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The current status of the physics of liquid-crystalline polymers is reviewed. Major attention is
paid to the theory of the nematic state of solutions and melts of polymers of varying architecture,
and also of polyelectrolytes. The conditions for phase equilibrium in solutions and melts and the
elastic properties of systems are studied, as well as light scattering in the region of a nematic phase
transition and the dynamic properties of rigid-chain polymers.
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1. INTRODUCTION

The properties of matter in the liquid-crystalline (LC)
state are intermediate between those of a liquid and of a crys-
talline solid. Like liquids, liquid crystals lack true, long-
range translational order. At the same time, in a liquid-crys-
talline phase the molecules still maintain long-range
orientational order. That is, like crystalline solids, liquid
crystals are anisotropic.

As is well known, the tendency to formation of a liquid-
crystalline phase is most marked for substances whose mole-
cules have an elongated shape. '"2 In this case anisotropy can
arise even from pure steric reasons—owing to the impossibi-
lity of arranging a sufficiently compact system of anisodia-
metric particles isotropically.

From this standpoint it is evident that rigid-chain ma-
cromolecules, i.e., macromolecules for which the length /of
an effective segment of the chain (see Sec. 3.1) is much
greater than the characteristic thickness d of the chain
should easily form a liquid-crystalline phase. This is actually
so; examples of macromolecules capable of forming liquid-
crystalline phases of different types are any of the helical
macromolecules (a-helical polypeptides, DNA macromole-
cules, etc.), aromatic polyamides, a number of cellulose es-
ters, and certain polyisocyanates.3"5 The shape asymmetry
parameter of such macromolecules (i.e., the ratio I/d) can
be very large (for the first two examples mentioned above it
can reach several hundreds).

In these cases, as a rule, an anisotropic phase is formed
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not only in the pure polymeric substance (in the polymer
melt), but also in a more or less concentrated solution of
such macromolecules. Liquid-crystalline polymer melts are
often called thermotropic polymeric liquid crystals (since
for such substances the liquid-crystalline transition most
naturally can be caused by a temperature change), while
anisotropic polymer solutions are called lyotropic liquid
crystals.

Both in the thermotropic and in the lyotropic case, a
liquid-crystalline phase is formed in a system of sharply ani-
sodiametric polymer molecules (l>d). Its properties must,
of course, considerably differ from the properties of low-
molecular-weight liquid crystals, for which the asymmetry
parameter / /d is usually not so large. In particular, in the
theoretical treatment of liquid-crystalline ordering in solu-
tions and melts of rigid-chain polymers the most important
problem is to find the asymptotic characteristics when / /
rf> 1. The existence of an additional large parameter leads to
the possibility of a more complete theoretical study of rigid-
chain polymers in the liquid-crystalline state as compared
with low-molecular-weight liquid crystals.

Rigid-chain macromolecules are not the sole class of
polymers capable of forming a liquid-crystalline phase. Such
a phase can arise also in melts (more rarely in concentrated
solutions) of copolymers containing both flexible and rigid
(mesogenic) regions of the chain. The corresponding sys-
tems (especially the thermotropic ones) have been studied
especially intensively experimentally.5'6 As a rule, the specif-
ics of the equilibrium properties of such liquid crystals is
expressed to a considerably smaller degree than for the case
of rigid-chain macromolecules (since usually the asymme-
try parameter of a mesogenic group is not so large). How-
ever, from the standpoint of dynamic properties these sys-
tems remain highly distinctive objects that combine the
features of polymers and liquid crystals.

On the whole, it is precisely the combination of the
characteristic properties of macromolecular systems with
the features of low-molecular-weight liquid crystals that
gives rise to the specifics of liquid-crystalline polymers and
sustains the fundamental interest in studying them. It is also
essential that biopolymers, which play an important role in
the functioning of biological systems, often form ordered
structures of a liquid-crystalline type.

The remarkable properties of polymeric LC dictate
their varied practical applications: liquid-crystalline poly-
mer solutions are used as the basis for producing high-
strength fibers; mixtures of polymers capable of liquid-crys-
talline ordering with traditional film-forming flexible-chain
polymers are used to create strengthened films (self-rein-
forced plastics). Films of liquid-crystalline polymers can be
used as selective optical filters; optical elements based on
liquid-crystalline polymer films are promising for use in re-
cording systems and long-term information storage.

In polymer systems crystalline ordering of all three
known types can occur: nematic, cholesteric, and smectic.'
The simplest of them is nematic order, which is character-
ized by chains of the rigid-chain macromolecules (or long
axes of mesogenic groups) having a preferential orientation
along a certain axis, while long-range translational order in
the arrangement of the molecules and links is completely
absent here. In this review we shall mainly take up the stud-
ies on the theory of nematic order in polymer systems, since
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the fundamental tenets of the theory of polymeric cholester-
ics and smectics have as yet not been sufficiently developed.

2. NEMATIC ORDER IN AN ATHERMAL SOLUTION OF LONG
RIGID RODS

In this section we shall treat one of the simplest systems
in which an isotropic phase-nematic transition can occur.

2.1. The Onsager theory and its modifications

The first molecular theory of nematic ordering was pro-
posed by Onsager7 for a solution of cylindrical, long, rigid
rods of length L and diameter d (L>cD. In polymer lan-
guage this system is a model for a system of extreme rigid-
chain macromolecules whose flexibility is so insignificant
that it cannot be manifested in the length L. In Ref. 7 On-
sager treated the case of an athermal solution, in which only
repulsive forces act among the rods, owing to their mutual
impenetrability, and liquid-crystalline order arises from
purely steric causes.

The basic steps of the Onsager method consist in the
following. Let N rods lie in the volume V so that their con-
centration is c = N/V, while the volume fraction of rods in
the solution is cp = wcLd 2 /4. Let us introduce the orienta-
tional distribution function/(n) oftherods:c/(n)c?iln is the
number of rods per unit volume with directions lying within
the bounds of the small solid angle Afln about the direction
n. Evidently in the isotropic state we have
/ (n) = const = \TT. In a liquid-crystalline phase/(n) is a
function with a maximum on the anisotropy axis.

The Onsager approximation consists in writing the free
energy of the solution of rods as a functional of/in the form

F = NT [in c+ \ f (n) In (4n/ (n)) dQn

J /(n1)/(n!)fl(v)dQnidQn,].
(2.1)

The first term in Eq. (2.1) amount to the free energy of
translational motion of the rods; the second term describes
the losses of orientational entropy owing to liquid-crystal-
line order; the third term is the free energy of interaction of
the rods in the second virial approximation. In this last term
B(y) is the second virial coefficient of interaction of rods
whose long axes, specified by the unit vectors n, and n2, form
the angle y. When only steric interactions of the rods are
present7 we have

B (v) = 2LH sin y. (2.2)

Thus the fundamental approximation of the Onsager
method is that the interaction of the rods is taken into ac-
count in the second virial approximation. Hence this method
is applicable only at a low enough concentration of the solu-
tion of rods. Very simple estimates of the virial coefficients of
steric interaction of the rods—the second virial coefficient is
£ ~ L 2d and the third is C~L 3d 3ln(L /d)8—show that the
second virial approximation {cB%c2C) is valid under the
condition c < \/Ld 2 or <p < 1. We shall see below that in the
limit L > d a liquid-crystalline transition in the solution of
rods occurs precisely at <p < 1. Therefore, for studying this
transition and the properties of the anisotropic phase that
arises in the limit L^d (which is of greatest interest from the
standpoint of application to rigid-chain molecules), the On-
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sager method is exact.9'10

The next step in the Onsager method is to find the equi-
librium distribution function/(n) by minimizing (2.1). Di-
rect minimization yields an integral equation that can be
solved only numerically (see Ref. 11). Therefore an ap-
proximate variational method was used in Ref. 7 with the
trial function

/(n) = const-ch (a cos Q), \ / (n) dQn = 1. (2.3)

Here 6 is the angle between the vector n and the direction of
the anisotropy axis, while a is the variational parameter.
One must substitute the trial function of (2.3) into Eq. (2.1)
and minimize it with respect to a. The found minima corre-
spond to possible phases (isotropic and liquid-crystalline).
One can study the transition between these phases by the
usual method by equating the pressures II = (c2/N)dF/dc
and chemical potentials fi = (F-\- cdF/dc)/N of the two
phases.

As a result it turned out that7:
a) the orientational ordering in the solution of long rig-

id rods is a first-order phase transition that occurs at low
concentrations of the rods in solution {cp~d /L4,\) at
which the second virial approximation is still applicable:

b) when q> < q>•, the solution is isotropic, when cp>q>eL it
is anisotropic, and when q>x <$<$* the solution separates
into isotropic and anisotropic phases, where we have

3134rf , p . = . , i ^ ii, = JE2._ i = o.34; (2.4)
Y 1 L *" L (pi

c) the order paramter.y = (3cos20 — l ) /2 (the averag-
ing is performed by using the equilibrium function/(n)) at
the point of appearance of the liquid-crystalline phase (i.e.,
when cp = <£>a) equals

s0 = 0.84. (2.5)

We stress that the only fundamental physical restric-
tion of the Onsager method involves the second virial ap-
proximation, i. e., the condition <p4> 1. The use of the vari-
ational procedure is simply a method of simplifying the
calculation. The integral equation that arises upon exact
minimization of the functional of (2.1) can be solved nu-
merically to a high degree of accuracy; this has been done in
Refs. 11 and 12. As a result it was found that

3.29CW 4.223d = 0.796. (2.6)

This shows that using the variational method leads to a very
small error (~ 5%) in determining the characteristics of the
liquid-crystalline transition.

Thus the Onsager method that we have presented is ap-
plicable at low concentrations of the solution of rods: <p -41.
Many publications8'12"16 have been devoted to attempts to
generalize this method to the case of high concentrations
(q)~ 1). The approach of Parsons13 is distinguished by the
greatest simplicity and generality from the standpoint of ap-
plication to solutions of rigid-chain macromolecules. The
essence of this approach consists in the following. We can
associate the internal energy of the system of rods with the
pair correlation function gtr.n^nj) of two rods having the
orientations n, and n2 (r is the vector joining their centers):

&=•§•$ f ("i) / K ) 8 (r, nt, n2) <J> (r. n,, n,) d»rdQn, c!Qn,.

(2.7)

Here 4>(r,n,,n2) is the energy of pairwise interaction of the
rods. In the case in which the interaction is determined only
by the shape of the rods, it can be represented in the form

(2.8)

Here 8 = <5(n1,n2,i7/-) is the minimum distance to which
rods having the given orientations can approach. The central
approximation13 consists in writing the function g in the
same form:

g(r, n,,n2) = (2.9)

The approximation (2.9) is exact at low concentrations of
the solution; at higher concentrations it is essentially an ap-
proximation of the mean-field type, which separates the
translational degrees of freedom from the orientational. If
we adopt the approximation (2.9), then we can write the free
energy ofsteric interaction of the rods Fster in the form13 (cf.
the last term in Eq. (2.1)):

/(rp)=

(2.10)

(2.11)

At low concentrations of the solution of rods {q>4,\) we
have g(l; <p)zzl. Therefore we have J(q>)~<p, and Eq.
(2.10) reduces to the third term in Eq. (2.1).

The generality of Eq. (2.10) consists in the fact that it
describes the results of many other studies12'14""16 that have
posed the problem of calculating the free energy in a concen-
trated solution of rigid rods (for more details see Ref. 17).
This formula is used below in analyzing nematic ordering in
a solution of rigid-chain macromolecules in the presence of
attractive forces. At the present stage it is only worth empha-
sizing that the Onsager method can be generalized in system-
atic fashion for describing solutions of any arbitrary concen-
tration.

2.2. The lattice theory of Flory

Another approach to solving the problem of liquid-
crystalline ordering in a solution of rigid rods was developed
by Flory.18

We present below a modified variant19 of Flory's theory
that enables avoiding certain undesirable artifacts of the
original approach.l8 Each rod is treated as a sequence of cells
of a cubic lattice (Fig. la) whose number x plays the role of
the parameter L /d. To describe inclined rods, Flory used a
family ofy shorter segments with x/y cells in each (Fig. lb).
If the origin of a rod lies at the zero point, then the coordi-
nates of its end—in the (ylty2) plane perpendicular to the
supposed axis of ordering are

x s in 9-cos <p, j / 2
 = x s^n 0-sin qp. (2.12)

xi

FIG. 1. Arrangement of rods on a lattice in the theory of Flory. a—Rod
oriented along the axis of ordering, b—Inclined rod.
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Here 6 and <p are the spherical angles that fix the direction of
the rod (n). The number of segments into which we must
divide the chosen rod is

I Vi I + I V2 I = x sin 9 ( | cos <p | + | sin «p | ). (2.13)

Upon averaging the right-hand side of Eq. (2.13) over the
axially symmetric distribution/(n), we obtain

y=— [ sin 6 / (n) dQn. (2.14)

Let n2 rods of length x lie in a lattice containing n cells.
The free energy of such an athermal system can be represent-
ed as the sum of two terms:

r ~ ''orient "i ''comb-

Here

^onent = n,T J / (n) In (4n/(n)) dQn (2.15)

is the orientational component of the free energy, while we
have

comb = - T In X,comb* (2.16)

Here y c o m b is the number of ways of arranging on the lat-
tice the set of rods having the given orientations. We can
write the combinatorial factor in the form

Xcomb = («.,!)"» 1] vy. (2.17)

Here Vj is the number of ways in which one can arrange the
yth rod under the condition thaty — 1 rods already lie in the
lattice. Evidently Vj + ,/n is the product of the probabilities
that each of the cells that-the (y + l)th rod must cover is
free. The probability px that the first cell for each of the
segments (see Fig. 1) is free is equal to the fraction of the
ceils free at the given instant, i.e.,

n — jx
i Z (2.18)

On the other hand, the probability p2 that the second, third,
etc., cell of each segment is free must be calculated with the
additional condition that the previous cell in the direction of
the axis of ordering was also free. This implies that the cell
under study cannot in principle be occupied by a second,
third, etc., link of previously arranged segments, i.e.,

n-jx +
(2.19)

We see thatp2 >Pi> within the framework of the lattice mod-
el that leads to liquid-crystalline ordering. Thus we have
Vj +, = np\p\ ~ y. Therefore we have

z™mb = (wi-f#'l2)! [w1!n2'-"
n!(!/"1)]"1- (2.20)

Here n, = n — n2x is the number of free cells (solvent mole-
cules).

