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The paper considers electromagnetic radiation arising when an instantaneous change with time of the
parameters of the radiating system occurs. It is shown that under real conditions when the change in the
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1. INTRODUCTION

We shall discuss a physical system which produces
a static electromagnetic field. This may be a system
of stationary electric charges or electric currents
which are constant in time. Generally speaking, a
change in the parameters of such a system is ac-
companied by radiation of electromagnetic waves.
Suppose that the parameters of the system remain con-
stant up to some moment of time and then in the course
of a time interval Τ the system is rearranged so that
its parameters change in a definite way, and at the
end of the time interval Γ the rearrangement is com-
pleted and the parameters of the system take on new,
final values which do not subsequently change. As
an example we can consider a system possessing an
electric dipole moment. If the dipole moment does
not change, then the field of this system is electro-
static and there is no radiation. Now let us assume
that the dipole moment of the system changes in the
course of some finite time interval Τ from an initial
value Pi to a final value p 2 . We can then state that
before the beginning of the change there exists over
all space an electrostatic field corresponding to the
dipole with moment p t , and the change of the dipole
moment from p1 to p 2 is accompanied by radiation of
electromagnetic waves; after the final value of the
dipole moment p2 is established and all radiated
waves have traveled to infinity, an electrostatic field
corresponding to the dipole moment p2 is established
over all space.

We pose the following question: Is it meaningful to
discuss the case in which the change of the dipole
moment occurs instantaneously? It is clear that any
physical process, including the change of a dipole

moment, requires a finite time to be accomplished. Η
the electric dipole is based on two charges of different
signs, it is possible to change the value of the dipole
moment by changing the location of these charges.
To move the charges it is necessary to create a field,
which in itself cannot be done instantaneously. In
addition, the charges possess finite mass and therefore
under the action of a finite force cannot change their
location instantaneously. In analyzing any specific
experimental arrangement, we reach the conclusion that
an instantaneous change of the parameters of the
system is impossible. However, this fact in itself
does not mean that we cannot discuss an instantaneous
change of a dipole moment.

Physicists often replace a real physical object by
some idealized scheme. As an example we can cite
a mathematical pendulum. How is a mathematical
pendulum defined? It is a material point suspended on
an ideal weightless hook and unstretchable fiber.
None of the things entering into the definition exist in
nature. Nevertheless the idea of a mathematical
pendulum is an extraordinarily productive one which
permits us to understand the most important features
of the oscillations of a real pendulum. It turns out
that the size of the body hung on the fiber is unim-
portant over wide limits and this justifies the idea of
a material point in this case. If the mass of the fiber
is much less than the mass of the suspended weight,
we can consider the fiber weightless, and so forth.

Therefore we should not pose the question as follows:
Is the instantaneous change of dipole moment possible?
The answer to this question is clear, and it is a
negative answer. However, this fact in no way pre-
vents an idealized representation in terms of an in-
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stantaneous change from being useful. We shall show
below when such an idealization is permissible.

The representation of an instantaneous change in the
parameters describing a radiating source has a quite
definite region of applicability. This region is defined
as follows. Let us consider some stationary source
of small size, and assume that radiation occurs as
the result of change of some parameter (dipole moment,
velocity, etc). Let this parameter change during some
time interval Τ from a specified initial value to a
specified final value. We expand the radiation field
in monochromatic waves and take a wave with fre-
quency ω. If the radiation source is stationary and the
inequality ωΤ« 1 is satisfied, then the radiation of the
wave with frequency ω is determined only by the initial
and final values of the parameter (dipole moment) and
does not depend on the time Τ during which this param-
eter changes. The rearrangement time Τ drops out of
the formulas which determine the radiation and we can
consider the rearrangement instantaneous. If ω Τ s 1,
and a fortiori if ωΤ » 1 , we cannot consider the re-
arrangement time equal to zero.

