УСПЕХИ ФИЗИЧЕСКИХ НАУК

МЕТОДИЧЕСКИЕ ЗАМЕТКИ

534.22

К ЛИНЕЙНОЙ ТЕОРИИ ВОЛН В СРЕДАХ С ПЕРИОДИЧЕСКОЙ СТРУКТУРОЙ

П.С. Ланда, В.Ф. Марченко

(Московский государственный университет им. М.В. Ломоносова)

Вопросам распространения волн в средах с периодической структурой посвящена общирная литература, как специальная (см., например, [1 - 7]), так и учебная [8 — 10]. Специальная литература относится в основном к трем областям знания: физике твердого тела, где рассматриваются модели кристаллических решеток [1, 3, 6], электронике, где рассматриваются различные типы замедляющих систем [4, 5, 7], и оптике при рассмотрении многослойных покрытий [5]. Отметим, что в работах по электронике, как правило, приведены верные дисперсионные зависимости для линейных волн, распространяющихся в замедляющих системах. В то же время в работах по физике твердого тела при рассмотрении одномерных дискретных моделей кристаллических решеток, а также в соответствующих разделах учебников по теории колебаний и волн, включая новейшие [8, 9], указанные дисперсионные зависимости изображены не полностью. В этих работах, как и в более ранних [1, 2, 11], диапазон волновых чисел ограничивается интервалом $\mp \pi/2$, что может привести к ошибочному заключению о том, что так называемые "акустические" ветви спектра упругих колебаний имеют только нормальную дисперсию, т.е. частота колебаний растет с ростом модуля волнового числа, тогда как "оптические" ветви, наоборот, имеют только аномальную дисперсию, т.е. частота колебаний падает с ростом модуля волнового числа. На самом деле, как будет показано ниже, и в акустическом и в оптическом диапазонах должны существовать ветви как с нормальной, так и с аномальной дисперсией, причем их амплитуды однозначно связаны между собой.

Настоящая статья имеет целью обратить внимание широкого круга физиков и преподавателей вузов на этот факт, имеющий важное значение как с принципиальной точки зрения, так и при решении конкретных задач. Ведь по указанным учебникам учатся тысячи студентов университетов.

Прежде всего рассмотрим хорошо известную [1 - 3, 5, 6] одномерную модель двухатомной кристаллической решетки (например, NaCl), которая представляет собой чередующуюся последовательность тяжелых (с массой M) и легких (с массой m) шариков, соединенных пружинками с жесткостью k (рис. 1,a). Пронумеруем шарики все подряд и для определенности будем считать, что более тяжелые шарики соответствуют четным номерам, а менее тяжелые — нечетным. Тогда уравнения колебаний шариков можно записать в виде

[T. 161

$$m\ddot{x}_{s} + k(2x_{s} - x_{s+1} - x_{s-1}) = 0 \text{ при } s = \pm 1, \pm 3, \pm 5, ...,$$
(1)

$$M\ddot{x}_{s} + k(2x_{s} - x_{s+1} - x_{s-1}) = 0 \text{ при } s = \pm 2, \pm 4, \pm 6, ...,$$

где x_s — смещение *s*-го шарика от положения равновесия.

Рис. 1. Одномерная механическая модель двухатомной кристаллической решетки: безграничной (*a*), ограниченной (*б*)

Из-за того, что массы шариков различны, их амплитуды колебаний будут отличаться друг от друга. Поэтому решение уравнений (1) будем искать в форме

$$x_s = Ae^{is\beta}\cos\omega t \text{ при } s = \pm 1, \pm 3, \dots$$

= $Be^{is\beta}\cos\omega t$ при $s = \pm 2, \pm 4, \dots,$ (2)

где β — неизвестная величина, играющая роль волнового числа. Как следует из (2), β представляет собой набег фазы на одну ячейку.

