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Basic features of the superstring picture of the microworld are discussed. This picture suggests
that there is a certain nonlocal object—the string—in many-dimensional (D = 10, 26, 506)
space-time on the scale of the Planck length (1073 cm). Transition to larger scales gives rise
to the localization and compactification of the theory. The result is an effective
supersymmetric low-energy theory combining all fundamental interactions, including gravity.
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INTRODUCTION

The aim of this brief paper is to present in a reasonably
accessible form the captivating ideas that have appeared in
high-energy physics in recent years and have given rise to
real hope that a unified theory of all the fundamental inter-
actions will be constructed. Our account lays no claim to
originality or completeness.’-? The branch of science that we
shall consider is rapidly evolving and is beginning to attract
the attention of an increasing number of physicists and
mathematicians. The fundamental object in this new theory
is an extended entity—the string—for which the action has
the property of supersymmetry. The theory is therefore
called superstring theory. It is based on non-standard ideas
and makes use of the mathematical formalism of topology,
differential geometry, and so on, which is complicated and
new to physicists. It has not been my aim to provide a review
of mathematical methods used in superstring theory nor, as
far as possible, to examine technical aspects of the problems
being discussed. All this can be found in the already exten-
sive literature on superstrings and in existing reviews.> My
goal has been to present the basic concepts and the objects
treated in superstring theory and to consider the tempting
prospects that are now before us. Despite the complexity and
abstract nature of the mathematical description, the exten-
sive panorama that is being revealed to us offers great scope
to imagination and fantasy, and questions are being asked
that, not long ago, would have been regarded as, at least,
premature. It follows that, even if the specific contemporary
models that are now being proposed are eventually discard-

ed, the breadth of the formulation of the problem and the
non-standard nature of the ideas involved in the theories will
greatly enrich our conceptual and technical arsenal, and
therefore deserve investigation.

1. THE PANORAMA OF HIGH-ENERGY PHYSICS

The second part of our title is “beyond standard ideas.”
What do we understand by standard ideas and why should
we wish to go beyond them? The phrase “standard model” is
now understood to be a description of strong, weak, and
electromagnetic interactions at the quark-lepton level with-
in the framework of a local gauge theory based on the group

Giana = SU, (3) X SUL (2) x Uy (1). (D

Strong interactions are described by quantum chromodyna-
mics with the color gauge group SU, (3). Electroweak inter-
actions are described by the Glashow-Weinberg-Salam
model with the SU; (2) X Uy, (1) group. All existing experi-
mental data are in good agreement with the standard model.

The standard scheme is sometimes supplemented by the
requirement of supersymmetry. However, despite the at-
tractiveness of supersymmetric models, they have not yet
received experimental confirmation and must be regarded as
hypotheses.

The next step along the path toward the unification of
the forces of nature is provided by grand unification theor-
ies. These are also based on the idea of local gauge invariance
and examine the symmetry groups SU(5), SO(10), E, and
so on. The idea of grand unification has not been confirmed
experimentally, but there are no facts that contradict it ei-
ther.

Despite the advances that have been made, the standard
model and the grand unification theories leave us with many
unresolved problems and a considerable arbitrariness in the
choice of the parameters. The following are some of the un-
answered questions:?

—why are fermions chiral particles?

—how many generations of quarks and leptons are
there?
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—what determines the Higgs sector?

—why SU(3) xSU(2) xU(1)?

We also do not understand:

—how to include gravitation in the overall scheme,

—should the theory be finite?

—why is the cosmological constant A =~0?

The search for answers to these questions takes us to the
re-examination of the basis of quantum field theory. A criti-
cal approach then gives rise to much more fundamental
questions, to which we are directed by the most recent ad-
vances in the theory and, above all, superstring theory,
namely:

—are infinities unavoidable?

—is local quantum field theory always valid?

—why four dimensions?

The answers to these questions lie outside the scope of
standard ideas. And so we ask: where are we now?

Experiment:

—there is no sign of proton decay

—there is no sign of monopoles

—there is no sign of axions

—there is no sign of supersymmetry.

Conclusion: there are no reliable manifestations of any-
thing that cannot be explained by the standard model.

Theory: radical changes and new ideas.

According to M. J. Duff,? going beyond the standard
model now means going outside:

—four dimensions

—the Planck scale

—the limits of the imaginable.