If the radiating system is moving, the criterion of
instantaneous rearrangement changes. Let the velocity
of the radiating system be V and the time of change of
the parameter responsible for the radiation be T. In
the rest frame of the source let the rearrangement of
the parameter occur in a time Tl and let a frequency
ω1 be radiated. Then in the rest system of the source
we will have the criterion indicated above for instan-
taneous rearrangement:

ω,ϊ-.Cl. (1.1)

In order to obtain the criterion for prompt rearrange-
ment in the laboratory system, it is necessary to ex-
press u>x and T1 in terms of ω and Τ (the frequency
and rearrangement time in the laboratory system) by
means of a Lorentz transformation and to substitute
these expressions into (1.1). Substituting into (1.1)

we obtain

ι
1 — (i;/c)cose

(1.2)

(1.3)

where θ is the angle between the direction of the velo-
city and the direction of observation.

Thus, if the frequency of the wave satisfies the
inequality (1.3), the rearrangement time does not
enter into the expression for the intensity of radiation at
frequency ω and we can speak of an instantaneous change
of the parameter.

From Eq. (1.3) it is evident, in particular, that if
the velocity of the radiation source is close to the
velocity of light and we are discussing radiation for-
ward, the criterion of instantaneous rearrangement is
satisfied also for those frequencies for which ωΤ»1
(there is a region of frequencies which satisfies sim-
ultaneously the inequality (1.3) and the inequality ωΤ
»1). Since for high frequencies radiated forward
(6 = 0) the instantaneous rearrangement criterion is

satisfied and the principal loss to radiation is just at
high frequencies, then in this case practically the en-
tire loss to radiation (or in any case the principal part
of it) can be obtained on the assumption of an instan-
taneous rearrangement of the source parameters.

It follows from Eq. (1.3) that taking into account the
motion of the radiating system substantially extends the
region of frequencies for which the instantaneous re-
arrangement criterion is satisfied. In fact, for a
stationary system (v = 0) we obtain from Eq. (1.3)
ω « Τ"1. And if the system is moving, we obtain for
the case of forward radiation (Θ = 0)

ι
1 -(vie) ·

At velocities close to the velocity of light the factor
multiplying 1/T in the last inequality is proportional
to the square of the total energy of the radiating system,
and the instantaneous rearrangement criterion can be
satisfied for frequencies which exceed the reciprocal
of the radiation time by many orders of magnitude.

We emphasize this fact, because it does not always
receive due attention. In particular, in the first edi-
tions of Theory of Fields by Landau and Lifshits1 the
radiation frequencies for which the rearrangement can
be considered instantaneous were defined by the in-
equality ωτ«1 (τ is the rearrangement time), and
only in the last (sixth) edition is a criterion of the
form (1.3) given.

This criterion can be rewritten in another form,
multiplying both sides of the inequality (1.3) by the
radiating system velocity ν and dividing by the radiation
frequency ω. We obtain

1
L — (u/c) cos θ

(1.4)

here I is the path traveled by the radiating system during
the rearrangement time and £ is a quantity of the dim-
ensions of length, the so-called radiation formation
length. This quantity plays an important role in the
theory of transition processes of the type considered,
particularly in the theory of transition radiation.5 It
can be seen from Eq. (1.4) that if the path of the sys-
tem during the time of rearrangement is much less than
the radiation formation length, the rearrangement can
be considered instantaneous.

The criterion (1.4) qualitatively explains the features
of transition radiation at a diffuse separation boundary.'
It is necessary only to take into account that in a re-
fracting medium it is necessary in the inequality (1.4)
to write instead of the velocity of light c the value
c/n, where η is the refractive index.

2. RADIATION ON INSTANTANEOUS CHANGE OF A
DIPOLE MOMENT

Consider a system possessing a time-dependent
dipole moment p(i). The size of the system will be
assumed to be small and in what follows we shall ne-
glect it. Then the density of dipole moment can be
written in the form

p(r, i)-p«)8(r) (2.1)
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(we assume that the dipole moment is located at the
origin of coordinates). Let the dipole moment vector
p(f) initially be ρλ and then in the time from -T to +T
change to Pj and then remain constant. Consider the
radiation arising at frequency ω on such a change of
the dipole moment. The Fourier component Αω of the
vector potential is given by the formula

Α ω = ^-
Jr-r'|

-Λ1. (2.2)

where ju(/) is the Fourier component of the current
j , which is related to the change of the dipole moment
by the well known formula

