an
additional term with a “‘source” is introduced into the action
specifying weights in the functional integral (in this case,
two-dimensional action that defines weights in the sum over
surfaces) as is usually done in QFT. As regards strings, such
a term is the integral of an operator (the so-calles vertex
operator) while the “source current” may be interpreted as
the D-dimensional field of the corresponding particle. For
example, the emission of a massless graviton (if such a one is
present among the string excitations) corresponds to the
vertex operator d,x*d,x", with the appropriate term having
the form

[ b (03,0, 00%.

Bearing in mind that the graviton field in gravity is connect-
ed with D-dimensional metrics via the relation

G’w(x) =t h’w(x),

one arrives at the conclusion that the entire action (2) may
be considered to describe a string in the external graviton
field defined by the D-dimensional metrics G,,, (x).

4.STRING TOMOGRAPHY OR STRING THEORY AS A RADON
TRANSFORMATION IN THE SPACE OF QFT

The last remark is very important for string theory,
especially for its further development and application. Also,
it allows very broad generalization: for each conventional
field theory is supposed to have its string counterpart. To
demonstrate this, distribution of a probe string should be
examined in relation to the fields of a given theory regarded
as external (background) fields. In this case some integral
background characteristics are encoded by string propaga-
tion patterns, i.e. in the properties of a two-dimensional the-
ory on its world surface. Such an approach is widely applied
to different fields of natural science and is often referred to as
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tomography (the use of the scattering features of rays that
pass through the body to characterize its inner structure) or
as a Radon transformation (integral transformation of a
generic type; its simplest variant-Fourier transform,
“probes” the function by an averaged ““interaction” with an
imaginary exponent).

The success of the method is wholly dependent on the
efficacy of mapping interesting properties of the object under
study into simple properties of the probe. From this view-
point, string theory may be very useful for the study of QFT.
In principle, there is every reason to analyze the field theory
using probe particle propagation, rather than that of strings.
However, such an approach does not appear to provide the
necessary information if the dynamics of a field theory is
ranked among its interesting properties. Suppose, that the
external fields satisfy (D-dimensional) equations of motion,
i.e. a certain differential (or integro-differential, finite differ-
ence or any other) equation. If the solution is in the form of a
plane wave (i.e., the equation of motion is /inear), resonance
phenomena will be apparent in propagation of the probe par-
ticle and interesting information (e.g., wave length) will be
obtained. Conversely, if the original equation is non-linear,
this will be hardly possible because the probe particle (which
does not interact with anything but the external field) is
unable to feel all the constraints imposed on the external
field at different points which by no means line up.

A string is quite a different entity. Apart from being
extended, which means that it is sensitive to both the exter-
nal field gradient and its alterations at finite distances (this
obliterates the distinction between the solutions of differen-
tial and finite difference equations), the string is able to split
into many strings, that is, it can interact! This allows infor-
mation about nonlinear relations to be conserved. If, sup-
pose, the external field configuration is described by the de-
cay of the wave into two, followed by a reconstitution from
the fragments, the probe string may prove to be able to fol-
low this evolution. Theoretically, the same is attainable with
“probe” particles allowed to interact with one another.
However, this would expose quite a different aspect of the
problem—how to define the transformation itself, i.e., how
to define the interaction between interacting particles and
the external field. A simple geometric approach valid for free
particles (as worded in terms of smooth line geometry or
trajectories in a space with defined external fields) is irrele-
vant in the case of interacting particles because it is unclear
how to estimate the effect of the external fields on the inter-
action vertex. Actually, the only way to use interacting
probe particles is to take them from the theory under study.
Such an approach unifying external field and first quantiza-
tion techniques may be useful, but it is not universal since it
requires introduction of specific probe particles for each the-
ory. Strings are quite a different matter. String interaction
does not interfere with smoothness and therefore does not
give rise to any special problems with respect to assessment
of interactions with external fields or, to put it otherwise,
excitation spectrum for the entire variety of string models is
sufficiently rich to include practically all conceivable QFT.

Be that as it may, translation into the string language is
really useful. It allows many equations of motion for exter-
nal fields to be converted to symmetry principles! Conformal
symmetry is the most common one involved. Let us come
back to our initial example, a string in a gravitational field.
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The external field G,,, (x) is associated with the string model
with the action (2). The condition of conformal invariance
(vanishing of the beta-function) in a two-dimensional theo-
ry has the form of

Ry = 0R/M?

(2 4., is the curvature tensor built from the metric G,,,)
and can be reduced in the longwave approximation to Ein-
stein equation #,, =0 for the external field G,,,. Yang-
Mills, Laplace, and other equations can be interpreted in a
similar manner.'>

An advantage of any tomography technique is the lack
of specificity because it allows results of the study to be rep-
resented in an identical form due to the use of the same appa-
ratus for examining different subjects, individual organs,
etc. The situation is very similar as far as strings are con-
cerned. In the low-energy limit gravitational and Yang-
Milis fields, abelian and non-abelian gauge groups, bosons
and fermions may exist; supersymmetry may emerge and
undergo breakdown; space-time, if any, may be 4 or 15-di-
mensional and show a simple or a complicated topology; in a
word, low-energy theories may belong to different classes in
the absence of any apparent way to smoothly shift from one
of them to another, but putting them into the string language
yields two-dimensional field theories which appear to be
much easier to classify and interpolate. For this reason,
string theory has a good prospect to become a valuable tool
not only for the “naive” scenario of unification of fundamen-
tal interactions, but also for a more ambitious scenario of
“the unified field theory” mentioned in the introductory
part of this article (and for applications to multiphase sys-
tems at large).

An approach to this scenario based on string theory at
large may be described as follows. First, all possible models
of the field theory (phases in multiphase systems) are substi-
tuted by corresponding models of two-dimensional QFT (in
this case, probe string propagation is used to define a map
from the set of all theories into a set of two-dimensional
ones). The latter set has at least one advantage of being free
from serious restrictions pertaining to renormalizability be-
cause there is a great variety of well-defined two-dimension-
al QFT models. Strictly speaking, an optimal selection of the
entire space of two-dimensional theories as a universal con-
figuration (phase) space is hardly possible due to the fact
that poorly-structured generic two-dimensional models do
not possess any remarkable algebro-geometric properties.
Doubtless, various two-dimensional conformal models
(shown above to be associated with a large number of differ-
ential and other equations) must be included as points of the
phase space. This is a truly remarkable set with a number of
unexpectedly deep properties and numerous structures.
However, it is not even connected in any reasonable topol-
ogy. This certainly reflects the nonconnectedness of the
original space of various equations, field theories, etc. Mean-
while, our primary objective is to search for mapping into a
set of two-dimensional models in order to obtain reasonable
interpolations, i.e., a connected space.

Connectedness can be achieved by mere addition of all
integrable models to all two-dimensional conformal ones.
The resultant space of integrable two-dimensional theories is
by no means less remarkable than its subset comprising only
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conformal theories. It is already connected but rather resem-
bles a net than a normal space. Specifically, its fundamental
group appears to be very complicated in reasonable topolo-
gies. This space is sure to need further extension without the
loss of its algebro-geometric structures. Reasonable addition
can be expected to lead beyond two-dimensional theories. In
all likelihood, it will be determined by the algebra of (dou-
ble?) loops, but at this point opinions of different authors
begin to diverge, and it would be premature to discuss possi-
ble options till concensus is achieved (a putative variant is
examined in Refs. 40, 41). It should only be noted that defin-

- ition of a configuration space is the first but not the last step.

It needs to be understood what dynamic principles can
be naturally defined on this space and which dynamic struc-
tures may result from them. Of course, this problem can not
be separated from that of the space itself because geometry
and especially algebra does not only characterize space but
also determine all the rest (this makes up the basic idea of
geometric quantization). For the time being, all these issues
are also a matter of conjecture. In the meanwhile, the space
of integrable theories has become one of the most important
areas of current studies. Knowledge of its structure is ex-
pected to facilitate greatly further generalization.

5. CONFORMAL FIELD THEORY

Our next purpose is to discuss two-dimensional confor-
mal models the role of which in string theory and its applica-
tions was analyzed in a previous section. We shall start with
fundamentals of the general theory and thereafter consider
the most important classes of conformal models. Two-di-
mensional space is assumed to be Euclidian which is not in
conflict with the existence of a Minkowsky signature in the
real D-dimensional space-time. A special analysis of the de-
pendence on the two-dimensional metrics g,, is beyond the
scope of this section. This relation must in the first place be
taken into account in switching over from conformal models
to string ones, a matter of further discussion.

Major characteristics of conformal symmetry in two di-
mensions are that it is infinite-dimensional and is interpreted
in complex-analytic terms. The former characteristic means
that the condition of conformal invariance is very limiting
and hence interesting. The latter property provides a good
prospect for the development of efficient mathematical ap-
paratus (everyone who has studied the theory of complex
variables knows that complex analysis is far more powerful
than the real one). The first step to formalization is to intro-
duce complex co-ordinates (z,Z) on a two-dimensional sur-
face. It is convinient to interpret z as “time” in two-dimen-
sions to avoid terminological complication. Conformal
invariance implies that the energy-momentum tensor is
traceless,

T:=T,;=0.

Then, the conservation law d, T°® = 0 (which usually im-
plies only conservation of total energy and momentum
(d+3)$T,, =0) turns into the holomorphicity condi-
tions

ar =0, oT=0 (T=T

zz’

T=Tz9s

which implies conservation (oL Lf1 = 0) of an infinite set of
variables:
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LIf] = $f(z)T(2)dz

with any holomorphic vector fields f(z). L{f] form a set of
generators of infinite-dimensional Lie algebra (conformal
symmetry of the model in question). A reasonable choice of
the basis in the space of holomorphic vector fields depends
on the global properties of the two-dimensional space. Spe-
cifically, it is appropriate to take f2 (z) = 2" *!/dz, where n
is any integer or a non-negative integer if the space has the
topology of a Riemann sphere with two and one punctures
respectively. Corresponding generators

- _ 1
L, =LA = [T (z)dz

form a Virasoro algebra:'>®

1
Ly Lyl=(n-mL, .+ ]—icn("z =~ Donimor

This commutation relation may be represented in terms
of the operators 7(z) as the operator expansion:
c T(z+12)/2)
(z=2)t (=27

where the parameter c is referred to as the central charge of
the Virasoro algebra and constitutes an important charac-
teristic of the conformal model. Due to the requirement that
the vector fields that define the conservation laws be holo-
morphic, conformal models are considered to be interme-
diates between generic two-dimensional field theories
(where only a finite number of Killing vectors are allowed to
perform this role) and topologic models (where any vector
field has a conservation law). String models are topologic
and derived from conformal ones by the introduction of a
Liouville field and reparametrization ghosts (which does
not interfere with conformal invariance and allows the total
central charge ¢ + ¢, + € to be converted to zero) and
subsequent factorization with respect to action of the con-
formal group (altogether, these operations may be interpret-
ed as integration over two-dimensional metrics). The con-
formal models themselves most of all resemble integrable
models as far as the number of conservation laws (one-para-
metric set) is concerned but are distinguishable from them
due to the very simple structure of conserved quantities that
can be chosen linearly dependent on the energy-momentum
tensor and directly related to the complex structure of the
two-dimensional space-time. In the case of a generic two-
dimensional integrable model the same role is played by the
complex structure of an auxiliary (spectral) two-dimen-
sional surface.

All the states of the conformal model may be divided
into representations of the Virasoro algebra (the corre-
sponding operators creating these states from *“vacuum’ are
frequently referred to as “vertex operators” for reasons ob-
vious from the previous section). It should be borne in mind
that the Virasoro algebra associated with a holomorphic
T(z) affects only the chiral components of the vertex opera-
tors dependent on holomorphic fields. Each vertex operator
is a bilinear combination of chiral and anti-chiral operators.
It is assumed in the further discussion that classification by
representations of the Virasoro algebra is most reasonable
for chiral operators. Highest weight representations asso-
ciated with so-called Verma modules have been most thor-
oughly investigated. A Verma module is built up by the pri-

T(@Z)T(z') ~ 3 + reg,
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mary field which satisfies the relation
T(2)V(0) ~ AZV(O) + %GV(O) + reg.
z

Similar to the operator expansion of 7(z) T(z') that defines
the Virasoro algebra, this formula reflects the physical sense
of the energy-momentum tensor as a generator of infinitesi-
mal coordinate transformations. Moreover, this formula
suggests that

(L, V1=0

for all n > 0 which makes the primary field actually of high-
est weight with respect to the Virasoro algebra. (Note that
the energy-momentum tensor itself is not the primary field
in the case of a non-vanishing central charge). Furthermore,

[Ly, V=AYV,

and the parameter A is called the dimension of V. The dimen-
sion of a chiral operator coincides with its spin, the spin of
the total vertex operator being the difference between “left”
and ““right” (chiral and anti-chiral) dimensions. A Verma
module is an orbit of a universal envelope of the Virasoro
algebra which passes through ¥ i.e. the set of all the fields of
theform [L _,,,[L _ ;.. [L _ 4,V ]...]] with dimensions
A+n, +n, +..+ n, and their linear combinations, the
so-called  “Virasoro  descendants.” The integer
n, +n, + ... + n, is referred to as the Jevel of the operator
in the module. By definition, a Verma module is the highest
weight representation but, possibly, reducible. It is really
reducible if the module has a new primary field at a certain
non-vanishing level which is termed a nil-vector. A Verma
module associated with a nil-vector is a submodule of the
original one and must be eliminated in order to construct an
irreducible representation (in other words, it is necessary to
find a factor of the module with respect to equivalence “nil-
vector ~0,” hence the term “nil-vector;” the norm of this
field is nil). Actually, there are three possibilities: (i) no nil-
vector, (ii) each consecutive submodule is embedded into
the previous one, (iii) all nil-vectors of each module belong
to one of the two intersecting submodules.'®’

Case (i) is amost general one. Case (ii) is also common
while case (iii) for Virasoro algebra can be realized only at a
specific central charge value

c=1- [6(p — ¢)*/pg),

with integer mutually—simple p,g>3 (the so-called minimal
representation series).

The simplest classification of conformal models is ac-
cording to the set of representations of Virasoro algebra
formed by vertex operators. The set of vertex operators is
restricted by the requirement of closure of operator algebra
and in practice can not be as small as a single representation

AW W)

FIG. 1

A. Yu. Morozov 682



of Virasoro algebra though there are cases when operator
expansion closes with a finite number of irreducible repre-
sentations. The corresponding conformal models are termed
rational. The simplest example of rational representations
are the (p,q)-minimal models**®! containing a finite num-
ber of representations from the above minimal series. All
these minimal models have ¢ < 1, but there are many rational
theories with ¢ > 1 in which the values of ¢ are not necessarily
rational. Another important feature of the conformal model
is two-dimensional unitarity, i.e., the positiveness of norms
of all vertex operators. Elimination of nil-vectors (having
vanishing norms), i.e., restriction to irreducible representa-
tions is a necessary but not a sufficient condition of unitarity:
many fields from a Verma module may have negative norms
and not be excluded by eliminating nil-vectors. Specifically,
only the one series (p,g) = (p,p + 1), of all the minimal
models, is unitary. The simplest representative of this series
is (p,q) = (3,4), the Ising conformal model (i.e. the Ising
model at a phase transition point). The significance of two-
dimensional unitarity for string models remains unclear be-
cause unitarity can be restored by integration over metrics.

Operator expansion of products of vertex operators de-
fines intertwining operators of different representations.®?
The intertwining operator in a conformal model is a trilinear
relation between triplets of holomorphic vertex operators, a
specific case of more general (multilinear) operators re-
ferred to as conformal blocks. A conformal block is a holo-
morphic analog of a correlation function. Correlation func-
tions of full (non-chiral) vertex operators in the conformal
theory are assumed to be bilinear combinations of conformal
blocks and their complex conjugates. Unlike correlators
(real and single-valued functions of vertex operator coordi-
nates), conformal blocks are holomorphic but not necessar-
ily single-valued, that is they can have both poles and branch
points. There are no essential singularities in conformal
blocks of rational theories, and they are totally determined
by orders of the poles and by monodromy properties.

Although the Virasoro algebra is common for all con-
formal models, special classes of theories with broader infi-
nite-dimensional symmetries are also worth considering. We
require, as before, that symmetry be associated with certain
conserved, i.e. holomorphic, currents. Such symmetry is
usually referred to as a chiral algebra of the model due to its
being holomorphic. Thus, a chiral algebra always contains
the Virasoro algebra (rather its universal envelope), but it
also may be broader. An example of a very rich chiral alge-
bra is the Kac-Moody algebra.!”’

The Kac-Moody algebra is a quantum analog of a loop
algebra with values in the Lie algebra G, and is itself a Lie
algebra (not to be confused with quantum deformation—the
so-called quantum group which is not a Lie algebra). The
generators J “(z) carry, besides the coordinate z, the indices
a labelling the generators of the algebra G, and commutation
relations are expressed via its structure constants /%’ and the
Killing metric A “:

knf g J7(z")
2y le(z—z)

@by ~ oo + reg.

The parameter k is called the central charge of the Kac—
Moody algebra G, . In a model with such symmetry, a chiral
algebra is the universal envelope % G, of the Kac-Moody
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algebra. Specifically, the energy-momentum tensor which
generates the Virasoro algebra becomes a function of the
currents J ¢ In this case, the simplest choice is:

To(2) = Tr 73(2)

1
2k +Cp)

The resulting conformal model is referred to as the Wess—
Zumino-Novikov-Witten model (MWZNW) while the
aforesaid embedding of the Virasoro algebra into the enve-
lope of the Kac—Moody algebra is termed the Sugawara for-
mula with ¢ = k dim G /(k + C ) where the parameter C
is a dual Coxter number of algebra G, e.g., C,,, = n. Along
with a quadratic trace, it is useful to consider in the universal
envelope other operators of a similar type:

W) = Tr I'(2).

With respect to the operator 7= W ®, the Kac-
Moody currents have spin 1, and the W " operators have
spin z. It is useful to classify MWZNW states by representa-
tions of the Kac—-Moody algebra which automatically serve
as (reducible) representations of the Sugawara-like Vira-
soro algebra.

This approach should be applied to any other chiral
algebra. The structure of highest weight representations of
all chiral algebras is reminiscent of that described above for
the Virasoro algebra: there always are Verma modules, nil-
vectors, minimal representation series, and rational and
minimal conformal models many of which are non-unitary.
Similar to the Virasoro algebra, the model needs to be
neither rational nor, especially, minimal. The advantage of
minimal models is that they most adequately reflect the
structure of a chiral algebra and therefore are very useful for
mathematical purposes, e.g., in structural studies of the alge-
bra and its representations. The minimal models for the
Kac-Moody algebras associated with simple finite-dimen-
sional Lie algebras occur at positive integer & values; they are
rational and unitary, and allow a simple Lagrangian formu-
lation with action

A wonw ~ k| f Tr(g™'0 887" 0,8)d%
+ iz""‘fTr(g’laagg"a,,gg_latg)dsf 1

The field g(&) = g(z,Z) defines the mapping of a two-dimen-
sional surface into the group G. The second item (the Wess—
Zumino term) is represented in the action as an integral over
the three-dimensional manifold the boundary of which is
formed by the two-dimensional surface in question. Due to
the arbitrary choice of the three-dimensional extension, the
action is defined up to an integer multiple of 27ik which does
not affect the functional integral f Zge ~ (for integer k).
The equations of motion for this non-local action are local:
dJ = 0, where J = g ~ '9g while equal-time commutation re-
lations ensure that the currents J(z) form the Kac-Moody
algebra Gk The inverse transition from the Kac-Moody al-
gebra to the action &y, nw is also possible leading to an-
other notable interpretation:®® this action is related (by the
operator d ~ ') to the Kirillov—Costant form of the Kac-
Moody algebra. The latter is unambiguously defined by any
Lie algebra and its coadjoined orbit (in this sense the
WZNW model is totally algebraic: it is sufficient to mention
“the Kac-Moody algebra,” and the canonical procedure
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will lead to the functional integral:
f-@g exp(—o wznw ).

Conformal blocks of the WZNW model are closely related to
representations of quantum groups. It has already been indi-
cated that the operator expansion which defines conformal
blocks may be interpreted in terms of intertwining opera-
tors, i.e., it defines variables such as 3j-symbols and other
Racah coefficients. Strictly speaking, in order to obtain any-
thing related to the characteristics of the original algebra G,
it is necessary to eliminate all the descendant fields from the
operator expansion and leave only the primary fields. A per-
fectly justified procedure of such a type leads to string mod-
¢els (see below). In the framework of the conformal model, it
is necessary to use something of the type of a projection of an
operator algebra (i.e., actually to eliminate the contribution
of the descendants). The pertinent methodology is known as
fusion rules®? and, due to non-zero central charges, charac-
terizes the deformation of algebra G, i.e., a quantum group,
rather than the algebra G itself because projection breaks the
structure of the Lie algebra.

Another line of reasoning leading from the WZNW
model, develops the idea of the Wess—Zumino term in the
action. It appears that the entire action, not only its part, can
be represented by a Wess—Zumino term: the three-dimen-
sional Chern-Simons integral:

k f Tr(AdA + %A‘é)d'*‘g.

The way in which the functional integral that defines this
three-dimensional topological theory depends on boundary
conditions at the two-dimensional boundary of the three-
dimensional space is again given by the expression
exp[ — & wznw |» Whereas the functional integral of
MWZNW is the integral over boundary conditions.®* This
directly leads to topological theories in general®® and to the
problem of the topology of three-dimensional manifolds
(knot theory) in particular.®® On the other hand, the
Chern-Simons action is closely related to even more remark-
able four-dimensional topological theory fTr FF d*¢. Final-
ly, the Chern~Simons term plays a role in the theory of quan-
tum anomalies and physics of (2 + 1)-dimensional systems
(e.g. fractional quantum Hall effect, theory of anyons). All
this makes studies of the three-dimensional interpretation of
the WZNW model very popular.