We now have to face the paradoxical question: what is
the dimensionality of the space in which we live?! The ob-
vious answer is: D = 4. In superstring theory, the answer is
less obvious, but logically better founded: D = 10, at least .
In the boson variant of the theory, D = 26. On the other
hand, if we adopt the Kaluza-Klein standpoint, then, as will
be clear later, we find that D = 506. It seems that these are
three equivalent variants of the mathematical description of
a single physical reality. The reconciliation between experi-
mental and theoretical points of view relies on the fact that
the multidimensional superstring theory is fully valid at en-
ergies that are inaccessible to direct observation.

The modern panorama of high-energy physics is illus-
trated schematically in Fig. 1.

2. WHAT ARE SUPERSTRINGS?

As already noted, the fundamental object studied in su-
perstring theory is a nonlocal extended entity with charac-
teristic size of the order of the Planck length, i.e., we discard
local field theory at distances less than 10~ cm and replace
it with nonlocal theory. The basis for this theory is provided
by classical, relativistic, extended objects—the strings.
String dynamics is discussed in the next Section.

String theory already has a twenty-year history. Strings
first arose in hadron physics as the dynamic basis for the
Veneziano and dual-resonance models.* In quantum chro-
modynamics, strings bind quarks together, forming had-
rons. From the very start, string theory encountered serious
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problems: rigorous quantization was found to be possible
only for critical space-time dimensions. For the bosonic
string, D, = 26 and, for the fermionic string, D, = 10.
The particle spectrum then contains tachyons and massless
spin 1 and 2 particles. These states are not present in hadron
physics and must be removed.

The shortcomings of string theory are turned into ad-
vantages when they are examined from a totally different
point of view. In the late 1970s, Scherk and Schwarz’ recog-
nized that string theory could serve as a basis for the unifica-
tion of all the fundamental interactions, including gravita-
tion. The high dimensionality of space-time is then perceived
not as a curiosity, but literally. We observe here a re-emer-
gence of the fifty-year-old ideas of Kaluza and Klein on a
new basis. The “‘extra” massless states are now identified
with Young-Mills and gravity fields, and tachyons are ab-
sent from this new theory because of supersymmetry.

In quantization, a string is an infinite sequence of nor-
mal modes, i.e., a sequence of mass states in quantum field
theory. The mass splitting Am? is then proportional to the
tension T in the string. In superstring theory, T~ (10"
GeV)?, in contrast to hadronic physics, for which T~ (1
GeV)2

Strings are open or closed. Open strings used for the
lowest massless states contain spin | particles, i.e., Young-
Mills fields, whereas closed strings contain spin 2 particles,
i.e., gravitons. This route in string theory eventually leads to
a quantum theory that unifies gravity and Young-Mills
fields that are the conveyers of all interactions.

At distances much greater than the Planck length
(1073 cm) or at energies much greater than the Planck
mass (10'° GeV), the massive states are “split off ”, and we
have an effective point field theory (supergravity and
Young-Mills supersymmetric theory) with fixed parameters
and particle composition. The observed particles (quarks,
leptons, gauge bosons, ...) should then be found among the
massless excitations (m <10' GeV). At distances below
10~ cm (or at energies in excess of 10'° GeV), massive
states are present and accomplish the modification of the
general theory of relativity at these scales. It turns out that
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the GTR action is only the first term in the expansion of the
effective superstring theory.

3. SUPERSTRING DYNAMICS

Just as a point traces out a world line in space-time, a
moving string sweeps out a world surface. This two-dimen-
sional surface can be inscribed into a space of any dimension.
However, anticipating quantization, let us examine the ten-
dimensional space. Moreover, since the string is supeisy -
metric, we supplement the space with Grassman generators,
i.e., we consider a superspace in which the number of Grass-
man generators depends on the type of supersymmetry. The
world suface (Fig. 2) depends on the two parameters o and
7, which can be interpreted as the length along the string and
the proper time. A point on the surface has the superspace
coordinates X * (o,7) and 6% (o,7).