1 dt ·

In our case

6(r),

(2.3)

(2.4)

and this quantity is nonzero only at the origin and in
the time interval from -T to T. The current Fourier
component j (r) is given by the formula

(2.5)

If we take frequencies sufficiently low so that they

satisfy the inequality

ωΓ « 1, (2 . 6)

we can set the exponential in the integral equal to
unity and then we have

δ (Γ) Γ dp 6 (Γ) /Ο fj \

where Δρ = ρ 2 - ρ 1 is the change in dipole moment in a
time 2Γ. Exactly the same expression for j w is ob-
tained on the assumption that the dipole moment changes
discontinuously from px to p2 and that this jump occurs
at the moment of time i = 0. Indeed, in this case

j (ί) = Δρβ (ί) δ (r) (2 . 8 )

and the Fourier component of j(t) coincides with (2.7).

The inequality (2.6) signifies that the period 2ττ/ω of
the radiated wave is much greater than the rearrange-
ment time T, and therefore we can neglect the rear-
rangement time.

Substitution of expression (2.7) into Eq. (2.2) gives

2JIC τ \ c } '

Carrying out the inverse Fourier transformation, we
obtain an expression for the vector potential A as a
function of the coordinates and time:

A(r,i)=-£e(«-f). (2.10)

A dipole moment of the form (2.1) produces not only
currents j but also a charge density p. The latter is
determined by the formula

p =-d iv ρ (r, i). (2 .11)

Therefore the field is determined not only by the vec-
tor potential (2.10), but also by the scalar potential φ,
which satisfies the wave equation

(2.12)

Equation (2.12) for the potential φ is obtained in the
Lorentz gauge, where divA = -(l/c)3(p/9f. The solution
of this equation has the form

l + ^ L e ^ ) ; (2.13)

here 8gnx = x/\x\ is the sign function.

Equation (2.10) for the vector potential A and Eq.
(2.13) for the scalar potential φ completely determine
the electric field Ε and magnetic field H. The fields
are related to the potentials by the well known expres-
sions:

Η = rot A. (2.14)

Let us consider the structure of the fields in this
problem. It follows from Eq. (2.10) that the vector
potential is nonzero only on the spherical shell r=ct
which is expanding with the velocity of light from the
point where the change in dipole moment occurred.
Consequently, the magnetic field also is nonzero only
at this shell. In constrast to the magnetic field, the
electric field is nonzero over all space. The electric
field pattern which follows from the formulas obtained
can be represented as follows. Suppose that at a
moment of time i = 0 (which coincides with the jump in
dipole moment from px to p2) there begins to expand
from the point where the dipole is located a spherical
shell whose equation is r = ct. Then at any moment of
time the electric field inside this shell is the static
electric field

which is equal to the field of a static dipole with moment
p2 located at the origin of coordinates. Outside the
shell r = ct the electric field also does not depend on
time and is equal to

This is the field of a static dipole with moment p1. An
observer located outside the shell (at r> ct) does not
yet know that the dipole moment at the origin of coor-
dinates has changed and is already equal to p2, and not
p x. Sooner or later the shell r = ct expanding with the
velocity of light will reach the observer, and at this
moment the electric field at the point of observation
will jump from Ex to E2. On the spherical surface r
= ct itself there is a variable electric field which de-
pends on the coordinates and time. We have seen above
that on this same expanding surface there is also a
magnetic field. For the magnetic field it is easy to
obtain the expression

For the electric field at the surface r= ct we find

Ε = - ^ [ Γ 1 Δ ρ , Γ Π [ ΐ 8 ( < - ^ ) + ΐ 6 ' ( 1 - ^ ) ] = -[Λ>Η]. (2.18)

It is evident that the fields at the surface of the sphere
r=ct are equal in magnitude and mutually perpendicu-
lar. In addition, at each point they are directed along
a tangent to the sphere, i .e., they are perpendicular
to the radius vector drawn from the origin of coordinates
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to the given point of the sphere. The three vectors
Ε,Η, and r form a right-handed set.