Подставляя (2) в (1), получим уравнения для определения амплитуд *А* и *B*, из которых находим дисперсионное уравнение

$$\omega^4 - 2(\omega_1^2 + \omega_2^2)\omega^2 + 4\omega_1^2\omega_2^2 \sin^2\beta = 0,$$
(3)

где $\omega_1 = (k/M)^{1/2}$, $\omega_2 = (k/m)^{1/2}$ — собственные частоты несвязанных колебаний шариков, а также отношение амплитуд

$$\frac{B}{A} = \left[\left(1 - \frac{\omega^2}{2\omega_2^2} \right) \left(1 - \frac{\omega^2}{2\omega_1^2} \right)^{-1} \right]^{1/2} \operatorname{sign} \left[\left(1 - \frac{\omega^2}{2\omega_2^2} \right) \cos \beta \right].$$
(4)

Отсюда видно, что при $\omega \leq \sqrt{2}\omega_1$ амплитуда колебаний тяжелых шариков *В* превышает амплитуду колебаний легких шариков *A*, причем *A* стремится к нулю при приближении частоты ω к граничному значению $\sqrt{2}\omega_1$. При $\omega = \sqrt{2}\omega_2$ тяжелые шарики неподвижны (B = 0), и во второй области частот ω , когда $\sqrt{2}\omega_2 \leq \omega \leq [2(\omega_1^2 + \omega_2^2)]^{1/2}$, всегда $B \leq A$.

До сих пор полученные результаты полностью совпадают с известными [1 - 9]. Расхождение начинается с вопроса о том, в каком диапазоне следует рассматривать значения β . В цепочке с одинаковыми шариками диапазон изменения β соответствует интервалу от $-\pi \, дo \, \pi$, поскольку все другие значения β не отличимы от указанных. При переходе к цепочке с периодически чередующимися шариками приводится следующее рассуждение: поскольку период структуры удвоился, то диапазон изменения β нужно уменьшить вдвое. Это рассуждение было бы правильным, если бы цепочка по-прежнему оставалась однородной. Для неоднородной цепочки такое рассуждение, вообще говоря, неверно.

Покажем, что и в случае цепочки с чередующимися элементами волновое **число** β также следует рассматривать в интервале от $-\pi$ до π .Для этого рассмотрим ограниченную цепочку, содержащую *n* шариков, закрепленную на концах (рис. 1,*б*). Граничные условия для такой цепочки имеют вид

$$x_0 = x_{n+1} = 0. (5)$$

Легко получить частное решение уравнений (1) с граничными условиями (5) в виде

$$\begin{aligned} x_{sq} &= \sin s\beta_q (A_{q1}\cos \omega_{q1}t + A_{q2}\cos \omega_{q2}t) & \text{при } s = \pm 1, \pm 3, ..., \\ &= \sin s\beta_q (B_{q1}\cos \omega_{q1}t + B_{q2}\cos \omega_{q2}t) & \text{при } s = \pm 2, \pm 4, ..., \end{aligned}$$
(6)

где отношения B_{q1}/A_{q1} и B_{q2}/A_{q2} определяются выражением (4) при $\omega = \omega_{q1}$ и $\omega = \omega_{q2}$ соответственно, ω_{q1} и ω_{q2} — два корня уравнения (3) при $\beta = \beta_q$. Как следует из граничных условий (5), $\beta_q = \pm q\pi/(n+1)$, где q = 1, 2, ..., n. Отсюда видно, что диапазон изменения β_q заключен внутри интервала $-\pi, \pi$. Каждому значению β_q соответствуют две собственные частоты ω_{q1} и ω_{q2} . Все *n* собственных частот цепочки можно получить при изменении *q* от 1 до *n*/2, т.е. в диапазоне изменения β от $-\pi/2$ до $\pi/2$. Расширение диапазона изменения β до интервала $[-\pi, \pi]$, т.е. для q = n/2 + 1, ..., n, не приводит к появлению новых собственных частот. По-

этому в теориях, где существенно лишь число степеней свободы, например в теории теплоемкости Борна [1], ограничение диапазона изменения β интервалом [$-\pi/2, \pi/2$] не приводит к ошибкам.