The free energy Fcomb equals

ĉomb = T {B, In (1 - cp) + n, In ±

+ n2 (y - 1) - (rc, + yn2) In [ l - cp (1 - -^) ] } .

(2.21)

Here cp = xn2/n is the volume fraction of rods in the solu-
tion.

The expressions (2.16) and (2.21) fully determine the
free energy of the system, and hence all its equilibrium prop-
erties. The liquid-crystalline phase transition in the system
was studied in Ref. 19. The results for an athermal solution
for x = L /c?> 1 are:

7.89d
q>a =

ll.bid

(2.22)

Upon comparing the relationships of (2.22) with the asymp-
totically exact results (in the limit L /cf> 1) of the Onsager
theory of (2.4), we can conclude that, although the results of
the lattice method are qualitatively correct as applied to the
given problem, they differ quantitatively rather strongly
from the exact values. Evidently this is a consequence of the
many uncontrolled assumptions allowed in the presented
derivation, as well as the artificial character of the lattice
model.

We should also note that a number of other lattice theo-
ries of nematic ordering of rigid rods have been proposed
besides the Flory theory,20"23 of which the best known are
the approaches of Di Marzio20 and Zwanzig.21 However, as
applied to polymer problems, these approaches have not
been used as widely as the Flory approach.

2.3. The problem of polydispersity

Up to now we have assumed that all the rods have the
same length. This situation is characteristic of polymers of
biological origin. However, most often polymer solutions
prove to be polydisperse. That is, they contain macromole-
cules of differing molecular masses. The generalization of
the theories presented in Sees. 2.1 and 2.2 to this general case
presents no difficulties in principle. The effect of polydisper-
sity on a nematic phase transition has been analyzed in a
number of theoretical studies by using both the Onsager
method24"28 and the Flory theory.29"32 The fundamental
qualitative results of these studies coincide. The effect of po-
lydispersity is treated below with the example of a very sim-
ple (and very well studied) bidisperse system containing
rods of two lengths Lx and L2.

Let £>, and <p2 be the volume fractions in the solution of
rods of the first and second type, respectively, while
cp = <p, + <p2, and q = L2/Li > 1:

is the weight fraction of the long rods;

L = Lj (1 — z) + L2z (2.23)

is the weight-average length of the rods. Just as in the case of
a monodisperse system, the nematic transition occurs at
<p~d /L. Therefore we can naturally use the reduced volume
fraction t?:

•0 =
CPL (2.24)

The results obtained for this system by the Onsager method
by a computer calculation26 are shown in Figs. 2 and 3 for
q = L2/Ll = 2 (analogous results have been obtained purely
analytically27; see also the review of Ref. 33). Figure 2 shows
the phase diagram of the system. The curved lines surround
the region of separation into two phases. In the monodis-
perse case L, = L2 these curves would be converted into par-
allel straight lines: t?; = 3.29, i?a = 4.22. We see that poly-
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FIG. 2. Phase diagram of a solution of rods having the length ratio L2/
L, = 2. z is the weight fraction of the longer rods, # is the reduced volume
concentration of the solution. The curves surround the phase-separation
region. The ends of the broken lines correspond to coexisting phases.

dispersity leads to a small decrease in the lower (isotropic)
boundary of the separation region and simultaneously to a
strong increase in its upper (anisotropic) boundary. Conse-
quently the relative width of the separation region w sub-
stantially increases as compared with the monodisperse case
(by a factor of 4.7 for z = 0.5 and q = 2).

The dotted lines in Fig. 2 join points that correspond to
coexistent phases (e.g., the points P and Q). The volume
fraction of the longer rods in the anisotropic phase (point Q)
is considerably greater than in the isotropic phase (point P):

JPsa.
<P21

= 3.7.

Thus the phase separation in the nematic transition is ac-
companied by a strong fractionation effect, which can be
used to diminish the degree of polydispersity of a system.
With increase in the parameter q = L2/L,, the ratio cp2a /tp2i
increases approximately according to an exponential law.
That is, the fractionation effect is enhanced even further.

The dependence of the order parameters sl and s2 (cor-
responding to the two types of rods) and of the mean order
parameter

s = (1 — z) Si + zs2 (2.25)

on the weight fraction z of the long rods at t? = i?a is shown
in Fig. 3. We see that at z~0.5 the mean order parameter is
1^:0.92, i.e., appreciably higher than in the monodisperse
case (5 = 0.79). We note also the substantial decrease in the
order parameter of the shorter rods s t in the case in which the
fraction of these rods is small (i.e., z-> 1).

2.4. Comparison of the continuum and lattice approaches

While staying within the framework of the lattice model
one cannot completely eliminate various uncontrollable as-
sumptions involving the relationship of the macromolecules
with the previously denned space lattice. The artificiality of
this relationship is evident even for the case of a solution of
rigid rods. The lattice method faces even greater difficulties
in trying to treat nematic ordering in solutions of rigid-chain
macromolecules having partial flexibility. Here the presence
of the fixed space lattice leads to substantial restrictions on
the mechanism of flexibility of the polymer chain, many of
which (e.g., the persistent mechanism most widespread for
rigid chains) cannot be represented within the framework of
the lattice model.

Therefore, apparently, precisely the continuum ap-
proach is most promising from the standpoint of studying
liquid-crystalline order in polymeric systems. Within the
framework of this approach one can also take account natu-
rally of the presence of partial flexibility of a chain of arbi-
trary nature, of the influence of nonsteric interaction forces
between the molecules, and of complications involving a
high concentration of the solution of polymer chains (see
below).

As regards the lattice model, it can be successfully ap-
plied to solve a number of concrete problems in those cases in
which the continuum approach leads to too complicated cal-
culations. Below we note a number of examples of this type.
However, for drawing a complete picture of the existing
trends and qualitative features of liquid-crystalline order in
different polymer systems, the lattice method is absolutely
insufficient.

3. ATHERMAL SOLUTIONS OF PARTIALLY FLEXIBLE
POLYMERS

Having treated the problem of nematic ordering of a
very simple system—an athermal solution of rigid rods—we
now proceed to more realistic polymeric objects. The first
circumstance that we must allow for in analyzing liquid-
crystalline ordering in polymer solutions is that real rigid-
chain macromolecules always have a certain finite flexibil-
ity.

Macromolecules differ in terms of the mechanism of
flexibility of the polymer chain. The simplest mechanism of
flexibility (from the standpoint of theoretical description)
belongs to the freely linked chain, which amounts to a se-
quence of hinged rigid rods of length / and diameter d, with
/>rf (Fig. 4a). The direction of each successive rod in the
equilibrium state is random and does not depend on the di-
rection of the previous ones. For this reason the mean-square
distance between the ends of the chain (R2) equals

(J?2)0 (3.1)

FIG. 3. Dependence of the orientational order parameters of the short
(st) and long (j2) rods and also that of the mean order parameter Jon the
weight fraction z of the long rods.

Here L is the total contour length of the chain.
If the polymer chain has any other mechanism of flexi-

bility (e.g., if the orientations of adjacent links are correlat-
ed), then Eq. (3.1) is satisfied, as before, but with a renor-
malized length /. In the general case this renormalized length
is called the effective (Kuhn) segment of the polymer chain.

Most rigid-chain macromolecules are characterized,
not by the freely linked, but by the so-called persistent mech-
anism of flexibility, in which the flexibility arises from the
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a b

FIG. 4. a—Freely linked chain, b—Persistent chain.

accumulated effect of small oscillations in the valence an-
gles. We can represent a persistent macromolecule in the
form of a homogeneous cylindrical elastic filament of diame-
ter d (Fig. 4b). The elasticity of the filament is such that it
can be substantially bent only on scales of the order of /.

Depending on the relationship of the total contour
length L of the macromolecule to the length /of the effective
Kuhn segment, rigid-chain macromolecules can be referred
to one of the three following fundamental classes: a) If the
length of the Kuhn segment is so large that />L>c?, then we
can neglect the flexibility of the polymer chain, and we arrive
at the case of limiting rigid-chain macromolecules (rigid
rods) treated above, b) If L>/>af, the rigid-chain macro-
molecule includes many Kuhn segments. From the global
standpoint it stays in the state of a random coil. Such macro-
molecules are called semiflexible. c) Of course, intermediate
cases are possible in which the contour length of the macro-
molecule and the length of the Kuhn segment are of the same
order of magnitude: L~l. In real experiments this type of
macromolecules is found rather often.

The transition of an athermal solution of partially flexi-
ble polymer chains to an anisotropic phase has been studied
in a series of papers34"39 (see also the review of Ref. 33) by
using the continuum approach (the Onsager approach). Be-
low we shall present some fundamental results of these stud-
ies and briefly characterize the method by which these re-
sults were obtained.

3.1. Free energy

Let us start with the case of semiflexible macromole-
cules with L > /> c?.34"37 By analogy with the treatment given
in Sec. 2, we can conclude that the free energy of a solution of
these macromolecules in the Onsager approximation must
consist of the contribution Fconf describing the entropy
losses upon orientational ordering and the free energy Fster

of steric interaction of the macromolecules in the second
virial approximation (the translational free energy for long
polymer chains is generally inessential3637).

To write the expression for FsteT we note that, since /> d
for semiflexible macromolecules, one can always divide the
polymer chains into regions of length k so that d 4^X4,1, and
call these regions elementary links. In essence, the elemen-
tary links thus defined are long rigid rods. Therefore the
second virial coefficient of interaction of two links having
the orientations n, and n, is B{y) = 2ZX 2d |sin y\ (cf. Eq.
(2.2)). Upon allowing for this, we can write the expression
for Fster in the form (cf. the third term in Eq. (1.1)):

'-Tlb 5 /lniW(n2

(3.2)

tangential to the chain.) This is because L /A is the number of
elementary links in the macromolecule, while 4<p /irXd2 is
their concentration in the solution. We see that, as should be
so, the quantity X in Eq. (3.2) drops out, so that finally we
have36

F^r = NTL.^ J /(nO/dgsin-ydQn.dQ,,;. ( 3 3 )

The method proposed in Refs. 36 and 37 of determining
the entropy contribution Fconf is based on the idea that the
dependence of the unit vector n on the number of links can be
treated as a realization of a discrete random walk of a point
on the unit sphere (the number of the link plays the role of
the time, while the position of the point of the sphere is fixed
by the vector n). The function/(n) in this case amounts to a
somehow normalized "concentration" of links at the
"point" n. Thus the problem of calculating the orientational
entropy reduces to the following: to find for the described
random walk the entropy corresponding to the given "con-
centration" distribution/(n) of links (referred to the en-
tropy of an isotropic distribution). In such a form this for-
mulation is fully analogous to the formulation of the
problem of calculating the conformational entropy of a poly-
mer globule with a given distribution of the spatial concen-
tration «(r) of links, which was solved in the classical study
of I. M. Lifshitz40 (see also the reviews of Refs. 41, 42). The
sole difference is that now the topic is the spatial distribution
of links, rather than involving real three-dimensional space.
Upon rewriting I. M. Lifshitz's result for this case, we obtain
36?37 the following expression for semiflexible freely linked
macromolecules (see Fig. 4a):

± jj/(n)ln(4n/(n))dQn; (3.4)

while for semiflexible persistent macromolecules we have
(Fig. 4b):

— NT L \ *V"onf—•'*•' "7" \ —4^— (3.5)

3.2. Nematic ordering in a solution of semiflexible chains

Equations (3.3)—(3.5) fully determine the free energy
of a solution of semiflexible molecules for the models depict-
ed in Fig. 4. In full analogy with the Onsager method (see
Sec. 2), further calculations34"37 led to the following conclu-
sions.

For the flexibility models being studied, the orienta-
tional ordering of the athermal solution has the character of
a first-order phase transition and occurs at low concentra-
tions of the polymer in solution. More exactly, when q> <q>{

the solution is homogeneous and isotropic, when <p><pa it is
homogeneous and anisotropic, while when q>{ < cp < <pa it
separates into isotropic and nematic phases, with
<P\ ~<Pa ~d/l4\.

The following characteristics of nematic ordering were
obtained34 for an athermal solution of freely linked semiflex-
ible chains:

3.25ri
I

i.86d = 0.50, so = O.87. (3.6)

(N is the total number of macromolecules in the solution,
and/(n) is the orientation distribution of the unit vectors n

On comparing the results of (3.6) with (2.4) and (2.5) we
conclude that hinge linking of the rods in long chains leads
only to quite insignificant changes in the characteristics of
the isotropic phase-nematic transition: the region of phase
separation is somewhat expanded, while the order param-
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eter of the orientationally ordered phase that arises is slight-
ly increased. Analogous conclusions were drawn43 on the
basis of analyzing results obtained by using the Flory lattice
approach.

For an athermal solution of persistent semiflexible
chains the characteristics of the liquid-crystalline transition
proved to be the following36:

«Pl = i 2 i « l i ,^ = .11^2!, ,,, = 0.09, so = O.49. (3.7)

We can easily see that orientational ordering in a solution of
persistent chains occurs at substantially larger concentra-
tions than in a solution of freely linked macromolecules (for
the same d /I). Moreover, the relative concentration jump of
the polymer at the transition, as well as the order parameter
upon appearance of the liquid-crystalline phase, prove to be
considerably smaller in this case. Analysis shows (see Ref.
36) that this arises from the fact that the entropy losses in the
case of strong orientational ordering prove to be substantial-
ly larger for the persistent mechanism of flexibility than for
the freely linked case. Comparing the results of (3.6) and
(3.7), we can also draw the important conclusion that the
character of the orientational ordering substantially de-
pends, not only on the magnitude of the Kuhn segment, but
also on the distribution of flexibility along the contour of the
polymer chain.

Orientational ordering in solutions of polymer chains
having certain other flexibility mechanisms has been studied
in Refs. 37, 39, 44, and 45.