The fields (2.17) and (2.18) are a spherical electro-
magnetic wave propagating with the velocity of light
from the origin of coordinates. At the points through
which this wave passes, an instantaneous switching of
the field occurs from one static value to the other. We
take the vector Δρ as the axis of the spherical surface
r = ct, so that the poles of the sphere lie on the exten-
sion of the vector Δρ. Then the magnetic field of the
wave (2.17) and (2.18) is everywhere directed along
the tangent to the circles of latitude, and the electric
field is directed along the tangent to the meridians.
Let us further determine the intensity of radiation at
frequency ω arising on instantaneous change of the
dipole moment by an amount Δρ. The spectral density
of radiation per frequency interval du> and per solid
angle dQ is

I H . |«r» dO do. (2.19)

At large distances r from the origin the magnetic field
Ηω is simply expressed in terms of the vector poten-
tial Αω (2.9):

H.(r) = £^-ln,A.l, (2.20)

where η is the unit vector in the direction of radiation.
This gives

dWn, ω = -^-8ίη>θ<ίθί9ω2ώ». ( 2 . 2 1 )

This formula can be obtained from the general for-
mula for the spectral distribution in dipole radiation:

m. (2.22)

where ©ω is the Fourier component of the second de-
rivative of the dipole moment with respect to time. In
the case discussed

(ρ)*=-ζ— ΔΡ· (2.23)

Substitution of this value into (2.22) immediately gives
(2.21). Here θ is the angle between the vectors Δρ
and n, and φ is the azimuthal angle (Θ and φ are the
angles which determine the direction of radiation η
in the spherical coordinate system in which the direc-
tion of Δρ is taken as the axis).

As can be seen from Eq. (2.21), the radiation spec-
trum is proportional to the square of the frequency
and therefore the total intensity of radiation diverges.
Obviously the radiation spectrum must be cut off at
frequencies which do not satisfy the inequality (2.6),
this cutoff taking into account that the change of the
dipole moment is not instantaneous but occupies a
finite time Τ. Then for the total energy of radiation
we obtain a finite value inversely proportional to T3.

On taking into account the finite rearrangement time,
the field pattern also changes. The magnetic field in
this case will be nonzero not on a spherical surface,
but in a spherical layer of thickness icT formed by two
concentric spherical surfaces with a center at the loca-
tion of the dipole. Both the inner and outer surfaces
bounding the spherical layer are expanding from the
"origin with the velocity of light. Inside this layer there

is also an electric field variable with time. In front of
the layer and behind the layer there exist only static
electric fields. The time of passage of the layer through
any point of space is IT, and during this time the field
changes from one static value corresponding to the di-
pole px to the other corresponding to the dipole p2.

3. INSTANTANEOUS STOP OR START OF A
UNIFORMLY MOVING CHARGE IN VACUUM

Let a charge q previously moving uniformly with
velocity ν come to rest in a time T. Then, if the
frequency of the waves radiated by it satisfy the in-
equality (1.3), the time Γ will not enter into the ex-
pression for the electromagnetic fields, radiation in-
tensity, etc; in other words, for these frequencies the
approximation of instantaneous stopping of the charge
will be valid. The same can be said also of a starting
charge. Let us consider first the case of instantaneous
stopping of the charge. Let a charge q move uniformly
along the ζ axis with velocity ν and at the moment of time
f = 0 instantaneously stop at the origin. From the point
of stopping of the charge there travels a wave of radia-
tion located on the sphere r = ct. If the point at which
the field is measured is located at a distance r from
the origin, the wave of radiation will reach it at a mo-
ment of time r/c, and up to this time no signal of the
stopping of the charge will reach the point r. Con-
sequently, at this distance the potentials and fields
will be described by the appropriate expressions for
the potentials and fields of a charge moving uniformly
with velocity ν along the ζ axis. These expressions
are easily obtained, for example, by using Coulomb's
law and a Lorentz transformation,1 namely:

gR(l-B')
Λ» ( 1 - β * sin* θ)3'2 '

(3.1)

where φ is the scalar potential, A is the vector po-
tential, Ε is the electric field, Η is the magnetic field
of a charge moving uniformly with velocity ν, β = ν/ο,

Λ· = V(z - i*)> + (1 - β») (xs + »·),

(0,0,vt) are the coordinates of the moving charge, R
is the radius vector from the charge to the point of
observation at the moment t, and 9 is the angle between
R and v. Thus, it is evident that the electric field of a
charge which has instantaneously stopped at the origin,
measured at distances r greater than ct, is directed
toward the point where the charge would be if it con-
tinued to move without stopping. This field is weakened
in comparison with the Coulomb field in the region of
angles θ close to 0 and it and enhanced in the region of
angles θ close to π/2. Consequently, if this field is
mapped by means of the lines of force, they should be
crowded together on approach of θ to π/2.