Если же интересоваться характером волновых процессов, происходящих в цепочке, и, в частности, фазовой и групповой скоростью волн, а также нелинейными процессами, то ограничение диапазона изменения *β* интервалом $[-\pi/2, \pi/2]$ неправомерно. В этом интервале из уравнения (3) получаем известные дисперсионные зависимости, приведенные на рис. 2, *а*. Ветви *I* и *I*' названы Борном акустическими, а ветви 2 и 2' — оптическими ветвями спектра

Рис. 2. Зависимость частоты $\boldsymbol{\omega}$ от волнового числа $\boldsymbol{\beta}$. a - B диапазоне от $-\pi/2$ до $\pi/2$. $\delta - B$ диапазоне от $-\pi$ до π

упругих колебаний в двухатомной решетке. Из рис. 2,*а* видно, что акустические ветви соответствуют нормальному закону дисперсии, при котором частота колебаний растет с ростом модуля волнового числа, т.е. фазовая (ω/β) и групповая $(d\omega/d\beta)$ скорости направлены в одну сторону. На оптических ветвях закон дисперсии является аномальным, т.е. частота уменьшается с ростом модуля волнового числа, что приводит к тому, что фазовая и групповая скорости волн оказываются направленными в противоположные стороны. Именно этот случай привел Л.И. Мандельштам [10] в качестве примера среды с указанными интересными свойствами.

В диапазоне изменения β от $-\pi$ до π вид дисперсионных зависимостей показан на рис. 2, δ . Из этого рисунка следует, что как оптическая ($\omega > \sqrt{2}\omega_2$), так и акустическая ($\omega < \sqrt{2}\omega_1$) ветви спектра имеют участки с нормальным (1, 1', I, I') и аномальным (2, 2', II, II') законами дисперсии. Что же имеет место в действительности? Для ответа на этот вопрос представим решение (2) в виде, универсальном для описания колебаний как тяжелых, так и легких шариков:

$$x_s = \frac{A+B}{2} \left(1 + \mu^{\operatorname{sign}(B/A)} \cos \pi s \right) e^{is\beta} \cos \omega t, \tag{6'}$$

где

$$\mu = \left| \left[\left(1 - \frac{\omega^2}{2\omega_2^2} \right)^{1/2} - \left(1 - \frac{\omega^2}{2\omega_1^2} \right)^{1/2} \right] \left[\left(1 - \frac{\omega^2}{2\omega_2^2} \right)^{1/2} + \left(1 - \frac{\omega^2}{2\omega_1^2} \right)^{1/2} \right]^{-1} \right|$$

Учитывая, что $\exp[is(\beta + \pi)] = \exp[is(\beta - \pi)]$, выражение (6) можно записать в более удобной форме

$$x_s = \frac{A+B}{2} \left(e^{is\beta} + \mu^{\operatorname{sign}(B/A)} e^{is(\beta-\pi)} \right) \cos \omega t.$$
(7)

Отсюда следует, что на заданной частоте ω возбуждаются всегда две волны с волновыми числами $\beta \le \beta - \pi$. Эти волны соответствуют двум ветвям на рис. 2,6 (либо I и II', либо II и I', либо 1 и 2', либо 2 и 1'). Обе волны имеют одинаковые групповые скорости и различные по величине и направлению фазовые скорости. Амплитуды возбуждаемых волн не являются независимыми. Отношение амплитуд волн на ветвях II, II', 2, 2'к амплитудам волн на ветвях соответственно I, I', 1, 1' равно $\mu \le 1$. Зависимость μ от β для интервалов частот $\omega \le \sqrt{2}\omega_1 \le \omega \ge \sqrt{2}\omega_2$ показана на рис. 3. Из рисунка видно, что волны с нормальным законом дисперсии в рассматриваемой цепочке всегда (за исключением критических точек $\omega = \sqrt{2}\omega_1 \le \omega \ge \sqrt{2}\omega_2$) имеют бо́льшую амплитуду, чем волны с аномальным законом дисперсии.