3.3. Dependence of the characteristics of the liquid-
crystalline transition on the length of the macromolecules

Now let us proceed to analyze nematic ordering in solu-
tions of partially flexible macromolecules with L ~ /. In this
case the problem is substantially complicated as compared
with the semiflexible limit treated above with L > /, since it
turns out when L ~ I that we cannot introduce a single distri-
bution function/(n) for all points of the polymer chain38:
the fact becomes essential that the degree of orientational
ordering must depend on the position of the unit vector n on
the chain (e.g., the end links of the chain must generally be
more disordered than the middle links). However, it has
proved possible also for this case to apply the method of I. M.
Lifshitz40; the corresponding theory was developed in Ref.
38. Here we shall present the obtained results only for the
persistent mechanism of flexibility, which is most often en-
countered for real rigid-chain polymers.

The following interpolation formulas were obtained38

for the characteristics of the nematic transition in a solution
of macromolecules with persistent flexibility for an arbitrary
relation between L and /:

3.34 + (11.3L/1) + (1ML2>1-)
0.387L,'l)]L:l

In w —

In s0 = - 0.166 + ( 3 .

(3.8)

(3.9)

(3.10)

Figure 5 shows the dependences of w and s0 on L /I calculated
by Eqs. (3.8)—(3.10). The order parameter reaches a mini-
mum equal to s0 = 0.41 atL/l = 0.4, while the relative width
of the separation region has a minimum it; = 0.043 at L /
1 = 0.3.

0.8

0.8

0.4

0.5 to l/l
a

FIG. 5. a—Dependence of s0 on L /I for a solution of long persistent
chains.3* b—Dependence of w on L / / for a solution of long persistent
chains.3*

The fundamental conclusion that we can draw from
analyzing the results presented in Fig. 5 is the following.
Only very rigid or very short macromolecules behave like
rigid rods. Even a small flexibility of the chain of persistent
type (say, L/l~0A) suffices to make the properties of the
liquid-crystalline transition closer to those obtained in the
limit of semiflexible chains L / / > 1 than for the limit of abso-
lutely rigid rods L/l 41 (despite the fact that the geometric
shape of the macromolecules is far closer to rodlike when L /
l~ 0.1). In particular, such high values of the order param-
eter at the point s0, as in the Onsager theory (s0 = 0.84), are
possible only for very rigid and not too long chains. Even
when L /l~ 0.1, the magnitude of s0 proves to be substantial-
ly less (see Fig. 5a)—approximately of the same order as is
obtained in the self-consistent-field theory of Maier and
Saupe.'

3.4. Conformations of polymer chains in the nematic phase

The dependence of the properties of a system on the
flexibility mechanism of the polymer chains is manifested
not only in the thermodynamic characteristics of the nem-
atic phase transition, but also in the conformations of the
semiflexible macromolecules in the liquid-crystalline
phase.46-47

A very important conformational characteristic is the
mean square of the projection Rz of the segment joining the
ends of the chain on the direction of the director (the z axis),

Owing to the fluctuation theorem, we have4

(3.11)

Here {R 2 ) 0 = LI is the mean square of the distance between
the ends of the chain in the isotropic phase (see (3.1)), and
Xo is the susceptibility of the system to an external orienting
field in which the energy of a region of the chain of length A.
and orientation n equals

i (n) = - uT £ n,. (3.12)
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By definition the quantity Xo equals
a \ nj (n) dQn

Xo = du for u = 0. (3.13)

Below we treat specifically the susceptibility Xo as the quan-
tity most convenient for calculations. In an isotropic phase,
owing to symmetry, we have^o^. To find the susceptibility
of the liquid-crystalline phase we must minimize the free
energy of the solution of semiflexible macromolecules locat-
ed in the external field of (3.12). The field contribution to
the free energy equals

F*«=NJ- j [/ext(n)/(n)dQn.J j (3.14)
Minimization under the additional normalization condition

\ / (n) d Qn = 1

yields the equation

where E = const. Also

- e x t v v - NTL 6 / ( n ) - —z

is the reduced external field;

(3.15)

(3.16)

(3.17)

(3.18)

is the reduced mean molecular field caused by steric interac-
tion.

For freely linked macromolecules we can write Eq.
(3.16) in the form

In / (n) + U (n) = E,

Here Uis the effective field:

U (n) = Uext (n) + *78ter (n).

(3-19)

(3.20)

Let us consider a sufficiently concentrated nematic solution
with q}>q>^- Such a solution must be strongly anisotropic.
Therefore the function t/stcr (n) must have two deep minima
near the directions making the angles 9 = 0 and 9 = ir with
the z axis. The equilibrium distribution function (in the ab-
sence of an external field) is

/„ (n) = const-exp ( — UsUl (n)),

This must have two sharp maxima near the directions 0 = 0
and 6 = v. Addition of a weak external field leads to a small
increase in the amplitude of one maximum as compared with
the other. The solution of Eq. (3.20) has the form

/ (n) = /„ (n) exp (unz).

Upon substituting (3.21) into (3.13), we find that

(3.21)

to - ' 3— •

That is, Xo ~* 1 with increasing concentration of the solution
(in the region <p><pa). Thus, in the nematic solution the
freely linked chains are somewhat extended in the direction
of the axis of orientational order. However, the magnitude of
(R \) increases by a factor of no more than three as com-
pared with its value in the isotropic phase.

If the flexibility of the macromolecules is of persistent
type, then the behavior of the susceptibility proves to be
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completely different. In this case it is convenient to use the
substitution

/ (n) = ^ (n). (3.22)

Upon substituting (3.22) into (3.5), we obtain the expres-
sion

(3.23)

In form this is analogous to the expression for the kinetic
energy of a quantum-mechanical particle (a rotator). We
can treat Eq. (3.15) as the normalization condition of the
"wave function" ^(n). In this regard it is not remarkable
that Eq. (3.16) acquires the form of the Schrodinger equa-
tion for the case under discussion:

Here the potential U = £/(n) is determined by Eq. (3.20).
The free-energy minimum corresponds to the ground state
of the quantum-mechanical particle.

We can naturally treat the external field t/ext as a per-
turbation. The correction to the wave function of the ground
state, Stp0, caused by this perturbation has the form

En — 1 (3.25)

Here ipm and Em are the normalized eigenfunctions and
their corresponding eigenvalues of the unperturbed Eq.
(3.24),

When cp > <pa the solution is strongly anisotropic, and as
was noted above, the unperturbed potential £/ster(n) con-
sists of two deep potential wells. Here, these wells are sepa-
rated by a high potential barrier lying near the line 9 = ir/2.
As is known,49 the spectrum of such a system has a doublet
structure with an exponentially small magnitude of splitting.
Therefore we can restrict the treatment in the summation of
(3.25) to the first term alone. Let ^(n) be the normalized
wave function of the ground state of one isolated well. Then
we have49:

(3.26)

(3.27)

By using Eqs. (3.13), (3.22), and (3.25)-(3.27), we can
easily find the susceptibility:

Xo AA * (3.28)

To calculate the right-hand side of Eq. (3.27), we shall use
the quasiclassical approximation

a|> = A (q sin G)"1/* exp (- ) q (6) d8), (3.29)

where

9 (9) = (tester (6) - £)1/2;

A is the normalization constant. Upon substituting (3.29)
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into (3.27) and (3.28), we finally find47

Xo « ^-2/3exp (3.82 0V2 _ 7.1 d > 1. (3.30)

Here t? = <pl /d. Thus, for the case of persistent macromole-
cules the susceptibility Xo> a n d hence also (R \), sharply in-
creases according to an exponential law upon increasing the
concentration of the nematic solution. In other words, the
macromolecules are strongly stretched out along the direc-
tor. This effect can be called (in a certain sense) the stiffen-
ing of persistent macromolecules in the liquid-crystalline
state.

The physical meaning of the found differences between
persistent and freely linked macromolecules consist in the
following. In both cases the distribution function in the an-
isotropic state, / (n ) , has two sharp maxima at 8 = 0 and
6 = TT. The orientation of each segment of the freely linked
chain belongs to one of these maxima with the same proba-
bility =: \, independently of the orientation of adjacent seg-
ments. For persistent chains the situation differs: upon in-
creasing the order (with increasing concentration) a change
in the orientation of the chain to the opposite one requires
ever larger expenditures of energy. Therefore the mean dis-
tance between adjacent jumps in orientation averaged over
the chain increases very rapidly (exponentially). We can
easily show that (R \ > must be proportional to this mean
distance.

We can generalize Eq. (3.28) to take account of the
finite total contour length L of the persistent macromole-
cule17:

Xo = 4{1_[l_eXp(_^)](-^)-1}. (3.31)
Thus, when LA14 1 the susceptibility approaches the limit-
ing value j 0 = L / / that corresponds to the maximum possi-
ble magnitude attainable upon complete extension of the
polymer chains along the z axis:

Strong "stiffening" of polymer chains has also been predict-
ed for certain other mechanisms of flexibility.37 These re-
sults have been confirmed further in a set of recent stud-
ies.50'51

3.5. Comparison with experiment

How we shall compare the theory presented in this sec-
tion with the experimental data obtained for three of the best
studied rigid-chain polymers-poly-y-benzyl-L-glutamate
(PBG), polyparaphenylenterephthalamide (PPTP), and
polyparabenzamide (PBA). All these polymers have a per-
sistent mechanism of flexibility.

Let us start with a PBG solution. The volume fractions
of the polymer in the coexisting isotropic and anisotropic
phases (<p, and <pa ) measured for a series of molar masses of
PBG in dichloromethane (DCM) with addition of trifluor-
oacetic acid (TFA) are shown in Fig. 6 (from the data of
Refs. 52 and 53). This same diagram shows the theoretical
dependences (dotted lines) calculated by Eqs. (3.8)-(3.9).
Here the following characteristics of PBG macromolecules
known from the literature were used. The molecular mass
per link is Mo = 219, the molecular mass per unit length is
ML = 150 A"1,54 the length of the effective segment is
/ = 2000 A,53 and the diameter is d = 16 A.54 We see that the

0,5

L/l *

FIG. 6. Theoretical (broken lines) and experimental (solid lines) depen-
dences of <p, and cpa on L /I for macromolecules of PBG.

theory, without using any adjustable parameters, conveys
very well the character of the variation of the critical concen-
trations with increasing L. We can only note a relatively
small (about 20%) decrease in the calculated data with re-
spect to the measured data. Perhaps the reason for this in-
volves the renormalization of the effective diameter (which
determines the second virial coefficient) owing to the dis-
creteness of the solvent. We note that the experimental
width of the phase-separation region exeeds rather substan-
tially the theoretical width in the region of low molecular
masses. This deviation is explained apparently by the fact
that the theory was constructed for monodisperse solutions,
while in practice a scatter always exists in the molecular
masses of the polymer. As is known (see Sec. 2.3), polydis-
persity leads to expansion of the region of phase separation,
which should be especially noticeable in the case of short
macromolecules, for which the critical concentration de-
pends strongly on the length of the polymer chain.

The critical concentrations {cpK) found by experiment
for a solution of PBA in dimethlylacetamide (DMA)55 are
shown in Fig. 7. The macromolecules of PBA have the fol-
lowing characteristics: M0=ll9, Mh =18.3 A ~ \ and
d = 5.5 A.55 The experimental data for the length of the ef-
fective segment have a strong scatter. Hence we can natural-
ly choose / as an adjustment parameter. The best agreement
of the theory (see Fig. 7, dotted line) with experiment is
attained for / = 2000 A. We see from Fig. 7 that the theoreti-
cal values of the critical concentration q>x are too low by
about 10%. This can be explained by the same factors as for
the solution of PBG.

We note that the order parameter s measured by in-
frared spectroscopy in the nematic phase considerably ex-
ceeds the value predicted by the theory (Sec. 3.3). Thus, for
PBA in DMA at the phase-transition point we have
so = 0.7655 (the molecular mass of the polymer is
Af= 11,000), whereas according to the theory s0 = 0.42

0.1

0.04

2 L/l

FIG. 7. Theoretical (broken line) and experimental (solid line) depen-
dences of cp, on L /I for molecules of PBA.
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FIG. 8. Theoretical (broken line) and experimental dependences of cp, on
L / / for macromolecules of PPTA. 7—data of Ref. 57; 2— data of Ref. 58.

(see Sec. 3.3). For PBG ( M = 5 5 x l O 3 to 450X103) in
DCM + TFA, the order parameter at the transition point is
even higher: s0 = 0.94 to 0.9853 (according to the theory
s0 £ 0.4). The reasons for this difference are as follows. First,
the polydispersity of real polymer solutions (whose degree
was essentially not monitored in Refs. 56 and 53) leads not
only to expansion of the phase-separation region, but also to
an increase in the order parameter in the nematic phase (see
Sec. 2.3). Second, real solutions are non-athermal. That is,
effective attractive forces act among the macromolecules.
This effect also leads to an appreciable elevation of the order
parameter, especially when L/ltl (see Sec. 4). We note
parenthetically that, conversely, polydispersity is manifest-
ed most strongly when L /IS 1. Finally, a certain orienting
action of the walls of the cell into which the polymer solution
is placed is not ruled out.

The experimental results5758 for the critical concentra-
tion of a solution of PPTA in 99% sulfuric acid are shown in
Fig. 8. The characteristics of the macromolecules of PPTA
are: Mo = 238. ML = 18.5 A" \ d = 5.2 A,58 and / is the
adjustment parameter. The theoretical curve for / = 800 A is
shown in Fig. 8 by the dotted line.

4. NEMATIC ORDERING IN NON-ATHERMAL POLYMER
SOLUTIONS

Up to now we have discussed exclusively athermal poly-
mer solutions. In this case the nematic ordering occurs at
low concentrations of the rigid-chain polymer. In trying to
allow for the influence of the attractive forces between the
macromolecules on the properties of the liquid-crystalline
transition a problem directly arises, involving the fact that
the separated anisotropic phase can be very concentrated,
and the second virial approximation of Onsager is inapplica-
ble for describing it. This circumstance was manifested even
in the first study on this topic,18 in which a phase diagram
was constructed by the lattice method for nematic ordering
in a solution of rigid rods in the presence of short-range at-
tractive forces among them (the diagram constructed in Ref.
18 has qualitatively the same form as the phase diagram
from Fig. 9a).