On the other hand, at distances r from the origin less
than ct, the Coulomb field of the charge q should be
established:

H=0,<p=-I, A-0, E—£

where r is the distance from the origin to the point of

(3.2)
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FIG. 1.

observation.

Thus, it is clear that the entire rearrangement of the
field of a uniformly moving charge must occur on the
sphere of radius ct (Fig. 1). Since the Coulomb field
is isotropic, and the field of a uniformly moving charge
has only axial symmetry, the lines of force of the
electric field, while remaining continuous, must bend
at the sphere r = ct. It is easy to calculate by means
of Gauss's Law how the angle of inclination of the
electrical lines of force to the ζ axis changes on pas-
sing through the spherical surface r = ct (see Purcell2).

If φ0 is the angle of inclination of an electric line of
force to the ζ axis outside the sphere r — ct and θ0 is
the angle of inclination of the same line of force inside
the sphere r = ct, then at this sphere the line of force
is bent in such a way that <p0 and θ0 are related as
follows:

tg <Po = y tg θ,. ( 3 . 3 )

If we now assume that the axis of the sphere is the ζ
axis, then the electric field at the sphere will be direc-
ted along the meridians and the magnetic field along the
parallels. The electric and magnetic fields are sin-
gular at the sphere r=ct. Consequently, on instan-
taneous stopping of the charge an infinite energy is
radiated. This should be expected, since we assume
that the acceleration of the charge is infinite.

In a similar way we can discuss the question of the
field of a charge which started at the moment t = 0 from
the origin with velocity ν along the ζ axis (Fig. 2).
In this case inside the sphere of radius r=ct with
center at the origin the field of a uniformly moving
charge (2.1) is established. Outside this sphere, in
the region where the signal of the starting of the charge
has not yet arrived, the field will be purely Coulomb
(3.2). On the sphere, as in the case of the stopping
charge, a bending of the electric lines of force will

FIG. 2.
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occur. The electric field itself will be purely trans-
verse at the sphere.

On the other hand, if the charge starts or stops not
instantaneously but in some period of time T, then the
sphere spreads into a spherical layer of thickness cT,
inside which the electric lines of force of the uniformly
moving charge will go over into the lines of force of
the Coulomb field. Inside this transition region there
will necessarily be present a transverse component of
the electromagnetic field, the magnitude of which will
be greater, the smaller is the value of T. Thus, all
radiation of the starting or stopping of the charge will
be concentrated inside this spherical layer of width cT.

4. FIELD TRANSFORMATION ON INSTANTANEOUS
STOP OR START OF A OERENKOV CHARGE

Tamm3 investigated the influence of acceleration of
a charge on Vavilov-Cerenkov radiation. He considered
the radiation of a charged particle which is first at
rest, then is instantaneously accelerated to a "super-
luminal" velocity v> c/n (where n = VTis the refrac-
tive index of the medium), moves with this velocity for
a finite time interval, and then instantaneously stops.
Tamm investigated only the spectral characteristics of
the resulting radiation, without discussing the spatial
pattern of the fields. It is of interest to consider in
more detail two problems more elementary than that
posed by Tamm: the problem of instantaneous stop-
ping of a superluminal charge and the problem of in-
stantaneous acceleration of a stationary charge to
superluminal velocity. An understanding of the struc-
ture of the fields arising in these situations will per-
mit a clear and understandable representation of the
radiation field in a broad class of problems, including
the case considered by Tamm.