При $m \rightarrow M$ амплитуды волн с аномальным законом дисперсии стремятся к нулю, а ω_1 стремится к ω_2 . Производная $d\omega/d\beta$, т.е. групповая скорость, как следует из (3), равна

$$\frac{d\omega}{d\beta} = \pm \frac{\omega_1^2 \omega_2^2 \sin 2\beta}{\omega} [(\omega_1^2 - \omega_2^2)^2 + 4\omega_1^2 \omega_2^2 \cos^2\beta]^{-1/2}.$$

Отсюда видно, что значение $d\omega/d\beta$ при $\beta \rightarrow \pm \pi/2$, $\omega_1 \rightarrow \omega_2$ зависит от порядка перехода к пределу. Если раньше стремить $\omega_1 \kappa \omega_2$, а затем положить

 $\beta = \pm \pi/2$, то $d\omega/d\beta$ примет конечное значение, такое же, как для цепочки с одинаковыми шариками. Если же, наоборот, раньше стремить $\beta \kappa \pm \pi/2$, а затем $\omega_1 \kappa \omega_2$, то $d\omega/d\beta$ будет стремиться к нулю. Однако вторая производная $d^2\omega/d\beta^2$ при этом будет стремиться к бесконечности.

Тем самым, характер перехода к пределу при $m \rightarrow M$ становится ясным и не возникает тех трудностей, которые имеют место при ограничении диапазона изменения β значениями $\pm \pi/2$ (см., например, [2,8]).

Полученные результаты подтверждаются несложным экспериментом. Известно [2, 12], что уравнения для зарядов (а следовательно, и для токов) в *LC*-линии типа фильтра низких частот, в которой используются чередующиеся индуктивности L_1 и L_2 (емкости ячеек *C* одинаковы), идентичны уравнениям (1), описывающим колебания шариков в механической цепочке, изображенной на рис. 1. Поэтому

Рис. 3. Зависимость коэффициента μ от волнового числа β . $a - Для \omega \le \sqrt{2}\omega_1$. $\delta - Для \omega \ge \sqrt{2}\omega_2$

полученные выше формулы (3), (4) применимы для расчета дисперсионных зависимостей $\beta(\omega)$ и параметра $\mu(\omega) = |1 - |B/A| |/(1 + |B/A|)$ электрического фильтра, если положить $\omega_1 = 1/(L_1C)^{1/2}$, $\omega_2 = 1/(L_2C)^{1/2}$. Отметим, что аналогом механической цепочки с одинаковыми массами шариков, но чередующимися коэффициентами упругости пружинок k_1 и k_2 , является фильтр низких частот, в котором используются конденсаторы с разными емкостями C_1 и C_2 , а индуктивности ячеек L одинаковы.

Эксперименты проводились в радиочастотном диапазоне, причем помимо фильтра низких частот исследовались и более сложные линии с периодическим изменением параметров. Для измерения амплитуд напряжений в ячейках линии и зависимости набега фазы на ячейку от частоты использовались высокоомный зонд, селективный вольтметр и фазометр. Амплитуды токов определялись расчетным путем. Степень соответствия теоретических и экспериментальных результатов определяется тщательностью изготовления ячеек линии (в нашем случае требование точного соответствия не имеет принципиального значения).

На рис. 4 приведены теоретические значения (сплошные кривые) и данные эксперимента для зависимостей $\beta(\omega)$ и $\mu(\omega)$, как функции нормированных частот $\omega/\omega_{\rm B}$, где $\omega_{\rm B} = [2(L_1 + L_2)/CL_1L_2]^{1/2} (L_1/L_2 = 2)$. При подаче на вход линии, состоящей из 24 ячеек, гармонического напряжения как в первой, так и во второй полосе пропускания возбуждаются преимущественно волны с нормальным законом дисперсии. В реальной системе аномальные ветви возбуждаются всегда с "весом", меньшим единицы. Это связано с тем, что вследствие потерь, не учитываемых в приведенной выше теории, даже в точках, соответствующих граничным частотам $\sqrt{2}\omega_1$ и $\sqrt{2}\omega_2$, параметр μ не достигает единицы.