Basically, it is conceivable that any d-dimensional theo-
ry must be associated with a certain (d + 1)-dimensional
topological model dependent solely on boundary conditions
in codimension one. The case of the WZNW model indicates
that at d = 2, conformal models are related in this way to
local three-dimensional topological models. A set of such
theories, if they must be formulated in terms of a Lie algebra,
is evidently confined to Chern-Simons-like models which, in
their turn, are related to MWZNW. True, this is not a direct
argument but rather the simplest of the existent justifica-
tions of the faith that many two-dimensional conformal
models must be related to WZNW model, while universal
envelopes of the Kac-Moody algebras must contain all con-
ceivable chiral Lie algebras.'®

A more specific formulation of the statement concern-
ing the “relation” of a conformal theory to the WZNW mod-
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el should mention that the former is a reduction of the latter,
i.e.,is produced by selection of a certain subset in the space of
states invariant with respect to dynamic flows (equations of
motion). To make such a selection possible, it is necessary to
change the dynamics (i.e., the energy-momentum tensor) in
such a way that allows the existence of an invariant system of
constraints which could be imposed on the states. To begin
with the bilinear relation between 7T(z) and the currents
J(z) may be preserved (although this is not obligatory):

T(z) - Jfc a2, 2% )b ydz a2
+ fd (2, 2)%")dz.

Restrictive constraints are imposed on the coefficients C,,
and d, in order to ensure compatibility of the Kac—-Moody
and the Virasoro commutation relations for J(z) and 7(z)
respectively. However, even in the case of the simplest “lo-
cal” anzatz

Cab(z' z', Y = Cab/(z —z')z—2""),
N "2
dz,2)=d/(z-2)

with constant C,, and d, (Refs. 67, 68), the set of embed-
dings is not limited to the Sugawara one. There is a large
number of possible reductions, but the Goddard-Kent-Olive
(GKO) and the Drinfel’d-Sokolov (DS) reductions con-
structed according to subalgebras H C G'are among the most
interesting of them (Refs. 67-69)." In order to describe
reduction, one ought to define a non-Sugawara tensor 7¢(z),
determine compatible constraints (conditions of reduc-
tion), and find primary fields with respect to 7(z) although
in the original Kac—-Moody algebra they need not necessarily
be primary. In case these fields include operators from the
universal envelope % G, that form a closed (not necessarily
linear) subalgebra, the latter should be regarded as a chiral
algebra of the reduced theory and the corresponding symme-
try should apparently be subjected to gauging on transition
to a string model. Certainly, one may start by imposing an
arbitrary system of constraints, but this will require check-
ing that conformal symmetry remains intact, that is that the
part of the chiral algebra commuting with the constraints
still contains the Virasoro algebra generated by a “de-
formed” energy-momentum tensor.

The simplest type of a MWZNW reduction is the coset-
models or the GKO-construction.” The starting point is
specification of the subalgebra

H,.CGy
We shall discuss the simplest variant:
HCG, k'=+k

There are many interesting reductions when G is a semi-
simple, and not necessarily a simple, algebra, G= I,G s
and k' = I, k;. The energy-momentum tensor of the GKO
model is

Toin=T6— Tw
The central charge is
/=%~
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The currents J ?||(z) with indices ¢ belonging to H have
similar commutators with 7; and T, (they are primary
fields of dimension one with respect to both these tensors)
and therefore commute with T, . Thus, the GKO reduc-
tion may be defined by conditions J 7 _||(z) = 0. As usual,
only half of the constraints can be imposed due to the pres-
ence of the nonvanishing central charge &: this fact is indi-
cated by the subscript *“ + .”

The primary GKO fields can be picked out from among
the primary fields of the original MWZNW which automati-
cally makes the GKO model both rational and unitary for
integer values of & when the MWZNW to be reduced has
these properties. The most effective description of the GKO
reduction is achieved in the formalism of free massless fields
(see below). In this formalism reduction means only the
rejection of a part of the noninteracting fields. Besides, in it
there is no difference between the GKO and other reductions
which is important for the development of a general string
theory even if it is less convenient for the analysis of specific,
especially rational and unitary coset-models. GKO-models
form quite a broad and most widely studied class of confor-
mal theories. Many of these models contain “accidental”
global and even local symmetries the origin of which in most
cases can be easily traced to “‘accidentally unbroken” gener-
ators of the original chiral algebra. This class includes the
already familiar unitary series (p,p + 1) of the Virasoro min-
imal (p,p+ 1) models (su(2), xsu(2), ,/su(2), ,),
and also the two-dimensional supersymmetric unitary mini-
mal series su(2), Xsu(2), ,/su(2),; it is minimal for the
N =1 Virasoro superalgebra regarded as a chiral algebra),
as well as unitary minimal W (n, -models
su(n), Xsu(n), ,/su(n),_; [here the chiral algebra is
Zamolodchikov’s W, ,, algebra (Refs. 73-76) ], and many
others (including nonminimal, nonrational, and even non-
unitary models, the latter arising when WZNW with nonin-
teger k is reduced).

Drinfeld-Sokolov (DS) reductions”””° provide a
slightly more complicated and instructive example. In this
case, a maximal nilpotent subalgebra is selected as H (upper
triangle matrices for sl(#n) in the common matrix represen-
tation) although not all of its generators are supposed to
vanish: first-level generators (they correspond to simple
roots in the case of s1(#) and stand at the first diagonal above
the principal one) are made equal to one. In general, a non-
zero value may be attributed only to a time-independent op-
erator that commutes with the energy-momentum tensor.
However, this restriction may be weakened because the non-
vanishing value is constant: it is sufficient that the operator
be a primary field of vanishing dimension. In this case the
commutator retains only the term with a derivative which
equals zero. This allows the DS reduction to preserve con-
formal symmetry although it is the slightly modified Vira-
soro algebra, not the Sugawara algebra, that remains unbro-
ken. (With respect to T, all currents are of dimension one
rather than zero; the adequate tensoris Tps = 75 — dH,, or,
more precisely, is a restriction of the right-hand part onto
the reduced Hilbert space; H,, (z) is the current which corre-
sponds to the Carten element of algebra G associated with
the vector p on the Carten plane; p is the half-sum of a//
positive roots). Moreover, even a richer fragment of % Ge.g.

adequately modified operators W &', survives in this situa-
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tion. They are associated with Cazimir operators of finite-
dimensional algebra G (but not G'!), and like them are not all
independent because of the restricted number of degrees of
freedom. However, the relations between them are not lin-
ear. Following the DS reduction, the number of algebraical-
ly independent W-operators appears to be equal to the rank
of G; moreover this finite set of operators is closed not only
with respect to Poisson brackets but also to quantum com-
mutators (which is far from being obvious). In other words,
quantum (i.e., adequately modified) W-operators form a
closed operator algebra or the Zamolodchikov algebra W
(Refs. 73-76, 80, 81). This algebra becomes a Lie algebra
only in the (naively taken) limit rank G— « (Refs. 82-85);
in the case of finite ranks, it is at best quadratic (there is such
a basis). W-algebras provide a highly non-trivial example of
chiral algebras, but the problem of its localization (gaug-
ing), i.e., construction of corresponding string models (the
so-called W-strings®®*) remains obscure.

The theory of DS reduction is rather broad and needs to
be substantially improved. It is worthwhile to note that the
DS reduction gives rise to the Toda conformal models®
(Liouville theory being the simplest of them) which, along
with their integrable analogs, constitute a classical object of
investigation in mathematical physics (the sine-Gordon
model* is considered to be the simplest integrable Toda
model).

6. TOPOLOGICAL AND STRING MODELS

The foregoing discussion did not address gauging the
algebra of constraints (the algebra H,, in the case of GKO)
as another possibility to describe any reduction. As usual,
this requires supplementation of the original action (e.g.
& wonw ) With constraints multiplied by gauge fields and
addition of terms taking into consideration the non-abelian
structure of the algebra of constraints. The central charge
defines the coefficient in front of the gauge field action,
moreover, the quantum measure includes the functional in-
tegral over the ghost fields containing the interaction of
ghosts with a gauge field in case of a non-abelian algebra and
with fields of the original model when this algebra is not a
Lie algebra. (By definition, the latter case is ruled out in the
GKO model and in Yang-Mills theory and is not therefore
discussed in the usual textbooks on elementary-particle
physics, although it is possible in other situations). The
states of the reduced theory are denoted as classes of BRST
cohomology (this condition distinguishes them from a var-
iety of functions dependent on all the fields of the original
model, gauge fields and ghosts). The BRST formalism (95-
98) is an important technical tool of the string theory since
transition from conformal models to string models requires
gauging the chiral algebra.

Methodological aspects of reduction as applied to the
WZNW model have been elaborated in Ref. 99. The coset
G /G, i.e., the case of H = G, occupies a special place among
these reductions. Although, by definition, almost all degrees
of freedom in this model are eliminated, something may sur-
vive. This is particularly easy to observe in the BRST formu-
lation because it uses gauge fields and thus allows the exis-
tence of something inbetween a degree of freedom and the
lack of it; configurations are feasible having vanishing field
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tension that are not purely gauge ones. The very existence,
the number, and the properties of such configurations de-
pend on the global structure of the space where the theory is
defined (by boundary conditions). Therefore, effects of this
kind*® are referred to as topological (or cohomological, to
use a more correct term).

The WZNW model with completely gauged Kac—
Moody symmetry is a typical example of topological theory
in which all the observables (correlation functions) can be
described in terms of BRST cohomologies. In fact, they may
be reduced to cohomologies of the module space of flat G-
connections on two-dimensional surfaces and provide an ex-
ample of the description of sophisticated topologies in terms
of functional integrals. The efficacy of such an approach to
topological problems is associated with the possibility of ap-
pealing to physical intuition and using more specific meth-
ods for the analysis of functional integrals (e.g., quasiclassi-
cal calculations). Moreover, this approach allows a gradual
transition from topological investigations to the analysis of
more interesting algebro-geometric structures on the same
space (merely by incomplete reduction of the original mod-
el).

It is known that the BRST formalism is very close to
supersymmetry but contains half the number of generators
as compared with the ordinary Gol’fand-Likhtman super-
symmetry'®? (in fact, only one in the two-dimensional situa-
tion in question) and has nothing to do with shift generators,
i.e. with the energy-momentum tensor. In ordinary super-
symmetry theories, one can ignore the energy-momentum
tensor in examining vacuum states and describe the vacuum
sector in terms of topological models. This sector can be
rather complicated in supersymmetry models and often con-
tains “valleys” and ‘““plateaus” due to cancellation of quan-
tum corrections which eliminate vacuum degeneracy in oth-
er situations.?"’ Instead of the advantages provided by the
algebraic structure in case of the WZNW model, construc-
tion of topological models based on supersymmetric ones
provides an opportunity to vary the form of the action,
usually the potential. So far, the most striking example of
using this possibility is the establishment of a relation be-
tween topological models (their classification) and catastro-
phe theory.!!>1¢ Also, this appears to be the simplest way to
explain their relation (already known) with integrable equa-
tions.

As a matter of fact, the term “topological” ought to be
applied to the field theory models that are independent of the
space-time metric and coordinates. There are two possibili-
ties tobuild up such a theory (reminiscent, by the way, of the
two scenarios of interaction unification discussed in a pre-
vious section). First, it is possible to construct a model in
which even the classical action or at least the equations of
motion do not depend on either the metric or the coordinates
(e.g. a model having Weyl invariance with respect to metric
rescaling, g — g ) and further require cancellation of anoma-
lies in order to avoid development of such dependence due to
quantum corrections. (Also, it is not forbidden to demand
that the corrections be cancelled between different orders of
perturbation theory). Such a possibility is realized in the
above examples of Hamiltonian reductions and supersym-
metric models and also in more complicated cases, such as
those of the Chern-Simons topological models,''”"''® when
the number of dimensions D is odd (with Lagrangiand ~'Tr
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FP+D72 e 0 4dd + (2/3)A4 *for D = 3), or topological §-
models for even D (named after the 6-term; the Lagrangian
is Tr FP/? e.g. Tr FF for D = 4). Another possibility is to
choose a theory containing a metric-dependence and inte-
grate over the metrics (over two-dimensional metrics when
the models are two-dimensional). Association with the pre-
vious variant is apparent at least if the original model is con-
formal.??’ It has already been said that integration over two-
dimensional metrics may be described as (i) an introduction
of new fields (Liouville field and reparametrization ghosts)
leading to the modification of the model which leaves it con-
formal but makes the central charge vanishing, followed by
(ii) gauging the Virasoro algebra. Such interpretation re-
sults, at the last stage, in a more or less routine reduction
procedure and yields a topological field theory. However,
this theory differs from those discussed previously in one
aspect. This difference is manifested in Ward identities
which remember either the original symmetry of the model
or its operator algebra (i.e., they are “projections” of the
latter on the topological sector; see Refs. 120, 121 for exam-
ples of such recursion relations). The difference is supposed
tobe dueto the fact that the integral over the metrics (hence,
over Liouville field) is not ordinary (101): the metrics is
restricted by the condition of positive definiteness; therefore,
the integration domain in metric space has a boundary
which can make a contribution to the integral. In fact the
topology of the two-dimensional space is altered and this
gives rise to recursion relations connecting correlators on
surfaces of different topology. We shall return to this ques-
tion in the last section. Now, it is time to recall from where
the integral over metrics came to string theory and how it
can be calculated.

7.PERTURBATION THEORY OF STRINGS OR MASSLESS
FREE FIELDS ON RIEMANN SURFACES

Coming a few steps back, there is a problem of summa-
tion over surfaces with weight e = *S, where S'is the surface
area measured in the external metric G (x) of (D — 1)-di-

mensional space:
S= f (det, ab)Gij(.x)aaxiabxj)l/ 242, 4)

The sum over surfaces implies summing over all the smooth
embeddings including those of different topology. In the pic-
ture of strings-particles, it means that an interaction is intro-
duced and ‘““unitarization” performed. Conformity between
contributions of different topologies at this stage may be
achieved if a constant of string interactions (such a param-
eter is a priori intrinsic in string models, although a posteriori
it frequently has no special interest due to such phenomena
as dimensional transmutation) is introduced as the coeffi-
cient in front of the Euler characteristic in two-dimensional
action (moreover, it is necessary to co-ordinate “volumes”
of integration for different topologies, a separate problem to
be solved within the framework of the theory of a universal
module space). It is natural to consider the sum over sur-
faces as a functional integral in two-dimensional field theo-
ry. It was already indicated that the action in this integral
depends only on embedding of the surface into (D — 1)-di-
mensional space and is independent of the choice of coordi-
nates £ and metric g,,, (£) on the two-dimensional world sur-
face. Reparametrization invariance of the action (a sort of
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gauge symmetry) is usually not difficult to preserve in func-
tional integration, but things are quite different as regards
metric-dependence—Weyl invariance is as a rule broken.
This alone precludes the use of Eq. (4) as a reasonable effec-
tive action of the two-dimensional theory since it must de-
pend on g,, . But such a dependence in its turn, suggests that
the sum over surfaces must include summing not only over
embeddings but also over two-dimensional metrics. As far as
the action is concerned, formula (4) is equally unsuitable
and because of strong nonlinearity it would anyway be im-
possible to work with such action. Polyakov formalism®® in
string theory implies the necessity to take

fGij(x)aa,viabe'g"b(dct ' d%. (5

as a substitute for the action of Eq. (4). At least in principle,
the measure in the integral over the metrics must be defined
by norm:*

g% f 38,08, 5,87 2% (det g)' 1 2d%,

although in practice, simpler measures are employed (Refs.
122-125).?® In order to calculate functional integral one
has to fix the reparametrization invariance and introduce
corresponding ghost fields (&,c) with spins 2 or — 1 respec-
tively.>® The metric retains the only true degree of freedom,
the Liouville field x, (£):

g &) = gD,

and, as has been mentioned already, the x,-dependence after
integration over the fields x;, &, ¢ emerges in the effective
quantum action {actually, due to x,-dependence of the de-
terminants and Green’s functions of Laplace operators).
The correct quantum action, stable with respect to quantum
corrections has the form of Eq. (2), with the Minkowsky
signature appearing automatically (if D<26).2%

In the case of a bosonic string examined here as the
simplest example, it is necessary to replace dots by ghost
action and to make corrections related to topology and inter-
fering, generally speaking, with D-dimensional Lorentz-in-
variance:

L oo f(Mz'Gyv(“‘f)aa;‘#%jvg?g) + aMxo.%’(o)‘
+ 'b“"aac‘,‘,)(det':g'(ol)«)l/Qd2g ¥ (6)

Thereis no need to integrate over the metric gty (£): thisis a
reference metric with curvature R, . 85 =&, might be
suggested as the simplest choice, but in this case R 4, =0
which makes it clear that such a simple option is inapplicable
to most of the cases: according to the Gauss—Bonnet
theorem, the integral {2 ,/det g, d*¢ is proportional to
the Euler characteristic of the surface and is not zero. The
parameter a in Eq. (6) varies with the model type (in the
given case it depends on D: a ~D — 26). The dots stand for
corrections. In the first place, they take into account the
contribution of the boundaries of the two-dimensional sur-
face (if there are any), and secondly, they restore conformal
invariance. In other words, formula (6) is accurate if the
two-dimensional surface is closed and if the space-time met-
ric G, (x) is chosen to ensure the vanishing of the S-func-
tion, e.g. if G,,, (x) = 6,,,. -

Similar reasoning appears to be equally relevant in
more complicated situations than the bosonic string model
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of Eq. (4). The original two-dimensional action may be
more sophisticated than simply the surface area, it may even
from the beginning depend on a two-dimensional metric al-
though in this case the determination of the correct effective
quantum action (two-dimensional conformal theory, an
analog of Eq. (6)) becomes a separate problem.

The metric retains discrete (topological) degrees of
freedom, besides Liouville-like ones. Their existence can be
attributed to the impossibility to reduce, by means of surface
reparametrization, all metrics to g,, = g2 e*0 with the
same g9 (£) because all equivalence classes of the metrics
differ not only in the choice of x, (£) but of g'2’ (£) as well.
However, while the former arbitrariness is infinite-dimen-
sional: (x, may be any function of two-dimensional co-or-
dinates), almost all the g')’(£) are reparametrizationally
equivalent: there is only one finite-parametric family of ref-
erence metrics goo [¥1(£). The parameters y are related to
the modules of the complex structure of the two-dimensional
surface and form a module space, their number (module
space dimension) being a function of topology. Integration
over all metrics implies not only the integral over the Liou-
ville field but also a finite-dimensional integral over the mod-
ule space. In fact, introduction of the Liouville field and re-
parametrized ghosts brings us back to the situation without
metrics but with a number of corrections: first, the proper
approach was used; second, the action of Eq. (6) contains
extra fields x, which were absent in Eq. (2); third, it does
not contain a square root; fourth, the metric left an addi-
tional trace, i.e., dependence on the modules of complex
structure on the surface.

The latter finding implies that in string model studies,
we actually have to deal with Riemann surfaces; moreover it
emphasizes the role of conformal models which were shown
to be associated with the complex structure (see above).
Thus, for a given topology, the integral over the metrics is
identical to the integral over the module space of a certain
variable (correlator) in the conformal theory. It is clear that
one can not integrate any correlator—it must be indepen-
dent of the co-ordinates on the surface. In practice, this re-
quirement means that integration should be confined either
to correlators of zero-dimensional vertex operators or to in-
tegrals of unit-dimensional operators (conventionally re-
ferred to as “‘observables.” From the more formal point of
view, the observable must be an element of BRST-cohomo-
logy which brings us back to the idea that the string model
emerges from the conformal one when the Virasoro algebra
is gauged. In connection with this, it is appropriate to recall
that any chiral algebra is subject to gauging, and the “obser-
vables” in the corresponding “‘string model” can be repre-
sented in the form of integrals over the module space. Some-
times such an approach does not encounter serious difficulty
(for example, in the case of the module space of flat connec-
tions associated with gauging the Kac-Moody symmetry),
but certain cases, e.g. modules associated with W-symmetry
or problems of W-gravity®*®* remain to be clarified.

The module space of closed oriented Riemann surfaces
with punctures is in itself a complex orbifold, having discrete
cone-like singularities at the points associated with addi-
tional discrete symmetry. Moreover, the module space is a
priorinon-compact and its boundaries correspond to surface
degeneration (pinching handles, colliding punctures, etc.).
It has a highly complicated topology: specifically, there are
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modular equivalent domains on the Teichmuller covering
space.>*'?> Modular transformations allow collision of the
punctures to be considered as an equivalent of a particular
handle pinching and module space to be compactified by
addition of only singular surfaces with pinched handles (in
the absence of coinciding punctures). Following such a De-
ligne-Mumford compactification, the topology of module
space becomes equivalent to the space module topology of
fat graphs and easy to investigate.'?*'** The complex dimen-
sion of the module space .# ,,, is 3p — 3 + n, where p is the
number of handles (genus) and » is the number of punctures
(exceptions from the rule are dim¢.#,,, =0forn =0,1,2,3
and dim¢.#,,, = 1 for n = 0,1, and can be attributed to the
existence of conformal Killing vectors, overall holomorphic
vector fields with zeroes in punctures).

An objective of the perturbation theory of strings is to
devise expressions for “multi-loop amplitudes” in various
string models. In practice, it implies defining correlators of
vertex operators in arbitrary conformal models on arbitrary
Riemann surfaces. This problem being solved, it remains to
select a specific class of observables, i.e., vertex operators
with correlators structured like measures on corresponding
module spaces with punctures designating the positions of
the vertexes. A somewhat excessive solution of the problem
(identification of a// correlators) is a specific feature of the
perturbation theory of strings which, on the one hand, facili-
tates its broader application, but on the other hand, lessens
its adequacy for the specific problem of string model studies
as compared with certain alternative methods (see the sec-
tion on “non-perturbative” approaches below ).

The perturbation theory of strings is based on the for-
malism of free massless fields (Refs. 125, 130, 131), i.e. the
Gauss field theory with the action

[ op0,08%(0et 9! 2a%.