Let us first take the case of instantaneous stopping of
a Cerenkov charge.4

Let a charge q move along the ζ axis with a velocity
ν greater than the phase velocity of light c/n in the me-
dium, and at a moment of time t = 0 instantaneously stop
at a point z = 0. Then the equations for the vector and
scalar potentials A and φ have the form

Δ Α - -

4π. Ιί ν \il til.

Here the current density j and charge density ρ are
given by the expressions

(4.1)

J - JT6 (r - τί) β (-0.
ρ = S6 (r - τί) θ (-ι) + Ϊ 6(r) β (0;

the quantity θ (χ) is the Heaviside step function,

(4.2)

Let us now expand the potentials A and φ in a Fourier
integral of the form

A(r,
(4.3)

> Λ Λο.

Then the equations (4.1) for the Fourier components
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ω and φ^ u take the form itself:

Pt,,

where j f c ω and p^ ω are given by the expressions

(4.4)

(4.5)
" - •">+β* (ω)];

here

8 ± W = T

lim11111 :

2π .ŷ +o ι ± iy

It follows from Eqs. (4.3)-(4.6) that

(4.6)

Examination of expressions (4.7) and (4.8) shows that
the fields arising after the stopping of the charge divide
space into three regions, whose boundaries shift with
time. Up to the moment f>0 these regions and the
fields in them have the following form (Fig. 3):

Region I:

where p = r sin9=^J xs +yz (here θ is the polar angle
in coordinates fixed to the stopped charge and the axis
Oz is parallel to v). In this region the field coincides
with the field inside the Cerenkov cone for a charge
moving with velocity υ at the point z=vt (see Tamm3),

( 4 9 )

The expressions given for the potentials of the elec-
tromagnetic field refer to points of space lying outside
the sphere of radius r=ct/n with center at the point
of the stopped charge. Since the signal from the stop-
ping of the charge, which propagates in the medium
with a velocity c/n, has not yet reached region I, it is
therefore natural that the field in this region remains
the same as if the charge continued to move without
stopping.

Region II: In this region the Coulomb field of the
stationary charge q has already succeeded in forming

FIG. 3.

-•£· 1=0. (4.10)

Finally, region HI is the region left after removal from
all space of regions I and Π together with their boun-
daries . In this region there is no field.

Thus, we know the fields inside all three regions. It
remains to find expressions for the fields at the boun-
daries . In view of the absence of dispersion and as a
consequence of the instantaneous stopping of the charge,
the boundaries of the regions are abrupt. The fields
at the boundaries can be determined by means of Gauss's
Law and simple geometrical considerations. Indeed,
as a consequence of Gauss's Law the flux of electric
induction through any surface containing inside itself
the point r = 0 with charge q must equal 4vq. We shall
take such a surface as follows (see Fig. 3). Consider
a plane Ρ perpendicular to the ζ axis and located behind
the charge in regions I and ΠΙ. We form a closed
surface R from a portion of the plane Ρ and some sur-
face S lying entirely in region ΠΙ. We calculate the
flux of the electric induction vector through the surface
R.

According to Gauss's Law

f Edo + n Edo (D—e n>E). (4.11)

The second integral vanishes as the result of the ab-
sence of field in region III. The first integral reduces
to the sum of integrals over the internal region of the
circle Ο (the part of the plane Ρ belonging to region I)
and over the circle Ο itself. The integral over the cir-
cle we designate by Φο. Thus,

4π«=ιι· ( EAr+Φ,.
(XPi

Using the fact that
„ _ 1 9A
Ε •f—Tj-,

and also Eq. (4.9), it is easy to obtain

»(_ν j ,Λ,- iJ iA
x

(4.12)

ΕΛ, (4.13)
p<po p<po P><xi

It follows from Eqs. (12) and (13) that
Φ β = 8π$. (4.14)

In other words the flux over the surface of the cone is
8itq. It follows from the symmetry of the problem that
the electric field must be directed along the generatrix
of the cone and must be identical at all points of the
circle O. From Eq. (14) and taking into account that

we find the magnitude of the field at the surface of the
cone:

Expressions (4.14) and (4.15) obviously are valid
not only in the case of stopping of a Cerenkov charge,
but also in the case of continuous motion of the charge
in a medium without dispersion.

