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A. G. Litvak. Self-Focusing and Waveguide Propaga-
tion in a Plasma. It is well known that the first studies
on the theory of self-focusing of waves were devoted to
a discussion of the features of this phenomenon in a
p l a s m a " 1 ' 2 ^ . However, in connection with the rapid de-
velopment of l a s e r technology, the emphasis in the r e -
s e a r c h has shifted to the optical band, as is evidenced
in par t icular also by the papers presented at this se s-
sion. At the same t ime, theoretical studies of self-
focusing waves in p lasma were continued at the Radio-
physics Research Institute, followed by the first experi-
ments aimed at observing this phenomenon. In this
paper we repor t some of the resu l t s of these s tudies .

In phenomena involving self-action of e lectromag-
netic waves in a plasma, one can separate two funda-
mentally different l imiting c a s e s : quasioptical self-
focusing of waves in a t ransparent weakly-linear
p lasma, and effects of self-trapping of waves in an
opaque p lasma. Of course , the intermediate case of a
strongly-nonlinear t ransparent medium can also be
real ized in experiment.

The s imples t and best investigated is the propaga-
tion of broad beams (in t e r m s of the wavelength) in a
medium with weak nonlinearity e = eo + e'f (IE | 2 ) ,
e'f (|E j2) « tο = 1 - (ω2 /ω 2 ) . In this case one can use

the parabolic-equation method employed in nonlinear
optics, and many of the resu l t s of the optical theory of
self-focusing of waves turn out to be valid also for a
p lasma. The specific features of the p lasma become
manifest in the concrete e(E) dependences, which a r e
connected with the p lasma mechanisms of nonlinearity.
The principal role is played here by inert ial mechan-
i s m s that lead to a d e c r e a s e in the p lasma concentra-
tion in the region of the field—striction and heating
(both ordinary ohmic and anomalous heating connected
with p r o c e s s e s of wave interaction in a collisionless
plasma). Allowance for the saturat ion of the nonlinear-
ity turns out to be a major factor that contributes to the
waveguide c h a r a c t e r of the propagation. To the con-
t r a r y , real izat ion of the multifocus s t r u c t u r e of self-
focusing'-6·5 in a p lasma is made difficult by the fact that
the effects of multiphoton absorption in the p lasma a r e
usually negligibly smal l . A detailed analysis of the
plasma nonlinearity mechanisms, the p r o c e s s e s of their
relaxation, and the features of self-focusing in an iso-
tropic and magnetoactive p lasma shows that effects of
quasioptical self-focusing can play an important role
not only in the interaction between microwave radiation
of moderate intensity with a laboratory plasma and in
l a s e r breakdown, but also under natural conditions,
when powerful radio waves of the short-wave and infra-
low frequency bands propagate in the e a r t h ' s ionosphere
and magnetosphere'- 3°- 1.

The calculations were used as a basis for the devel-
opment of instal lations for experimental study of
thermal self-focusing of microwaves in a weakly ion-
ized p lasma (this effect is character ized by the smal l-
est cr i t ical power and should therefore not be accom-
panied by other nonlinear p r o c e s s e s that usually com-
plicate the observed picture) . The results'-4 '5-1 a r e
evidence of observation of nonstationary self-focusing
and is in good agreement with the theory. The resu l t s
of one of the experiments (λ = 0.5 cm, unfocused
beam)1-4-1 can be interpreted with the aid of the concept

of moving focus; in the other experiment (λ = 3 cm,
focused beam)" 5- 1, the nonlinear nonstationary effects
became manifest only near the focus and led to a de-
c r e a s e in the focal dimension of the beam without a
change in its coordinate (collapsing focus).

Another limiting case of self-action of waves in a
plasma is connected with the possible propagation of
intense waves in a medium this is not t ransparent in the
linear approximation. The " b l e a c h i n g " of a non-trans-
parent p lasma by an incident wave is a resul t of a r e -
distribution of the charge par t ic les in the plasma and
formation of a waveguide (rarefied) channel. This
phenomenon of self-channeling of the wave differs in
principle from the quasioptical self-focusing in a t rans-
parent medium, in which the nonlinearity is not the
cause of the wave propagation, and leads only to elim-
ination of the diffraction divergence of the beam and of
the refract ion. A theoret ical investigation of self-
channeling is a more complicated problem, for in this
case the weak-nonlinearity approximation no longer
holds, and in addition, the problem is not sca lar , i .e.,
the equations depend on the type of polarization of the
electromagnetic waves.

Certa in features of self-channeling of waves can be
explained already by investigating channels that a re
homogeneous in the propagation direction. Two-dimen-
sional and axia l ly-symmetr ical TE waves were consid-
ered i n [ 3 ' 7 ] . A study of waveguides formed by PM
waves encounters fundamental difficulties because the
solution has s ingularit ies in the region of plasma reson-
ance ω » ω . It was shown in'-3a-1 that the field equations
have no localized solution in the class of continuous
functions if no account is taken of the spatial disper-
sion, and it is necessary to construct a discontinuous
solution in which, just as in a quasistatic f i e l d 1 ^ , the
passage through the resonance region takes place jump-
wise. Of course , to determine the m i c r o s t r u c t u r e of the
jump it is necessary to take into account the spatial
dispers ion (to r a i s e the order of the system of equa-
tions) and the dissipation of the p lasma waves excited
in the region of e = 0. The attempt in'-9-' to construct an
analytic solution without a discontinuity was made with-
out taking into account the existence of singular points
on the integral curves .