The field ¢ is free in that it is lacking self-action (vertexes of
the ¢°, ¢% and other types). However, this theory is not
altogether trivial due to the interaction with the background
metric g?°. Its basic objects are the determinants and the
Green’s functions of the Laplace operators A = g*°3,3, on
the Riemann surface. They all depend on both the Liouville
field and the modules of complex surface structure; more-
over, one can easily find objects which holomorphically de-
pend on the modules (i.e., the dependence is compatible
with the complex structure on the module space). It seems
appropriate to examine the Laplace operators A, defined for
the fields of any spinj (they are sometimes referred to as j—
differentials). The determinant formula, for example, looks
like this:

Det A; = exp(c; o et N det Nl_l.lDet 5/‘,25 (N

wherec; = 2(6/% — 6j + 1) is the central charge of the Vira-
soro algebra for j-differentials and

1
oo~ faaxoabxog‘(‘g)(det g(o))l/zdzl; ~f@ <7

is the Liouville action, while two finite-dimensional determi-
nants detN takeinto account the contribution of zero-modes
of the operators 3j and @ ;7 (holomorphicjand (1 —j) dif-
ferentials respectively). The main part of the formula is the
chiral determinant Detéj which is holomorphically depen-
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dent on the complex coordinates on the module space,
d Det éj/ay =0, and is a section of the determinant bundle
over the module space. The operator 91- acts from the space
of the j-differential into the space dual to the space of
(1 —j)-differentials. If the fields (j-differentials) over
which the integration is carried out in the functional integral
are multi-valued on the Riemann surface, Det :9] also be-
comes an analytic function of the boundary conditions (in
fact, a section of the aforementioned bundle of flat connec-
tions over the module space) while the Laplace action is
supplemented by an additional term, the so-called Quillen
anomaly.>*'*%!32 This dependence on boundary conditions
plays a key role in the theory of integrable systems. Explicit
formulas for Det d, express it in terms of special functions:
Jacobi and Riemann theta-functions.'**!3* Jacobi theta-
functions are defined as holomorphic functions on g-dimen-
sional complex tori the phases of which are shifted after go-
ing around non-contractable contours by a linear function of
co-ordinates.?®’

Tori differ in the choice of lattices defined by symmetric
complex nondegenerate matrices T, (i,j = l...g) with posi-
tively-defined imaginary parts; a set of such matrices forms
an upper Siegel half-space. Each closed Riemann surface of
genus g can be embedded using a Jacobi map into a g-dimen-
sional complex torus (called its Jacobian) the correspond-
ing T; being holomorphically dependent on modules of the
surface and referred to as period matrices. There is more
than one embedding of the same surface possible, different
embeddings being related to modular transformations

AT+ B

T>cr+v D

which form the Sp(g,Z) group. Jacobi theta-functions ob-
tained in this way, with the argument being a function of a
point on the surface and T its period matrix, are referred to
as Riemann theta-functions. It should be borne in mind that
not all Siegel matrices are period matrices (for g> 3). The
problem of identification of a subset of period matrices in
Siegel space and, hence, the problem of independent identifi-
cation of Riemann theta-functions, is known as the Shottky
problem. It has a simple solution in the form of a transcen-
dental equation for g =4 which is of importance in the
superstring model,'**!3¢ but an effective general solution re-
mains to be found. An implicit solution is known in the form
of the Novikov hypothesis'*”!*® (which has now been
proved) according to which the Riemann theta-functions
are characterized by the fact that they satisfy a system of
nonlinear equations, actually the Kadomtsev—Petviashvili
(KP) hierarchy.>® Riemann theta-functions together with
information about their zeroes are practically all that is
needed to construct Green’s functions or any other variables
in free field theory.

Formula (7) possesses the property of holomorphic
factorization with which we have already become familiar
when discussing conformal theories: correlators are repre-
sentable as bilinear combinations of holomorphic conformal
blocks. Although an integral (over module space) is also an
example of a bilinear combination, it is sometimes useful to
talk about helomorphic factorization of correlators before
integration over module space. For instance, bilinear combi-
nations in the case of rational conformal models contain a
finite number of conformal blocks before, not after, integra-
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tion. The property of holomorphic factorization is also use-
ful for identifying string models on open and nonoriented
surfaces. Corresponding module spaces are not complex, but
they can be embedded as half-dimensional real subspaces
into complex module spaces of closed surfaces, using the
technique of doubles. Moreover, measures on these sub-
spaces are defined through chiral components of the full
measure (see Refs. 140-142).

Measure on a module space is one of the simplest vari-
ables in string theory. It defines the partition function (vacu-
um amplitude) of a 26-dimensional boson string and is
known as the Mumford measure, having been extensively
investigated in various parametrizations of the module
space.

Parametrizations deserve a special discussion since
their different varieties are useful for different purposes.

(A). Itis very convenient to use period matrices for the
analysis of modular properties ( the theory of modular forms
being one of the key subjects of the classical theory of elliptic
functions). Unfortunately, the Shottky problem makes it
very difficult to use this approach for g > 4 (although the
theory for g = 2,3,4 is also underdeveloped; see Refs. 143,
144 for string applications).

(B). A very useful approach is to consider Riemann
surfaces as algebraic manifolds. The problem is constituted
by the lack of a simple and single-valued parametrization of
a fixed-genus module space. An important exception is ge-
nus 2 (and 1) when all the Riemann surfaces are hyperellip-
tic. The formalism of free fields for hyperelliptic surfaces
(and abelian coverings of the Riemann sphere in general) is
especially simple: everything is expressed in terms of hyper-
elliptic integrals. It is very often applied to the preliminary
analysis of complex topology effects in the studies of new
models. Moreover, certain special problems, e.g. the Ash-
kin-Teller model'*® or the theory of the Korteveg-de-Vries
equation® can be reduced to the hyperelliptic formalism.
Coming back to the generic problem of representing Rie-
mann surfaces as algebraic ones, note that the problem of
description of determinants and Green’s functions in terms
of defining equations has never been solved. There are two
goals to strive for. First, such a representation must be con-
venient for a uniform interpretation of all the genera and, in
the end, for summing over the genera (see for instance
chapter 12 in the review of Ref. 130). Second, algebraic sur-
faces may be defined over arbitrary numeric fields; on this
route, connections between string theory and important sec-
tions of algebraic geometry can be established, the closest of
them being the Arakelov theory:'*® see Ref. 51 for the p-adic
string theory dealing with these problems (although it re-
mains to be further elaborated).

(C) Parametrization of module space may be achieved
by choosing a surface, cutting out a neighborhood of a point
(or points), ‘“‘rotating” this neighborhood, and gluing it
back. The formalism based on this idea is referred to as the
Krichever construction*”'** and is currently considered
the most useful one. Its major tool is an analysis of holomor-
phic sections of different bundles extendable or non-exten-
dable inside or outside the cut-out neighborhood. Module
space is normally associated with sections extendable
neither inside nor outside.'*®> Moreover, changes of surface
topology (e.g., handle gluing operators) carmrbe described in
similar terms.’>® The so-called string operator formal-
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151-153 and representation of a universal module space'>*

in the form of an infinite-dimensional Grassmanian'*®
are also associated with the Krichever construction. This
construction is equally important for an analysis of integra-
ble problems; in fact, it was originally suggested for this pur-
pose.'*’

Another constituent of the formalism of free massless
fields is a reformulation of various conformal models in
terms of a variety of free fields with quadratic actions. Tradi-
tionally, this procedure is sometimes called bosonization.
Generally speaking, this problem is an example of a search
for action angle variables. However, it is important that a
transition to these variables in the case of two-dimensional
conformal models is virtually local. Free field representation
has been reported for the WZNW model'>® and for various
types of its reduction.”® ' It is especially convenient for the
description of a Verma module; and as applied to this range
of problems, it is often referred to as the Fefgin-Fuks-Dot-
senko—Fateev—Felder formalism.!%-163

The Feigin-Fuks-Felder operators or screening opera-
tors are used to describe in these terms irreducible represen-
tations and, hence, rational conformal models. (See Ref. 158
for their Lagrangian interpretation). One more important
class of conformal theories, N = 2 supersymmetric sigma-
models,'**'** appears to reduce to free fields using the Nico-
lai transformation; however, very much remains to be eluci-
dated concerning this class (see Ref. 166; for further
examples see also Refs. 167, 131. On the whole, applicability
of the formalism of free massless fields (i.e. the existence of a
replacement of variables) ought to be regarded as a defini-
tion of a conformal theory.

There is a little bit more delicate relation between this
formalism and two-dimensional integrable theories.'®® De-
pendence of the chiral determinant Det d on boundary con-
ditions imposed on the fields on a surface has been men-
tioned earlier. Boundary conditions for a closed surface are
parametrized by the points of a Jacobian (when the fields are
sections of a linear bundle over the surface; in case of multi-
dimensional bundles, the Jacobian is replaced by the space of
maps of the surface fundamental group into the structure
group of the bundle; the following reasoning is equally valid
for this general situation). It is possible to define a set of
commuting dynamic flows on the Jacobian, e.g., simply uni-
form rectilinear motion (windings) with different directions
and velocities, and examine 7{¢} = Det J as a function of
corresponding “times” {¢}. This 7-function [ Refs. 169-171]
satisfies nonlocal bilinear Hirota identities the infinitesimal
version of which is represented by an infinite set of compati-
ble (due to commutativeness of the original flows) differen-
tial equations that form an integrable hierarchy (Kadomt-
sev—Petviashvili or the integrable hierararchy of the Toda’
chain in the case of linear bundles on arbitrary Riemann
surfaces, and Korteveg—de Vries hierarchy in the case of hy-
perelliptic surfaces, etc.). Such a view of integrable theories
(evidently, the most reasonable one) suggests the absence of
space-time interpretation of their “times.”

Sometimes, it is possible to consider lower equations of
the hierarchy, e.g., the sine-Gordon equation, to be two-di-
mensional relativistic systems; such an interpretation may
be useful in the construction of integrable interpolations be-
tween individual conformal models (we have already men-
tioned this idea in the context of inductive design of a ““uni-
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fied field theory” (see Refs. 172, 173 for examples of specific
results concerning interpolations defined by the renorm-
group flow). It should be emphasized that in such cases the
Riemann surface used in the general construction (“spectral
parameter surface””) is not directly related to two-dimen-
sional space-time: an adequate description of their interrela-
tion is likely to be achieved in the double-loop theory (see
Refs. 40, 41).

8.NONPERTURBATIVE STRING THEORY

The next objective of string theory following the devel-
opment of calculations on Riemann surfaces (discussed un-
der the heading of perturbation theory of strings) is to sum
over all such surfaces including summation over topologies.
A direct calculation of integrals over module spaces and a
summing up of the resultant values are equally hopeless and
senseless. What is really important is to reveal new structures
supposed to come to light as a result of summing over mod-
ules and topologies. Those believing in the string program as
presented in the introductory portion of the present article
will, from the very beginning, understand that these new
structures should allow a unified approach both to all the
Riemann surfaces regardless of their topology and (which is
equally important) to all the string models irrespective of
the underlying conformal theories.

This second aspect of nonperturbative calculations ac-
quires special significance in the context of the comprehen-
sive string theory understood as the ““unified field theory” or
dynamic unification of all string models into a single whole.
Perturbative analysis can not be expected to take into ac-
count such a whole, even if it exists, because perturbative
expansions close to different extremums are defined only by
their immediate neighborhoods and show no interrelation
whatever. On the contrary, nonperturbative (exact!) results
know everything: it means, if applied to our situation, that a
nonperturbative calculation for a single string model must
actually know about all the others! Of course, this is not the
case with a rigorous deductive approach which may account
for the absence of a well-defined method of nonperturbative
calculations in quantum mechanics: perturbative series are
normally asymptotic (diverging) and may be summed up
with a given variable only after additional “nonperturba-
tive” information (usually, about analytic properties of the
potential and its behavior at infinity) is available.

All this indicates that additional information must be
postulated in the form of some new principles taking into
consideration the current state of string theory which is yet
to be invented. However, these principles are expected to
meet very rigid requirements, that is whatever may be de-
clared to be the nonperturbative answer, its perturbation
theory expansion must reproduce the sum over surfaces.
Therefore, the safest way is to start with attempts at summa-
tion in search of new principles instead of trying to postulate
directly. This process is far from being completed which
makes accentuation even less reliable here than in other sec-
tions of this article.

The most straightforward ways to summation over
modules and topologies originate from the problem of a uni-
fied description of all Riemann surfaces. The basis of this
approach is the universal module space (UMS), a combina-
tion of all module spaces in which spaces .#,_, , . , (pinch-
ing handle), .# M o pn—n +1 (pinching cycle ho-
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mologous to zero), and .#,, , (coincidence of marked
points) are attached to the boundaries of .#,,. Different
definitions of UMS may exclude some of these gluings and
determine specific gluing rules (see Ref. 154). One of the
purposes of introduction of such a space is to fix relative
norms of the measures on spaces of different topology: this is
often referred to as factorization conditions (and their corol-
laries for correlators of observables, i.e., for integrals with
these measures, are termed recursion relations). Construc-
tion of UMS and string measures on UMS is performed
“from the top down”, i.e.,, from complex topologies to
simpler ones. Actually, the factorization condition defines
the measure on .#,, as a restriction of the measure on the
module space with higher p and #, and the problem of sum-
mation of perturbation theory series consists in “guessing”
what should be called the measure on .# , .

To a certain extent, the inverse procedure exploits the
idea of a handle gluing operator (HGQ). To sum up a series
means in this language to exponentiate the HGO integrated
over handle size and location (in fact, a whole family of
HGOs graduated by codimensions which is necessary for the
assessment of interaction between handles). Perhaps, this
problem is not so hopelessly unsolvable, especially if an ef-
fective description of surfaces as (non-abelian) coverings
over the Riemann sphere should be found. As a matter of
fact, the most effective technique in operations with UMS
and HGO is associated with the Krichever construction
(string operator formalism ), and the UMS is usually repre-
sented as a factor of some version of an infinite-dimensional
Grassmanian. This Grassmaninan is in turn explicitly relat-
ed to algebras of the Gl(w ), Sl(0) or W( ) types and
through them to the corresponding WZNW models and
their reductions. The latter include a large number of con-
formal models, and for this reason, the Grassmanian ap-
pears to be involved in the problem of describing a set of all
conformal models (*“‘phase space”) of the comprehensive
string theory.

Considerable methodological advancement in the field
of nonperturbative calculations that allowed more accurate
formulation of our expectations with respect to this issue is
associated with the formalism of matrix models.'”*'7® This
is a common tool of discrete mathematics that has for a long
time been employed in statistical physics and has proved to
be a most effective alternative to the Polyakov formalism as
regards string (but not conformal) models. Application of
this method aims at the construction of a Regge calculus for
two-dimensional gravity. However, it differs from the stan-
dard Regge formalism in that it is confined to triangulations
with fixed (and equal) lengths of the sides of triangles. De-
spite the fact that the cause of the equivalence of quantum
gravity as defined above and Liouville theory remains ob-
scure,?® answers obtained by either method invariably coin-
cide.

From the methodological point of view, the value of
such modification of the Regge technique is evident: in the
absence of summation over side-lengths of triangles, any
triangulation can be replaced by a dual graph with triple
vertexes whereas the problem of enumerating such graphs is
the problem of evaluating the integral

fdm exp(m? + tm3).
It is certainly interesting to analyze correlators, i.e., to intro-
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duce excitations into triangulations. The simplest approach
to the description of excitation is to replace some of the triple
vertexes of the graph by quadruple ones, etc. If the contribu-
tions of triangulations of different topology are in addition to
be distinguished, number-valued integration variables m
should be replaced by square N X N matrices M using the
t’Hooft method. In other words, it is necessary to consider
the integral

Lyl = f dM exp(, 1, Tr M*). (8)
k

This integral defines the partition function of a discrete ma-
trix model. In order to obtain the correlators in a string mod-
el, it is necessary to take the continuum limit, N— «. Con-
tinuum limits may differ depending on the expected
behavior of the coefficients {z, }. It is possible to restore the
expansion in topologies (in inverse powers of &) in one of
such limits. A more interesting double-scaling limit'’’-'*¢
yields the sum over all topologies. It readily appears from
formula (8) that taking limits implies certain analytical con-
tinuations (more than that, the continuum limit by its defin-
ition implies singular behavior of .#{t}, i.e., the divergence
of integral (8). Therefore, it is necessary to define some rea-
sonable properties of the partition function (8) which are
preserved on taking the limit. Such properties may include
equations (Ward identities) imposed on . {r}. They have
the form of Virasoro constraints'®!1%°

lan{t} =01

nz-1,

where, in the case of model (8).
- 2
1= ; kt,3/3t,,, + > 02/3t,01, .
a

[ L, 1= {n—m)l

n+m’

Another mode of putting them down are the recursion rela-
tions mentioned above. These identities result in .# , {} be-
ing a 7-function of the integrable hierarchy of the Toda-
chain,'® i.e., it satisfies the bilinear Hirota equations. The
variable that satisfies the equations of Toda hierarchy them-
selves is

Oy =108( Ly 1 /L ).

It is convenient to take the continuum limit directly in these
terms, trying to preserve the integrable structure. The dou-
ble-scaling limit is the one in which the hierarchy of the Toda
chain turns into the Korteveg-de Vries (KdV) hierarchy,
and the nonperturbative partition function of the two-di-
mensional quantum gravity is a 7-function of the KdV hier-
archy 7{7} (the times T are selected linear combinations of
the times ¢ and N) satisfying the system of Virasoro con-
straints (somewhat different from those described above).
This 7-function may itself be represented as a matrix integral
quite different from (8):

21} ~ FQ [ dX exp V(X) + V(Q)X) (9)

with V(X)=X>, T, =n"'Tr Q ", F(Q) is a function
constructed in a particular manner over V(X). This formula
is known as the Kontsevich model.'**!%¢ There is evi-
dence'®”' that the same 7-function has a purely topologi-
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cal meaning, i.e., it defines the generating functional for top-
ological invariances: Chern classes of divisor bundles over
module space. Different modes of definition of topological
models (directly reflecting topological properties and aris-
ing from averaging over metrics) lead to identical results, as
was to be expected.

Matrix models can also be constructed when quantum
gravity occurs along with the initial conformal model. At
present, the results are available only for the Virasoro (p,q)
minimal models: they all have ¢ < 1. Remarkably, nonper-
turbative partition functions for all models with ¢ =2 are
defined by the same formulas (8) and (9) (Ref. 191): the
nonperturbative answer for one model does indeed know
about the existence of another! An analog of formula (8) for
models with ¢ > 2 is more complicated, being represented by
multi-matrix models'®"'*? with the number of matrices be-
ing ¢ — 1; at the same time, there is still only a single matrix
informula (9):itis only necessary to replace the potential by
V(X) = X?*'. The KdV hierarchy is replaced by the g-re-
duction of the KP hierarchy and the Virasoro constraints
make room for the W, ,, -constraints. Therefore, the Kont-
sevich model (9) with an arbitrary V(X) is close to the non-
perturbative partition function for the entire class of string
models,'®¢ i.e., they are all associated with the KP hierar-
chies and the “Toda lattice” or, what is the same, with linear
bundles over Riemann surfaces.

From the space-time viewpoint, all these models may be
interpreted as D = 2 string models (the Fateev—Dotsenko
scalar field that arises from bosonization of minimal models
plays the role of the x, -coordinate while the Liouville field as
usual performs the function of x,). The restriction ¢<1 is
attributed to the requirement of the absence of tachion exci-
tations, i.e., to the stability of the phase described by a given
model (it can not be ruled out that other models of heterotic
strings without tachions may give rise to new classes of non-
perturbative models). Of special interest are the so-called
“c = 1 models” in which the Gaussian theory of the x, field
taking values in a circle or in a segment of length R stands for
the original conformal theory. Interest in these models can
be accounted for by: first, the presence of the free parameter
R, second, the expected appearance of W _ -conditions on
the nonperturbative partition function, third, the presence
of a continuous (rather than discrete, as in other cases) fam-
ily of observables at R = «, and last, but not least, the neces-
sity of improving the available technique of nonperturbative
calculations for the description of the ¢ = 1 models (reason-
able matrix models determining the nonperturbative parti-
tion function and containing R-dependence have never been
reported).

The moral to be drawn from these first nonperturbative
results of string theory is that an integrable structure may be
the natural structure that arises as a sequel of summation of
perturbative series. Evaluation of a nonperturbative parti-
tion function requires that all perturbations contained in the
theory be exponentiated. An effective action in such a situa-
tion is sure to be infinitely parametric. This suggests a rich
symmetry associated with the freedom of arbitrary variable
(field) substitutions in the functional integral (which is
usually lacking due to the requirement of minimality moti-
vated, for instance, by renormalizability). This symmetry
(apparent as Virasoro constraints which were examined in
the above examples of matrix models) reflects the invariance
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of the partition function with respect to a very broad class of
substitutions of its own arguments ( “times’’). This freedom
may be used to make an optimal choice of “times.” It ensues
from matrix models that such a choice may include partition
functions that turn out to be 7-functions of integrable hierar-
chies.

It is worthwhile to mention one more viewpoint of the
same results. The Virasoro constraints and their W, -gen-
eralizations (i.e. recursion relations) can be interpreted as
symmetries induced by the operator algebra of vertex opera-
tors when restricted to the set of observables (primary fields
of definite dimensions). This algebra of observables is a truly
invariant characteristic of the model independent of the type
of the surface, modules, and integration over metrics. Inves-
tigation of algebras of observables and reformulation of
available information about string models in terms of these
algebras are the most important current problems of string
theory. (See Refs. 193, 194 for very interesting but prelimi-
nary results of the studies on ¢ = 1 models, including those
pertaining to four-dimensional geometry.) Gauging these
symmetries (“‘third quantization” and construction of ade-
quate “‘string field theory”) will be a further development in
string theory.