A number of aspects of the role of attractive forces of
the links in nematic ordering of a solution of rigid-chain
polymers were refined in Refs. 59 and 61. However, these
studies could not clain exhaustive solution of the problem,
since the treatment in them was based to some degree on the
lattice approach of Flory. Hence the most widespread mech-
anisms of partial flexibility of polymer chains remained out-
side the framework of the analysis (see Sec. 3).

This problem was first studied consistently by using the
continuum approach in Ref. 62 (see also Refs. 63-65). We
shall present below the fundamental ideas and results of this
study for the cases of solutions of extreme rigid-chain (L < /)
and semiflexible (L>/) macromolecules.

4.1. Free energy

To describe the properties of the nematic ordering in a
polymer solution in the presence of attractive forces and to
construct the corresponding phase diagrams, we must first
of all generalize the expression (3.3) for the free energy FsteT

of steric interaction of macromolecules to the region of high
concentrations of the polymer in solution. To do this it was
proposed62 to use the approach of Parsons (see Sec. 2), in
which the quantity Fster is defined by Eq. (2.10). Here as a
reasonable approximation for the function J(<p) in Eq.
(2.10) it proved possible to use the simple relationship

(cp) = - ln(l - cp) (4.1)

(For details see Ref. 62). Thus we have (cf. Eqs. (2.10) and
(3.3))

Fster = ^ ^ | In (1 - cp) | \ / (nt) / (n2) sin Y dQn> dQn,.
(4.2)

In the limit <p<\, Eq. (4.2) reduces to Eq. (3.3), which is
valid for a dilute solution. We should also note that this
expression is essentially a continuum analog of Eq. (2.21),
which was used in the lattice theory of Flory (see Ref. 62).
Thus, Eq. (4.2), while retaining all the merits of the corre-
sponding relationship in the Flory theory, is free from the
defects of that theory caused by the reference to a preas-
signed space lattice.

Further, in the case being discussed we must add to the
free energy the term Fint associated properly with the forces
of intermolecular attraction. It was shown62 that in most
cases one can write with good accuracy

F t a t = - - ^ E . ( U o + UaS2). (4.3)

Here u0 and «a are constants characterizing respectively the
isotropic and anisotropic components of the attractive
forces, and s= (3cos2f9— l ) /2 is the order parameter.
Expression (4.3) corresponds to the Maier-Saupe approxi-
mation in the theory of low-molecular-weight liquid crys-

50 100 <p,%

FIG. 9. Phase diagrams for nematic ordering in
solutions of semiflexible persistent macromole-
cules with / / r f= 500 (a), 50 (b), and 5 (c ) . w

The phase-separation is cross-hatched. The
critical point in Fig. 9c corresponds to the inter-
section point of the line of the phase diagram
with the coordinate axis.
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tals. In order of magnitude we have uo,ua~u(rli/d),3 where
u is the characteristic radius of the attractive forces (cf. Ref.
62). We can also rewrite Eq. (4.3) in the form

(4.4)

Here 0 = i/0/2 is the theta temperature of the polymer solu-
tion (the temperature at which the osmotic second virial
coefficient vanishes), while x = ua/u0. As a rule, the aniso-
tropic component of the attractive forces is substantially
weaker than the isotropic component66; in the concrete cal-
culations of Ref. 62 it was assumed that x = 0.1 as a reasona-
ble estimate (it turned out that the properties of the liquid-
crystalline transition depend only very weakly on x.
Therefore an exact specification of this quantity if inessen-
tial).

4.2. Phase diagrams

The formulas (3.4)-(3.5), (4.2), and (4.4) fully deter-
mine the free energy of a polymer solution of arbitrary con-
centration in the presence of attractive forces between the
macromolecules. For a solution of persistent macromole-
cules the phase diagrams calculated by these formulas62 for
the liquid-crystalline transition in the variables <p and &/T
for several values of the asymmetry parameter / /d are shown
in Fig. 9. For large / /d the phase diagram has the character-
istic form shown in Fig. 9a. In the region of relatively high
temperatures we have a narrow corridor of phase separation
into isotropic and anisotropic phases lying in the dilute-solu-
tion region. Conversely, at low temperatures the region of
phase separation is very broad, while an isotropic, practical-
ly fully dilute phase and a concentrated, strongly anisotropic
phase coexist. These two regimes are separated by the inter-
val between the triple-point temperature Tt and the critical
temperature Tc (Tc> T> Tt), in which there are two re-
gions of phase separation: between isotropic and anisotropic
phases, and between two anisotropic phases having differing
degrees of anisotropy. The temperatures Tt and Tc substan-
tially exceed the ©-temperature.

With decrease in the ratio / /d the interval between Tc

and Tx becomes narrower and drops out when ( / /
d)Ci — 125. When I /d < 125 there are no critical nor triple
points on the diagram (see Fig. 9b), and one can speak only
of the crossover temperature TCT between the narrow high-
temperature corridor of phase separation and the very broad
low-temperature region of separation. The temperature Tcr

decreases with decreasing I /d; for l/dc2 s;50, when these
temperatures become lower than the ©-point, the situation
qualitatively changes again: now we have triple and critical
points corresponding to an additional phase transition
between two isotropic phases (see Fig. 9c). The concentra-
tion of one of these phases is extremely low. Hence the left-
hand boundary of the separation region in Fig. 9c merges
with the coordinate axis.

The phase diagrams of a solution of freely linked chains
(or rigid rods) undergo a sequence of changes with decreas-
ing ratio / /d analogous to that shown in Fig. 9. For a solution
offreely-linked chains we have (//c?)cl =20 , (/A/)c2 =6.8;
for a solution of rigid rods the corresponding values are (L /
d)ci =15 , {L/d)c2 =3 .5 .

The dependence of the order parameter s of a nematic
solution of persistent macromolecules at the transition point
on the reduced temperature T/Q is shown in Fig. 10 for / /

s

1.00

0.75

0.50

0 2 4 T/S

FIG. 10. Dependence of the order parameter s0 of a nematic solution of
persistent macromolecules (l/d = 100) on the reduced temperature T/&.

d= 100. We see that the attractive forces (temperature ef-
fects) affect the value of 5 very substantially when 7Y© S 2.

For experimental verification of the phase diagrams
shown in Fig. 9, one must use a rigid-chain polymer that
forms a nematic phase in solution over a rather broad tem-
perature interval. This condition is best satisfied by poly-7-
benzyl-L-glutamate (PBG). As is known, it possesses a per-
sistent mechanism of flexibility. The experimental phase
diagram of a solution of PBG (molecular mass
M = 310,000) in dimethylformamide obtained in Refs. 67
and 68 is shown in Fig. 11 (curve /). We see that this is phase
diagram qualitatively resembles that shown in Fig. 9a (for
large asymmetry parameters)"; in particular, the fact of
equilibrium coexistence of two anisotropic phases was care-
fully verified and proved in Ref. 69.

For a quantitative comparison of the data presented in
Fig. 11 with the theory, we must first determine the ©-tem-
perature for the solution being discussed. Unfortunately,
systematic measurements of the osmotic second virial coeffi-
cient of this system have not been performed. On the basis of
the sparse data contained in Ref. 58, we can make only the
rough estimate ©~110 K. With the molecular mass
M = 310,000, the PBG macromolecules have the param-
eters L /d — 130, L /I = 1.0. Therefore, as was shown in the
previous section, we can consider them to good accuracy to
be semiflexible. The phase diagram for semiflexible persis-
tent macromolecules for I /d = 130 as constructed on the ba-
sis of the theory of Ref. 62 is shown in Fig. 11 (curve 2). The

FIG. 11. Phase diagram of a solution of PBG in dimethylformamide
(M= 310,000). /—experiment67'68; 2—theory62; 3—theory1*.
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analogous phase diagram for rigid rods with asymmetry L /
d = 130 according to the Flory theory18 is shown by curve 3
in the same diagram. We see that the Flory theory agrees
considerably more poorly with the experimental data than
the theory of Ref. 62. Apparently the quantitative differ-
ences of curves 1 and 2 involve the error in determining the
©-temperature and also the fact that PBG molecules near
the triple point have a strong tendency to aggregate.

4.3. Ordering of solutions of polyelectrolytes

Many rigid-chain polymers, including most polymers
of biological origin (DNA, a-helical proteins) acquire
charges in solution. The influence of the Coulomb interac-
tion of the links of a polymer on the LC transition was first
treated in Refs. 70 and 71 for the case of infinitely thin rods.
However, the method used in these studies was not fully
valid. The Onsager theory was systematically generalized to
the case of a salt solution of charged rigid rods in Refs. 72
and 73 (see also the review of Ref. 33). Below we shall dis-
cuss the fundamental ideas and results of these studies.

The electrostatic interaction potential of two cylindri-
cal rods (of length L and diameter d) charged with the linear
density a has the following form in the Debye-Hiickel ap-
proximation48:

U (r, nl5 ns) = t/st Ue (4.9)

Here r(Al,A2) is the distance between the points having the
coordinates A, andA2 (Fig. 12), e is the permittivity of the
solvent, and the Debye radius is

£r 2 2X)""2 (4.6)
a

InEq. (4.6) na andzae are respectively the mean concentra-
tion and the charge of the ion of type a (including the coun-
terions). The approximation (4.5) is valid if rD >tf and if the
electrostatic potential <pel throughout the region accessible
to the ions satisfies the condition

«<Pel

In the case L>rD we can write the latter in the form (omit-
ting the logarithmic factors)

aer'kLc
: i . (4.7)eT

Here c is the concentration of the rods.
The second virial coefficient of interaction of two rods

whose axes (n, and n2) form the angle y equals

3r. (4.8)

Here

FIG. 12. Two interacting rods. The distance between the points with co-
ordinates X, and /I, is r.

is the interaction potential of the rods, which is equal to the
sum of the steric and electrostatic contributions; r is the radi-
us vector joining the centers of the rods. By analogy with
(4.9) we can conveniently represent the coefficient B(y) in
the form

B (v) = 5,t (7) (v).
The steric term Bst is determined by Eq. (2.2):

flst (Y) = 1LH sin Y = 2L3 p sin y. (4.10)

Here we have p = d /L. The contribution of the electrostatic
interaction Bel depends on the magnitude of the dimension-
less parameters

To calculate the free energy of the system we can use the
second virial approximation (as is known, the condition for
applicability of this approximation is satisfied in the region
of a nematic transition if L>r D ). Upon substituting (4.8)
into Eq. (2.1) and performing the usual minimization oper-
ation, we can find all the equilibrium characteristics of ne-
matic ordering in the system. Let us study the results ob-
tained in Ref. 72 for the most interesting case with 1 >^>/>.
The most important qualitatively different situations are
shown in the diagrams (Fig. 13) in the variables q and w.

When w^p/q (region I in Fig. 13) the electrostatic in-
teraction is insignificant: B(.y) ~Bst (y). Hence the nematic
ordering occurs just as is described in Sec. 2.1 (see Eqs.

, = 0.8. (4.11)

WhenpU2^w^>p/q (region II in Fig. 13), the electro-
static interaction gives a contribution appreciable in magni-
tude, but effectively isotropic, to the second virial coeffi-
cient21: B(y) = Bst (y) + wqL.3 Consequently the region of
phase separation is substantially narrowed, while the order
parameter s0 at the transition point is decreased (the isotrop-
ic term wqL3 makes an unfavorable large concentration
jump at the transition):

In region III3

(4.12)

the anisotropic component

P -

FIG. 13. Diagram of states of a solution of charged rigid rods in the
variables q = rD/L, w = 82rD/cT (on a log-log scale). /—w4,p/q; II—
pU2>wyp/q; III—q$>w>pU2; \V—\>w>p/q; V—Wp\. In the cross-
hatched region a second orientational phase transition can occur.
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of the electrostatic interaction effectively dominates over the
contribution from steric forces:

On the other hand, in this region the isotropic electrostatic
term is still predominant. Therefore the concentration jump
in the transition remains small:

<Pt~-g-|ln?|, -g— l ~ f « * . *o = l-const-?*.

(4.13)

We note that the order parameter s0 in the nematic phase in
the regime being discussed is very high (and independent of
w, i.e., of the charge of the rods). The high value of s0 is
explained by the specific "hyperbolic" dependence of Bel on
the angle y.

When l$>w%-p/q, w%>q (region IV), the electrostatic
interaction becomes substantially anisotropic:

in 7-In —, q In — w.

This substantially expands the region of phase separation.
The characteristics of the nematic transition in this regime
are:

p'
wq

I In w I, s0 = 1 — const • w2;

— 1 ~ min (4.14)

In region V (u»>l), which corresponds to the most
highly charged rods, the effect of the electrostatic interac-
tion is reduced mainly to renormalizing the effective diame-
ter of the rods:

Equation (4.15) coincides with (4.10) to logarithmic accu-
racy with the renormalized value d = rD In w. Therefore in
the region that we are discussing we have

_±tp_ J£a__i = o.3 Sn = 0.8. (4 161

In the regions (pq)U24w4p/q, (pq)U24w4pU2 (these re-
gions are cross-hatched in Fig. 13) a second orientational
transition occurs between two anisotropic phases upon in-
creasing the concentration of the solution.

In Ref. 73 (see also Ref. 33) actually only the case of
strongly charged rods was treated (regime V). These studies
showed that the Coulomb interaction leads not only to re-
normalization of the diameter of the rods, but also to an
additional weak (in the studied regime) effect. The authors
called it the "twisting effect." The influence of this effect is
characterized by the small parameter h, which equals h=\/
In w to logarithmic accuracy. The results of detailed numeri-
cal analysis73 of the dependence of the characteristics of the
nematic transition on the parameter h can be represented in
the form

-^ - - 1 = 0.27 - 0.045A + 0.5ft2,

(4.17)

When h = 0 the formulas of (4.17) coincide with the corre-
sponding formulas of (4.16) (apart from rounding errors).
With decreasing charge on the rods (decreasing parameter
w) the parameter h increases, causing an increase in the or-
der parameter s0 and a relative concentration jump at the
transition. These trends fully correspond to what should oc-
cur in a transition from regime V to regime IV. Thus the
results of Refs. 72 and 73 agree with one another.