The string action is a generalization of action for a point
particle. In the latter case, S = length of world line = fds.
For the string, S = area of world surface = f{d2. The para-
metrically invariant action of the boson string is

= — 3 | doamn,, (— g2 g0, X"0,X", (1
where T'is the tension in the string, 7,,,, is the metric in ten-
dimensional space (Minkowski space), and g is the metric
in o, 7 space. It is readily seen that this is a generalization of
the well-known action for a point particle in quantum me-
chanics:

s
In the case of the superstring, d, X * is replaced with
Il4 =34, X* —i6 yd,0, so that action becomes invariant
under the supersymmetry transformation, and there are also

further terms that are cubic and quartic in the coordinates:

T v
S§=—= j d od 0, (— g)¥/2 geAIILITY

—iT 5 do d11,,6%B (9, XPBy¥30 — iy, 00yv040). (17)

o

FIG. 3
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If we look upon X* and 6* as fields specified on a two-
dimensional surface, we can treat the theory with action (1')
as two-dimensional GTR with matter fields X # and 6°. This
shows the close analogy between string theory and two-di-
mensional nonlinear o-models that are being so intensively
investigated at present.

The string configuration can be very complicated (Fig.
3) and is determined by solutions of the equations of motion,
subject to appropriate boundary conditions.

4. TYPES OF THEORY

It is common to distinguish between the following types
of superstring theory.®

4.1. Type |

This comprises open unoriented strings with N = 1 su-
persymmetry and gauge charges at the ends. In the math-
ematical description, the string ends have associated with
them the matrices of the fundamental representation of the
gauge group. The strings are then realized as both singlet
and nonsinglet representations, and the consistent quantum
theory of unoriented strings admits only the classical groups
SO(n) and USp(#n). This scheme for including the internal
symmetry group is called the Chan-Paton scheme and arose
in hadronic physics in the interpretation of mesons as open
strings with quarks at the ends. It subsequently became clear
that the requirement of cancelation of anomalies and diver-
gences ensures that only the group SO(32) remains. When
they interact, open strings form closed configurations that
are singlets under the internal symmetry group.

During quantization, open strings generate Young-
Mills fields, whereas closed strings generate gravity fields. In
the low-energy limit, i.e., when p € T''/?, type I superstrings
lead to the D = 10 supersymmetric Young-Mills theory and
N = 1 supergravity, where the gauge interaction constant g
and the gravitational interaction constant K = G '/ (G is
Newton’s constant) are related by

K = gT. (2)

Gauge and gravitational interactions are intimately re-
lated to one another by their origin. The superstring is thus a
revival of the Einstein idea of a unified theory combining
electromagnetic (gauge) and gravitational interactions.

4.2. Type I

This type comprises closed oriented strings with N = 2
supersymmetry. There is no internal symmetry group. In the
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low-energy limit, p €T '/?, the result is the D =10, N =2
supergravity theory.

It is common to distinguish between type IIA and IIB
theories. In the former, fermions have different chirality but,
in the second, they have the same chirality. The IIB theory
leads to an effective low-energy theory with chiral fermions,
as demanded by phenomenology.

A further superstring theory, called heterotic or hy-
brid,” has recently appeared. It has given rise to great expec-
tations.

4.3. Heterotic string

This is a closed oriented string. It is called heterotic
because it is a hybrid of the 26-dimensional bosonic string
and the 10-dimensional fermionic string of type IIB. The
heterotic string has the properties of type I and II strings: it
has the same N = | Poincaré superalgebra as the type I
string, and the same topological properties as the type II
string. Like the other type II closed strings, the heterotic
string can be obtained by the compactification of the D = 26
bosonic string to the 16-dimensional torus 7', In this
scheme, the lattice of roots of the group is identified with the
lattice of discrete momenta associated with internal dimen-
sions compactified to the torus, and fermions appear as the
solitons of the bosonic theory. Following the Kaluza-Klein
ideology, this leads us to 16 gauge bosons of the [U(1)]
group.'® However, the string can wind itself on the torus
following topologically nontrivial configurations—the soli-
tons. These form a further 480 gauge bosons. We thus have a
total of 496. The heterotic string thus gives rise to a gauge
group despite the fact that the string itself is closed. It is clear
that the rank of the group is 16 and its dimension 496.
SO(32) and E; X E; are gauge groups of this kind, where Eg
is the maximal exclusive group in the Cartan classification.

The critical dimension of space for the bosonic string
has thus received the interpretation 26 = 10 + rank G. In
consistent Kaluza-Klein ideology, the space corresponding
to this situation has the dimensionality 506 = 10 4+ dim G.
The gauge symmetry group appears here as a result of the
compactification of the 496 dimensions.?

For the heterotic string, as for the type I string, the
Young-Mills fields are intimately related to gravity by their
origin. However, in contrast to type I strings, the relation
between the gauge constant g and the gravitational constant
K is different:

TABLE L. Types of superstring theory

O _
2

2
K2 =1, 3

and this is preserved during compactification, as can be seen
by dimensional analysis.