Setting apart all these details, the general scheme of de-
signing a string theory using the inductive approach (*‘from
the bottom up’’) as the most adequate one at the stage of
theory invention may be described as follows:

(i) Take any conformal model and select a chiral (sub)
algebra in its operator algebra.

(ii) Build up a corresponding string model by gauging
the chiral algebra. The “remaining” operator algebra (its
“projection’ on the classes of the BRST-cohomologies asso-
ciated with the chiral algebra or, simply, its “factor” with
respect to the chiral algebra) makes up the algebra of obser-
vables. We note that the algebra of observables includes op-
erators that affect topology. The string model may be de-
scribed as a new conformal model (with extra Liouville and
ghost fields; with the zero central charge of the chiral algebra
modified with regard to these fields; and with permission to
consider only a part of the vertex operators, i.e., the “obser-
vables’’) or as topological gravity (based on the fact that
correlators of the observables are topological invariants). In
the former case, the algebra of observables may be regarded
merely as a fragment of the operator algebra of a new confor-
mal model (with all the descendants with respect to the
modified chiral algebra being ignored). In the latter case,
algebra of observables has the form of recursion relations.

(iii) Design a “nonperturbative string model” by gaug-
ing the algebra of observables. Gauged fileds introduced in
this way are associated with observables and interpreted as
physical fields (in space-time, if any). From the two-dimen-
sional viewpoint, these fields *“perturb” the action of the
string model, i.e., convert it to another string model, the
nonperturbative partition function being the same for all
models. It was already mentioned that stage (iii) has until
now been examined only for a single class of conformal theo-
ries, the minimal Virasoro series. The “times” 7', in the the-
ory of Eq. (9) play the role of physical fields. Investigation of
this case reinforces belief in two major characteristics of a
nonperturbative partition function: first, it is actually uni-
versal if regarded as a function of physical fields (one for the
entire class of minimal models); second, it is integrable, be-
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ing a r-function. These two statements appear to be the main
predictions of string theory for the theory of fundamental
interactions. However, it will take many efforts to clarify the
assertion that the exact effective action of the standard mod-
el as a function of Yang-Mills fields is a logarithm of a 7-
function (i.e. satisfies special loop-equations associated with
the Hirota bilinear relations).

As far as string theory itself is concerned, its problems
naturally include a search for a self-contained a priori defini-
tion of a universal nonperturbative partition function. It is
only after such a truly fundamental principle has been found
that a deductive construction of string theory and the “cor-
rect” view of the entire range of problems known under this
name will be possible.

9.INSTEAD OF A CONCLUSION, ORA COMMENTARY ON
STRING MODEL BUILDING

Instead of appraising achievements of string theory at
large, it appears more expedient to briefly outline develop-
ments in the field of science that gave rise to this theory. It
may be useful with a view to evaluate more accurately the
discrepancy between the expected and obtained results and
reveal major trends in the divergence. Now, what have we
got as STRING MODELS OF GRAND UNIFICATION?
Almost by definition, there is a class of critical finite string
models in the low-energy limit of which the standard model
or any defined model of the Grand Unification might origi-
nate. This class appears to be boundless, as long as it is con-
sidered in terms of the more or less understood perturbative
physics of strings.

The earliest and most famous model is the ten-dimen-
sional heterotic string model with the Eq X E; gauge group
compactified on the Calabi-Yau manifold with dynamically
broken supersymmetry at low energies (see Refs. 38, 39,
195). Construction of this model suggests string compactifi-
catiorn from 26 to 10, and thereafter to 4, dimensions (it is the
requirement of the “elegant” intermediate ten-dimensional
stage that accounts for the early illusion that the model is
unique). A generalized procedure of this type has the aspect
of a construction of a large family of so-called four-dimen-
sional strings'?*"'% many of which are equally acceptable
from the phenomenological point of view.

All the difficulties in determining the “optimal” string
unification model are the same ones as those inherent in the
conventional scenario of the Grand Unification: the experi-
mental information is utterly insufficient not only to deter-
mine the theory structure near the Planck scales (where the
difference between the string and any other unification first
becomes apparent), but even to choose between the Great
Desert scenario and models designed within the framework
of the technicolor concept (also, to elucidate the possibility
of four-dimensional supersymmetry in the world of elemen-
tary particles at lower-than-Planck energies). These exam-
ples illustrate the current problems of experimental physics.
(Investigation of the effects at the level of radiation correc-
tions in the Glasow—Weinberg-Salam model is about to ex-
clude the most meaningful of the technicolor models which
strengthens the belief in the reality of the Grand Desert;
however, recent measurements of three constants of funda-
mental interactions: @ = e*/#ic, the Weinberg angle, and
Aqep, are most likely to support the supersymmetric scenar-
io—introduction of superparticles facilitates the intersec-
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tion of lines of renormgroup evolution of the three param-
eters in one point.>?

Quantum gravity effects, the only ones specific for the
string theory (they are impossible to describe within the
framework of conventional Grand Unification), are sup-
posed to be far beyond the scope of experimental possibili-
ties, while the immediate aim is to discover at least c/assical
gravitational waves of high amplitude. In this context, the
objective of the string model building may be to obtain con-
vincing evidence of the existence of string models giving rise
to phenomenologically acceptable models of Grand Unifica-
tion as their low-energy limit (i.e., at energies 10'* GeV)
and, hopefully, to understand (for purely theoretical rea-
sons) why only one of such models is distinguished. The
former objective appears to have been accomplished: there is
much evidence that practically any conceivable field theory
at energies of the order of 10'* GeV may be considered as the
low-energy limit of some string model. True, it is essential
that in the course of string model studies many new concepts
and ideas were generated in the theory of Grand Unification
itself (e.g., those of dilaton vacuum condensate, Kahler
structure of the action for scalar fields, extra Z-bosons, dy-
namic supersymmetry breakdown, natural appearance of
hidden matter, etc.).

However, all these ideas bear but a historical relation to
string unification (or rather to string theory as a field of
mathematical physics or, even more precisely, to the way of
thinking); they are neither necessary nor even *‘natural” in
string models and may exist or not, be productive or fail
irrespective of the validity of the fundamental string concept.
As to the possibility to understand theoretically what the
“correct” Grand Unification model should be, this appears
to be a matter for the remote future. In fact, specification of
this problem and a description of current approaches to its
solution have been the major subjects of this article.

Discussions of phenomenologically acceptable unifica-
tion string models are largely focused on two classes of mod-
els:

(A) Ten-dimensional heterotic strings compactified on
Calabi-Yau spaces; (see Refs. 39, 195 for the original ideas
concerning this approach and Refs. 115, 116 for the descrip-
tion and classification of Calabi—Yau spaces and current
methods of investigation of such models using orbifolds, ca-
tastrophe theory, and N = 2 supersymmetric sigma-models
in general).

(B) Four-dimensional heterotic strings not infrequent-
ly referred to as four-dimensional strings and built up with
the use of 22-dimensional lattices.

The most promising approaches appear to be those that
distinguish four-dimensional space. They do not have to be
specially looked for because studies on string theory inevita-
bly suggest apt ideas: the string and the dimension D = 4 are
perfectly aware of each other regardless of our will. Their
close relation at the most elementary level is manifested in
that D = 4 is the minimal space-time dimension at which the
generic world surfaces still intersect. This phenomenon is
described in the simplest terms by the hypothesis of “renor-
malization” of any other dimension into 4 due to the effects
of quantum gravity, e.g., the effect of formation of a Haus-
dorf (fractal) dimension. Technically, this idea is evinced in
the occurrence of conformal sigma-models at D=4 in
which conformal invariance is maintained due to the pres-
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ence of a topological term (intersection index of two-dimen-
sional surfaces in four-dimensional space.*™ Another re-
markable feature of string unification is the automatic
appearance of the Minkowsky signature in space-time as a
consequence of the two-dimensional Weyl anomaly.

There is one more fact closely associated with the for-
mer two: complexification of a two-dimensional space re-
sults in a four-dimensional one. The above nonperturbative
calculations suggest a certain degree of distinction of ¢ = 1
string models that already have a sufficient number of de-
grees of freedom and symmetries which does not, however,
lead to the loss of vacuum stability. Namely, the value ¢ = 1
corresponds to D = 2 although for different reasons it may
be expected that complexification will be needed. Two of
these possibilities are sufficiently naive to be mentioned
without many comments. In the first place, it should be not-
ed that the scalar supermultiplet in models with two-dimen-
sional N = 2 supersymmetry contains a pair of scalar fields
which, on the one hand, suggests a doubling of the variable D
in the case of the sigma-model approach, while on the other
hand, the appearance of N = 2 supersymmetry on the world
sheet looks quite natural in the light of the current concept of
interaction between string and topological models. Second-
ly, it should be remembered that transition from open to
closed strings may be considered as complexification (in-
cluding complexification of vertex operators) and, hence, as
a doubling of the dimension D (number of degrees of free-
dom). These inferences appear to be confirmed by the analy-
sis of certain characteristics of the algebra of observables in
¢ = 1 models'** which reveals a rudimentary twistor struc-
ture intrinsic in D = 4. Today, such ideas just begin to offer
themselves for in-depth examination, and it will take many
efforts to assess their applicability to the theory of funda-
mental interactions. At present, it is enough to emphasize
that these ideas are related to studies on string dynamics and
comparative dynamics of different string models. Interest-
ingly, the logic of theory development has brought the con-
clusion (or at least is about to bring it) that the number of
space-time dimensions and characteristics of its signature
will most likely turn out to be key issues in the search for
dynamically distinguished models of string unification with-
in the framework of the future string theory. In fact, these
are exactly those problems which prompted our studies be-
yond the conventional local quantum field theory. These
problems, besides being crucial for the above purposes, are
supposed to have solutions ( beginning to show in the light of
string theory) that must satisfy the most strict taste, that is
D =4 and the signatureis ( —,+,+,+ ).

10. AFEW WORDS ABOUT THE LITERATURE

This is the end of a brief review of the fundamentals of a
new scientific discipline—string theory. The mode in which
it is presented here (few formulas, many words) can hardly
be considered totally adequate to a discussion of problems
pertaining to mathematical physics but it allowed a concise
description of a broad range of problems. The following is a
check-list of published works on different sections of string
theory to make up for the lack of necessary details that alone
make a theory interesting. The list is not simply incom-
plete—most of the original publications are deliberately not
included. Instead, there is a selection of recent and most
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detailed papers in which the lacking references can be found.

Unfortunately there are no more or less comprehensive
textbooks on string theory either in the English or the Rus-
sian languages. Until now, the methodology and the very
essence of string theory are best of all presented in a book by
A. Polyakov®®™ although many results and even fields of this
science remained beyond its scope. A large fragment of
string theory, the simplest string models and their properties
in the tree and one-loop approximation, is presented in the
monograph of M. Green, J. Schwartz, and E. Witten.?' The
volume is actually a collection of original papers that date
from a few years of the “golden era” of the string scenario of
Grand Unification. The subject of a recent monograph by S.
Ketov?®' is close to that of the previous one. Much more
concise reviews of the same subject’*>?°> were published in a
special “string” issue of Uspekhi fizicheskikh nauk (trans-
lated in Soviet Physics Uspekhi) in 1986, i.e. in the prime of
the “string boom” (see also Ref. 206). The position of string
theory on the eve of this boom was depicted at length in
reviews by J. Schwarz and M. Green which have not until
now lost their value for those who are about to begin study-
ing this discipline;?®” true, the major part of these materials
are included in the book of Ref. 21. A brief account of the
philosophy of string unification can be found in Ref. 22. All
these publications contain practically no information about
the most up-to-date developments in modern string theory
starting with the formalism of Riemann surfaces (‘“‘multi-
loop calculations”). The best review of this subject was pub-
lished by V. Knizhnik in Soviet Physics Uspekhi,'*® see also
Refs. 125, 131, 208, and 209. A somewhat simplified account
of the same problems can be found in Ref. 210 and also in a
small book with very carefully selected materials.?® Detailed
reviews dealing with the most recent events in string theory
(general theory of conformal models, nonperturbative
methods, matrix models) are lacking in the literature.
Therefore, we shall not only cite references but also make
brief commentaries about selected notions and methods.
Certain mathematical issues considered in modern quantum
field theory were covered a few years ago in a small “glossa-
ry” published by M. Olshanetskii in Soviet Physics
Uspekhi.2!! An encyclopaedic survey®'? and a capital re-
view?'* are much more comprehensive and reciprocally ad-
ditive “glossaries:” almost all the algebro-geometric issues
dealt with in these volumes are relevant to different sections
of string theory.

11.GLOSSARY

ALGEBRA—this is first of all a large section of math-
ematics the scope of which is difficult to delineate (see Ref.
213). Text-books in classical algebra are Refs. 214, 215,
those on algebraic geometry are Refs. 216, 217.

Besides this broad meaning, the term algebra has a nar-
row one. Specifically, it is used to designate a set with binary
operation: mapping 4 X 4 —4 (most frequently such a set is
a module over a commutative ring, the latter being usually
represented by integer, rational, real, or complex numbers).
Standard university courses normally concentrate on LIN-
EAR ALGEBRA (actually, algebra of matrices). Very im-
portant in physics are Lie algebras, i.e., algebras in which
bilinear operation has properties of a commutator:
[@,a] =0, and which conform to the Jacobi identity:
[a,(b,c]] + [b,[c,a)] + [c,[a,b]] = 0. Refs. 218-220 are
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the most readily available text-books of Lie algebras. Lie
algebras occur in physics as algebras of infinitesimal symme-
try, but there is every reason to consider non-Lie-like sym-
metries as well, e.g., those associated with W-algebras. The
structure of a Lie algebra does not suggest a possibility to
multiply elements (generators) of the algebra. Therefore, it
is not unusual that a Lie algebra has to be examined along
with its infinite-dimensional universal envelope produced by
all kinds of formal generator products and their linear com-
binations. Other constructions related to Lie algebras that
most frequently occur in string theory are the “Tanaka-
Krein construction” (Ref. 220, chapter 12) or the descrip-
tion of the Lie groups in terms of their representations, along
with its constituents of the type of the theory of Racah coeffi-
cients: 3j-, 6j-symbols, etc.;** quantum deformations of Lie
algebras (quantum groups); root and weight systems; orbits
of joint representations (see Ref. 220 for them and their role
in the general theory of representations).

VIRASORO ALGEBRA—central extension of vector
field algebra on a circle (circle diffeomorphisms, Diff S''/
S'1); it is also possible to consider algebras of holomorphic
vector fields on Riemann surfaces with punctures (the
Krichever-Novikov algebra,®’ see also Ref. 149). The Vira-
soro algebra occurs in string theory in two major aspects: as
an algebra of conformal symmetry generators®®®' and as a
(subalgebra) algebra of observables in some (all?) string
models. Implementation of the latter function is related to
the so-called Virasoro constraints in the theory of matrix
models;'®*'-'®% in a narrower class of models, additional more
rigid W-constraints are imposed on the functional integral.
See Refs. 126, 221, and 222, for geometric quantization of
the Virasoro algebra.

DOUBLE-LOOP ALGEBRAS—these are deforma-
tions of two-loop algebras, i.e., holomorphic maps of two-
dimensional complex manifolds into conventional (finite-
dimensional) Lie algebras G (see Refs. 40, 41 about their
fundamental role in string theory). The Mojal-Baker-Fair-
lie algebra®**** is a special case corresponding to
G = U(1); this is a deformation of the algebra of Hamilto-
nian vector fields on Riemann surfaces (the algebra of area-
preserving deformations). Deformation includes a central
expansion (2g-parametric for a surface of genus g) and a
quantum deformation (which is practically isomorphic to
Weyl symbol algebra in quantum mechanics?>® ). This alge-
bra has already appeared in several contexts in string theory:
as an analog of the Virasoro algebra in membrane theory, as
one of the interpretations of the Lie #_ -algebra,??** and as
the algebra of observables (rather its “half) in the impor-
tant string model “c = 17’ (Refs. 193, 194). One of the re-
markable features of the Mojal-Baker—Fairlie algebra is
manifested in that quantum deformation does not affect the
Lie algebra structure as is the case with finite-dimensional
algebras and the Kac—Moody algebras (0- and 1-loop alge-
bras).

KAC-MOODY ALGEBRAS—specific infinite-di-
mensional algebras of finite growth, that are central exten-
sions of one-loop algebras. The book of V. Kac??’ is the best
manual of “simple” algebras of this type. Of similar value
with respect to their applications as one-loop algebras is Ref.
228. Kac-Moody algebras occur in string theory largely in
the role of chiral algebras. The universal envelope of Kac—
Moody algebras includes other important chiral algebras:

A. Yu. Morozov 694



the Virasoro and W—algebras. The Kac-Moody algebras
are immediately related to the WZNW conformal model
which can be considered as the product of geometrical quan-
tization of such algebras (the MWZNW action equals d ~'
of the Kirillov—Costant form®***° of the Kac-Moody alge-
bra). Distinction of “simple” Kac-Moody algebras as chiral
algebras in current field theory is most likely tentative and
can be attributed to their being relatively easy to investigate.
From this point of view, hyperbolic algebras and especially
double-loop (possibly, also D, D — 1 or D /2-loop) algebras
are as interesting as Kac-Moody algebras. A more funda-
mental significance of Kac-Moody algebras for string appli-
cation follows from that they are one-loop algebras: note
that closed string is virtually a loop in space-time. See Ref.
229 about attempts to use the loop algebra formalism for
reformulation of the results of perturbative string theory
(such an activity is referred to as “STRING FIELD THEO-
RY”).

ALGEBRA OF OBSERVABLES in topological and
string models is an analog of the operator algebra in confor-
mal theory. Unlike the conformal case, observables are inde-
pendent of the point on the surface which makes their alge-
bra more likely to become a genuine algebra (single-valued
bilinear operation). Its associativity is directly dependent on
the completeness of the model (unitarity is sufficient but not
necessary). The algebra may include both a commutative
ring (ground ring) and a Lie algebra (symmetry algebra).
The algebra of observables is readily identifiable in topologi-
cal models defined in the form of a factor of a conformal
model, i.e., when the central charge is zero and the observa-
bles are represented by vertex operators of zero dimension or
by integrals of unit-dimensional operators (currents). In
this case, the role of the algebra of observables is assumed by
a factor of the full operator algebra (such an approach to the
string model suggests a simple elimination of all the Virasoro
descendants in the right-hand parts of the operator expan-
sions). Identification of the algebra of observables by three-
point functions (note, however, that it is not a priori clear
whether a genuine algebra may appear in this way) requires
examination of “chiral correlators”, i.e., analogs of confor-
mal blocks. Full real correlators provide information only
about the symmetric part of the algebra of observables, i.e.,
about the commutative ring. The importance of the algebra
of observables is that it is the most crucial invariant charac-
teristic of the topological model independent both of its rep-
resentation in the form of the conformsl measure and of the
genus of the surface. It is this algebra that must be regarded
as the chiral (i.e., gauged) algebra in the transition from the
string model to the (string) field theory in space-time. In-
vestigation of the algebras of observables is just beginning:
examples of the simplest topological models are presented in
Ref. 65, those of string models in Ref. 193, 194. Specificity of
string models should be attributed to the presence among the
generators of the algebra of operators that alter surface to-
pology. In case of representation of a string model in the
form of some kind of topological gravity, the role of the alge-
bra of observables is played by the so-called recursion rela-
tions.lZO,lZl

ANYONS—are particles in (2 + 1)-dimensional field
theory with special statistics differing from boson, fermion,
and parafermion statistics. The statistics is characterized by
properties of monodromy of a multiparticle wave function at
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a fixed point of time (i.e., by the transformation rules under
permutation of arguments—the particle coordinates). Mon-
odromy in D-dimensional theories of point particles with
D> 3 is usually a/most independent of the manner of argu-
ment permutation. For instance, all trajectories of two mov-
ing particles that finally lead to their permutation are homo-
topically equivalent if the space dimension is D — 1> 2. This
example already shows that the case of D — 1 = 2 is distin-
guished: the trajectories may get entangled and there are Z
classes of homotopical equivalence. In case of a system of
several particles, the situation looks a little more complicat-
ed also for D> 3: it is sufficient to take a set of particles that
form a frame of reference in space in order to understand
that there may be nonequivalent trajectories since
7, (SO(D — 1)) #0. This fundamental group for D> 3 is
equal to Z,, and it can be demonstrated that a further in-
crease in the particle number does not produce a more com-
plicated structure of trajectory equivalence classes. All this
results in the existence of a single nontrivial (fermion) statis-
tics®” (and a bit earlier was denoted by the word ““almost”);
note also that parafermions may appear only in the case of a
non-single-valued wave function, i.e. when it is a section of a
non-trivial bundle.

For D = 3, notonlyis 7, (SO(2)) = Z (which suggests
the existence of an infinite number of nonequivalent statis-
tics) but also monodromies of multi-particle wave functions
are in no sense factored into monodromies of two- or three-
particle functions. Nonequivalent statistics are different rep-
resentations of the braid group.*'> Such nontrivial statistics
are called anyonic. Taking into consideration the collective
nature of anyon statistics (i.e., their marked dependence on
the particle number), there is no hope to have anyons de-
scribed in a formalism similar to Grassman variables for fer-
mions (at least nothing of the kind has so far been invented).
Field formalism appears to be more adequate because it de-
scribes anyon statistics as a non-local one. It is for this de-
scription that the additional U(1) gauge field is introduced
with which the original particles interact, the action for this
field being the abelian Chern—Simons integral 6 §4 d4. The
parameter 6 distinguishes between nonequivalent statistics.
In such a formalism, the existence of a specific anyon phase
becomes apparent (in which it is possible to integrate over
original fields, with quanta of field 4 being quasiparticles;
sometimes, they are referred to as anyons). In real physical
systems where manifestation of the effects related to anyon
statistics is anticipated, field 4 may be composite (i.e., asso-
ciated with a condensate phase, etc.). Such physical systems
include two-dimensional films showing fractional quantum
Hall effect.*’ Another object (for the time being, purely
theoretical) is systems with anyon superconductivity.*® For
reviews on the physics of anyons see Ref. 230.