Estimates of the characteristic parameters of the sys-
tems show that such highly charged polymers as DNA are
usually described by regimes III-V. At the same time, the
degree of charging of a-helical polypeptides can vary over a
very broad range, so that it is possible to realize any of the
discussed regimes. The wealth of qualitatively new types of
LC ordering in solutions of rigid-chain polyelectrolytes
renders their experimental study of great interest.

5. ORIENTATIONAL ORDERING OF POLYMER MELTS

Theoretical prediction of the thermodynamic proper-
ties of such dense systems as polymer melts involves consid-
erable difficulties. Besides other factors, the fact plays a role
that only not too rigid polymers can exist in the nematic state
in the melt (for polymers of high rigidity of the chain the
decomposition temperature proves to be lower than the
melting point). Therefore the large parameter / /d cannot be
used in fully. These difficulties have given rise to a consider-
able variety of theoretical approaches to the problem. Here
one cannot single out any one of them that one could use to
derive all the fundamental results.

In the studies discussed below mainly three approaches
have been used, initiated by the studies of Onsager,7 Maier
and Saupe,' and Flory.18

5.1. Melts of linear homopolymers

The formulas derived above for the different contribu-
tions to the free energy (3.4)-(3.5), (4.2), and (4.4) can
also be used to analyze nematic ordering in thermotropic
systems—melts of rigid-chain macromolecules with varying
flexibility (if we understand q> to be the degree of packing of
the polymer in the melt as compared with the maximally
dense packing). This has been done in a recent study63; in
this section we shall briefly present some of the results of this
study and compare them with the conclusions of other stud-
ies on the theory of polymeric nematics based on rigid-chain
macromolecules.1974-8'

We note first of all that in thermotropic solutions we
must use as the external parameter not the concentration c of
the polymer nor the volume fraction op (as in solutions), but
the pressure II. The role of the external pressure has been
studied in detail in Ref. 63, where it was shown that: a) from
the standpoint of thermodynamics of liquid-crystalline or-
dering, the normal atmosperhic pressure can be treated as a
negligibly small quantity; b) at high enough external pres-
sure II k, 103 atm we should expect a substantial increase in
the region of stability of the nematic phase; c) as FI -> 00 in
melts of any particles that are anisodiametric to any degree
and have a rigid steric core of interaction (in particular, in
polymer melts), a liquid-crystalline phase should be ob-
served.

We can illustrate what we have said with the example of
such a flexible-chain polymer as polyethylene. Figure 14
shows the phase diagram of polyethylene in the variables of
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FIG. 14. Phase diagram of polyethylene in the variables pressure II and
temperature T}2 M—melt; H—hexagonal phase; Or—orthorhombic
crystalline phase.

the pressure II and temperature 71.82 At high temperatures
polyethylene exists in the state of a melt (M) with the sym-
metry of an ordinary isotropic liquid. At low temperatures
the crystalline state with orthorhombic symmetry (Or) is
thermodynamically stable. At atmosphere pressure a first-
order transition occurs directly from the M to the Or phase
with decreasing temperature. Yet if the external pressure is
high enough (II > 4 x 103 atm), an intermediate state arises
of liquid-crystalline type—the so-called hexagonal (H)
phase. This state is characterized by long-range orienta-
tional order and absence of strict order in the packing of the
polymer chains (conformational disorder). As we see from
Fig. 14, the region of stability of the liquid-crystalline H
phase substantially expands, while the M-H transition tem-
perature increases with increasing pressure.

Figure 15a shows the phase diagram calculated63 for a
melt of long persistent chains in the variables 7Y© and l/d
for x = 0.1 under the assumption of minimal (or atmospher-
ic) external pressure. Analogous diagrams are obtained for
melts of rigid rods, and also for semiflexible molecules with
other mechanisms of flexibility. We see that, within the
framework of the given theory, we can describe three
phases—isotropic and anisotropic melts, and also a gaslike
phase (at high temperatures). Of course, primarily the curve
describing the coexistence of the isotropic and nematic melt
has physical meaning. We see that nematic ordering can oc-
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FIG. 15. a—Phase diagram of a melt of long persistent chains (/—iso-
tropic melt, //—nematic melt, ///—high-temperature gaseous phase). b -
d—Dependences of the order parameter at the nematic ordering point
(b), entropy of transition per effective segment (c), and relative volume
change in the transition (d) on the parameter I /din a melt of long persis-
tent chains.61

cur only if the asymmetry parameter / /d is smaller than the
criticalvalue(/A0c =50.When/A/> U/d)c themeltinthe
equilibrium state is always a nematic (at any temperatures).
This result becomes quite understandable if we take account
of the fact that a polymer melt is a condensed system. There-
fore, if the rigidity of the chain is high enough, liquid-crys-
talline ordering in it must occur as a consequence of the
anisotropy of the steric interactions alone. The critical value
(l/d)c depends on the mechanism of flexibility of the chain.
Thus, for example, for freely linked flexibility it turned out63

that (l/d)c =7, while for a melt of rigid rods (L /d)c ~ 3.5.
We can compare the latter result with the prediction ob-
tained on the basis of the lattice approach in the study of
Flory and Ronca19 that a nematic phase must arise when L /
d > 6.4 in a melt of rigid rods (even in an athermal one, with-
out allowing for anisotropy of attractive forces).

Figure 15 shows also other characteristics of the nema-
tic ordering in a melt of persistent chains (as a function of
the asymmetry parameter l/d): the order parameter s0 at the
transition point (Fig. 15b), the entropy of the transition per
effective segment AS (Fig. 15c), and the relative volume
change in the transition A V / V (Fig. 15d). For melts of rigid
rods and freely linked chains all these characteristics take on
larger values. However, even a small component of flexibil-
ity of persistent character suffices to make the quantities s0,
AS, and AF/Kj close to the values characteristic of persis-
tent chains (see Ref. 63).

Of course, the results shown in Fig. 15 are applicable
only for physically reasonable values of the asymmetry pa-
rameter / /d: as a minimum, we must have I /d^\. Neverthe-
less the curves in Fig. 15 have been extended down to / /
d = 0. The formal limit I /d-*0 within the framework of the
model corresponds to the situation in which the steric inter-
actions (the term Fster) are inessential, and liquid-crystal-
line ordering occurs only because of anisotropy of the attrac-
tive forces (theory of the Maier-Sauper type).
Liquid-crystalline ordering has also been treated in this limit
in Refs. 74 and 75, whose results are close to those obtained
in Ref. 63 (for / /d — 0). We see from Fig. 15, however, that
these results are exact to any extent only at small values of / /
d, while in the most interesting region / /o?> 1 the steric inter-
actions always dominate and the anisotropy of the attractive
forces is always a secondary factor.

We note some additional conclusions of Refs. 74 and 75
that essentially should not depend qualitatively on whether
one takes account of the steric forces or not. It was found
that the order parameter at the transition point s0 depends on
the length of the persistent macromolecules L as follows.
When L4,l the order parameter is s0 = 0.43 (the Maier-
Saupe result'); with increasing L the value of s0 declines to
reach a minimum s0 = 0.34 when LSI; then sQ slightly in-
creases to the value s0 = 0.36 characteristic of very long ma-
cromolecules (compare this variation of s0 (L) with the anal-
ogous variation for a polymer solution shown in Fig. 5a).

Also the conformations of the macromolecules were
studied in Refs. 74 and 75. In the nematic phase the macro-
molecules are stretched along the axis of ordering (the z
axis). The degree of extension can be characterized by the
parameter

y =
(HI) (5.1)
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Here Rx and Ry are the projections of the vector joining the
ends of the polymer chain. The magnitude of this parameter
(at the transition point) depends on the length of the macro-
molecules: y0 = 3.25 when L </; as L increases the value of
y0 first declines slightly to the value y0 = 2.77, and then in-
creases substantially, reaching j>0 = 14.4 in the limit of very
long persistent chains (L>/) . With decreasing temperature
of the nematic melt (in the case L>/ ) the polymer chains
"unfold" further: the value of y rapidly increases exponen-
tially (cf. the analogous conclusion for solutions with in-
crease in concentration).

References 76 and 77 (see also Ref. 78) have essentially
treated the same problem (and by the same method) as Refs.
74 and 75, and obtained similar results. It was found errone-
ously in Ref. 79 that nematic ordering in a melt of long per-
sistent macromolecules is a second-order phase transition
(the error was made in deriving an expansion of the Landau-
deGennes type).

Nematic ordering in a melt of semiflexible persistent
macromolecules has also been treated in Refs. 80 and 81 by
using the Flory lattice approach.19

5.2. Melts of copolymers with mesogenic groups in the main
chain

As was noted in Sec. 1, an important class of macromo-
lecules capable of LC ordering consists of copolymers con-
taining rigid and flexible fragments. The rigid (mesogenic)
fragments (of length L and diameter d) can be included ei-
ther in the linear chain (Fig. 16a) or in side branches (Fig.
16b).

Let us study melts of linear copolymers (Fig. 16a). The
conditions of existence of a nematic phase in such melts were
first analyzed by using the Flory lattice method.4483 These
studies employed the assumption that the flexible compo-
nent of the chain does not become ordered in the nematic
melt. As was shown in Ref. 84 (see also Refs. 85-87), this
assumption is incorrect. References 84-87 studied nematic
ordering allowing for the stiffening of the flexible fragments
of the chain by using a generalization of the lattice method.

Figure 17 shows the phase diagram calculated in Ref.
85 of an athermal melt in the variables L /d and a (a is the
volume fraction of the flexible component) for the case of
maximum flexibility of the flexible component, I /d = 1.5 (/
is the length of the effective segment of the flexible regions).
The region to the left of curve 1 corresponds to the isotropic
melt, and that to the right to the nematic melt. In addition to
curve 1, which corresponds to the isotropic phase-nematic
transition, curve 2 is marked in the phase diagram, corre-
sponding to a transition between two nematic phases—
weakly anisotropic (stable at smaller anisodiametry param-

a

W

0,5

10 40 L/d

FIG. 16. Linear (a) and comblike (b) copolymers containing rigid and
flexible fragments of the chain.

FIG. 17. Phase diagram of an athermal melt of linear copolymers for / /
d= 1.5. L/d—anisodiametry parameter of the rigid fragment, a—vol-
ume fraction of the flexible component. Curve 1 corresponds to transition
from the isotropic to the nematic phase; 2—transition between two aniso-
tropic phases.85

eters of the mesogenic regions, L /d) and strongly anisotrop-
ic (stable at larger L/d). The curve of transition 2 ends at a
critical point with coordinates {L /d)c = 10, ac = 0.2.

As was shown in Ref. 85, the physical meaning of the
second transition is that the presence of the flexible compo-
nent of the chain in the copolymers depicted in Fig. 16a can
give rise to two opposing tendencies. For small a the flexible
fragments are so strongly oriented in the liquid-crystalline
transition that they play in the anisotropic phase the role of a
"stiffener" rather than a "plasticizer" by effectively increas-
ing the degree of asymmetry of the macromolecule. Conver-
sely, for large a the flexible component of the chain is only
weakly ordered in the liquid-crystalline transition and plays
the more natural role of a "plasticizer" in the anisotropic
phase (or of a "diluent"). The former tendency facilitates
the formation of a strongly anisotropic phase, and the latter
makes the weakly anisotropic phase more favorable. Yet the
presence of both tendencies leads to the possible existence of
an additional transition between the two phases.

Upon decrease in the flexibility of the flexible fragments
of the chain (i.e., upon increase in the ratio l/d), the region
of stability of the weakly anisotropic phase narrows and is
shifted toward larger a.

The ordering of the flexible fragments of the chain in
nematic thermotropic liquid crystals based on the macromo-
lecules shown in Fig. 16a can be considerable (especially in
the strongly anisotropic phase). This conclusion, which
stems from the theoretical treatment, is also confirmed by a
number of the experimental data.88

5.3. Melts of comblike polymers

Nematic ordering in melts of comblike polymers with
rigid fragments in the side chains (see Fig. 16b) has been
analyzed in Refs. 89-91. In Ref. 91 a mean-field method of
the Meier-Saupe type was used, with account taken only of
the interaction of the mesogenic fragments. As was shown in
this study, the orientational properties of the system sub-
stantially depend on the length L ' of the fragment of the
main chain between adjacent branches (the length of the
spacer linking the mesogenic group with the main chain is
assumed very small). When L ' > / (/ is the effective segment
of the main chain), LC ordering occurs just as in the corre-
sponding low-molecular-weight system. In particular, the
order parameter at the transition point is s0 = 0.43. Upon
increasing the density of the side branches (i.e., increasing / /
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L '), the order parameter at the transition point (which char-
acterizes the orientation of the mesogenic groups) declines
monotonically. We note parenthetically that, for polymers
with mesogenic groups in the main chain the order param-
eter 50 either increases, or very slightly decreases upon de-
creasing the length of the flexible fragments L'. Thus the
order parameter for comblike polymers proves to be always
smaller than for their linear analogs. This conclusion agrees
with the experimental data,6'92'93 and also with the theoreti-
cal results obtained by using the Flory lattice method.89'90

A typical conformation of a comblike macromolecule
in the nematic phase (for not too great a density of branch-
ing ) is shown in Fig. 18a: the mesogenic groups are preferen-
tially oriented along the direction u (along the "easy axis"),
whereas the main chains lie mainly in the "easy plane" per-
pendicular to the axis of anisotropy. Thus the main chains do
not form a cluster extended along the axis of anisotropy (as
in the case of linear homopolymers), but a flattened cluster:
the parameter y = (R2

Z)/(R2
X) (see Eq. (5.1)) must be

smaller than unity. The experimental neutron-scattering
data94 confirm this conclusion: for a nematic melt of poly-
methacrylate we find y = 0.82.