Рис. 4. Зависимость набега фазы на ячейку линии β и коэффициента μ от частоты в фильтре низких частот с параметрами $L_1 = 40$ мкГн, $L_2 = 20$ мкГн, C = 330 пФ. Сплошные кривые для β и штриховые для μ соответствуют расчетным данным, значки — экспериментальным

Для сравнения нами исследовался также фильтр высоких частот, для которого, как известно, характерна аномальная дисперсия возбуждаемых волн, при $L_1/L_2 = 2$, $C_1 = C_2 = C$. На рис. 5 приведены зависимости $\beta(\omega)$ и $\mu(\omega)$ для нормированных частот $\omega/\omega_{\rm H}$, где $\omega_{\rm H} = [(L_1 + L_2)/2CL_1L_2]^{1/2}$. В этом случае как в первой, так и во второй полосах пропускания возбуждаются преимущественно волны с аномальной дисперсией, причем ход дисперсионных зависимостей в этом случае является, в известной степени, обращенным по частоте относительно соответствующих зависимостей для фильтра низких частот. Отсюда можно сделать вывод, что появление полосы непропускания из-за различия параметров соседних ячеек линии (или механической цепочки) не

Рис. 5. Зависимости β и μ от частоты в фильтре высоких частот с параметрами $L_1 = 20$ мкГн, $L_2 = 40$ мкГн, C = 330 пФ

приводит к изменению вида дисперсии, если характер дисперсии (условно "индуктивный" или "емкостной") самих ячеек во всем интервале частот сохраняется.

Возникает вопрос, в какой линии (или цепочке) в "акустической" полосе частот будут преобладать волны с нормальной дисперсией, а в "оптической" с аномальной. Для ответа на этот вопрос нами исследовалась линия, состоящая из чередующихся резонаторов двух типов, резонансные частоты которых $\omega_1 \, \mu \, \omega_2$ заметно отличаются друг от друга. Такое разнесение резонасных частот необходимо для того, чтобы изменить характер дисперсии в резонаторах с меньшими значениями ω_1 . Схема исследованной линии приведена на рис. 6. Подбором параметров контуров можно реализовать как случай нормальной дисперсии в обоих полосах пропускания (рис. 6,*a*), так и случай, когда в высокочастотной полосе ("оптической") преобладающими являются волны с аномальной дисперсией (рис. 6,*b*). В последнем случае меняется и ход зависимости $\mu(\omega)$, поскольку этот параметр достигает максимального значения при $\beta = \pm \pi/2$.

Аналогичные результаты получаются и для сплошных сред с периодической структурой, что также не нашло отражения в учебных пособиях [8, 9]. В [8], например, представлены лишь ветви с нормальной дисперсией и не указано на существование ветвей с аномальной дисперсией.

Сравним полученные выше результаты с результатами, известными в теории замедляющих систем микроволнового диапазона электромагнитных волн [4]. В большинстве случаев замедляющую систему удобно представить как непрерывную среду (области взаимодействия с электронным пучком) с дискретно включенными элементами (например, резонаторами). Рассмотрим двухступенчатую систему, в которой вдоль оси z включены резонаторы двух типов на расстоянии l друг от друга. Следуя [4], поле в системе можно представить в виде суммы пространственных гармоник

$$E(x, y, z) = \sum_{j=-\infty}^{\infty} e_j(x, y) \exp\left[i(\beta' + 2\pi j/d)z\right] \cos \omega t,$$

$$d = 2l.$$
(8)

Различие резонаторов на одном периоде позволяет выделить две совокупности пространственных гармоник. Для этого разобьем ряд (8) на два с четными и нечетными номерами *j*. Обозначив $j_1 = j/2$ для четных *j* и $j_2 = (j + 1)/2$ для нечетных *j* и полагая $z = z_s = sl$, где $s = \pm 1, \pm 2, ...,$ получим

$$E(x, y, z_s) = (\alpha_0 e^{is\beta} + \alpha_{-1} e^{is(\beta - \pi)}) \cos \omega t, \qquad (9)$$

где

$$\beta = \beta' l, \quad \alpha_0 = \sum_{j_1} e_{j_1}, \quad \alpha_{-1} = \sum_{j_2} e_{j_2}.$$

Это выражение по форме совпадает с выражением (7), описывающим волны в двухатомной цепочке. Отношение амплитуд минус первой составляющей к нулевой $R = \alpha_{-1}/\alpha_0$ определяется теперь через суммы пространственных гармоник, что является следствием перехода от дискретной модели к дискретно-распределенной. В отличие от введенного ранее параметра μ , имеющего