Applying Gauss's Law to closed surfaces encom-
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a

FIG. 4.

passing the elements of the boundaries separating re-
gions I and II and regions II and III, we obtain similarly
expressions for the fields at these boundaries:

for

and

for

(4.17)

Ο ^ θ ·< arccos -5— ;
ρη

here e9 is the polar unit vector of the spherical coor-
dinate system with center at the point ζ = 0.

In order to find the fields arising on instantaneous
start of a Cerenkov charge at the moment of time i = 0
from the point z = 0, there is no necessity to solve
Eq. (4.1) again. Imagine that one charge is at rest at
the point 2 = 0 and a second similar charge is moving
with velocity v> c/n along the ζ axis. At the moment
when the second charge is at the point ζ = 0, let it stop
instantaneously and the first charge begin to move with
velocity ν along the 2 axis. It is clear that the pattern
remains stationary, since the charges are indistin-
guishable. However, we can now obtain expressions for
the fields of a starting charge, subtracting from the
fields of the stationary pattern described above-(i.e.,
from the sum of the Cerenkov and Coulomb fields)
the fields just found for the stopping of the charge. It
is easy to see that in the case of a start, space is also
divided into three regions for i > 0 (Fig. 4).

In region I (r> (c/n)t, p<(vt-z)/y, ζ > ft/vn2) the
field is equal to the sum of the field (4.9) and the Cou-
lomb field (4.10).

In region II (r< (c/n)t) the potentials will be des-
cribed by Eq. (4.9).

In region III, which consists of all space after sub-

FIG. 5.

FIG. 6.

tracting regions I and II together with their boundaries,
the field is pure Coulomb (4.10).

The results obtained are easily explained. Indeed, in
the whole of region II it is already known that the charge
started, and therefore the field of a uniformly moving
Cerenkov charge is established there. In region I the
signal of the starting of the charge lags behind the
charge itself, and therefore in this region the field is
the sum of the Coulomb and Cerenkov fields. In
region III, where nothing is known of the starting of the
charge, the field will remain pure Coulomb, as from
a charge q continuing to remain at rest at the origin.

Knowing the field pattern for instantaneous start or
instantaneous stop of a Cerenkov charge, we now can
discuss the spatial pattern of the field in the problem
prosed by Tamm and mentioned above (motion of a
Cerenkov charge in a finite segment of path).

Let a point electric charge up to the time i = 0 be at
rest, and at the moment of time i = 0 instantaneously be
accelerated to a velocity ν greater than the phase
velocity of light c and move with this velocity for a
time interval T. At t—T the charge instantaneously
stops.

Consider the field pattern produced with this motion
of the charge. It is shown in Fig. 5. In this figure
the line AB = vt is the path traveled by the charge.
From point A as a center a spherical shell whose
radius is (c/n)t expands with a velocity c/n. Inside this
shell (region I) the field coincides with field of a charge
uniformly moving with velocity v> c/n [see Eq. (4.9)].
From point Β as a center a second spherical shell
whose radius is (c/n)(t- T) expands with velocity c/n.
We consider the field pattern after stopping of the
charge, so that t> Τ and the radius of the second sphere
is positive. Inside this sphere the field is equal to the
field of a Coulomb center at rest at the point Β (region
II). Region III is part of the volume of the cone whose
generatrices are the tangents to the spheres bounding
regions I and II. In this region the field is equal to the
sum of two fields: the field (4.9) produced by a uni-
formly moving Cerenkov charge and the Coulomb field
produced by a charge at rest at point A. Finally, in
region IV, which consists of all remaining space, the
field is equal to the Coulomb field of a charge at rest at
point A.

In the figure we have shown the field regions on the
assumption that the spheres expanding from the be-
ginning and end of the trajectory do not intersect. It
is clear that sooner or later these spheres will par-
tially overlap, i . e . , and intersection of regions I and II
will appear. In this portion of the space, which is
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common to regions I and II, the field will be equal to

the sum of two fields: the Coulomb field of a charge

at rest at point Β and the Cerenkov field (4.9). The

field pattern in this case is shown in Fig. 6.

The authors are grateful to V. L. Ginzburg for helpful

remarks.
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