At a sufficiently large density of side branches, / /
L ' > (/ /L ' ) c , the order parameter s0 at the isotropic melt-
nematic transition point becomes negative. In this case the
main chains are oriented along the director, while converse-
ly the mesogenic groups lie preferentially in the "easy plane"
(Fig. 18b). The phase diagram of the system in the variables
/ /L ' and 7 obtained in Ref. 91 is shown schematically in Fig.
19 (I is the isotropic phase, phase N + corresponds to Fig.
18a; N_ to Fig. 18b; and N2 is a biaxial phase intermediate
between N + and N _ ) . The appearance of phase N_ is
caused by the fact that the orientations of adjacent meso-
genic groups in dense comblike macromolecules are strongly
intercorrelated (owing to the condition of local orthogona-
lity of the main chain and the mesogenic group). The critical
value of the density found in Ref. 91 for a persistent chain is

= 18. (5.2)

A phase of the N_ type was also obtained in Refs. 89
and 90. However, the cause of the ordering of the mesogenic
groups in the "easy plane" here is completely different and
involves the steric orientational interaction of the main
chains (which was completely ignored in Ref. 91). Evident-
ly both discussed factors operate in a real situation, while
taking account of their joint action leads to a considerable
decrease in the critical value of the density of branching as
compared with the result of (5.2). This offers grounds for

FIG. 19. Phase diagram of a melt of comblike macromolecules in the
variables l/L' (effective density of side branches)—temperature.91 /—
isotropic phase, N+—phase of "easy-axis" type, N_—phase of "easy-
plane" type, N2—biaxial phase.

hoping that a phase of the N_ type will be found experimen-
tally.

Returning to the conformational properties of nematic
melts, we note in closing that in the depths of an N + phase
(i.e., far from the I-N+ transition line) the state of the main
chains can alter. Here the orienting action of the mesogenic
groups can become so strong that the main chains will leave
the "easy plane" and be oriented preferentially along the
"easy" axis of anisotropy (Fig. 18c).90

6. "NEMATIC" ORDERING IN THE PRESENCE OF AN
EXTERNAL ORIENTING FIELD

The study of the behavior of polymeric systems capable
of liquid-crystalline ordering in an external orienting field is
of both fundamental and great practical interest, since the
external field can serve for enhancing the degree of orienta-
tional order. In a number of cases this substantially improves
the physicomechanical properties of materials based on a
given polymer system.

In Refs. 95-97 the influence of an external orienting
field on solutions of rigid-chain macromolecules was ana-
lyzed within the framework of the Onsager method. If
TU(n) is the potential energy acquired by a rectilinear re-
gion of a semiflexible molecule in the external field, while its
length equals that of the effective segment having the orien-
tation n (in the case of a solution of rigid rods, a rod with the
corresponding orientation), then we must add the following
term to the free energy of the solution of these macromole-
cules, which is defined by Eqs. (3.3)—(3.5):

Fext = JVr-f \C/(n)/(n)dQn (6.1)

(In the case of a solution of rigid rods we should omit the
factor L /I in front of the integral). Then we should minimize
the free energy in the usual way.

Let us distinguish the following fundamental types of
orienting fields: a field of dipole type

U (n) = — u cos ' (6.2)

FIG. 18. Possible types of nematic ordering for comblike polymers, a—
uniaxial ordering of the rigid fragments (phase N + ) . b—Ordering of the
rigid fragments in the easy plane (phase N _ ) . c—Strongly ordered state.

(6 is the angle between the vector n and the axis of anisotro-
py), and a field of quadrupole type

U(n) = - ~ u cos2 0. (6.3)

For example, a dipole field can be an external magnetic (or
electric) field in the case in which the links of the macromo-
lecule have a constant magnetic (or electric) dipole moment
directed along the chain. If the constant dipole moment is
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zero, but the links possess an anisotropy of susceptibility,
then these same fields can play the role of quadrupole fields.
Here we must distinguish an orienting quadrupole field
(« > 0) corresponding to a positive anisotropy of suscepti-
bility (when the susceptibility in the direction along the
chain is greater than in the transverse direction) and a "dis-
orienting" field (« <0) corresponding to a negative anisot-
ropy. An external quadrupole field can also be caused by a
laminar hydrodynamic flow of the "transverse shear"type.98

Figure 20 shows flows corresponding to an orienting (a) and
a "disorienting" (b) quadrupole field.

We shall present below some results of Refs. 95-97. Fig-
ure 21 shows phase diagrams of solutions of rigid rods (a)
and long persistent chains (b) in an external dipole-type
field.

We see that the phase diagrams for both cases are qual-
itatively similar (apart from the fact that the region of phase
separation for the solution of persistent chains is strongly
shifted toward higher concentrations). In the presence of a
weak enough external field in a concentrated solution, as
before, a first-order phase transition occurs in the system.
However, it is important to stress that when u^O this is a
transition between two anisotropic phases with differing de-
grees of anisotropy. With increasing u the region of phase
separation narrows and is shifted toward lower concentra-
tions. Finally, at a certain critical value of the external ori-
enting field the interaction among the links responsible for
the phase transition is effectively suppressed (the segments
prove to be "sufficiently" oriented by the external field, even
in the dilute solution, and they have no need to be rearranged
in addition by phase transition upon concentrating the solu-
tion ). Then the phase-separation region disappears. We note
also that, since the curves in Fig. 21 are shifted to the left
with increasing u, in a certain concentration range a field-
induced phase transition can occur. This concentration re-
gion is much broader for persistent macromolecules than for
rigid rods.

Phase diagrams of polymer solutions in an external field
of quadrupole type are shown in Fig. 22. The influence of an
orienting field of this type (for u > 0) leads fundamentally to
the same qualitative effects as for the just discussed case of a
dipole field. On the other hand, the action of a "disorient-
ing" quadrupole field (u <0) requires separate discussion.

In the isotropic phase a weak field of this type induces
an anisotropy of the "easy-plane" type. Here the distribution
remains symmetrical with respect to the field direction. Yet
the action of a quadrupole field with u < 0, however weak, on
the anisotropic phase leads to instability of the state having a
symmetrical distribution. As a result the direction of the
director will lie in the "easy plane." That is, it will be perpen-
dicular to the field direction. Thus, when u < 0 a transition

0.5

S 4
a

5 fL/d 10 11 fl/d
b

FIG. 21. Phase diagrams (in the variables of concentration and field) of
solutions of rigid rods (a) and long persistent chains (b) in an external
dipole-type field.

occurs between states of differing symmetry. Therefore this
must necessarily be a phase transition. In a weak enough
field this is a first-order phase transition, while with increas-
ing \u\ the region of phase separation becomes appreciably
narrowed (see Fig. 22, lower half-plane).

In a strong "disorienting" field the transition between
the low- and high-concentration states of the solution be-
comes a second-order phase transition (dotted line in Fig.
22). As u -» — oo this transition occurs at

16
d
L

for a solution of rigid rods and at

8 /

(6.4)

(6.5)

for a solution of persistent macromolecules. The line of the
second-order phase transitions joins the boundaries of the
phase-separation region at a tricritical point. We see from
Fig. 22 that the region in which a phase transition can be
induced by a quadrupole-type "disorienting" field is consid-
erably broader than the corresponding region for an orient-
ing field (M > 0). This region is especially broad for a solu-
tion of persistent macromolecules.

As was shown in Ref. 99 by the Flory lattice method,
effective suppression of the isotropic phase-nematic transi-
tion in an external orienting field and the presence of a criti-
cal point on the corresponding phase-equilibrium curves are
also characteristic of melts of copolymers having rigid and
flexible fragments in the main chain (see Fig. 16a).

In Ref. 99 an exact treatment was conducted (within
the framework of the lattice model) of the problem of order-
ing of melts of flexible-chain polymers upon applying an ex-

5 fL/d

FIG. 20. Hydrodynamic flows corresponding to an orienting (a) and
"disorienting" (b) quadrupole field.

-0.4 -

-0.8 -

FIG. 22. Phase diagrams of solutions of rigid rods (a) and semiflexible
persistent chains (b) in an external quadrupole-type field. The orienting
field corresponds to the half-plane u > 0, and the "disorienting" field to
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ternal field of the type of (6.3) to them (e.g., during uniaxial
stretch of the melt). The fundamental conclusion of Ref. 99
is that a strong enough external field (tensile) of this type
induces in the melt a phase transition to a strongly ordered
state with unfolded chains. Thus we obtain a justification for
certain assumptions of the theory of orientational crystalli-
zation.100

7. ELASTIC MODULI OF A POLYMERIC LIQUID CRYSTAL

According to the phenomenological theory,' the dis-
torted state of a nematic with a weakly inhomogeneous field
of the director u (r) corresponds to the additional free energy

FA = -i- jj {Kl (div u)2 + K2 (u rot u)2 + K3 [u rot u]2} d'r.

(7.1)

Here A", is the splay elastic modulus, K2 is the twist modulus,
and K3 is the bend modulus (Fig. 23). The relationship
among these moduli determines the texture and many other
macroscopic properties of nematics.

7.1. Solution of rigid rods

The elastic moduli of an athermal solution of long rigid
rods were calculated in Refs. 101-104. These studies em-
ployed the Onsager method (see Sec. 2.1) generalized to the
case of an inhomogeneous system. In this case we must write
the free energy of steric interaction (the last term on the
right-hand side of Eq. 2.1) in the form

\

X dQndQn.d
3rd3r'.

r')

(7.2)

Here/(n,r) is the density of the orientational distribution of
the rods, which depends on the spatial position r of the cen-
ter of mass of the rod; the function i?(n,n'; r — r') equals
unity if the rods (n,r) and (n',r') overlap, and zero in the
opposite case. The generalization of the rest of the terms of
the free energy is trivial. The final result is103:

(1 = 1, 2, 3). (7.3)

Here/0(n) is the equilibrium distribution function in the
undistorted state, and we have

(Here 6 is the angle between n and the director u). Thus a
solution of rods always satisfies the relationship

K,= (7.5)

For the highly ordered state (order parameter s— 1), the
elastic moduli of the solution are asymptotically equal to:

v TLtp jf Kx jy- Ki 11 f.\
1 na2 ' l 3 ' 1 — s

The bend modulus K3 is substantially larger than the rest of
the moduli. This arises from the fact that rods that are ori-
ented in the highly ordered solution specifically in the longi-
tudinal direction cannot bend.

The influence of the electrostatic interaction of the rods
on the elastic moduli of a nematic solution was studied in

\ /

FIG. 23. Schematic diagram of splay (a), twist (b), and bend (c) defor-
mations for a solution of rigid rods.

Ref. 105 for the case of strongly charged macromolecules
(see Sec. 4.3). It turned out that electrostatic repulsion leads
to a small decrease in moduli Kx and K2 (Eq. (7.5) remains
in force). The relative change in the elastic moduli is approx-
imately proportional to the small parameter h ~ 1/ln w (see
Sec. 4.3). The variation of the longitudinal bending modulus
K3 is more complex in character. At low concentrations of
the solution (near the concentrations of the LC transition)
the modulus K3 decreases slightly with increasing h. At
higher concentrations K3 increases appreciably with increas-
ing h.

7.2. Partially flexible macromolecules

The elastic moduli of the melt of very long persistent
macromolecules have been studied in Ref. 106; a solution of
persistent (and freely linked) chains of arbitrary length in
Ref. 103 (see also Ref. 104). We present below the theoreti-
cal method and fundamental results obtained for a solution
of persistent chains in Ref. 103. We shall write the orienta-
tional distribution function of regions of the macromole-
cules, which depends both on the spatial position of the re-
gion r and on its position along the chain A (0 < A < L) in the
following form (cf. Eq. (3.22)):

/ (n, r, X) = T|) (n, r, X) i|> ( _ n, r, L - X). (7.7)

The auxiliary function ip satisfies the equation (cf. (3.24)):

• 0steri|) — in —£- . (7.8)

Here the mean molecular field UsteT = UstcI (n,r) is deter-
mined by analogy with Eq. (3.18). For a weakly deformed
state of a nematic the function ijj has the form

(7.9)t|;(n, r, X) = if0 (nu; l) + ^-aae(n, u, X).

Here u = u(r). The elastic moduli can be expressed in terms
oft[/0and8a/3:

Kt= -2Tlc \ AX \ A
dn3

i = l, 2, 3). (7.10)

Here c is the concentration of the macromolecules, and «,,
n2, and n3 are the Cartesian components of the vector n (axis
3 is chosen along the director u).

The elastic moduli of a solution of long (L>/) persis-
tent macromolecules in the case of low orientational order
are equal to

1 ~ 3— 1 4 j l f Jl I 2 ~ 10 ' s<^1- (7.11)

The twist modulus K2 has the smallest value (just as for a
solution of rigid rods).
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In the opposite limiting case (s-> 1) the values of the
elastic moduli are103:

_ 2sTl<?
3 ~ ltd2

^r W3 exp (3.8201/2 - (7.12)

Here J? = <p l/d%> 1. As before, the twist modulus f̂2 is the
smallest. As s-> 1 the bend modulus A"3 approaches a con-
stant value, which is determined simply by the bending rigid-
ity of the polymer chains themselves. We note that the ratio
K3/K2 for a solution of persistent macromolecules is approx-
imately twofold larger than for a solution of rigid rods. As
Eq. (7.12) implies, the splay modulus Kt increases exponen-
tially rapidly with increasing concentration of the solution.
The reason for the increase is that the polymer chains must
form folds (Fig. 24a) to create a divergence of the field of the
director, while their appearance in a strongly ordered nema-
tic solution involves large energy expenditures.

Upon decrease of the length L of the persistent macro-
molecules, the splay modulus decreases according to the law

x (L) (oo) {1 _ [1 _ exp (-z)] (7.13)

Here z = TcL 2/2Kt (oo). When L >Z,C = (K1 (oo )/cT)'n,
the modulus is Kx{L)~Kx(<x>). When L~LC the K^L)
becomes linear:

« < 1 . (7.14)

We note that Eq. (7.14) coincides with the corresponding
formula (7.6) for a solution of rigid rods. Thus the transition
from a regime of flexible macromolecules to a regime of rigid
rods for the modulus AT, occurs at L~LC = (A",(oo)/
cT)1/2$>l, i.e., in the region of very long macromolecules.
The reason for this becomes understandable if we bear in
mind the fact that, in a strongly ordered solution, persistent
macromolecules are strongly stiffened (see Sec. 3.4), and
that the length Lc equals in order of magnitude the "stiffen-
ed" effective segment. As regards the moduli K2 and K3, they
smoothly go from the asymptotic L / /> 1 to L /l4> 1 in the
region L ~ I.