The different types of self-consistent superstring theory
are listed in the following table.”

5. INTERACTION BETWEEN SUPERSTRINGS

Although strings are nonlocal objects, the interaction
between them is local in character. We do not have, at pres-
ent, a gauge-invariant covariant formalism for the descrip-
tion of the second-quantized string.”> The light-front gauge
is employed. The strings are then described by functionals of
the lateral coordinates which, in turn, are specified on the
world surface of the string and the conjugate momenta p™*.
Open strings are denoted by <1>[~x(a),9(a),9(a),p+] and
closed strings by ¥[x(0),0(0),8(0),p™ ], where ® is the
associated representation matrix and V¥ is the gauge group
singlet. These functionals are generalizations of local fields
that depend on the space-time point,

String interactions are described by local cubic terms of
the form

62

for closed strings and, similarly, Tr®? for open strings and
(Tr ®)V¥ for transitions from one to the other. Figure 4
shows an example of an interaction that leads to the merging
of two closed strings. These interactions generate contact
interactions between the normal modes of string excitation,
i.e., local quantum fields. This example is a generalization of
the three-graviton interaction in GTR. Local interactions of
the form Tr®* are also possible for open strings.

String interactions can be represented in terms of the
string Feynman diagrams, except that the lines representing
particles are replaced by surfaces. Figure 5 shows an exam-

Type Spinor String Massless states
I[SO(32)] Weyl-Majorana Open + closed N =1,80(32) Young-Mills
theory + N = 1 supergravity
IIA Majorana Closed N =2 nonchiral supergravity
191: Weyl Closed N = 2 chiral supergravity
Heterotic Weyl-Majorana Closed N =1, 80(32) Young-Mills
[SO(32.)] theory + N = 1 supergravity
Heterotic Weyl-Majorna N =1, Eg X Eg Young-Mills
(Eg X Eg) Closed theory + N = 1 supergravity
1122 Sov. Phys. Usp. 29 (12), December 1986
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ple of a diagram of this kind for interactions between closed
strings.

We note the absence of high-order contact interactions.
The superpotential contains only cubic terms, just as in the
case of the supersymmetric local theories. All contact inter-
actions arise in Einstein gravity as “low-energy” effective
theory for p< T!/?, by analogy with the way in which the
four-fermion interaction arises in the Weinberg-Salam mod-
elwhen p<M,.

6. SUPERSTRING PERTURBATION THEORY

The next step is to construct a perturbation theory. As
they interact, strings may become scattered, create new
strings, and emit point particles. In the effective local theory,
this corresponds to all the possible interactions between lo-
cal fields.

6.1. Tree diagrams

As an example, let us consider the scattering of two
gravitons by a string. In the lowest-order approximation, the
scattering amplitude is given by (Fig. 6)

T, = (Einstein’s Supergravity)

s t u
T=g)r{i-7) r{t-7)
i s t u
r (1) (1) T (1)
where s, ¢, u are the usual Mandelstam variables, T is the
tension in the string, and T is the Euler gamma-function.
The amplitude (4) has the necessary property of cross-

ing symmetry and gives the Einstein supergravity in the low-
energy limit (T — ).

, 4)

6.2. 1-loop diagrams

Here, we encounter divergences for the first time, and
there are topological differences between open and closed
strings. Crossings must be taken into account for open
strings. For example, in the case of scattering of two open
typeIstrings, there are two diagrams (Fig. 7). Asin the case
of local theories, in the first of these, we have a trace over the
internal symmetry group. The second diagram does not con-

/77 £y
FIG. 6
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FIG. 7

tain this trace. This means that the contribution to the scat-
tering amplitude for the groups SO(n) and USp(n) is pro-
portional to n F- 32, respectively. Each diagram diverges, so
that the condition for the cancelation of divergences deter-
mines the single possible symmetry group SO(32). The same
symmetry group arises when we examine divergences in the
effective point theory, obtained from the type I superstring
in the limit as 37— w. Strictly speaking, two possibilities
arise: SO(32) and E4 X Eg, but, as we have already noted,
exclusive groups cannot be realized on a type I superstring.
The group Eg X E4 corresponds to the heterotic string.

Figure 8 shows the two-string heterotic scattering dia-
gram for a type II string. These diagrams are topologically
equivalent and finite.