WESS-ZUMINO TERMS in actions of gauge quan-
tum-field models are non-explicitly invariant contributions
to the Lagrangian that change under gauge transformations
by total derivatives (so that the action remains invariant).
The simplest example are the Chern~Simons terms in odd-
dimensional Yang~Mills theories; also, they frequently oc-
cur in odd-dimensional sigma-models on homogeneous
spaces (it is quite understandable since such sigma-models
can be described in terms of gauge fields). Similar expres-
sions can be obtained from antisymmetric tensors of a higher
rank instead of vector fields. Among important examples of

A. Yu. Morozov 695



this kind is the topological model of A. Schwartz introduced
by him?*! to describe the Rey-Singer torsion and the Wess—
Zumino term in the action of (D = 11)-supergravity. Theo-
ries in which the entire action is a Wess—Zumino term of one
of the above types are usually topological. Specific proper-
ties of more general models with non-vanishing kinetic
terms include renorminvariance of the Wess—Zumino terms
in all orders of perturbation theory (exceptions from this
theorem are caused by anomalies and are easy to take into
account).**?*? The problem of nonperturbative renormal-
ization is very interesting (and is directly related to the prob-
lems of fractional quantum Hall effect and anyon supercon-
ductivity, see Ref. 45). There are examples of non-Chern—
Simon-Wess—Zumino terms (e.g., o-models in even dimen-
sions and especially on non-homogeneous manifolds). True,
a relation with Chern—-Simons terms is sometimes apparent
even though it is intricate. For instance, the Wess-Zumino
term fTr(g ~ 'dg)’in the two-dimensional WZNW model is
related to the three-dimensional Chern—Simons integral.
GEOMETRIC QUANTIZATION-is a large section
of mathematical physics dealing with dynamic systems on
geometric manifolds (most frequently, on group and homo-
geneous spaces ). The classical theory of dynamic systems on
homogeneous spaces is discussed in Refs. 233, 234. Applica-
tion of geometric quantization techniques to a very broad
range of problems is illustrated in Ref. 235, and the role of
geometric quantization on coadjoined orbits in representa-
tion theory is described in Refs. 63, 220, and 236.
HETEROTIC STRING-is a critical string model in
which the right and the left conformal blocks originate from
different conformal theories. The most restrictive require-
ments are imposed on such models by modular invariance
conditions. The first example of a heterotic string was de-
scribed in the paper of Ref. 38 where the left-hand constitu-
ent was a model of a ten-dimensional superstring while the
right-hand one arose from compactification of a 26-dimen-
sional boson string on a 16-dimensional torus. Modular in-
variance was readily obtained if the torus was made from an
even self-dual lattice such lattices occur only in dimensions
divisible by 8 (Ref. 237) and include I'; and I',,—root lat-
tices of algebras F; and SO;, as well as the Leech lattice T',,
(Refs. 238-241). String compactification on root (and
weight) lattices of algebra G in space-time results in gauge
symmetry with group G which may be either E; XE; or
SO;, for the ten-dimensional heterotic string. The majority
of the four-dimensional string models discussed in the con-
text of the string scenario of interaction unification are also
heterotic (Refs. 196-199). The word ‘“heterotic” originates
from a biological term for designation of highly viable hy-

brids.
HYPERELLIPTIC SURFACES—abelian double co-

verings over a sphere, i.e.,Riemann surfaces of genus g which
can be defined by algebraic equations of the form:

¥ =2ﬁ12(x - 1)

It is possible to fix three of the 2g + 2 parameters 4, at
points 0, 1, « using transformations from the group SI1(2)
which acts by fractionally linear transformations of the co-
ordinates x on a Riemann sphere (“substrate”). The re-
maining 2g — 1 parameters are modules of the complex
structure of hyperelliptic surfaces. The finite group of per-
mutations of parameters A, plays the role of the modular
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group. With the exception of cases g = 0,1,2, hyperelliptic
surfaces are only subspaces of codimension g — 2 in the
module space (at g = 3, this is a divisor in the module space
defined by the condition of vanishing of a certain theta-con-
stant). Hyperelliptic parametrization is very convenient for
explicit calculations since it provides simple formulas for
various transcedental objects including the Riemann theta-
functions and their zeroes; in many respects, hyperelliptic
functions are almost as well-known as ordinary elliptic ones.
Calculations of free fields on hyperelliptic surfaces and other
abelian coverings of the Riemann sphere are discussed in
Refs. 130, 145, 242-245). Application of these results to the
superstring model is described in Refs. 131, 246, and 247.
Unfortunately, there is as yet no effective generalization of
such a formalism for non-abelian coverings.

HOLOMORPHIC FACTORIZATION—is a key
property of two-dimensional conformal models determining
the role played by complex geometry in string theory. Holo-
morphic factorization consists of the representability of cor-
relation functions in the form of bilinear combinations of
holomorphic sections of certain bundles over module
spaces—CONFORMAL BLOCKS. The idea of holomor-
phic factorization has been formulated in the basic (for con-
formal field theory) article of Ref. 58 with special reference
to rational models where the number of independent confor-
mal blocks is finite. Often the term ‘“holomorphic factoriza-
tion” is used in a narrower sense—possibility of expansion
into a finite bilinear combination of conformal blocks. In
string models with complicated topology, such a restrictive
requirement can be met only before integration over module
space. One of the fundamentals of present-day string theory
(holomorphic factorization of multi-loop amplitudes in a
model of 26-dimensional boson strings and, hence, reduc-
tion of corresponding measures on the module space to the
Mumford measure) is referred to as the Belavin-Knizhnik
theorem (Refs. 125, 130, 135). The situation with holomor-
phic factorization in the superstring model**® is also instruc-
tive.

GRASSMANNIAN—is the space of infinite matrices
A, factorized with respect to the equivalence relation

> Al = Ayl D uhiz+ 5 vt
nk nk i>1 j>1

with any vectors u;, v;, and is an infinite-dimensional analog
of ordinary Grassmannians U(2¥N)/U(N) X U(X). Certain
constraints may be imposed on the matrices 4,, (e.g., trace
finiteness); depending on the rigidity of these constraints,
Grassmannians are categorized into Segal-Wilson'*® and
Sato'®®!”® Grassmannians. The former occurs in the Krich-
ever construction on finite-genus Riemann surfaces, the lat-
ter (of a more general sort) appears on examination of “infi-
nite genera” and in describing the solutions of the Virasoro
constraints in matrix models (Refs. 186, 248, 249). The
Krichever construction makes it possible to use the Grass-
mannian for the description of the UNIVERSAL MOD-
ULE SPACE.’**'*” Analysis of matrix models supports the
idea*®*! of the feasibility of a “dual” situation when (a sub-
set) of the Grassmannian can be treated as the space of all
string models (see Ref. 186). The Grassmannian is a natural
object in the theory of 7-functions. If a finite-dimensional
Grassmannian is considered to be a set of hyperplanes in 2NV-
dimensional space, one can speak of a projection of one hy-
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perplane onto another and examine a deformation of the
metric and the measure under this projection. A similar con-
struction in an infinite-dimensional case allows the 7-func-
tion to be identified with determinants of projection opera-
tors for certain “hyperplanes.”'*® The subspace in the Sato
Grassmannian distinguished by string equations (see Ref.
186) appears to be of special interest, but its invariant de-
scription is at present unavailable.

INTEGRABLE MODELS—they form a large section
of mathematical physics discussed at length in complemen-
tary manuals on the theory of integrable systems.>”'®® The
key issue of the theory of integrability is the relationship
between the infinite hierarchy of compatible equations of the
form

oul/ot, = F {u, {1}}

(as a rule, differential) and bundles over Riemann surfaces.
The line of reasoning that leads from equations to bundles
usually takes into account the Lax representation of the
original equations (including the ‘“‘dressing” formalism),
the “auxiliary” linear spectral problem, the requirement that
its monodromy is constant in the course of evolution, and the
interpretation of this monodromy in terms of Riemann sur-
faces (having the spectral parameter as the coordinate on
these surfaces). As a result, evolution defined by the integra-
ble hierarchy is interpreted as a set of commuting (linear, of
different directions and velocities) motions on the Jacobian
of the surface (its modules are invariants of the motion).
The inverse sequence starts from the definition of a system of
a priori commuting motions in the module space of a bundle
over the spectral surface (motions on the Jacobian are the
simplest abelian case associated with linear, i.e., one-dimen-
sional bundles) and determination of 7-functions as aver-
ages over free fields on this surface which are sections of the
bundle. The next step is a system of bilinear Hirota equations
on the -FUNCTION which are simple identities for the
correlators on the Riemann surfaces (in fact, they reflect
orthogonality of creation and annihilation operators). The
integrable equations themselves can be obtained by the ex-
pansion of the non-local Hirota equation into an infinite se-
ries the terms of which are ordinary (as a rule, differential)
equations. Examples of non-local integrable hierarchies are
given in Ref. 250. Problems pertaining to the transfer of this
construction to super-Riemann surfaces are discussed in
Ref. 251. A major function of integrable systems in string
theory (and, possibly, in a broader context) is to character-
ize the generating functions of nonperturbative correlators
(nonperturbative partition functions) as 7-functions. In this
sense, integrability should be considered as a property of
effective actions not liable to further averaging. In this con-
text, integrability is a classical property which is not subject
to quantization. Nevertheless, there is an interesting prob-
lem of quantization of isolated integrable equations regarded
as field theory models (usually two-dimensional ones, e.g.,
the sine-Gordon model, the non-linear Schrodinger equa-
tion, etc.). This problem is also important for understanding
of the relationship between conformal and integrable sys-
tems, e.g., for investigation of interpolations between con-
formal models. See Refs. 4 and 172, 173 for such problems
and their relation to quantum groups. Ref. 252 reports inter-
esting preliminary results concerning the application of the
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free field formalism to the problem of quantization of inte-
grable equations.

The Toda lattice system,?>* the Zakharov—Shabat hier-
archy, the Kadomtsev—Petviashvili (KP) hierarchy, the
Korteveg—de Vries hierarchy, and the Boussinesq hierarchy
are the most thoroughly investigated integrable hierarchies.
The latter two are the simplest of the so-called 4, reductions
of the KP hierarchy associated with the simple Lie algebras
A, and 4, . The “discrete” hierarchy of the Toda chain (TC)
(with one of the “times” in it being discrete) is equally well-
known. All these hierarchies have already appeared in the
studies of matrix models and, consequently, in nonperturba-
tive string theory.

QUANTUM ANOMALIES—the term has been
coined to describe symmetry breakdown during transition
from classical to quantum theory.** Most anomalies may be
regarded as a property of regularized determinants of differ-
ential operators.” See Refs. 35, 125, 130 for more details
about the best known case of two-dimensional determinants.
In this case, there are “‘gravitational,” “Weyl,” ‘“holomor-
phic,” and “Quillen” anomalies associated with depen-
dences of Det2d on the choice of coordinates of Det A on the
conformal factor in the metric, with corrections to holomor-
phic factorization of Det A as a function of modules of com-
plex structure of the Riemann surface and modules of linear
bundles over it (i.e., its representation in the form of
|Det d|?), respectively. Theories with internal anomalies
are currently interpreted as having extra degrees of freedom
which decouple in the classical approximation but affect
such characteristics as vacuum energy, central charge, etc.
Specific two-dimensional anomalous models have been ex-
amined from this point of view in Refs. 254-256. An impor-
tant example of an anomalous degree of freedom in string
theory is the Liouville field; its interpretation with in the
framework of the said scheme allows the Minkowsky signa-
ture to be naturally interpreted as an “‘anomalous effect;”
more complicated signatures (several pluses and several
minuses) are obtained in a similar way in W-string mod-
els.3** Using such an approach, anomaly-free (CRITI-
CAL) models are assumed to be those that do not undergo
symmetry changes during transition to the classical limit.
(For instance, a non-critical string has the SO(D — 1) dou-
ble symmetry in flat D-dimensional space-time and the
broader SO(D — 1,1) one in the classical approximation.
The Lorentz-symmetry SO(25,1) in critical dimension
D =26 is retained even at the quantum level. The criticality
condition is essential in that the model needs to have a non-
trivial low-energy limit; it therefore plays an important role
in building up string models of the Grand Unification.

QUANTUM GROUPS——they have been discovered by
L. Faddeev and co-workers who studied integrable sys-
tems.* A well-known approach to quantum groups using
their relationship with Hopf algebras has been suggested by
V. Drinfeld.”” A somewhat different view of quantum
groups is illustrated by Ref. 258 where they are treated as
symmetries of quantum spaces. The quantum group theory
is one of the most rapidly developing branches of mathemat-
ics and its string interpretation involves the use of conformal
and integrable systems. The relationship between quantum
3j-symbols (Clebsh—Gordan coefficients) and monodro-
mies of conformal blocks in the theory of free massless fields
is of the simplest type. The theory of quantum groups is also
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closely related to knot theory. Long-term objectives of quan-
tum group studies include the development of a comprehen-
sive theory of “quantum” g-hypergeometric Gaussian func-
tions (arising from finite-difference equations in the same
manner as ordinary hypergeometric functions arise from the
solution of differential equations). For reviews see Ref. 259.
CHIRAL ALGEBRAS—it would be natural to identi-
fy the operator algebra of all chiral vertex operators as the
total chiral algebra of the conformal model. However, this
object is very complicated and can not be called an algebra in
the strict sense of the word. Normally the term “chiral alge-
bra” refers to a subalgebra of the universal envelope of the
Kac-Moody algebra which is adequate for the conformal
model in question (see, for example, Ref. 62). The entire
chiral algebra or a part of it is subject to gauging on transi-
tion from a conformal model to its string counterparts. It
would be correct to apply the term “chiral algebra” to a
symmetry which may be accurately gauged. This is not how-
ever a definition in internal terms of a conformal model and
therefore is not used in the literature on conformal theory.

COMPACTIFICATION—this is an idea that can be
traced back to the Kaluza—Klein scenario which implies that
properties of fundamental interactions (gauge groups, field
contents, coupling constants) may been coded in the geo-
metric properties of a particular compact manifold. Accord-
ing to the literal interpretation of the idea, space has addi-
tional compact dimensions, and motion along these
dimensions is impossible unless the particle energy exceeds
the inverse compactification radius that defines the mass
scale. In this case, the low-energy sector contains only the
zero-modes of fields on a compact manifold; their character-
istics can be defined by the geometrical, sometimes topologi-
cal, properties of this manifold. The gauge group is associat-
ed with manifold isometry, the number of generations with
the number of zero-modes, and the coupling constants with
the overlap integrals of zero-modes, etc. Ideas of compactifi-
cation are reviewed in Refs. 22-26. These ideas are used in
string models. There are two features of string compactifica-
tion worth mentioning. First, a change in the relative signifi-
cance of the gauge group and isometry: the former is asso-
ciated with the more intricate characteristics of a compact
manifold and may exceed the isometry group, an important
example being the appearance of the gauge group G during
compactification on a torus associated with the weight lat-
tice G or the so-called Frenkel-Kac mechanism®® used in
the simplest models of heterotic*® and four-dimensional'*¢
198 strings. Second, equivalence of compactifications on var-
ious manifolds which precludes proper definition of the
problem of “‘the existence” of compact dimensions in string
compactification, their presence and number being depen-
dent on the choice of one of the alternative equivalent mod-
els. Specifically, the aforementioned heterotic string models
(including those of “four-dimensional strings”) may be in-
terpreted as compactificated theories although this is not the
only possible interpretation.

THE KRICHEVER CONSTRUCTION—this is a
mapping that associates a point of an infinite-dimensional
Segal-Wilson Grassmannian with a set of data {Riemann
surface, bundle over it, puncture, local co-ordinate system in
its neighborhood, local bundle trivialization}. In order to
obtain such a mapping, it suffices to expand a section of a
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bundle with a fixed singularity at the puncture into a Laur-
ent series:

J@) =(z-2z)7"(1 + 2 Az - zo)":
K>0

In this case, the matrix 4, meets the condition of trace con-
vergence and defines the equivalence class under factoriza-
tion with respect to co-ordinate changes holomorphic in the
neighborhood of z,, i.e., a point of the Grassmannian. Ex-
amination of sections with essential singularities
~exp2,.t,z" (the Baker—Akhiezer “functions”) reveals a
sufficiently simple (“integrable”) dependence of the Grass-
mannian point on the “times” ¢, (bundle module or
“boundary conditions”), see Refs. 147, 148 for details. Var-
ious characteristics of string models, from chiral alge-
bras®”'*® to determinants and even string amplitudes, can be
rewritten in terms of (equivalence classes) of the matrices
A . Such are the contents of STRING OPERATOR FOR-
MALISM.!*!-15? The Grassmannian may be used (at least
theoretically) as a representation of the UNIVERSAL
MODULESPACE.'>*'>? Thereis an interesting problem of
the “closure” of the Grassmannian, i.e., of “infinite-genus
surfaces;” specific convergence conditions defining the Se-
gal-Wilson Grassmannian'*® appear to be excessively limit-
ing, and it is more reasonable to deal with the more general
Sato Grassmannian'%*! especially in the context of matrix
models.'®¢?*%2*° The Grassmannian or a part of it may also
be used in the capacity of a configuration space of the ‘“‘uni-
fied field theory” for labelling various string models by the
points of Grassmannian. '

CONFORMAL MODELS—they appear in studies of
phase transitions in (2 + 1)-dimensional systems, in inter-
pretation of multi-dimensional differential equations in
terms of the symmetry properties of two-dimensional sigma-
models and in designing string models after integration over
metrics (in the latter case, a conformal model could also
exist before integration). The formalism of conformal field
theory which allows computation of correlation functions in
conformal models originates from a classical pioneer work
of Ref. 58 in which the basic concepts of holomorphic factor-
ization, the Virasoro algebra, rational, unitary, and minimal
conformal models were first introduced and a classification
of these models (in fact, the classification of minimal closed
operator algebras) was suggested; this established their still
not entirely understood connection with the representation
theory of the Virasoro algebra.'® The next important step is
the creation of the formalism of free massless fields'®' by
analogy with the theory of the Verma modules.'*® An im-
portant role in this formalism belongs to screening opera-
tors'®' analogs of the Feigin-Fuchs operators in representa-
tion theory (see Ref. 163 for their interpretation in terms of
the BRST-complex). Application of the formalism of free
massless fields to the WZNW model and its reductions is
discussed in Refs. 79, 131, 158, 159, 209, and 261. (Ref. 158
suggests an interpretation of the screening operators as being
associated with a non-local change of co-ordinates in the
functional integral). Attempts to develop a classification of
rational conformal theories are reviewed in Ref. 62. A de-
scription of topological models and two-dimensional quan-
tum gravity (including noncritical strings) in terms of con-
formal models is presented in Refs. 262-263 and 122-126
respectively.
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MATRIX MODELS (random matrix theory)—is a
self-contained science investigating multiple matrix inte-
grals including functional integrals with matrix-valued
fields (there is even a monthly journal publishing pertinent
materials). Matrices may be other than square, and vector
models play an important role in applications. Integrals with
a Gaussian distribution are the most developed part of the
theory although non-quadratic actions are equally interest-
ing. In physics, matrix models occur in different contexts,
viz. replica methods, spin glass theory, neural networks
(Kirkpatrick vector model'? ), quantum gravity problem,
Yang-Mills theory, etc. Matrix models are used in studying
problems that involve fat graphs including topological stud-
ies of module spaces of bundles over Riemann sur-
faces.'?*12® Asarule, matrix models with a scalar action are
examined (in the exponent which dictates the measure of the
integration, the trace of matrices appears) and of correlators
of only scalar variables are evaluated. Equations of motion
and Ward identities in such matrix models are frequently
referred to as LOOP-EQUATIONS. Matrix models with a
sufficiently large number of parameters”® (coupling con-
stants or background fields) are closely related to integrable
systems.

Matrix integrals as functions of the parameters turn out
to be 7-functions of integrable hierarchies. However, generic
7-functions do not arise in this way; instead, they are restrict-
ed by an additional constraint which is traditionally called
the STRING EQUATION and depends on the model.! "%
Aninvariant description of the subset in the Sato Grassman-
nian specified by the string equation remains an unsolved
problem (see Refs. 248,249,264,286). One of the reasons for
the importance of matrix models in string theory is the exis-
tence of the two-dimensional gravity formalism based on
these models which is efficient in both perturbative and non-
perturbative domains'”'*® and is closely related to topolog-
ical gravity.'?%'87-19% Actually, each string model (showing
stability with respect to nonperturbative corrections) can be
associated with a (multi)matrix one, or, more precisely,
with its double-scaling continuum limit'""'% that may
again be represented in the form of another matrix model
(the Kontsevich model) and is in a certain sense identical for
all original models (see Ref. 186 for details). After finding a
more invariant formulation that does not use an intermedi-
ate stage with a matrix integral but is directly expressed in
terms of 7-functions or a Grassmannian, these results will be
applied to the construction of a ““unified field theory,” i.e., a
natural unification of all string models. The most important
types of matrix models examined in connection with the
problem of two-dimensional gravity are as follows.

Discrete one-dimensional matrix model

fdM exp E t,Tr MF,
k

(see Ref. 184) for a most important case of Hermitean ma-
trices M and Ref. 256 for a model with unitary M; Refs. 266—
268 discuss a modified model for the case of complex square
matrices M); models with orthogonal, real, and even vector
M (i.e., matrices of the 1 X N size) are also discussed. The
Hermitean discrete one-matrix model can also be represent-
ed in the form of the Kontsevich model'*°

699 Sov. Phys. Usp. 35 (8), August 1992

F Q) f aX exp Tr(=v(0) + V/(@)X)

with potential
V(X) = (X3/2) — nlog X,

where n is the size of matrix M and t, =T, + 6;,/2,
T,=(1/k)Tr Q ~* The double scaling continuum of this
model is described by the Kontsevich model with
V(X) = X3/3 (Ref. 186); for details about this continuum
when n— « under certain constraints with respect to the
behavior of the coefficients ¢,, and #,, _; = 0 see Ref. 268.
For V(X)=X%*'"/(K+ 1), the Kontsevich model de-
scribes double scaling continuum of the K-matrix discrete
model

K
(I}fdM aexp% t,Tr M%)
X exp(M\M-+ MM, + ...+ My Mp).