Recently several first experimental studies have ap-
peared, devoted to measuring the elastic moduli of polymer-
ic nematics.'07'108 Their results agree with the relationships
(7.6), (7.11)—(7.13). However, the existing data do not yet
suffice for an exhaustive test of them.

8. ELASTIC LIGHT SCATTERING IN POLYMER SOLUTIONS IN
THE REGION OF A LIQUID-CRYSTALLINE TRANSITION

Light scattering (along with x-ray and neutron scatter-
ing ) is an important source of information, both on the prop-
erties of low-molecular-weight liquid crystals,' and on the
conformations of macromolecules in polymer systems.98

/ f I f /

FIG. 24. Splay (a), twist (b), and bend (c) deformations in a solution of
long persistent chains.

This method is especially useful in studying the isotropic
polymer solution-nematic transition.58 Light scattering in
athermal solutions of rigid-chain polymers has been studied
theoretically in Ref. 109 (see also Ref. 17). Below (in Sees.
8.2 and 8.3) we present briefly the results of these studies.
Section 8.1 will treat certain general tenets of the theory of
light scattering that will be necessary for the further treat-
ment (see Ref. 110)

8.1. The connection between the Intensity of light scattering
and the generalized susceptibility

Let the following electromagnetic wave be incident on
the system:

E = Eoe exp (iat — ikr).

Its polarization is given by the unit vector e. The differential
cross section in the direction k' (k' is the wave vector of the
scattered wave) with the polarization e' is110

= ( - 7 - ) ea4ea'eP' ) (*aoL-(T)Xiifi'(r'))

Xexp[-iq(r-r')]d3rd3r'. (8.1)

Here q = k' — k is the wave scattering vector; xay3 (r) is the
permittivity tensor of the medium.

Now let us study concretely a solution of rigid-chain
macromolecules, which can be considered locally to be con-
tinuous dielectric cylinders. Let Xy be the dielectric suscepti-
bility permittivity per unit volume) of these cylinders in a
direction parallel to their axis; nL is the permittivity in the
perpendicular direction; xs is the dielectric susceptibility of
the (isotropic) solvent. If the mean volume concentration of
the polymer <p is small, then the susceptibility tensor of the
solution has the form (see Ref. 110, Eq. (9.7)):

,, n)dQn.

(8.2)

Here (p(r,n) is the local volume concentration at the point r
of the polymer chains oriented in the direction n; and we
have

A = -

£ = • (8.3)

Upon substituting (8.2) into (8.1), we find the cross section
of excess scattering (as compared with the pure solvent) per
unit volume; h = (rexc/V:

h= (^- ). (8.4)

Here we have

<?aa'BS' (q) = 5 «?aa' W <?BB'(0)>c e^V Ah.

InEqs. (8.5)-(8.6)

<p (r) = jjtp (r, n) dQn

is the local volume concentration at the point r, and

(8.5)

(8.6)
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n)dQn

is the tensor of the orientational-order parameters. The first
term in the parentheses of Eq. (8.4) corresponds to scatter-
ing by fluctuations of the polymer concentration, and the
second one to scattering by fluctuations of the anisotropy.

8.2. Small-angle light scattering in isotropic solutions

If the scattering wave vector is small (ql41), then we
can neglect the dependence of D and Qaaee' on q in Eq.
(8.4). We can easily express the coefficients Z)(0) and
Qaa'ee' (0) m terms of the equilibrium characteristics of the
homogeneous solution. The result for an athermal solution
of persistent macromolecules of arbitrary length L has the
form

Z>(0) = -=£

X ["|-
(8.7)

Here

t._J-{,_[l_B,(_.«)](«.)-}- (,8,
is the volume concentration of the polymer at which the so-
lution loses stability with respect to anisotropy fluctu-
ations.38

Let us study the scattering of vertically polarized light
in the horizontal plane. The scattered light has two compo-
nents: vertical (V) and horizontal (H). Upon substituting
(8.7) into (8.4), we find the differential cross section for the
vertical component

5 A* ' B" 1 (8.9)

(8.10)

In an extremely dilute solution, <p4.<p*, the scattering by
density fluctuations predominates (the first term in the
square brackets in Eq. (8.9); we assume that A %B). ifL^l,
i.e., the macromolecules are rigid rods, then (when <p4,q> *)
the cross section h v is proportional to the length L of the
macromolecule and to the concentration of the solution,
while the degree of depolarization A is almost independent
of these parameters. In the opposite limiting case (L > /) the
degree of depolarization (when d/L4,<p4,cp *) equals

and the degree of depolarization of the scattered light

h H r , 5 A 2 <{••* — <f " i - i
= = hy ~ L ' B2 2q>-\-(d/L) J

Thus, in a dilute solution of semiflexible persistent macro-
molecules the degree of depolarization is proportional to the
concentration.

As the concentration of the solution approaches the
critical value (.q>-*qp*), scattering by anisotropy fluctu-
ations comes to predominate. Here the degree of depolariza-
tion increases to its maximum value A = | (in a narrow re-
gion near q> = <p* Eq. (8.10) loses applicability; in this
region an additional increase or decrease of A can occur; see
below).

8.3. Light scattering in an athermal solution of semiflexible
persistent macromolecules: general case

Light scattering in a solution of long persistent macro-
molecules (L>/) was studied in the general case (in which
the vector q does not approach zero) in Ref. 109. While
omitting the rather unwieldy intermediate calculations, we
shall proceed directly to presenting the results most impor-
tant from the physical standpoint.

Let us study the scattering of vertically polarized light
in the horizontal plane when <p~q>*. It turns out that the
applicability of (8.9)-(8.10) in the neighborhood of the
critical point is limited by the strengthened inequality

<p*
(8.11)

If the inequality opposite to (8.11) is satisfied, but on the
other hand the quantity Iq is still small,

£=2-<rPifi<t:l. (8.12)

then the following expressions for the cross section and the
degree of depolarization hold:

243.6 (8.13)

39A = = - ^ = - 1 ^ - (11 _ 9 cos 6) = 0.536 -0.439 cos 9.
«V aUU

(8.14)

Here 0 is the angle between the wave vectors of the incident
and scattered waves. Upon considering Eqs. (8.10) and
(8.14), we conclude that, if <p is not too close to <p *, then the
degree of depolarization does not depend on the scattering
angle 6 and monotonically increases with increasing q> to the
value A ~ 0.75; conversely, in theregion (cp * — <p)/<p * Sl2q2

a substantial dependence of A on 0 appears, with A < 0.75 for
6< 119°. Thus, when 0< 119°, Iq4l, the A(<p) relationship
must have a maximum.

In the general case in which the quantity Iq is not small,
the scattering characteristics can be found only by using a
computer. The A(<p) relationships obtained as a result (in
Ref. 109) for different values of Iq are shown in Fig. 25.

The experimental studies581"'"2 investigated light
scattering in solutions of poly-^-benzyl-L-glutamate (PBG)
and poly-/>-phenylenterephthalamide (PPTA) in the region
of the LC transition. The hv(<p) relationships found in these
studies (for 9 — 90°) are compared with the theoretically
calculated values109 in Fig. 26 (the parameter/* /B is an ad-
justment parameter).

0.6

OA

0,2

° 0.5 w f/f*

FIG. 25. Dependence of the degree of depolarization A (scattering angle
6 = 90°) on the volume concentration <p of the polymer. >mA/B= \,lq^0
(curve l);lq = 3 (2); Ig = 8 (3).
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FIG. 26. Differential excess scattering cross sections h v as functions of
the concentration <p of the polymer (scattering angle 6 = 90°) for a solu-
tion of PBG in DMF ( + ) and PPTA in sulfuric acid (X ) 5 8 Solid
curves—theoretical for A/B= 1.3, Iq = 3.25, <p * = 0.08, and for A /

When <p > <p * the isotropic state is unstable and the solu-
tion must be liquid-crystalline. The light scattering by the
nematic liquid crystal is described by the phemomenological
theory,1 whose condition of applicability (in the given case)
has the form ql4,\. The differential scattering cross section
per unit volume is1

) 2 ( T ) 4 ^ S <
0 = 1 , 2

- * « ) fan)1 (8.15)

Here u is the director, Kx, K2, and K3 are the elastic moduli
(see Sec. 7); eu e2, and e3 are the projections of the polariza-
tion vector (axis 3 is parallel to u, axis 2 is perpendicular to
the vectors u and q). If <pzx<p *, then the equilibrium order
parameter s of the LC solution of persistent macromolecules
is rather small (see Sec. 3.8). Therefore we can use Eqs.
(7.11) to calculate the elastic moduli. Upon substituting
(7.11) into (8.15) and averaging over all possible orienta-
tions of the director u, we find for q>~<p*\

to \4 n ,, 74.00

A = -M- = 0.608 - 0.323 cos 9.

(8.16)

(8.17)

Comparing Eqs. (8.16) and (8.13) we conclude that, if the
transition of the solution to the LC state occurs by spinodal
decomposition at <p — q> *, then at the transition point the
scattering cross section h v decreases by approximately a fac-
tor of three.

9. DYNAMICS OF CONCENTRATED SOLUTIONS OF RIGID-
CHAIN POLYMERS

Up to now we have been discussing the equilibrium
properties of liquid-crystalline polymer solutions and melts.
The study of the dynamic (rheological, relaxational, etc.)
properties of these systems is just as interesting as it is com-
plex, and has begun relatively recently (the first theoretical
study in this field appeared inl975"3) .

In recent time only the theory of the hydrodynamic
properties of concentrated solutions of extremely rigid-

chain macromolecules in an isotropic phase has been worked
out in sufficient detail. Its foundations were laid in a series of
studies by Doi and Edwards.113"116 Below we examine first
the fundamental ideas and results of these studies, and then
present the later results pertaining to the dynamics of nema-
tic polymer solutions.

9.1. Isotropic solution of extremely rigid rods

Let N long rigid rods of length L and diameter d,L$>d,
be dissolved in the volume V. If the concentration of the
solution c = N/Vis much smaller .than a quantity of the or-
der of L ~3, then spheres of diameter L circumscribed around
the rods will not overlap, and the Brownian movement of the
rods occurs independently (Fig. 27a). On the other hand,
when ck, \/L 2d, nematic ordering arises in the solution of
rods (see Sec. 2 and Fig. 27c). In this section we shall treat
the dynamic properties of the solution in the intermediate
region (Fig. 27b):

i-'CcCi^-1- (9.1)

Here, on the one hand, the solution is isotropic, and on the
other hand, the motion of individual rods is strongly affected
by the rods surrounding them. Such a treatment is necessary
also for the subsequent analysis of the dynamics of a nematic
solution, which will be conducted in the next section.

Since rigid-chain macromolecules (rods) cannot pass
through one another without breaking the chain, substantial
restrictions are imposed on the possible motions of rods in
solution in the concentration region of (9.1). Reference 113
proposed modeling these restrictions by using the concept of
an effective tube of radius a created by the neighboring rods
in which the given macromolecule exists at each instant of
time (see Fig. 27b). Here the macromolecule can move free-
ly along the axis of the tube, while its mobility in the perpen-
dicular direction is suppressed by the presence of the neigh-
boring rods.

It was proposed113 to estimate the radius a of the tube
from the following considerations. Since inside the tube the
rod must move practically freely, other rods must be absent
in the volume of the tube. The mean value of the maximum
radius of the cylindrical region around a given rod that does
not intersect other rods can be easily determined for the case
of an isotropic solution from geometrical considerations. It
turned out that

(9.2)

In the concentration region of (9.1) we have d4a<L.

FIG. 27. Dilute (a), semidilute isotropic (b), and semidilute nematic (c)
solutions of long rigid rods. The effective tube for one of the rods is shown
in the semidilute isotropic solution.
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Let us estimate the influence of the tube on the diffu-
sional motion of the rod. As is known (see Refs. 117 and
118), in a dilute solution (c4L ~3; see Fig. 27a) the Brow-
nian movement of the rod is determined by three diffusion
coefficients—longitudinal translational (-Dy), transverse
translational (DL), and rotational (D <0)), with

D — £>_ T\n(Lld) D±=1JL jyo> = ^£_ ( 9 3 )

Here rjs is the viscosity of the solvent. Here the overall trans-
lational diffusion coefficient equals

7{0) = (cos2 6> D n + (sin2 0> D ± = -==- . (9.4)

Here 0 is the angle between the axis of the rod and a certain
chosen axis; in an isotropic solution we have (cos2 6)^,
(sin2 6 ) = | .

The presence of the tube hinders both the rotational and
the translational motion of the rod. As regards the transla-
tional diffusion coefficient Dt, as before we can write Eq.
(9.4) for it. However, here we must set Di — 0 (owing to the
presence of the tube). Hence we have

A=^ = 4-- (9-5)
The restrictions on the rotational motion of the rod are more
substantial. Evidently, during the time r0 of existence in the
original tube the orientation of the rod cannot escape the
limits of the small solid angle Afl~ (A0)2~ {a/L).2 Since
the only possibility of leaving the tube involves diffusion
along its axis, r0 is the time in which the rod is displaced
diffusionally along the axis of the tube to a distance of the
order of L:

In **"
D

(9.6)

We can consider the Brownian movement of the orientation
vector n to be a random walk (in orientation space). Here, in
the time r0 the mean-square displacement (A0)2~(a/Z,)2

occurs, and the displacements in different time intervals r0

are uncorrelated. Hence we have the following expression
for the rotational diffusion coefficient Dr:

n (A6)» /_M2_^L D™ (QT*
U*~ T0 ~ l L } L* ~ (*£<»)» • ^•l>

We see that, when cL 3 > 1, the rotation of the macromole-
cules is substantially hindered: DT4,Df\ We note also the
very strong power-function dependence of the coefficient DT

on L: apart from logarithmic factors we have DT <x L ~9.
The maximum rotational relaxation time in the solution

of rods, in agreement with Eq. (9.7), is

*max ~ #7l ~ (cLy (Z??>)-i. (9.8)

Hence we can find the linear viscosity 7} of the solution in a
stationary shear flow. Actually, according to the common
scaling relation (see Refs. 98, 119), we have

'1 ~ iW?. (9.9)

Here G is the elastic modulus of the system (for small times
t < rmax for which the flow of the solution does not succeed in
developing); G~cT (cf. Refs. 119, 120). Therefore, apart
from logarithmic factors, Eqs. (9.3) and (9.9) imply that

T) ~ T), (CL3)S > T)s. (9.10)

Thus the viscosity of a concentrated solution of rigid rods
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considerably exceeds the basic viscosity of the solvent and
increases proportionally to the cube of the concentration of
the solution.