6.3. N-loop diagrams

N-loop diagrams are constructed in accordance with
the same rules as single-loop diagrams. Hopes for finite am-
plitudes here rest on supersymmetry. We now turn to the
analysis of these questions.

7. DIVERGENCES

Consider closed strings. The diagrams shown in Fig. 8
are finite because they are topologically equivalent to “tad-
pole”-type diagrams (Fig. 9).

The resulting tadpole corresponds to the propagation of
the so-called “dilaton,” i.e., a massless scalar particle. In
early string theories, tadpoles diverged, but, in superstring
theories, supersymmetry ensures that they are equal to zero
(@~ ~ = 0). This shows the difference as compared with
point field theories. Actually, in such theories, the analog of
Fig. 9 is shown in Fig. 10 and does not lead to a finite theory.

The cancelation of divergences in superstring theories is
thus based not simply on nonlocality, but is related to the
topology and supersymmetry of Feynman diagrams.

The situation is very similar (Fig. 11) in the multiloop
case. Here, the theory is finite if

=0.
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However, a general proof of the absence of divergences in all
orders of perturbation theory has not yet been produced.
Another approach to this problem is based on the use of the
functional integral. However, in contrast to integration over
random local fields, the integration in this case is performed
over random surfaces.

8. ANOMALIES

The problem of divergences turns out to be closely relat-
ed to another well-known problem in quantum field theory,
i.e., the problem of anomalies. As in local theories, the inter-
action between physical and nonphysical (longitudinal)
modes of gauge fields can lead to anomalies in superstring
theory. Hexagonal diagrams (Fig. 12) are anomalous in ten-
dimensional space. They are the analogs of the triangular
anomaly in four-dimensional space. The Young-Mills fields
or gravitons are the external fields in this case, and the loop
corresponds to a string propagator, or the propagators asso-
ciated with spin 1/2 or 3/2 fermions and antisymmetric ten-
sorial fields of the effective local theory. Gauge, gravitation-
al, or mixed anomalies are obtained, depending on the type
of external field.

The remarkable fact is the cancelation of all the anoma-
lies in the case of the internal symmetry groups9 SO(32) and
E; X E;. Thus, these two symmetry groups appear unavoida-
bly in superstring theory. There are three sources of this,
namely, (1) cancelation of divergences, (2) cancelation of
anomalies, and (3) reduction from the 26-dimensional bo-
sonic string to the 10-dimensional heterotic superstring.

9. LOW-ENERGY EFFECTIVE THEORY

Let us consider the effective local field theory in 10-
dimensional space, which arises from the superstring when
p<T "2 In principle, this theory can be produced by per-
forming an expansion of 7 ~'/2into a series in terms of ener-
gy. As already noted, the field composition is determined by
the spectrum of the massless normal modes. This is the su-
pergravity multiplet (¢**,8*",®,¥,;" A ), which contains
a graviton, antisymmetric tensor fields, a scalar, a gravitino,
i.e., Rarita-Schwinger fields with positive chirality, and a
Majorana spinor with negative chirality, as well as the
Young-Mills supermultiplet (4, ,X *), which contains a

O =

FiG. 10

1124 Sov. Phys. Usp. 29 (12), December 1986

FIG. 11

vector field and a Majorana fermion of positive chirality.
Here, we have enumerated the physical degrees of freedom
without auxiliary fields.
Action has the form
1 1 D \2
S=— | avr(—g[ g5 R+ (T )

1 3k
+—4g1—®FﬁvFuvm+—2?-®—z-Huvauvp+...]. (5)

We note that this expression does not contain free param-
eters, and the constant g is absorbed in the normalization of
the field ®. The notation is as follows: F 3, are the Young-
Mills fields, a,b, = 1,2,...,dim G, R ,v 18 the ten-dimensional
curvature, m,n = 1,2,...,10, and H,,, is the intensity of the
field B:

H=dB—;—0cogy+ng. (6)

The ellipsis in (5) corresponds to fermion terms and higher-
order terms (R 2, etc.).

Particular attention must be paid to the so-called
Chern-Simons terms 3y and 03 in (6): dw3, = FF,
dw3. = RR. These are absent from the minimal local field
theory, but are necessary for the cancelation of quantum
anomalies. In superstring theory, the Chern-Simons terms
are automatically present in the required form.