Рис. 6. Зависимости β и μ от частоты в линиях с резонансными ячейками, имеющими параметры: $L_1 = 12 \text{ мкГн}, L_2 = 24 \text{ мкГн}, C_1 = 330 \text{ пФ}, C_2 = 540 \text{ пФ}, C_0 = 1000 \text{ пФ}$ (a), $L_1 = 12 \text{ мкГн}, L_2 = 24 \text{ мкГн}, C_1 = 33 \text{ пФ}, C_2 = 160 \text{ пФ}, C_0 = 410 \text{ пФ}$ (б)

физический смысл отношения амплитуды волны с нормальной дисперсией к амплитуде волны с нормальной дисперсией, параметр *R* такого четкого физического смысла не имеет. При ограничении интервала изменения β значениями $\pm \pi/2$ амплитуда, например, минус первой составляющей характеризует в первой полосе пропускания волну с аномальной, а во второй полосе волну с нормальной дисперсией. В этих полосах значения *R* соответственно равны μ и $1/\mu$. Как отмечалось выше, при резонансных зависимостях α_0 и α_{-1} от частоты преобладающей может оказаться ветвь с аномальной дисперсией.

В заключение отметим, что правильная интерпретация дисперсионных зависимостей особенно важна при рассмотрении нелинейных процессов в описываемых цепочках: генерации второй гармоники, распадной неустойчивости, формирования солитонов и т.п. Можно показать, например, что в определенном диапазоне отношений масс, а именно,

$$\frac{4}{3} \le \frac{M}{m} \le 3,$$

для ветвей с нормальной дисперсией на некоторой частоте $\omega = \omega^*$ возможен точный синхронизм, т.е. $\beta(2\omega^*) = 2\beta(\omega^*)$, где ω^* определяется выражением

$$\frac{\omega^*}{\sqrt{2}\omega_0} = \left(1 - \sqrt{3}\frac{\omega_1\omega_2}{\omega_0^2}\right)^{1/2};$$

 $\omega_0 = (\omega_1^2 + \omega_2^2)^{1/2}$. При этом $\omega^* < \sqrt{2}\omega_1$, $\sqrt{2}\omega_2 \le 2\omega^* \le \sqrt{2}\omega_0$, т.е. частота ω^* расположена на акустической ветви, а $2\omega^*$ — на оптической. Из-за наличия условия синхронизма следует ожидать за счет квадратичной нелинейности эффективного преобразования энергии колебаний в акустическом диапазоне частот в колебания оптического диапазона частот. Однако неизбежные потери, существующие в реальных цепочках, могут существенно снизить эффективного преобразования.

СПИСОК ЛИТЕРАТУРЫ

- [1] Борн М., Кунь Х. Динамическая теория кристаллических решеток. М.: ИЛ, 1958.
- 2. *Бриллюэн Л., Пароди М.* Распространение волн в периодических структурах. М.: ИЛ, 1959.
- 3. Косевич А.М. Теория кристаллической решетки. Харьков: Изд-во ХГУ, 1988.
- 4. Силин Р.А., Сазонов В.П. Замедляющие системы. М.: Сов. радио, 1966.
- 5. Элаши Ш. Волны в активных и пассивных периодических структурах: Обзор.//ТИИЭР. 1976. Т. 64, № 12. С. 22.
- 6. Маделунг О. Физика твердого тела. М.: Наука, 1985.
- 7. Вайнштейн Л.А. Электромагнитные волны. М.: Радио и связь, 1988.
- 8. Виноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн. М.: Наука, 1979; 1990.
- 9. Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн. М.: Наука, 1984.
- 10. Сотин В.Е. Брэгтовское отражение в периодических структурах. М.: Изд-во Университета дружбы народов, 1981.
- [11] *Мандельштам Л.И*. Групповая скорость в кристаллической решетке.//Собр. трудов. Т. II. М.: Изд-во АН СССР, 1947. С. 334.
- 12. Стрелков С.П. Введение в теорию колебаний. М.: Наука, 1964.

Статья поступила 11.04.90 г., после доработки 1.04.91 г.