Effects of self-channeling of microwaves in a plasma
were observed in experiments performed at the Radio-
physics Research Institute and at the Physics Institute
of the USSR Academy of S c i e n c e s C l 0 ] . These experi-
ments confirmed the importance of this phenomenon and
stimulated further development of its theory. In par-
ticular, to explain the experimental re su l t s , the prob-
lem of the stability of reflection of a homogeneous plane
wave from an opaque p lasma was considered. It was
shown that a homogeneous skin layer is unstable to
space-t ime disturbances, s ince this instability can lead
to the formation of a set of waveguide channels in the
opaque plasma.
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V e c t o r S t r u c t u r e o f E l e c t r o m a g n e t i c F i e l d i n S e l f -

F o c u s e d W a v e g u i d e s . S e l f - f o c u s e d d i s t r i b u t i o n s o f t h e

e l e c t r o m a g n e t i c f i e l d i n n o n l i n e a r m e d i a w e r e f i r s t i n -

v e s t i g a t e d t h e o r e t i c a l l y i n t l ] . P r o g r e s s f r o m t h e

s i m p l e s t s i n g l e - c o m p o n e n t s t r u c t u r e o f t h e l o c a l i z e d

f i e l d t o m o r e c o m p l i c a t e d o n e s w a s m a d e i n r e c e n t

y e a r s ' - 2 ' 3 - 1 . F i e l d s t r u c t u r e s u p t o g e n e r a l t h r e e -

c o m p o n e n t t y p e h a v e b y n o w b e e n i n v e s t i g a t e d .

T h e e q u a t i o n s o f n o n l i n e a r e l e c t r o d y n a m i c s ( s e e 1 - 3 - 1 )

a d m i t o f s o l u t i o n s E ( x ) e x p ( i k z z ) i n t h e c a s e o f p l a n a r

g e o m e t r y , a n d m a k e i t p o s s i b l e t o s e p a r a t e t w o t y p e s o f

exact solutions with single-component (0, Ε , 0) and
two-component (E x , 0, E z ) electric vectors, as well as
the more general case of three-component solutions
(E x , E y , E z ) . The system of equations of nonlinear
electrodynamics includes the conservation law

Η = Ρ» - k'E· + [(*«e - *i)> - *«] *-!£» + is [ ε (?) dq,
a

where k = ω/c, Ρ = dE /dx, and e(E2) the nonlinear

dielectric constant. This makes it impossible to deter-
mine in the space (E x , E y , E z ) at Η = 0, which is essen-
tial for self-channeling, a boundary surface
P(EX, E y , E z ) = 0 inside of which all the localized solu-
tions are located. The boundary conditions for the self-
channeling fields are

l im lim (
Ε -* 0

where C is a parameter of the problem proper. A quali-
tative analysis and numerical integration indicate that
there exists a sequence of three-component fields local-
ized in space. The results of a numerical integration,
performed for e = e0 + e 2 E 2 E N , are shown in Figs. 1 and
2, where the projections of the electric-vector motion
are shown together with the spatial distribution of the
field. The self-channeling three-component fields are
characterized by a unique structure with low symmetry.
The localization region of the obtained self-channeling

FIG. 1

waveguides exceeds the characteristic dimension of the
localization region of the one- and two-component states
by several times. However, the largest projections E y

and E x , E z for the three-component localized states
do not exceed the largest values of the corresponding
projections for the localized one- and two-component
states. The reason is that the characteristic dimensions
of the boundary surface P(EX, E y , E z) = 0, which is a
degenerate torus, are determined by the parameters of
one- and two-component localized states. Localized
three-component states of the field can be ordered in
accordance with the number of tangencies of the electric
vector, which describes a closed curve in the space
(E x , E y , and E z ) , with the boundary surface. For ex-
ample, for the states shown in Figs. 1 and 2, the number
of tangencies between the entry and departure points of
the 0-field regions is six and ten, respectively. A
single-component localized state (waveguide of TE type)
corresponds to one tangency, and a two-component state
(waveguide of type TM) corresponds to motion over a
curve lying on the boundary surface. We note that
three-component self-focused waveguides correspond
to allowance for both the transverse and longitudinal
degrees of freedom of the electromagnetic field.

In the case of cylindrical geometry, the equations of
nonlinear electrodynamics admit of solutions
E(p)exp(ikzz + im<p). At m = 0, i.e., for fields that do
not depend on the azimuthal angle, it becomes possible
to separate not only two types of exact solutions with
one- and two-component vectors (0, Εφ, 0) and
(Ε , 0, E z ) , but also a more general three-component
solution (E p , Εφ, Ε ζ ) . A feature of such a three-com-
ponent solution is that at m = 0 the connection between
the electric-vector projections Εφ, Ε ρ , and E z is only
via a nonlinearity, namely the dielectric constant. The
problem is to find the eigenvalues of a pair of param-
eters, namely, the z-projections of the electric and
magnetic fields on the axis of the self-focused wave-
guide. Numerical integration leads to a three-component
localized state with the field distribution shown in Fig.
3. The same figure shows the projections of the motion
of the electric vector, characterizing the peculiar polar-
ization structure of the electromagnetic field. We note
that the characteristic dimension of the localization
region in space, the characteristic values of the projec-