10. SPONTANEOUS COMPACTIFICATION

Interest in superstring theories rose very substantially
when Green and Schwarz®® discovered the remarkable can-
celation of anomalies and divergences in the effective local
theories for the groups SO(32) and E4XE,. The gauge
group was predicted for the first time on the basis of the
internal properties of quantum theory! We shall see later
that the group Ej is preferable from the phenomenological

FIG. 12
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point of view because it contains the known grand

unification group EgDE,DSO(10) DSU(5)DSU(3)
XS8U(2) xU(1).
The necessary modification of the tensor H,,,, dis-

cussed in the last Section, turns out to be a no less important
fact. It is closely related to the compactification of the “ex-
tra” spatial dimensions. Witten ez al.'® were the first to dis-
cover that the additional Chern-Simons terms R X R and the
higher-order derivatives in the equation of motion led to the
spontaneous compactification of six spatial dimensions.
They found solutions of the form M,, = M, X K, where M,
is the n-dimensional Minkowski space and K is a specific
compact space, called the Calabi-Yao manifold. This mani-
fold does not have continuous symmetries, so that the addi-
tional Kaluza-Klein vector fields do not appear on
compactification. On the other hand, gravitational spin con-
nectivities in six-dimensional space turn out to be equal to
the Young-Mills potentials, so that H is equal to zero.®

It transpires that the topological properties of the Ca-
labi-Yao manifolds determine, in many respects, the physics
in the effective four-dimensional theory.

11. DIMENSIONAL REDUCTION

The solutions of the equations of string field theory
should, in principle, determine the structure of space-time
and lead to the compactification of the six spatial dimen-
sions. However, this is a very complex problem and, so far,
only relatively simple variants of compactification have been
obtained. At the same time, attempts to solve the problem
within the framework of the effective low-energy theory
have not always been valid because the discarded terms in
the expansion of the supersymmetric action can be signifi-
cant.

All the same, there are certain topological restrictions
that do not depend on the particular variant of compactifica-
tion. For example, it follows from (6) that the necessary
condition for the single-valued global determination of the
intensity H is"'

S (trRﬁ——E}%TrFf‘) dv =0, 7N

M

where the integral is evaluated over an arbitrary closed four-
dimensional manifold. The restriction (7) guarantees the
absence of anomalies in the compactified theory and relates
the topological properties of space with the value of the
Young-Mills fields in the “extra” dimensions. Actually,
since R 7 #0 in the compact space, it follows from (7) that
F 2%, 50 for a subgroup H of SO(32) or E¢ X Eg. As a result,
the symmetry group of the compactified theory is broken for
some subgroup G. The spectrum of massless particles of the
effective four-dimensional theory generates the representa-
tions of the group G. Schematically:

D=10"2 Dy,

S0 (32),] F#0 o
Eg < B -

Thus, the topological properties of space determine the
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internal symmetry group! In the case of the Calabi-Yao com-
pactification, both the holonomy group #° = SU(3) and
(7) signify that

R = FI? < SU (3).

This, in turn, leads to the breaking of, for example, the group
E; X Egz down to E; X E,. The group E, may be looked upon
as a group of the (super)theory of grand unification, and the
unbroken group Ej; refers to the so-called shadow world.

The properties of the theory depend on the form of the
Calabi-Yao manifolds, of which there are about 10 000
known, but, so far, no example has been found that satisfies
all the necessary conditions. It is possible that some internal
restrictions will be found, as was the case for the gauge sym-
metry groups.

12. PHENOMENOLOGICAL CONSEQUENCES

The phenomenological consequences of superstring
theory have not yet been extensively worked out. They de-
pend, to a considerable extent, on the specific mechanism of
compactification. In the transition to the effective grand uni-
fication theory, the situation is not very different from the
models that have already been studied with the exception of
certain restrictions.

The effective theory that appears after the E4 X Eg com-
pactification of the heterotic string onto the Calabi-Yao
space has the following properties:'-

—the N = 1 supersymmetry remains unbroken

—one of the Eg groups is broken to E as a result of the
holonomy group #° = SU(3)

—the second E, remains unbroken and is related to the
“shadow”” world or the “hidden” sector which interacts with
our world only by gravitation or by the exchange of particles
with mass of the order of My,

—fermions belong to the 27-plet group E; apart from
quarks and leptons, there are also some exotic particles;

—the number N - of generations is fixed and given by
Ng = |X |/2,where Xis theso-called Euler characteristic—a
topologic invariant of the manifold