For any V(X), the partition function of the Kontsevich
model as a function of the times 77 is a 7-function of the KP
hierarchy satisfying the string equation L” ;7= 0.

THE REPLICA METHOD is a specific modification
of the diagram technique for the case when interactions
without energy transfer take place. Also in such a case, there
are restrictions on acceptable diagrams: following elimina-
tion of all lines associated with these interactions, they must
remain connected (attachment of extra loops to the diagram
with interaction lines of this type alone is prohibited ). Inter-
actions without energy transfer are not infrequent in phys-
ics, but the most typical example are the effective interac-
tions of quasi-particles due to rescattering by random
impurities in models of solid-state physics.?®® The most in-
teresting up-to-date applications include the quantum Hall
effect and spin glasses. The problem of an adequate modifi-
cation of the diagram technique is in fact the problem of
evaluating <€log Z> instead of €« Z> where < --> means
averaging over impurities. The replica method uses a repre-
sentation of log Z as the limit of Z¥ — 1 as N —0. The values
of «Z" > at positive integer N can be found by examining a
new system composed of N copies (replicas) of the original
one. At the end of the calculations one must let ¥ go to zero.
The simplest qualitative result attainable with the use of the
replica method is the explanation of the Anderson localiza-
tion as confinement (associated with asymptotic freedom)
in sigma-models which describe propagation of quasiparti-
cles in the field of random impurities. There is no rigorous
substantiation of the replica method. Moreover, it should be
borne in mind that the most interesting effects using this
method have been found in the case of its risky application,
i.e. when the U(N) or SO(N) symmetry between replicas
was broken or effects associated with asymptotic freedom
which can disappear at the point N = 0 were employed. An
alternative method is the supersymmetric formalism even
though the range of its applications is currently not so wide.
The use of the replica method in spin glass theory and the
theory of the quantum Hall effect is reported in Refs. 18 and
270, 271 respectively. In the latter case, the problem consists
in the analysis of the specific sigma-model on the Grassman-
nian U(2N)/U(N) X U(N) which may be either two-di-
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mensional, with a topological term in the static situation, o1
three-dimensional, with a Wess-Zumino term in nonstatic
situation (e.g., in case of the Coulomb interaction responsi-
ble for the fractional quantum Hall effect; a correct deriva-
tion of the three-dimensional model is not available in the
literature). The interpretation of the quantum Hall effect
itself can be reduced to an analysis of the renormalization
properties of such o-models (see Refs. 272-274 for the static
case; a similar study in the nonstatic situation remains to be
conducted).

TODA MODELS—they form an important class of
two-dimensional models in quantum field theory. Toda
models may be conformal and integrable (non-conformal).
They are associated with simply-laced Lie algebras. The
number of fields is equal to the rank of the algebra, they are
represented in the form of vectors on the Cartan plane. Ac-
tion in the conformal gauge for the metric has the form

S [%w»v +3 ¢]

where a are all simple roots of the algebra in the case of the
conformal Toda model; an integrable model can be obtained
by the addition of one more “lowest” root (the same root
which is added to create a Kac-Moody algebra from a simple
Lie algebra). In the case of the s1(2) algebra, the conformal
Toda model is known as the Liouville theory and the integra-
ble one as the sine-Gordon model. Moreover, there are inter-
esting models with the reversed sign in front of the kinetic
term and without / in the exponents. The theory of the Toda
models as classical dynamic systems is presented in Ref. 275.
At the quantum level, the conformal Toda models may be
considered as reduced WZNW models.* They (and their
supersymmetric analogs) play an important role in the theo-
ry of conformal models (they are related to both the
MWZNW and the conformal sigma-models described in
terms of quasihomogeneous polynomials (see Refs. 115,
116) for such a description and Ref. 166 for its relation to the
Toda models). They are equally important for the theory of
W-gravity 2¢°2

MODEL—a concept from the theory of Lie groups.?’

It denotes a set of group G representations taken with
unit multiplicities. The concept and the early examples of
models were first suggested in Ref. 276. The models origi-
nate spontaneously (as a set of W -primary fields) during
the examination of string compactifications on root and
weight lattices of simply-laced G algebras and also from the
WZNW theory.?”’2"8

THE WESS-ZUMINO-NOVIKOV-WITTEN MOD-
EL (MWZNW)—this is a two-dimensional theory with
equations of motion 8J ¢ = 0, where the J *(z) form the Kac-
Moody algebra with respect to equal-time commutation rela-
tions. Unlike the non-chiral equations 2,J 5 = 0, analyticity
conditions in the MWZNW can not be deduced from any
local action. The action of MWZNW was introduced by E.
Witten?’***! and contains the specific multi-valued Wess—
Zumino term; the first example of the model with such terms
can be found in Ref. 282. Such Lagrangians (in fact, elements
of cohomologies rather than ordinary measures) have been
studied in the general context by S. Novikov.?®* This action
also permits an interpretation asd ~ ! of the Kirillov—Costant
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formula for the Kac-Moody algebra.*> The Wess—Zumino
term is absent in the case of an abelian algebra.

The energy-momentum tensor in the MWZNW is de-
fined by the HALPERN-SUGAWARA FORMU-
LA .22 Interesting MWZNW reductions are GKO-Co-
set-models’* and the Drinfeld-Sokolov reductions.”””® The
latter group of reductions naturally result in the appearance
of W-algebras. The ‘““generalized Sugawara construction”®”-
70 js also important even though its algebro-geometric mean-
ing remains unclear. The up-to-date theory of the WZNW
model and its reductions is an important constituent compo-
nent of string theory. Fundamental results concerning the
quantum MWZNW are reported in Ref. 286 together with a
derivation of the KNIZHNIK-ZAMOLODCHIKOV
EQUATION (basic Ward identity for the MWZNW), See
Refs. 131, 158, 209 for the formalism of free massless fields
for this class of models. An important approach to the de-
scription of reductions as “gauged WZNW models” has
been developed in Ref. 99. The relation of the MWZNW to
quantum groups and the three-dimensional Chern-Simons
model is discussed in Refs. 99 and 117, 118, 164, respective-
ly.

THE KONTSEVICH MODEL—is an important ma-
trix model defined by the integral

2,101 ~ [ dX exp(~Tr v(x) + Tr V/(Q)X)

(the coefficient in front of the integral is specifically depen-
dent on the “potential” ¥ and the matrix Q). It simulta-
neously describes various models of topological gravity (in-
cluding the simplest of them'?° for ¥(X) ~ X 3 (Ref. 129))
and the double scaling continuum of all multimatrix models,
i.e. string models built up from all the Virasoro minimal
conformal models (with ¥(X)~X*+') corresponding to
the K-matrix model). Regardless of the choice of potential,
2, [Q1is r-function of the KP-hierarchy as a function of
the times

1 ~
Ty=4TrQ™*

and satisfies the string equation which, together with the
Grassmannian point associated with the 7-function, is de-
pendent on V. See Ref. 186 for details.

THE CHERN-SIMONS MODEL—is the quantum
theory of the Yang-Mills gauge field 4 in space-time of
D =2n — 1 dimensions with the Lagrangiand ~' (Tr F").
The action being independent of the metric, the model is
virtually topological although the problem of topology-pre-
serving regularization for the general case remains to be
solved (the naive regularization using the kinetic term Tr
F?, appears in this case to be unacceptable). The Chern—
Simons model is especially popular at D = 3 when the space
of states is formed by the space of flat connections on a two-
dimensional surface and there is a close relation with two-
dimensional conformal theories (especially with the
WZNW models and their reductions), quantum groups and
knot theory (Refs. 64,99, 117, 118). See Ref. 287 for a five-
dimensional Chern-Simons model. Chern-Simons models
also occur in the theory of quantum anomalies** and in nu-
merous physical applications. The latter are interrelated be-
cause the Wess-Zumino terms including the Chern—Simons
term arise spontaneously in effective actions of odd-dimen-
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sional theories (e.g., as anomalies of fermion determi-
nants).>*?%8-22 Their appearance leads, first, to the break-
down of global symmetry (space parity) and, second, to
nontrivial dynamic effects especially at D = 3; the Chern—
Simons term is also associated with massive electrodynam-
ics,?*>2%* anyon statistics,?*° etc.

MODULES—are parameters describing continuous
families of equivalence classes of algebraic geometry objects.
These classes include Riemann surfaces (equivalence class
with respect to holomorphic changes of coordinates) and
bundles over them, and also multi-dimensional complex
spaces. (Sometimes, it is possible to build up conformal sig-
ma-models using such spaces; example: Calabi-Yau spaces.
In view of this, space modules are often referred to as mod-
ules of corresponding conformal models). An exact defini-
tion of module space taking into account delicate details al-
ways arising in a description of equivalence classes is given in
terms of schemes (the most concise description can be found
in an article entitled “Theory of Modules”” (in Ref. 295).
String model studies have most frequently to deal with the
following construction related to chiral algebras and defin-
ing the Jocal structure of the corresponding module space
including its dimension. The field £(z) of spin 1 —j is asso-
ciated with the chiral algebra generator K (z) of spinin such
a way as to generate an infinitesimal *“‘symmetry” transfor-
mation by the operator

$(eK)

(the angular brackets indicate a scalar product in the space
where K and ¢ take on values, e.g., in a fibre of the bundle).
Almost any field £(z) defined on a small (contractible) cir-
cle is holomorphically extendable inside or outside the disc.
Modules turn out to be associated with the number (usually
finite) of fields £(z) which are extendable neither inside nor
outside; their number for linear bundles on closed surfaces is
(2j — (g — 1) + n, where g is the surface genus and # is
the number of punctures where £(z) may have simple poles.
The simplest case: modules of complex structure of the sur-
face are associated with the Virasoro algebra in the described
manner. '’

MODULE—this is an algebraic concept synonymous
with vector space, i.e., a set with addition and multiplication
by elements of a certain ring with distributivity conditions.
The VERMA MODULE is a representation of highest
weight obtained as a linear envelope of formal products of
any number of descending generators of a Lie algebra by the
highest weight. The Verma module is a reducible representa-
tion if it contains vanishing norms, the so-called NIL VEC-
TORS. Unlike some irreducible representations, the infi-
nite-dimensional (as a vector space) Verma module has a
simple structure. In the case of the Kac-Moody, Virasoro,
and W-algebras, the Verma modules are easy to construct
from free massless fields. For details about the Kac-Moody
and Virasoro cases see Refs. 227 and 160 respectively.

OPERATOR ALGEBRA, OPERATOR EXPAN-
SION—this is a key concept in quantum field theory. In the
case of two-dimensional conformal models, the operator al-
gebra is drastically simplified due to holomarphic factoriza-
tion.’*®' It associates an infinite series in powers of
(z, —z,) and, possibly, logarithms with operator-valued
coefficients with each pair of operators a(z, )a(z, ). The sin-
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gular terms of the expansion (there is usually a finite number
of them) may be interpreted as equal-time commutation re-
lations; Jacobi identities are valid in case a complete set of
operators is examined. In such a case the operator algebra is
associative. This requirement is not fulfilled automatically if
the operator algebra is originally defined by its ‘““three-point
functions”, i.e., by mapping of the tensor cube of the field
space into complex numbers (evidently, such a formulation
carrying information about the nonsingular terms of the op-
erator expansion implies that the operator algebra differs
from algebra in the narrow meaning of the term: the third
field is not uniquely defined by the other two). Under certain
additional conditions, the operator algebra can be extended
to mapping tensor degrees of field spaces into sections of
bundles over module spaces of the Riemann surfaces with
punctures (these sections are called CONFORMAL
BLOCKS). Examination or rational conformal models re-
sults in some simplifications (see Ref. 62 for a review of the
appropriate theory). An attempt to suggest a reasonable for-
mal definition of operator algebra is described in Ref. 296. Of
special interest is the operator algebra in a certain sense fac-
torized over a chiral algebra (e.g. over the Virasoro alge-
bra), that is the operator algebra is restricted to a set of
primary fields. Straightforward methods of such a “projec-
tion” lead to such concepts as FUSION RULES* and
VERLINDE ALGEBRA.?" Gauging a chiral algebra, i.e.,
a transition to the corresponding string (topological) mod-
el, is even more interesting. Monodromy matrices play the
role of conformal blocks in the description of the resulting
algebra of observables, the principal invariant characteristic
of the string model (moreover, in many cases this is a Z,-
monodromy which means that in going around a closed cir-
cuit, the phase can change only by an even or odd multiple of
27i). Incidentally, the resultant algebra of observables may
prove to be a true algebra where the third observable can be
uniquely defined by the two others. But even in this case, it
need not necessarily be an anticommutative Lie algebra; it
often contains a commutative subring (ground ring); see
Refs. 194, 298-300 for the most important examples.

OPEN AND NON-ORIENTABLE STRINGS—are
string models defined on open (i.e., having boundaries)
and/or non-orientable surfaces. Such surfaces having any
number of handles, open string models inevitably include
closed strings. Open and non-orientable surfaces may be
considered as factors of specific closed surfaces, the so-called
doubles®®' with respect to Z,-symmetry. Module spaces of
doubles form half-dimensional real subspaces in ordinary
complex module spaces while measures on these subspaces
defining correlators in the open string theory merely coin-
cide with holomorphic constituents of ordinary string mea-
sures (for closed strings); see Refs. 40-42. Punctures may be
regarded as a specific type of a surface boundary; the same
refers to the neighborhood of a puncture arising in the
Krichever construction—this accounts for parallelism be-
tween the open string theory and the string operator formal-
ism.* In the p-adic case, the analogs of the open string theo-
ry are much simpler than the analogs of closed strings: the
former are described in terms of ordinary p-adic numbers
from the Q, field while the latter are defined over the Q,
field which is an enlargement of the algebraic closure of Q,
and is a very sophisticated analog of complexification, i.e. a
transition from R to C.
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RECURSION RELATIONS—are a form of represen-
tation of algebra of observables in string models especially in
topological gravity. These are relations between different
correlators including those on the surfaces of different gen-
era and with a different number of punctures. E. Witten was
the first to introduce the term “recursion relations” and to
examine this phenomenon thoroughly. See also Ref. 121.

RENORMALIZATION PROPERTIES OF MOD-
ELS WITH TOPOLOGICAL AND WESS-ZUMINO
TERMS—this is a classical problem of the modern quantum
field theory unyielding to easy analysis. The most relible as-
sertions: renorminvariance of topological and Wess—Zu-
mino terms (up to the readily recognizable anomalies of
quantum determinants) in all orders of perturbation theory.
Some models (e.g., sigma-models on homogeneous spaces)
may be predicted to contain a nontrivial fixed point (zero of
the B-function, conformal model) if the coefficient in front
of the topological termis & = (2n + 1), provided “‘nonper-
turbative effects” are taken into account. Nonperturbative
effects also result in renormalization of the topological
term,?’? the general picture of renormgroup evolution in a
double-charge theory is shown in Fig. 2 left below. This re-
sult can be readily-obtained®’ in the instanton gas approxi-
mation; ¥ see Ref. 304 for an example of an accurate
calculation in the one-dimensional lattice model. These find-
ings are experimentally confirmed by integer-valued (stat-
ic) quantum Hall effect where the above picture is observed
experimentally®® and the theory is defined by the o-model
with a topological charge.?’>?’* An important application
of this result is illustrated by the possibility to distinguish
string models in four-dimensional space-time with a specific
topological charge: intersection index of (world) sur-
faces.”® Reliable reports on nonperturbative renormaliza-
tion of Wess-Zumino terms are unavailable; Ref. 306 illus-
trates difficulties inherent even in the instanton
approximation. Experimental findings concerning the frac-
tional (non-static) quantum Hall effect may possibly be in-
terpreted as indicating that the renormgroup behavior of
such models must be even more interesting (see Fig. 2
right): @ is the coefficient in front of the Wess—Zumino term
and there must be many conformal points®> (“theladder” in
the figure prompts numerous analogies including those with
p-adic Bruhat-Tits trees and spin glasses or Feigenbaum bi-
furcation pictures, etc.). If applied to the Hall effect, 6 is in
both cases the Hall conductivity o, g ~ *is the conventional
conductivity o,,, and the arrows indicate the direction of
renormgroup evolution with the growth of the effective sam-
ple size; the really observed values are those at the arrow
“ends” (“dressed” parameters), at the origin there are the

bare parameters which depend on the microscopic proper-
ties of the substance and are not universal. The difference
between the two situations lies in the possibility and impossi-
bility to ignore electron interactions in the specimen both
with one another and with the impurities and the back-
ground fields. Vanishing of the “dressed” value o, is known
as “localization” or the phenomenon of asymptotic freedom
(unlimited growth of g with increase in size). If
o, =2n+ D, *delocalization” occurs; the lines have
conformal points indicated by crosses.

REPARAMETRIZATION GHOSTS—arise when
the gauge is fixed in the course of integration over two-di-
mensional metrics. They are Grassmann vector fields on
Riemann surfaces (a change of coordinates is always a vec-
tor field), that is they have spin — 1 (while a conjugate
ghost field has spin + 2). Discovery of these ghosts by Po-
lyakov®® provided an explanation for the origin of the magic
D = 26 dimension in the boson string model (26 = ¢, is ex-
actly the central charge for the Virasoro algebra generated
by energy-momentum tensor of ghosts)

T

shost = —bdc + 2(3b)c)

and stimulated development of the modern string theory
based on the first quantization approach, i.e. on the analysis
of two-dimensional conformal models and two-dimensional
quantum gravity. The role of reparametrization ghosts is
especially important in the BRST-formalism which inter-
prets all observables of the string model as elements of coho-
mologies of the nil-potent BRST-operator
Qprst = ¢T + bedc.

RIEMANN SURFACES—are two-dimensional sur-
faces with a given complex structure. There are closed (hav-
ing no boundaries) orientable surfaces of different genera g
(g is the number of handles) and open (with boundaries)
non-orientable surfaces. It is sufficient to investigate only
the closed orientable surfaces since the information obtained
may be transferred to all other cases using the technique of
doubles.*®' The following objects of the theory of Riemann
surfaces are of primary importance for string theory: bun-
dles of j-differentials, Jacobi maps, period matrices, modules
of complex structure, module spaces, and special func-
tions:—Jacobi and Riemann theta-functions together with
information about their zeroes. Readers can update their
knowledge in this field using the following books (Refs. 133,
134, 216, 307, 308).

SIGMA-MODELS—These are models of d-dimen-
sional QFT with D-fields x*(£) and action

sl .

o — e —
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The fields may be interpreted as defining a map onto a D-
dimensional manifold (target space) with the metric
G,, (x). Sigma-models are most suitable for the translation
of geometric information into the QFT language and allow
the QFT to be applied to the solution of geometric problems.
There are sigma-models with supersymmetry including ex-
tended supersymmetry N = 1,2,3,4. A major advantage of
the o-model is that the manifold geometry is manifested in
its simple properties as quantum field theory. For example,
the homotopical nontriviality of the manifold is reflected in
the existence of the topological (if 7, #%0) and/or the Wess—
Zumino (if r, | #0) terms of the action. Sigma-models on
homogeneous manifolds G /H may be regarded as Yang-
Mills models with the gauge group H (and the matter in the
adjoint representation of the global group G); in this case,
say, the Wess—Zumino term can be frequently represented in
the form of a Chern-Simons term. Supersymmetrization of
the model is virtually the introduction of vectors from the
tangent space of the manifold as fermion degrees of freedom.
In other words, supersymmetric sigma-models reflect the
properties of tangent bundles; extended supersymmetries
are related to Kihler and hyper-Kéhler structures on the
manifold, etc. String models that can be interpreted in terms
of D-dimensional space-time are described as two-dimen-
sional conformal sigma-models. Conformal symmetry is
achieved either by imposing differential equations (of the
Einstein type) on G or by adjusting (frequently dynamic due
to nonperturbative renormalization) the topological terms.
The latter variant is also used in the theory of the quantum
Hall effect?’°?’* and in one of the models of four-dimension-
al strings.2® A review of the general properties of sigma-
models can be found in Refs. 309, 310, the sigma-model ap-
proach to the low-energy limit of string models (Fradkin—
Tseitlin formalism) has been discussed in Ref. 2.

PARTITION FUNCTION (STATISTICAL
SUM)—this term is used in discussions of string models in
two, somewhat different, meanings. Firstly, it designates
string amplitudes without external lines (vertex operators).
In this case, g-loop partition functions are considered to be a
contribution of genus-g Riemann surfaces to the “vacuum
energy” in a given string model. Such partition functions can
be determined both for string and conformal models. The
term “statistical sum” was coined in connection with the
analogy of this problem for g = 1 to the problem of computa-
tion of free energy at finite temperature. One-loop partition
functions resemble integrals over t of spectral generating
functions Z(¢) which already appeared in the main text, but
differ from them in numerical factors (sometimes, even infi-
nite ones). Formally, this can be accounted for by the re-
quirement of modular invariance or duality (in terms of
dual-resonance models). Less formally, the implication of
this difference is that very short strings may be regarded as
high excitations of strings of a moderate length ~ 1/M. This
is important to understand when working, say, on the for-
malism of the “string field theory.””*"!