The tube concept has also been applied for studying the
more subtle rheological characteristics of an isotropic solu-
tion of extremely rigid-chain macromolecules (rigid rods)
(see Refs. 114, 115,and 121). A generalization of the theory
presented above to take account of a certain flexibility of the
macromolecules has been performed in Refs. 122-125. A
discussion of some discrepancies between theory and experi-
ment, as well as of attempts to remove them, are contained in
Refs. 126-129.

9.2. Phenomenological description of the dynamics of
nematic liquids

The rheological properties of nematic liquids are well
described by the linear phenomenological theory of Leslie,
Ericksen, and Parodi (see Ref. 1). The viscous stress tensor
in the flow of an incompressible liquid in this theory has the
form

(9.11)

Here

) (9.12)

is the asymmetric component of the rate of deformation of
the liquid (va is the hydrodynamic velocity field); ua direc-
tor of the nematic,

is the rate of rotation of the director with respect to the liq-
uid; a,, . . . ,a6 are the six viscosity coefficients (Leslie coef-
ficients), which are connected by the one Parodi relation-
ship, which stems from the Onsager principle:

a3 = a6 — a5. (9.14)

In the classical experiments of Miesowicz (see Ref. 1)
the viscosity was measured in a stationary Couette flow
(Fig. 28), in which the director of the nematic was oriented
by a weak external field along a certain axis. The Miesowicz
viscosities are connected to the Leslie coefficients (the axis 1
is chosen along the axis of flow, 2 along the velocity gradient,
and 3 perpendicular to the first two; see Fig. 28):

(9.15)

FIG. 28. Mutual orientation of the flow direction v and the director u of
the nematic phase in experiments to determine the Miesowicz viscosities
??i(a), T)2 (b),and »?,(c). .
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The Leslie coefficients and Miesowicz viscosities were
first calculated for nematic solutions of extremely rigid-
chain macromolecules (rigid rods) in Refs. 116 and 130.
However, here an ungrounded assumption was made, which
led to erroneous results. A correct analysis of the problem
was made in Ref. 131 (see also Refs. 132 and 133). We pres-
ent below the fundamental results of all these studies.

9.3. Nematic solution of rigid rods

Let us study a solution of rodlike macromolecules hav-
ing a very great chain rigidity. The rotational Brownian
movement of these macromolecules (rods) under the action
of an external orienting field C/ext (n) and an (external) hy-
drodynamic flux is described by a diffusion equation of the
form131-132

(9.24)

-^- = /MV2n/ + Vni - Vn (A/). (9.16)

Here /= / (n ) is the density of the orientational distribution
of the rods, U= Uext (n) + Uster (n) is the effective orient-
ing field acting on the rods, and DT is the rotational diffusion
coefficient of the rods, which is equal134 (cf. Eq. (9.7)) to

Dr = const • Df> [cL» J / (n) / (n') sin Vnn-dQndQn.] "
2 .

(9.17)

Here const is a numerical factor. The molecular field Uster

(n) is equal (cf. Eq. (3.18)) to:

Ustei (n) = 2£2- J sin ynn,f (n') dQn-. (9.18)

Here q> = ircLd 2/4 is the volume concentration of the poly-
mer. The last term on the right-hand side of (9.16) arises
from the hydrodynamic flow, and ri is the rate of variation of
the orientation of the rods under the action of this flow:

na = va> pWp — reai>p, vraprev. (9 .19)

The microscopical expression for the stress tensor of the so-
lution has the form130

(9.20)

Here the averaging is performed by using the distribution
function found from Eq. (9.16). If Uext = 0, then the tensor
of (9.20) is always symmetric.

The Leslie coefficients calculated on the basis of Eqs.
(9.16)-(9.20) equal131'133:

cT ~
a t = - ^ : a i (» = 1 . • • • . 6 ) - (9 .21)

Here the dimensionless quantities a, are determined by the
relationships

oSj = — 2 r , oc2 = — '

~ _ 2(7-5s-2r)
a4 35 '

Here

a, =
2(5s+2r)

«„ = •

(9.22)

s = [ P2 (cos 6) /„ (n) dQn, r = \Pk (cos 6) /„ (n) dQn

(9.23)

are the equilibrium order parameters (9 is the angle between
the director u and the orientation of the rod n), and we have

The function <t>(0) satisfies the equation

(9.25)

Here the molecular field C/0(n) = Uo{6) is determined by
Eq. (9.18) with the equilibrium distribution function
/ = / o ( n ) .

The dependences of the reduced Miesowicz viscosities
on the concentration of the nematic solution calculated by
Eqs. (9.15), (9.21)-( 9.25) are shown in Fig. 29 on a log-log
scale. We see that the three viscosities of the LC solution
substantially differ in magnitude, with the greatest viscosity
r]2 increasing, but the smallest one 77, rapidly decreasing
with increasing concentration. Figure 29 shows also the ex-
perimental values of the reduced viscosities of solutions of
polyparabenzamide (PBA) in dimethylacetamide.135 In the
case of the isotropic solution we can speak of qualitative
agreement of experiment and theory (curve 0). However the
experimental data for the anisotropic solution do not agree
with any of the theoretical curves. The reason for this is that
the orientation of the director in the experiment was essen-
tially uncontrolled (although apparently the experimental
situation is closest of all to that depicted in Fig. 28a). An-
other reason is that the theoretical dependences are calculat-
ed for a homogeneous nematic solution, whereas actually the
solution in the neighborhood of the point c = c* undoubted-
ly separates into two phases. That is, experimentally the vis-
cosity not of a homogeneous solution, but of a dispersion of
one phase in another was measured.136

As is known, in a steady-state shear flow (Couette
flow) the director of the nematic liquid is oriented (in the
absence of external fields) at the Leslie angle 6L to the flow
direction,1 with

tg26L = - ^ - . (9.26)

The dependences of the ratio a3/a2 on the order parameter 5
calculated by Eqs. (9.21 )-(9.25) is shown in Fig. 30 (curve
/ ) . When 5>5, = 0.53 the ratio a3/a2 is negative. This
means that steady-state Couette flow of an LC solution of

10V

1 -

10-'-

n~2

0.5 0.7 1.0 1.5 C/C*

FIG. 29. Dependence of the viscosity of an isotropic solution (curve 0)
and the Miesowicz viscosities of a nematic solution (curves /, 2, and 3,
respectively) on the reduced concentration c/c* of the polymer, c* is the
concentration at which the isotropic state loses stability; " + "—experi-
mental data.'
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FIG. 30. Dependence of the ratio a}/a2 on the order parameter s for a
nematic solution of persistent macromolecules of length L.'}" 1: L -> 0 ' " ;

FIG. 31. The prohibition against intersection of a given macromolecule
(shown by the solid line) with the surrounding chains (shown by dots) is
modeled by an effective tube of radius a (dotted line), in which the given
molecule lies.

extremely rigid rods (for which J S 0 . 8 > J ' I ; see Sec. 2) is
unstable (more exactly, it loses stability already at very low
shear velocities).131-137

In the experiment of Miesowicz1'2 the steady-state
shear flow can be replaced with an oscillating one (with the
frequency co). The dependence of the Miesowicz viscosities
on the frequency was found theoretically in the form of an
expansion in the small parameter e = 1 — s.13' The result is:

2e 4e/3

2

(9.27)

4e
—

cT
1 — iQ r 3

14 )
—ifl / '

2—iQ " (9.28)

Here fl = 3o/3Dr is the reduced frequency. We note that
the Parodi relationship (9.14) is fulfilled at all frequencies.
The characteristic frequencies correspond to O ~ 1, i.e.,

For real solutions of rodlike macromolecules these frequen-
cies are of the order of tens of hertz to kilohertz.

9.4. Nematic solution of semiflexible persistent chains

The dynamic properties of nematic solutions of poly-
mer chains with a finite flexibility have been studied theoret-
ically in considerably less detail than in the case of absolutely
rigid rods. We present below some first results obtained
along this line for a solution of very long persistent macro-
molecules (L>/).1 3 8

Just as in the case of rigid rods (see the preceding sec-
tion), the macromolecules surrounding a given one in a ne-
matic solution create an effective tube for it (Fig. 31). One
can show (see Ref. 125) that the characteristic radius a of
this tube is much smaller than the length / of the effective
segment (a</) if l^d, i.e., if the macromolecules are rigid-
chain ones. Consequently, the only large-scale motion of a
given macromolecule with respect to its neighbors is crawl-
ing (reptation) along the tube (i.e., actually along its intrin-
sic contour). We note that a reptational dynamic theory was
originally formulated for concentrated solutions (and

melts) of flexible-chain polymers in Refy. 139 and 140.
Let us study a solution in which an external orienting

field C/ext (n) acts on the macromolecules (see Sec. 6), while
the solution exists under conditions of steady-state flow with
the velocity-gradient tensor vaJ3. Let/( n,A, t) be the orienta-
tional distribution function of the unit vector n tangent to
the axis of the macromolecule (A is the running coordinate
along the polymer chain, 0</l<L). The function /satisfies
the following "reptational" kinetic equation138:

1L
at

(9.29)

Here D * is the effective diffusion coefficient of the chain
"along" the tube, and G — G(n,t) is the rate of variation of
the distribution function caused by inhomogenous flow:

G = — Vn (/n

Here

/(n, %,

(9.30)

(9.31)

is the distribution function averaged over the chain; the ve-
locity n is defined by Eq. (9.19). The effective boundary
conditions for Eq. (9.29) have the form

/ (n, 0, t) = / (n, L, t) = feq (n, t). (9.32)

Here the equilibrium distribution function/eq is determined
by Eq. (3.16), in which C/Ster (n) is the mean molecular field
corresponding to the averaged function f(n,t) at the given
instant of time t.

By analyzing the system of equations (9.29)-(9.32),
we can find all the relaxational properties of the polymer
solution. In particular, we can find the Leslie coefficients a2

and a3, which have not only a "viscosity," but also a "relaxa-
tion" meaning.' The result is138:

(2) [2*0; (z) - z2 (1 - da,

= X \ (9.33)

Here x = TcL i/AilD *, z = n-u (u is the director),/0 is the
equilibrium orientational distribution function in the ab-
sence of external fields, and Uo is the corresponding equilib-
rium molecular field.
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The dependence of the ratio a3/a2 on the (equilibrium)
orientational order parameter s of the nematic solution is
shown in Fig. 30 (curve 4). Upon consideration Eq. (9.26),
we find that in the LC phase at the transition point (i.e.,
when 5 = 0.49; see Sec. 3.2) the stationary Leslie angle is
6 L = 20°. As the order parameter increases (with increasing
concentration of the solution), the value of 6 L substantially
decreases, 0L-*Oas.s->l.

Thus the ratio of Leslie coefficients a3/a2 for semiflexi-
ble persistent macromolecules is always positive. This result
qualitatively differs from that obtained in Sec. 9.3 for a solu-
tion of extremely rigid-chain macromolecules. The transi-
tion from the case L > / (semiflexible macromolecules) to
L4,l (rigid rods) occurs as shown in Fig. 30 (dotted lines):
when L<LC the ratio a3/a2 becomes negative (and hence
steady-state Couette flow loses stability ) in some narrow
region of values of the order parameter; with decreasing pa-
rameterL// this region (s, <s<s2) gradually expands.138

10. CONCLUSION. OTHER PROBLEMS OF THE STATISTICAL
PHYSICS OF LIQUID-CRYSTALLINE ORDERING IN POLYMER
SYSTEMS

Despite the fact that the theory of liquid-crystalline
polymers has begun to develop rapidly relatively recently,
the number of studies in this field is already very consider-
able, and we have had no opportunity to take up many of
them above. In this section we shall present a brief list of
some of these studies.

The tendency to orientational ordering that rigid-chain
polymers manifest must have an effect not only in solutions
and melts, but also in intramolecular collapse, or the random
coil-globule transition. In this case the different segments of
a single macromolecule that have approached spatially must
become locally ordered in orientation. Although the globule
as a whole can be isotropic here, we must consider it liquid-
crystalline in its local properties. Such a globule has been
called an "intramolecular liquid crystal"; Refs. 10, 141-146
have been devoted to the theoretical study of the correspond-
ing problems.

An interesting connection exists between helix-random
coil transitions and nematic ordering of a polymer solution:
as a rule the helical regions can be treated as rigid rods, and
when their concentration is sufficient, the solution must
transform to an anisotropic phase. In turn, the latter must
give rise to a jump in the degree of helix formation. These
problems have been studied in Refs. 147-153.

The theory of the cholesteric mesophase in polymer sys-
tems has been treated in Refs. 154-158, and approaches to
the theoretical analysis of the structure of polymeric smec-
tics have been indicated in Refs. 159-161. However, the the-
ory of polymeric, cholesterics and smectics has been devel-
oped far less than for nematics.

It is of great interest to study liquid-crystalline elas-
tomers. We note in this regard a recent theoretical study162

that examined nematic ordering in gels under the action of
mechanical stress.

In closing we emphasize that, although many problems
of the theory of liquid-crystalline ordering in polymer sys-
tems have already been solved, as a whole this field at present
still exists in its initial stage of development. Among the
most current directions of further study (for details see Ref.
163) are: the rheology of thermotropic polymeric liquid

crystals, the theory of liquid-crystalline elastomers, the sta-
tistical physics of the surface in liquid-crystalline polymers,
the theory of smectic ordering in polymer systems, and the
dynamics of phase transitions in liquid-crystalline polymers.
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