—*realistic”” Calabi-Yao spaces, where N = 3,4,...,
are not simply connected, e.g., they contain holes; the E,
symmetry is then broken by ring vortices embedded in the
manifold

E, — SU(3) x SU@) x U(l) x U() x U),
— SU@3) x SU@) x U(l) x SU),

but missing the groups SO(10) and SU(5); this results in
additional, as compared with the standard model, symme-
tries that should be seen experimentally

—there are no correcting parameters in the Higgs sec-
tor; all the Yukawa coupling constants of the low-energy
theory are determined by the topology and differ from stan-
dard theories of grand unification; sin?@+, turns out to be
standard on the unification scale

—the proton is (practically) stable

—supersymmetry can be broken by the “gluon conden-
sate” in the shadow world without the appearance of the
cosmological constant; in the classical theory, A = 0.
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Specific predictions are, so far, very scanty and not too
different from the grand unification theories. Moreover, it
follows from superstring theories that:

—there are additional Z and W bosons due to the addi-
tional U(1) and SU(2) symmetries

—there are fractional electric (e/k) and correspond-
ingly multiple magnetic (27/ek) charges, where X is an in-
teger; these are stable particles of mass of the order of My,.

13. FINITE SUPERSYMMETRIC THEORIES

The possible finiteness of superstring theories gives rise
to the hope that a self-consistent quantum-field theory, in-
cluding gravitation, will be constructed. It may subsequent-
ly lead to a finite grand unification theory, as well. However,
as we have already said, there is as yet no unambiguous way
of obtaining the effective low-energy theory. This problem
can also be tackled from the low-energy side by trying to
construct a finite model of a local quantum field theory.

The first such model was obtained'? by the compactifi-
cation of the type I superstring to the six-dimensional torus
TS. It is found to be the maximally extended N = 4 super-
symmetric Young-Mills theory, which is finite in all orders
of perturbation theory."?

The extension of the class of point theories has been
achieved within the framework of the N = 2 supersymme-
tric models. Here, the divergences arise only in one loop by
virtue of the so-called renormalization theorems. Having
achieved the cancelation of single-loop divergences by a suit-
able choice of the set of hypermuitiplets, it is possible to
obtain a finite theory.'* However, such theories are not very
acceptable from the phenomenological point of view because
they contain mirror partners of ordinary particles that have
not been seen experimentally.

Ermusher e? al.'® have recently put forward a method
for constructing finite N = 1 supersymmetric Young-Mills
theories. This class of theories is sufficiently extensive and is
not exhausted by the N = 4 or N = 2 supersymmetric mod-
els. The set of matter fields in these theories satisfies the
single restriction

%T(R)=3Ca; (A)
where Cy; is the quadratic Casimir operator of the gauge
group and T(R)5 = SpR°R°®, where R® is the matrix
(generally speaking) of the irreducible representation of
matter fields.

Finite N = 1 supersymmetric grand unification theor-
ies constructed by this method have been isolated out of all
the unified theories. They offer, first, a fixed number of fields
{number of generations) and, second, there is a rigid rela-
tion between the amplitudes for the different processes by
virtue of the presence of a unique, independent coupling con-*
stant.

14. PROBLEMS AND PROSPECTS

The evolution of the superstring picture has demon-
strated that this theory is a very promising generalization of
point field theories. This path may well lead us to a self-
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consistent quantum field theory of all the fundamental inter-
actions. However, the contemporary understanding of the
problem is very approximate and there are many obstacles to
further advances. The existing five superstring theories
probably do not exhaust all the possibilities, but even this
number is too large if we desire to find a unique quantum
theory that is internally self-consistent and has distinctive
mathematical properties.

It is still not clear what determines the low-energy pa-
rameters of the theory: why is it that the observed dimension
of space is D = 4? Why is SU(3) XSU(2) X U(1) the sym-
metry group of the standard theory? What is the compactifi-
cation radius?

One of the main questions that have to be answered is:
what is the physical principle underlying the superstring the-
ory? It is possible that there is a generalization of the GTR
equivalence principle in the space of all the string configura-
tions that will lead to the geometric description of the su-
perstrings. A related problem is the understanding of how
geometrical properties determine the physics of space-time.

It is likely that we shall find the answers to many of the
above questions in the near future, and it will then become
clear whether superstring theory is the long-awaited “theory
of everything”, or whether the bluebird has flown once
again.
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¥ Different variants of this formalism have been put foward very recently
(see, for example, Ref. 16).
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