Secondly, the term “‘nonperturbative partition func-
tion” is used to denote the generating function for a/l exact
correlation functions of a string model, i.e., a functional con-
taining comprehensive information about the given model
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(in fact, even about a class of models). Such wording is war-
ranted because examination of nonperturbative effects calls
for “exponentiation” of all vertex operators (both naive ob-
servables and ‘‘handle gluing operators”), that is for the ex-
tension of the action by introducing all kinds of perturba-
tions with arbitrary coefficients or “times” (the term was
derived from the theory of integrable hierarchies closely re-
lated to the problem in question in the case of an adequate
choice of the perturbation basis}. The “vacuum amplitude”
in the theory with such a perturbed action (summed over all
orders of perturbation theory) forms the “nonperturbative
partition function.” The nonperturbative partition function
characterizes a class of models rather than an individual
model since exponentiation of certain perturbations may be
interpreted as an alteration of the original model, e.g., a
breakdown of its symmetry. Theoretically, such a class must
include all string models if a sufficiently large number of
perturbations is considered—this is one of the basic ideas in
building up a “unified field theory” or a natural unification
of all string models. The integral defining the Kontsevich
matrix model is a good example of a nonperturbative parti-
tion function (in this case, the class of models is all string
models associated with minimal Virasoro models).

STRING MODEL-is obtained by gauging the Vira-
soro algebra in a conformal model with zero central charge
of the Virasoro algebra (if the original central charge differs
from zero, it must be associated with a specific gauge field
the dynamics of which makes the effective central charge
become zero). Any conformal model can serve as an example
of such a string model provided it is supplemented with a
system of reparametrization ghosts and a Liouville field with
characteristics dependent on the central charge of the origi-
nal model. In this case, transition to the string model may be
considered as averaging (integration) over two-dimensional
metrics. Observables of the resulting theory are in a certain
relation with primary fields of the original theory (rather, its
extension, e.g., through topology-altering operators) where-
as the operator algebra is repiaced by the algebra of observa-
bles which shows no dependence on the location of points on
the Riemann surface. The properties of the algebra of obser-
vables are an invariant characteristic of the string model. It
is also useful to consider models obtained by gauging
broader chiral algebras, e.g., the Kac—-Moody or W ;-alge-
bras. Gauging the entire operator algebra, (indeed its “third
quantization,” see Ref. 312 for the interpretation of this con-
cept in a more specific context) may be expected to yield an
effective field theory in space-time (which should be called
“string field theory” or “second~quantized string theory”).
The hypothesis of string model equivalence to topological
gravity models appears to be a promising approach for string
model studies in the nonperturbative domain.

STRING FIELD THEORY-is an analog of a second-
quantized theory of particles (i.e., a model of a usual local
field theory) for a given string model. The following exam-
ple can illustrate the difference between the first and second-
quantized formulations: while the dynamics of scalar rela-
tivistic particles in the first-quantized approach is defined by
a sum over lines with weight ¢ ~* and a specific line-
branching rule, say, only triple triple branchings are allowed
and each enters with weight 4, then in the second-quantized
formalism the same model is described by an integral over
the fields ¢ (x) with the action
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Both formulations immediately lead to Feynman diagrams
(the former—directly to expressions in @-parametrization).
The string model is originally defined in terms analogous to
the first—quantized formulation which is normally suffi-
cient for the development of the diagram technique. This is
exactly what is done in the FORMALISM OF FREE
MASSLESS FIELDS on Riemann surfaces when integrals
over the parameters « in ordinary Feynman diagrams (i.e.,
over the line lengths (modules) are actually integrals over
modules of Riemann surfaces, whereas the integrands are
given by powers of Riemann theta-functions rather than by
those of rational functions. However, it is not so easy to rep-
resent the same diagrams in the form which could be inter-
preted as second-quantized, i.e., in the form of a functional
integral over string fields ®{C(¢) }—functionals of contours
C{t} in space-time-with the action f(PAD + AD?) (with
selected operations §, A, and multiplication of fields
® x & ®). The formal difficulties are caused by the neces-
sity to take into account additional numerical factors such as
the (inverse) modular group volumes in front of expressions
for string amplitudes. Less formally, the problem consists in
the existence of duality (e.g., the equivalence of the contri-
butions of 7 and s-channel diagrams to the 4-string ampli-
tude). These problems are not so critical in the case of open
string models where it is possible to suggest without much
difficulty artificial rules for defining the string action that
are likely to ensure correct results.??® The progress is not so
striking as regards closed strings. For various ideas pertain-
ing to the construction of second-quantized formulation of
string models (largely the simplest ones: boson strings and
superstrings) see Refs. 313-315. There is also the problem of
reformulation of “nonperturbative calculations” in the same
language, that is the definition of effective string action tak-
ing into consideration various deformations of the original
string model and summing all orders of perturbation theory.
We are not aware of any serious attempt to reproduce using
this approach even a well-known result (nonperturbative
partition function for the Virasoro minimal models).

SUPERSTRING—this is a specific string model de-
rived from a fermion string by means of GSO projection. The
fermion string is a two-dimensional supersymmetric gener-
alization of the boson-string model, a natural synthesis of the
Neveu-Schwarz and Ramond (NSR) models.”” In the
critical dimension D = 10, a superstring has no tachionic
excitations and exhibits space-time supersymmetry. Also, it
is possible to describe the critical superstring in the Green—
Schwarz formalism in which this supersymmetry is mani-
festly realized in the absence of two-dimensional fields with
half-integer spin on the world sheet. The model was first
suggested in Ref. 55, the evidence of cancellation of one-loop
divergences and anomalies for the SO(32) gauge group is
presented in Ref. 37. Ref. 38 formulates a related HETERO-
TIC STRING model with the Eq X E4 gauge group which is
also free from anomalies. Different approaches and results
relevant to super- and heterotic strings are described in Ref.
21. Also, see Ref. 131 for superstrings on Riemann surfaces
in both the NSR and Green-Schwarz formalisms and the
problem of demonstration of finiteness in all orders of per-
turbation theory (omly incomplete evidence is currently
available).
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THE BELAVIN-KNIZHNIK THEOREM-—in the
broad sense, this is an assertion of the precise meaning of
holomorphic factorization of measures on module spaces
which define, after integration, correlators in the string
model. It is a broad generalization of the remark about holo-
morphic factorization made in Ref. 58 in the context of the
definition of rational conformal models on a Riemann
sphere. Ref. 135 showing for the first time the fundamental
role of complex geometry in string theory, is actually a consi-
deration of the model of the 26-dimensional boson string. It
provides evidence that the measure of the module space of
Riemann surfaces of genus g which defines the g-loop contri-
bution to a partition function (vacuum diagram) is equal to
the squared module of a holomorphic section of the Mum-
ford bundle (Mumford measure) divided (in the case of an
aptly selected section) by det(ImT) '* (for g;>2), where Tis
the period matrix of the surface and 13 is the number of non-
compact space-time dimensions divided by two. Poles of the
measure at the boundaries of module spaces are identified as
being associated with tachionic and dilatonic excitations.

THE DUISTERMAAT-HECKMAN THEOREM—
is an assertion of “‘the accuracy of the quasi-classical approx-
imation,” i.e., the possibility to replace the integral with the
action S by a sum over solutions of the equations of motion
68 =0 if two requirements are fulfilled: global action of a
compact group-on the integration space is defined, and the
dynamic principle and symplectic structure are compatible
with this action. The theorem has been proved for finite-
dimensional integrals in Refs. 104-106. In the infinite-di-
mensional situation, it turns into a statement of supersym-
metric quantum theories of a special form.'’-'% In the
formulation of quantum mechanics in terms of loop space,
the global action of the compact group U(1) may be defined
as contour reparametrization. In this manner, it is possible
to have a symplectic interpretation of supersymmetric mod-
els and the NICOLAI TRANSFORMATION.!® The
Duistermaat-Heckman theorem is closely associated with
equivariant cohomologies, index theorems, and other topi-
cal problems.

THETA-FUNCTIONS-are special functions neces-
sary to make calculations involving Riemann surfaces. Ellip-
tic functions for genus g = 1 are known better than others;
they may be defined in terms of elliptic integrals or in the
form of infinite series. The two options reflect the possibility
to describe a surface of genus g = 1 either as a complex ellip-
tic curve or as a flat torus. These descriptions do not coincide
at g>2: generalization of the former is realized through de-
finition of the surface as an algebraic manifold (this being an
ineffective or at least a poorly developed approach excepting
certain cases such as hyperelliptic curves) whereas the gen-
eralization of the latter description defines a g-dimensional
torus (JACOBIAN), rather than the surface itself, into
which the surface is holomorphically embedded by the so-
called JACOBI MAP. Given a Jacobian, the surface is un-
ambiguously reconstituted. The analog of elliptic theta-
functions for a jacobian is readily constructed in the form of
p-fold series and referred to as Jacobi theta-functions. Their
inverse image on the surface is known as the Riemann theta-
functions and are rather sophisticated objects. Even the de-
scription of a set of g-dimensional tori that are jacobians of
certain surfaces is a problem (known as the SHOTTKY
PROBLEM). The Riemann theorem concerning zeroes that
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describes the image of the surface in its jacobian as a transce-
dental equation in terms of Jacobi theta-functions is a key
one in the theory of Riemann theta-functions. According to
the theorem, it is possible to choose points R,,..,R, _, ona
surface of genus g in such a way that for any other points

ZyyZg_y

6z, +..+2,_, — R, — = jo, )y=0.

Since as many as g — 1 points are arbitrary, the above equa-
tion defines a subset of codimension (g — 1) in the g-dimen-
sional jacobian i.e. a one dimensional complex space which is
actually the surface image. Applicability of the theorem de-
pends on information about the points R,,...,R, ; which
are holomorphic functions on the module space (alluded to
in the main text above as “information about zeroes” of the
theta-function). Moreover, it is also useful to know the Ja-
cobi map

'z
z-’z=f ©,

itself, i.e., the formula for canonical 1-differentials @, (z) on
the surface. The formalism of free massless fields expresses
multiloop correlators in terms of the entire set of special
functions 6, w, R. This is not an exhaustive solution of the
problem since these objects are not independent. Some com-
fort may be found in the fact that all these variables are easy
to determine and substitute into the general formulas de-
rived in this formalism if explicit parametrization of the sur-
face is defined (for an example of this procedure in the sim-
plest case of hyperelliptic surfaces see Ref. 244). General
information about theta-functions can be found in Refs. 133,
134.

TOPOLOGICAL GRAVITATION-this term was
suggested by E. Witten for a specific approach to the defini-
tion of string models based on a postulate of a generating
function of topological invariants of module spaces of bun-
dles over Riemann surfaces as a total nonperturbative parti-
tion function of the model. Such a definition may be compa-
tible with factorization conditions connecting contributions
of different topologies to string models because topological
invariants are inevitably sensitive to the arrangement of
module space boundaries. The role of these conditions and,
concomitantly, of the algebra of observables is played by a
set of the so-called recursion relations. The simplest exam-
ple: two-dimensional Witten’s topological gravity'* which
deals with the generating function of the Chern classes of
divisors on the conventional module space of surfaces with
punctures. This function can be rewritten in the form of the
Kontsevich matrix model with potential ¥(X) = X* (Ref.
129) and coincides with the double scaling limit of the con-
ventional matrix model, i.e. with the total nonperturbative
partition function of two-dimensional quantum gravity. In
this case, recursion relations can be presented in the form of
Virasoro constraints imposed on the total partition function
which is in itself a 7-function of the Korteveg-de Vries hier-
archy. There seems to be no doubt as regards the validity of
this scheme in general, but comparabale exhaustive results
on the specific relationship between topological characteris-
tics of module space with nonperturbative partition func-
tions of string models and r-functions of integrabie hierar-
chies are still lacking in other situations. Different aspects of
this problem are discussed in Refs. 186-190, 316.
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TOPOLOGICAL MODELS-they are quantum-me-
chanical or quantum-field theories in which all correlation
functions are independent of the choice of co-ordinates and
metric in space-time or in other spaces relevant to theory
definition. This allows the correlation functions to be used as
topological invariants of these spaces. A common approach
tointroduction and investigation of a large class of topologi-
cal models is based on the use of a functional integral with
classical action independent of coordinates and metrics. An
obligatory requirement in such a theory also is the invar-
iance of the measure in the functional integral, specifically,
the absence of quantum anomalies. A. Schwarz was the first
to analyze a topological model (theory of antisymmetric
tensor fields) in connection with an evaluation of the Ray-
Singer torsion.?*! E. Witten proposed a general formulation
of the concept of topological models.®>'*® Animportant ex-
ample: Yang-Mills topological theories and topological sig-
ma-models. As a rule, even-dimensional theories of this type
use topological charges (e.g. Trfd*xFF) as the action
whereas the so-called Wess-Zumino terms play this role in
odd-dimensional theories (e.g., the Chern-Simons action
Trid’x (A4 d4 + (2/3)43)). The  three-dimensional
CHERN-SIMONS MODEL'""-''* appears to be the most
popular one due to its relation to other important problems:
topological classification of three-dimensional spaces (knot
theories ),* two-dimensional conformal theories, and quan-
tum groups. First results on a five-dimensional analog of the
Chern-Simons model were reported in Ref. 287. The theory
of the BRST—cohomologies (which are virtually identical
to equivariant cohomologies) constitutes the mathematical
apparatus of topological models. The possibility of describ-
ing generic topological theories (in which the dependence on
metric characteristics is present in the classical approxima-
tion but disappears after final evaluation of the functional
integral) in the same terms remains unexplored. The exam-
ples are quantum gravity theories including (in two dimen-
sions) string models.

An alternative approach to the definition of topological
models consists in the analysis of generating functions of
topological invariants of different spaces (the model de-
pends on the choice of both the space and the class of invar-
iants). The problem of conditions in which the generating
function may be considered as a partition function of a field
theory (including the choice of an adequate and “complete”
basis in the space of topological invariants) awaits clarifica-
tion. The situation in which the examined space bears a rela-
tion to the metrics space is called TOPOLOGICAL GRAV-
ITY. In a two-dimensional situation, models of topological
gravity describe topology of module spaces of Riemann sur-
faces and bundles over them and are closely associated with
string models. A most conspicuous finding obtained in this
field is Witten’s hypothesis of the relationship between to-
pology and integrability (its simplest version has already
been proved). According to this hypothesis, partition func-
tions of (some ?) models of topological gravity are 7-func-
tions of integrable hierarchies.

FORMALISM OF FREE MASSLESS FIELDS-it is
composed of two major portions. The first is the theory of
free fields per se on Riemann surfaces. It expresses all corre-
lators in terms of Riemann theta-functions and their zeroes
(more precisely, in terms of a set of points R,...,R,_, ona
surface, such that
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Nz, +..+z,_, —R —..—R,_)=0.

for any z,,...,2, _,; a Jacobi transformation ). There are four
closely related but different systems of free massless fields:

scalar with the action

J @83 +azp),

the Grassmann b,c-system with one field of spin j and another
oneof spin 1 — jand with the action § bdc, a similar boson By-
system; and a scalar analog but with a restricted domain ¢ of
variation of (a field with values in a segment or a ray which
are the simplest examples of orbifolds). The first three field
types are described in Refs. 158, 125, for multiloop calcula-
tions of the latter field type (based on the Prime manifold
theory,>®® see Refs. 317, 318. Itis also useful to analyse multi-
component free scalars with boundary conditions intermixing
the components, i.e. free field theories taking on values in tori
and toric orbifolds. A torus case is easily reduced to a one-
dimensional situation, the case of orbifolds has not been ana-
lyzed in full details (with the exception of the g = 1 case dis-
cussed in Ref. 319).

The second constituent of formalism of free fields is re-
duction of various conformal models to Gaussian integrals
(in this context, such a formalism is sometimes termed boson-
ization or Coulomb gas representation). Reduction of the
Virasoro minimal models was performed by V. Dotsenko and
V. Fateev.!®! Transition to free fields in the WZNW model
and its reductions is described in Refs. 158, 261 and 131, 209
respectively. Also, see Ref. 131 for the Green-Schwarz super-
string model and Refs. 122126 for a similar approach to two-
dimensional gravity.

P-ADIC STRINGS—they are analogs of string models
defined on P-adic curves. The field of p-adic numbers Q is an
analog of the field of real numbers R and can be obtained by
enlarging the set of

lle = P-—ordPt’
rational with respect to the non-Archimedian norm, where
ord,x is the power in which the simple number P enters the
expansion of the rational number x into simple factors (the
norm is non-Archimedian in the sence that |x + y| , <max
|x]p, |¥|p). All the fields Q, are nonequivalent. Q is com-
posed of formal semi-infinite series
a=3 o,
iz—m

where all the a; are the elements of the finite field F, of
residues modulo P, (that is numbers from the set
0,1,...,P — 1). The fields Q, are not algebraically closed,
which means that some algebraic equations with coefficients
from Q, may have no solution in Q. The analog of an alge-
braically closed and full field of complex numbers C is the
enlargement of the algebraic closure of Qp; it is denoted by
0,. See Refs. 146, 237, 320 for details about determination
of p-adic numbers. It is convenient todefine @, =R. A setof
all simple numbers P supplemented with the point o coin-
cides with the “spectral ring” SpecZ of all the simple ideals
of the integer ring Z. The relation between the real and p-adic
structures is defined by the product formula or the expansion
of unity: for any rational x (i.e., x belonging to any Q;),
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I,z |x{» = 1. This statement may also be formulated in
terms of adels.>*’

Riemann surfaces may be considered as algebraic
curves over a field of complex numbers, i.e., as one-dimen-
sional complex manifolds defined by algebraic equations,
modules of complex structure being related to the coeffi-
cients of the equations. Each equation can be examined over
the complex number field and over other fields including Q,,;
in the latter case the manifolds are referred to as arithmetic.
Such a change of viewpoint may turn nondegenerate curves
into degenerate ones (For example, the elliptic curve
(torus) defined by the equation y* = x(x — 1) (x — 1) and
nondegenerate over R or C for 4 #0,1, o is singular if con-
sidered as a curve over Qp whenever A =0, 1, o mod P".
The exponent n characterizes the degree of degeneracy of the
arithmetic curve over a given point P in the ring SpecZ. Dif-
ferent variables defined on algebraic curves including
Green’s functions and determinants of Laplace operators
may also be considered on arithmetic curves. Given P # oo,
many such objects are constant (and equal to unity) on a
module space excepting the points where the curve becomes
degenerate. (For the same example of an elliptic curve, Det
A~]A(1 —A)|"%, and its analog at the point P of the spec-
tral ring is Det, A ~|A(1 — A)| ¥®5#1 only for 4 #0, 1,
mod P). In this sense, the product formula decomposes these
variables into products of elementary p-adic constituents
which are entirely defined by the singularities of the module
space. These ideas were further developed in the Arakelov—
Faltings theory for divisors and heights (Green’s functions)
on arithmetic curves examined over Spec Z.'* (The same
book describes the application of these ideas to the proof of
the Mordell theorem, a weak form of the Great Fermat
theorem, and gives a definition of Mumford measure). The
determinants and the Green’s functions of Laplace opera-
tors on the curves over Q, can be defined by Gaussian func-
tional integrals with fields “living”” on Bruhat-Tits trees;*°
see Ref. 51. This formalism is directly analogous to the Po-
lyakov formalism for conventional open strings. The p-adic
analog of closed strings requires an adequate description of
curves over {1, (not only over @) and remains to be found.

One more remarkable fact about the p-adic string theo-
ry is (the unexpected!) validity of the product formula for
(some?) string amplitudes—integrals over module spaces.
It is nontrivial that the integrals for p-adic amplitudes are
specifically defined as integrals over p-adic numbers and in
this sense, the expansion of unity in formulas for string am-
plitudes in a way commutes with integration. The simplest
example of this phenomenon is the expansion of the Vene-
ziano formula for a 4-point function on the sphere;*** no
equally elegant cases have been reported. The reasons for the
development of such an “adelic” property in integrals
(which ones?) over module spaces remain to be elucidated;
see also Ref. 50. Other concepts of p-adic strings are dis-
cussed in Ref. 323.

7-FUNCTION—in the simplest case of U(1)-bundles
over Riemann surfaces and KP-hierarchy, this is a correla-
tor of free fields (most convenient—of spinors #,3 with ac-
tion f#dyd’z) on a Riemann sphere with two punctures of
the form

76{Ty} = ()¢ = (01€G10),

where
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H= ; T J,, U(l)-current J(2) = Py(z) = ; szk“,

and

G = exp % Ay P ¥

Since the “correction” to the action, H + logG, is quadratic
over fermion fields, it is possible to use the Wick theorem to
calculate the correlators <e”’> .. Following the Miwa
transformation

Ty = 0 ~ B!

may be presented as
e = I A):
a
and

I—L(Ia - 2/,’
16{T) = TI(T:;——A;)(}; _ [b’dk“d,,«‘f(fu)\i'ub)))(;-
a<b

The operator G is defined by a point of the Sato Grassman-
nian,"¢*'”® which is in turn defined by the matrix 4,,, . If this
point simultaneously belongs to the Segal-Wilson Grass-
mannian,'*® the 7-function may be interpreted as a correla-
tor on the corresponding Riemann surface and the operator
G as an adequate combination of handle-gluing operators for
the Riemann sphere. As a result of an obvious identity we
have

F@(2)10)xp(2)10) = 3 v, 10)xy_ 40 )0

(an annihilation operator affects either the one or the other
vacuum) and it is possible to perform “conjugation” with
the help of the operator G, (actually, to replace both the |0)
in the identity by G |0) ). The r-function satisfies the system
of the bilinear Hirota equations of the type

d7Z¢G(T,; + 21y - Feh =0

for any sets of times {7}, {T}}. Expansion of the Hirota
equations into a series in powers of (T}, — T';) yields a sys-
tem of integrable equations: the KP hierarchy. Additional
restrictions on the form of G result in a reduction of the KP-
hierarchy, including that of KdV-(sl(2)), Bussinesq-
(s1(3)), and other sl(n)-(or merely n-) reductions. (Note
also that the condition for the s1(2)-reduction for G from the
Segal-Wilson Grassmannian implies that the Riemann sur-
face must be hyperelliptic). Conversely, if the fields #,3 of
the original construction took on values in multi-dimension-
al (rather than linear) bundles over the Riemann surface,
there emerge 7-functions of more genera!l hierarchies. In the
analysis of string models, 7-functions arise, first, from the
Miwa parametrization—merely as correlators of free fields
on Riemann surfaces, and second, as nonperturbative parti-
tion functions (this time, at a nontrivial site). These two
roles of 7-function appear to reflect a more general fact of
occurrence of Riemann surfaces (or rather points of the Sato
Grassmannian) in string theory in two different aspects: as
string world surfaces and as parameters on a manifold of
string models. An in-depth investigation (and, thereafter,
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application) of this fact is an immediate objective of string
theory; see Refs. 40,41. Due to the equivalence of some
string models and models of topological gravity, the emer-
gence of 7-functions in the role of nonperturbative partition
functions may indicate that they also have a topological im-
plication.!2%12%:186 In connection with this, it should be not-
ed that in the Kontsevich model, the operator G is expressed
in terms of the potential ¥(X), see Ref. 186; in the general
case of analysis of nonperturbative partition functions, the
operator G is defined by the “string equation.” The relation
between integrability and topology as well as topological
and/or algebro-geometric implications of the string equa-
tion remain obscure.

W-ALGEBRAS—they were introduced by A. Zamo-
lodchikov”® as closed associative finitely-generated operator
algebras which contain operators of integer spin exceeding 2.
The general proof of the existence of classical W-algebras
associated with simple Lie algebras G is presented in Ref. 74;
see also Refs. 324,325 for an updated concept. The structure
of the corresponding module space (an analog of the com-
plex structure module for the Virasoro W,,,,-algebra) re-
mains to be established. No deep a priori reasons are known
for the existence of closed quantum W-algebras (it is not
trivial that they become closed on a finite number of genera-
tors) only a clumsy explicit construction in terms of free
fields’®®? is available. W;-algebras for G=A,_, = sl(N)
are frequently called W, -algebras. For G #s1(2), W;-alge-
bras are not Lie algebras. The algebra of generators is qua-
dratic in the case of a properly chosen basis. Non-Lie-like
corrections formally disappear in the N — oo limit; W _ -alge-
brais a Lie algebra at least in the case of a naive definition.*2
8 W-algebras may be considered as describing symmetries
of some models of statistical physics and conformal field
theory; in the latter case they are usually included in the
chiral algebra and it is worthwhile to be gauge them in tran-
sition to string models. Corresponding models of W-
STRINGS are described in Refs. 86-93, but the theory of W-
strings is still in embryo. Similar to generators of the
Virasoro algebra, generators of W-algebras come into being
in the form of equations for non-perturbative partition func-
tions, e.g., in the double-scaling limit of multimatrix mod-
els.!®>'81 See Ref. 71 for specific W-algebras associated with
discrete multimatrix models.

D Moreover, experts in many of these fields prefer to avoid the term
“string theory™. This, however, can not obscure the fact that there is a
standpoint which allows all these issues to be combined to form a novel
system of concepts. As usual, such unification has both its own value
and outcomes useful for professional researchers in various scientific
disciplines.

2 Asa matter of fact, these systems include any amorphous states. Evolu-
tion of the amorphous medium may be considered to proceed via a
sequence of almost identical metastable phases not separated by poten-
tial barriers, different symmetries or any other qualitative characteris-
tics. It should be emphasized that “amorphous phase” and “spin glass
phase” are sometimes referred to as entities even though they are virtu-
ally composed of an infinite number of phases differing in configuration
of the background fields.

¥ This specific idea is considered less valuable than the general philosoph-
ic principle of Einstein according to which the validity of a basic theory
is largely determined by its mathematical beauty. The idea can certainly
be expected to show algebro-geometric elegance, but its refinement
must not be necessarily expressed in terms of four-dimensional Rie-
mann geometry.

# Manifolds with given metrics or topology give rise to sigma-model and
topological model respectively. Something in between (e.g. a complex
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structure) is reflected in the patterns of instanton fluctuations on the
world sheet. Similarly, Lie algebra may be associated with string models
for which it plays the role of global symmetry, chiral algebra or ful/
symmetry algebra, etc.

*) It is most often a phase of fermion field or an element of the U(1) group.
Not all of the above examples appear to explain readily how quasiparti-
cles can possibly be included in this scheme (e.g. vortices in fluids, etc.).
Variables satisfying the equation curl4 = 0 may seem to be a more uni-
versal criterion. However, the practical solution of this equation is
A = G ~ ' grad G, where G is an element of a compact U(1).

® The risk of such experiments has been repeatedly emphasized by L. B.
Okun in connection with discussions of the problem of catalysis of false
vacuum decay.

? Discussion of the difficulties and obscurity of the standard model is
beyond the scope of the present review. Suffice it to mention their three
types. First, there is the problem of confinement in QCD. In this context
the word “problem” does not imply a real “difficulty.” There is a com-
plicated problem of describing the strong coupling regime, but the lack
of its solution (or its partial solution) by no means raises doubts as to
the adequacy of QCD as the theory of strong interactions. Second, the
GWS model has some problems concerning the Higgs sector. It is un-
clear which of the many possible variants of its arrangement should be
given preference. We are not prone to regard this as a serious problem in
that future experiments may facilitate selection of one or more of these
predictable (and even more or less accurately calculated) options. We
should hardly be surprised at any particular choice because there is no
reliable theoretical reason to prefer any one of the many alternative
possibilities (fundamental or composite Higgs boson or bosons; in the
case of a fundamental boson, the question arises whether it forms a
supermultiplet with one of the known fermions; in the case of a compos-
ite boson, the question is whether it is composed of strongly interacting
W and Z bosons or new elementary particles, etc.). Perhaps even more
important, we can not hope to understand which option is more prefera-
ble until we manage to go beyond the framework of ideas assumed as the
basis in formulation of the standard model. Third, GWS suffers from
the problem of zero-charge. Strictly speaking, it is also the problem of
strong coupling, but unlike the case of confinement, we are not confi-
dent that it can be solved taking into account nonperturbative effects. A
less expensive (and almost certainly more correct) option would be to
assume the Grand Unification hypothesis, i.e. interpretation of the stan-
dard model as a result of spontaneous breakdown of the broader gauge
symmetry with some simple gauge group, SU(S), SO(10) and even
E,; X E;. True, the concept of Grand Unification brings about a new
“problem,” the so—called hierarchy problem,’>?* which in turn can be
solved by introduction of supersymmetry. The scenario of Grand Super-
unification appears to be free from such problems. More than that, there
is indirect experimental evidence testifying to its validity (e.g. the “for-
tunate” correlation between the measured values of the constants of the
three interactions® and high proton stability).

8 At present, there is only one example of a model of a local QFT that
appears to have advantage over renormalizable theories, being absolute-
ly free from ultraviolet divergences. This is the N = 4 Yang-Mills theo-
ry.>* However, it can hardly be used for the construction of anything
compatible with the standard model. Symbolically, this N = 4 model
remarkable in more than one aspect is in fact a by-product of a super-
string model study of Ref. 55.

9 For example, Maxwell’s equation is a second order equation because
action has the form of F i Actually, it may be presented as

Ji2+ 3—‘;2)“’4 _Jt%“ﬂ+ )

due to the fact that all corrections to equations of motion with three,
four, etc. derivatives are insignificant when energy and momentum are
low compared with M. Note that such an approach also offers no diffi-
culty with respect to the number of initial conditions which is normally
dependent on the order of the equation: only a part of these conditions
(exactly as many as is necessary) are compatible with the criterion of
the absence of massive excitations.

19 Gauge invariance can ensure that fields with certain nontrivial (!)
transformation properties are massless only provided that there are
some such otherwise symmetry can not be expected to yield any useful
information. It is sufficient to recall by way of example the confinement
phase, a close analog of the topologic phase, in which the QCD gauge
symmetry in no way restricts the mass of colorless hadrons.

'Y In order to avoid misunderstanding, it should be emphasized that this
is a phenomenological theory, i.e. it confines itself to fluctuation stud-
ies and ignores other properties and problems of quantum gravity in-

cluding the divergence problem. For this reason, all inferences deduced -

from the theory of baby universes are purely qualitative and unreliable.
The value of such theories is in that they help to predict events that may
occur in a given situation. The final conclusion can be arrived at only in
the framework of a comprehensive theory of quantum gravity, and the
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string theory rather than one of its technical methods may be destined
to play this role.

12) In order to avoid misunderstanding, it is worthwhile to note that the

fundamental parameter M = M, that defines the coefficient in front of
the action

MYG, (0o ¢85 w.v =1, ..., D)

on the world surface (which is in fact the subject in question) must not
necessarily coincide with the standard value

My~ (he/)2 ~ 109Gev

For example, scenarios with the compactification mechanism include
one more parameter, R ,and

72~ pP204
M- MPRES

comp

However, the high stability of fundamental interaction parameters in
time and a dynamic analysis of string compactification make signifi-
cant deviation of R, from 1/M unlikely even though such a scenario
with one or more intermediate scales is not completely ruled out. We do
not emphasize differences between My, and My, each time we come to
mention these parameters in order to avoid minute discussion.

'3 The Liouville field in Polyakov formalism is interpreted as determining

the conformal factor of the two-dimensional metric
8a8) = e’UE’%

(its sole non-gauge degree of freedom). At first sight, the naive action
for a bosonic string,
JGifx)3 o pelg et g) s}

with positively denoted G, isindependent of x,,, but this is mere illusion:
due to quantum anomalies®® the correct action looks like Eq. (2) witha
nonvanishing component Gy, or in a broader context, G,,. Moreover,
Gy, is negative at least till D<26. This automatic appearance of the
Minkowsky signature in an a priori Euclidian theory is one of the most
pretty effects in string theory from the point of view of fundamental
interactions: the existence of the Minkowsky signature in this world is
interpreted as a quantum anomaly! In order to count the number of
dynamic two-dimensional degrees of freedom, it is necessary to subtract
2 from the total number D — 1 of fields x’ (due to invariance with respect
toreparametrization of the two-dimensional world surface) and toadd 1
(Liouville field). The resulting number D — 2 occurs in formulas for
Z(t). Note that in formulas (1) and (3a), Z ., include only those effects
which are associated with the difference between the x,, field and all the
other x, fields but unrelated to its mere existence. The overall contribu-
tion of the Liouville field to Z(¢) is defined by the product
1 HPZ (1),

') This relation is in fact the Jacobi-Riemann identity for elliptic functions

and may be known to some of the readers as

240, ) = 80, 7) - 3o 7).

!9 It is understandable that the majority of string models should deal with

low order, most frequently, second order equations. This is certainly an
advantage as regards the philosophy of unification models. However,
examination of abstract equations may require selection of string mod-
els with more intricate low-energy limits. Note also that string theory
allows solution of the old problem concerning obtaining the equations
from the symmetry principle. Despite the common delusion, gauge
invariance does not solve this puzzle because it is impossible to account
for elimination of tr F>-like corrections to Yang-Mills action tr F?
without appealing to the non-symmetry principle of minimality. It is
natural to use the minimality principle in examining renormalizable
and/or effective low-energy models, but it does not fit equally well in
discussing a fundamental theory. String interpretation of an equation
assumes it to reflect conformal symmetry of an entirely non-obvious
object—a two-dimensional theory on the world sheet of the probe
string. Of course, the choice of corrections to the equation remains
arbitrary and transforms into an arbitrary choice of the string model,
but in the case of a fixed model, the relation between the equation and
symmetry is uniquely defined.

130 The basis /" (z) for surfaces with a more complicated topology depends

on the choice of the complex structure and is defined by more sophisti-
cated formulas, the requirement being that holomorphic field poles
were located only at punctures. The corresponding generators L [f4"]
form a modification of the Virasoro algebra known as the Krichever—
Novikov algebra.*” The operator expansion of T(z) T(Z') is local and
naturally independent of the choice of basis in the space of vector fields.
Therefore, the generators L | "] may be represented as formal linear
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combinations of L, although certain cohomologies of algebra depend
on the choice of the basis which suggests that they are non-isomor-
phic,—a common thing about the theory of infinite-dimensional alge-
bras.

'® Verma modules depicted as cones show the following patterns (See
Fig. 1).

7> The notion of a chiral algebra is vague. In the broadest sense of the
word a (holomorphic) “symmetry” of a conformal model is the opera-
tor algebra of all (chiral) vertex operators (both primary ones with
respect to 7(z) and their descendants). Identification of such a sym-
metry as a chiral algebra is possible (and even reasonable in string
models where all the Virasoro descendants are excluded and indispen-
sable in the full string theory), but such an interpretation is not yet
universally accepted in the literature. The notion of a chiral algebra is
normally used in one of two contexts: for specific reductions of the
WZNW model (see below) when a chiral algebra is considered to be a
member of an unbroken algebra in the universal envelope of the origi-
nal Kac-Moody algebra or when it is meant subsequently to gauge a
symmetry defined by a chiral algebra (Virasoro algebra in string mod-
els, W-algebra in W-string models, and total Kac-Moody algebra in
constructing the simplest fopological models). Note that such a narrow
interpretation is in part a concession to generalization (a chiral algebra
must not necessarily be a Lie algebra, e.g. W-algebras are quadratic).
More essential, construction of the complete string theory suggests that
the entire algebra of vertex operators must be gauged: the correspond-
ing gauge fields are nothing else but D-dimensional fields that describe
particle-strings from the space-time, but not two-dimensional, view-
point. The general term is frequently used in the narrower sense as long
as such a narrow problem is not on the agenda.

'8 It is not unusual that, besides generators of ordinary symmetry produc-
ing a chiral Lie algebra, a conformal model has a set of operators that
form another distinct algebraic structure, a commutative ring (ground
ring). If it is included into a chiral algebra, the latter ceases to be a Lie
algebra. In a sense, this ring should be associated with ‘““the topological
sector” of the model in which case the Lie-like structure is to be regard-
ed as its “symmetry” (and hence, its chiral algebra). Substantiation of
such separation in conformal models of the generic type requires an in-
depth analysis.

!9 By analogy with such a “generalized Sugawara construction,
possible to examine *‘generalized W-operators” of the form

”

it is
a
t_fdzl...fdzn(,‘al__an(?z‘, zp., Zd 1(zl)....la"(zn) + ...,
For examples obtained using the “local anzatz” see Ref. 70; an example

of the nonlocal type yielded by the analysis of matrix models is given in
Ref. 71.

20) Formally, the occurrence of such effects can be accounted for by the
y

presence of derivatives in formulas for gauge transformations (e.g. in
the abelian theory 84 = dg, but condition d4 = 0 does not necessarily
imply the existence of £ for, say, 4 = const on the circumference).
Certainly, such phenomena are largely applied to solve mathematical
problems, e.g. calculation of cohomologies. At the same time, they are
interesting physical effects breaking the narrowly-interpreted para-
digm of local action: they look like long-range interactions unrelated to
particle propagation. A famous example is the Aharonov—-Bohm effect
(and, as a matter of fact, the static Coulomb interaction). In an ordi-
nary four-dimensional situation, the beauty of the effect is however
overshadowed by the presence of a massless photon. Therefore, a more
elegant example is the long-range action in a three-dimensional mas-
sive electrodynamics containing no massless particles capable of propa-
gating over long distances.'® See also the recent discussion of the
“physical view”” in connection with the study of the important “c = 1"
string model.'®' Also note, that “cohomological” effects are common-
place in string theory—they occur at every step.

2V Supersymmetric models have one more feature which makes their

study very promising: they bear information about symplectic struc-
tures on loop spaces, at least in the case when the action is at most
quadratic over fermionic fields.'® In this sense, supersymmetric mod-
els may in the future play the same role in symplectic geometry studies
as conformal models play in the analysis of complex geometry. Sym-
plectic nature of quantum supersymmetric models is of great impor-
tance as regards the applicability of Duistermaat-Heckman-like theo-
rems (about the exactness of quasiclassical approximation) '®~'® and,
in the end, for their exact solvability. This range of problems also in-
cludes important cases of index theorems and their striking applica-
tions'®-'*? as well as the theory of Nicolai transformations.'**!*

22) Equations of motion in a conformal theory are conditions of holomor-

phicity and their solutions would be only constants if it were not for
nontrivial boundary conditions (including singularities). Therefore,
there is not much to be done to convert a conformal model to a topolog-
ical one: only eliminate sources of singularities and branch points, i.e.
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central charges and nonvanishing dimensions. It is exactly this variant
that is discussed in the text. Speaking of a non-conformal model, the
effective theory derived from it by averaging over the metrics might be
nontrivial. However, the system of solutions of equations of motion in
this effective theory must be invariant (the equations being covariant)
with respect to arbitrary substitutions of coordinates. This assertion
refers to more than two dimensions: such a property must also be pos-
sessed by quantum gravity in any number of dimensions. Examples of
such effective covariant models are discussed in Ref. 119.

23 Moreover, the actions of Eqgs. (4) and (5) completely coincide only for

equations of motion for the metric g,,,, the final proof that the integral
over g, with the specified measure does convert (5) to (4) being avail-
able only for a similar one-dimensional problem (the theory of relativ-
istic particles). The problem of proving that different variants of for-
malism produce results from one equivalence class is a weak point of
string theory in general; on the other hand, more than plausible Aypoth-
eses of such coincidence usually suggest the existence of remarkable
and (as yet) incomprehensible relations between quite different things.
(The example of an equivalence of different measures in the integral
over metrics: the one mentioned earlier,”® that induced by the DS re-
duction,'?*"126 and the simply free one,'>*"'** may prove unconvincing
even if important. See below and in Ref. 127 for a much more striking
example: equivalence of the Polyakov formalism and the random lat-
tices approach).

™ In order to avoid possible misunderstanding, it should be noted that

most of the old papers argue that it is possible to neglect the integral
over the conformal factor in the case of D = 26 (and for other critical
strings ). However, such a viewpoint does not seem consistent; current
ideas are discussed in the text. A peculiar feature of critical strings is
that the Liouville field x,, (except for the signature, which is sometimes
also important!) is indistinguishable from the remaining fields x, al-
though this does not mean that it is altogether lacking!

25 Reference books on special functions usually contain only elliptic Ja-

cobi functions corresponding to g = 1. Theta-functions at other g-val-
ues are a broader class of functions that resemble elliptic ones in more
than one aspect. Specifically, they are also representable as Gauss se-
ries (only multi-fold ) and satisfy specific second order equations that
relate dependences on the matrix T and a point on the torus). Another
important class of special functions not included in the commonly
available reference books is constituted by integrals of theta-functions.
Their analog for g = 0 is hypergeometric functions (integrals of power
functions) which are especially complicated for g > 1 since they are
defined (or rather interesting) only for Riemann theta-functions.

26 The common explanation is that the shape of triangles is immaterial

when their size is very small in the continuum limit. The thing to worry
about in the first place in case of a doubt as to the validity of the proce-
dure is the absence of a continuum limit. However, the limit can be
obtained by an explicit calculation and is actually well-defined. In this
sense, such a definition of two-dimensional quantum gravity is as rel-
evant as the standard definition suggested by Polyakov. Nevertheless,
the problem remains as to why these definitions coincide (in fact, this is
the problem of equivalence of quantum measures). This problem possi-
bly pertains to an interesting question of algebraic points distribution
in module space (see Ref. 127).

" This way of reasoning for the case of D — 1 = 3 may be illustrated by a

well-known simple experiment: take two identical triangles, link corre-
sponding vertices with three lines (loose), and turn one of the triangles
through 360°. The lines will get tangled. Now, try to disentangle them
without a change in the position of the triangles. It would not be diffi-
cult if there were only two lines (it is sufficient to carry one of the lines
over the upper triangle), but it is impossible to do in case of three or
more lines. However, the lines will easily become disentangled regard-
less of their number if the triangle is turned through 720° rather that
360°. Note incidentally that it is impossible to derive the existence of
fermion statistics from a consideration of two-particle systems (al-
though this is frequently attempted) since it follows from the above
examples that the invariant statement refers only to multi-particle (at
least (D — 1)-particle) systems.

*® In a broad outline, the number of background parameters must coin-

cide with the number of integration variables. In models of the type of

Zity = JaM exp ., yiTr MK (Refs. 184,185)
k

such variables are actually the eigenvalues M and for infinite-dimen-
sional matrices there is obtained a one-parameter family, e.g. a set of
the infinite number of “times” {¢, }. In the Kontsevich models

ZgAy = fax exp(ZtkTr x") +Tr AX (Ref. 186)
k
the number of eigenvalues in the matrices X and A is identical. The
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origin of integrability of matrix models of this type consists in the possi-
bility to reduce the integration to a change of external variables (the
choice of gauge). More interestingly, the natural parametrization of
the action in the matrix integral also turns out to be natural from the
point of view of integrability, viz. Z{t, } is a ~function of the Toda
chain directly in the variables {z, }.

2% It should be noted, to avoid misunderstanding, that the word “model”
has been used throughout the article in its common meaning which has
nothing to do with group theory.

30 1 wish to thank D. Khmel’nitsky for the convincing explanation of this
fact.

3D “Omitted by Author”’

32) Curiously (and even symbolically), the Neveu-Schwarz string was the
very first example of a supersymmetric system and gave an incentive to
supersymmetry studies in physics (the algebra of supersymmetry as a
mathematical object had formerly been suggested by Gol'fand and
Likhtman).'®

) An adel ring consists of sequences A = (@83 83) 18 (pyr--)s
where @ p, €Qp with a few additional restrictions and rational numbers
that form a subgroup of principal adels comprising elements of the form
X = (x,x,x,...,x...). See Ref. 321 for more details about adels and idels.
The philosophy behind adels and the product formula may be stated as
follows: all “natural” physical variables are trivial (equal to unity?) if
considered over a ring of adels (or at least principal adels) rather than
common numbers: f{X) = I, 2/p(x) = 1. Hence, the existence of
non-trivial physical variables f_ (x) can be interpreted as a result of
“symmetry breakdown”: for unknown reasons, we can see only one
(real) constituent, its non-triviality being, however, totally compen-
sated by a “latent” p-adic component. It will be shown below that such
“natural” functions include not only the norm f, =|...|p, but also
string measures determined from Bruhat-Tits trees and, possibly, cer-
tain string amplitudes (at least the Virasoro amplitude).
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