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1. INTRODUCTION Now let us suppose that the perturbation F ( t ) contains
_ many harmonics :
1 HE topic of this review is relatively new and little

known, especially among physicists . Hence, we shall F(t)= 2jFncosnQot, (1.3)
begin with a simple example. Let us imagine the motion
of some non-linear osci l lator, e.g., an ordinary pendu- and that the frequency spacing (Ω ο ) between them i s
lum, but without damping, when acted on by an external much s m a l l e r than the beating interval Δω, so that
very weak periodic force. The equation of motion of several harmonics of the periodic perturbation of (1.3)
such a system can be written in the form simultaneously occur in resonance. How will the pen-

" J _ * · _ M -n dulum oscillate in this c a s e ? In spite of the smal lness
φ , α)08ΐηφ^ εί (/), (l.l) Q{ t h e p e r t u r b a t i o n ( e _ 0 ) j n 0 s o i u t i O n of this problem

where φ is the angle of deviation of the pendulum from has yet been rigorously found. However, a semiqualita-
the equilibrium position, ω0 i s the frequency for smal l tive theory (this review will be concerned with i t to a
oscil lat ions, and e — 0. considerable degree), as well as numerical experiments

Let the perturbation be harmonic initially: (Chap. 4), lead to a ra ther unexpected conclusion: the
,- „, pendulum will oscillate as though a " r a n d o m " force

( )— Ocos . . . w e r e acting on i t . In part icular , the energy of the os-
The solution of the lat ter problem i s well known (see d i l a t i o n s will increase on the average in proportion to
e.g . [ 2 ] and Sec. 2.2), and we shall describe qualitatively the t ime, in spite of the non-linearity of the system (in
a case close to resonance in which the frequency Ω of the absence of damping). We shall call this special type
the perturbation i s approximately equal to the frequency of motion of an oscil latory system stochasticity.
ω (a) of unperturbed motion of the osci l lator. In view of F i r s t of all, study of the stochasticity phenomenon is
the non-linearity, the lat ter depends on the amplitude a interest ing from the purely physical standpoint, because
of the oscillations (ω(0) = ω0). In contrast to l inear i t connects two seemingly ra ther different fields of
resonance, the frequency of a non-linear osci l lator physics: the theory of non-linear oscil lations and s ta-
var ie s when a resonance perturbation acts on i t because t i s t ical mechanics . It is in essence one of the possible
of the variation in amplitude of the oscil lations. Conse- mechanisms by which stat ist ical laws can ar i se in a
quently, in turn, the amplitude and frequency of the dynamic sys tem. From this standpoint, elucidation of
osci l lator undergo oscillations (beats) over a certain the fundamental features of stochastic motion i s a l so of

range Aa, Δω. considerable importance in the general theory of non-
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linear oscillations. Stochasticity is no less significant
from the standpoint of applications, mainly those con-
cerning the problem of stability of non-linear oscilla-
tions of conservative systems, which arises in the most
varied fields of physics and technology.

Let us take up this problem in somewhat greater de-
tail.

The most difficult point in the problem of stability of
oscillations is precisely the case of a conservative sys-
tem. In this case, only the so-called neutral stability
can exist. Here, small perturbations of the starting
conditions cause limited oscillations about the unper-
turbed solution that neither grow nor decay with time.
In particular, this means that any unconsidered factor,
however small, can transform such a neutral stability
into instability. This is one of the reasons why we do
not yet have a general theory of stability of non-linear
oscillations of conservative systems, in spite of consid-
erable efforts along this line, especially in the last
decade. Another reason is that the fundamental field of
application of the theory of non-linear oscillations has
involved until recently self-oscillatory or self-regulat-
ing systems, which are not conservative. This biased
orientation of the theory of oscillations is well noted in
the monographs (see, e.g.C 5 0 ]). It has had the result that
even such flexible new methods as the Krylov-Bogolyu-
bov-Mitropol'sku asymptotic expansion (the KBM
method^1'23) have been used to a very limited extent,
while the entire topic of the theory of non-linear oscilla-
tions has been artificially narrowed to the problem of
existence and stability of periodic solutions. On the
other hand, it has proved possible in celestial mechanics
(however paradoxical this may be, the latter is not
usually included in general courses of non-linear os-
cillations1 *°1) to restrict the treatment to constructing
approximate solutions only for very short intervals of
time (on the characteristic scale), by virtue of the short-
ness of human life. This fact is a highly specific feature
of modern celestial mechanics, a feature that has led to
rejection of Poincare's original program of constructing
a general, although qualitative, theory of motion of con-
servative systems.

However, new, important applications of the theory of
non-linear oscillations have recently appeared. They
involve the problem of prolonged retention of charged
particles in a limited region of space by means of an
electromagnetic (usually magnetic) field having a spec-
ial configuration. These are the magnetic traps for a
thermonuclear reactor,'-55'1 charged-particle accelera-
t o r s , ^ and especially, accumulators for proton and
proton-antiproton counter beams.t58-' We can also
classify here the problem of non-linear interaction of
waves in a plasma (see, e.gP3^). These applications
pose the problem of studying motion of a non-linear
oscillatory system as a whole, i.e., over an unlimited
time range and for arbitrary initial conditions. On the
other hand, even the first experiments^9'5 7 3 and calcula-
tions'-103 in the field of new applications have indicated
that the problem of stability of non-linear oscillations
is related to the problem of appearance of statistical
laws in a dynamic system. Further, it has turned out
that such a relation was also found by Hedlund and by
Hopi 1 2 3 within the framework of the so-called ergodic
theory (see Chap. 3). The latter is a special branch of

mathematics that has arisen from attempts to provide a
foundation for the laws of thermodynamics and statistical
physics on a purely mechanical basis. The first applica-
tion of this important result of Hedlund and Hopf to prob-
lems of physics, and until recently the only one, was
made by Krylov,[133 who studied the statistical behavior
of molecular systems. The recent mathematical and
physical studies that are reviewed in this article should
be considered to be a development, or more properly, a
reactivation of this field. In particular, the ergodic
theory has been developing vigorously recently, mainly
in connection with the studies of Kolmogorov'-313 and of
Anosov and Sinai1114"1"3 (Sec. 3.5), and it has left far be-
hind the statistical mechanics that gave rise to it. How-
ever, the modern ergodic theory describes only the
limiting case, which is often unattainable in principle, of
maximum instability of motion. Hence, it does not suf-
fice per se for solving the mentioned applied problems.
On the other hand, a mathematical theory has recently
arisen that has been stimulated in part by celestial
mechanics. It treats precisely the opposite limiting case
of maximum stability of non-linear oscillations of a
Hamiltonian system. This very general theory was also
started by Kolmogorov ,1-583 and has been developed by
Arnol'dC59] and Moser [ 6°3 (the KAM theory). Evidently,
we must combine both limiting theories in order to solve
practical problems. Unfortunately, it is currently im-
possible to construct rigorously such a unifying theory,
owing to great difficulties in principle. However, one
can develop a semiqualitative theory, which we shall
call the theory of stochasticity. This theory makes it
possible to depict an overall pattern of instability of
non-linear oscillations supplemented with estimates of
orders of magnitude. Often this proves sufficient for ap-
plications, in any case, when combined with experiments,
either numerical or " r e a l . "

The fundamental concept of the theory is that of non-
linear resonance (Sec. 2.2). This interesting phenorn^
enon, an example of which is described above, was ap-
parently studied first by Lagrange in celestial mechan-
ics, where it acquired the name of librational motion of
planets (see, e.g.t3 3), and in more explicit form, in the
theory of accelerators, in connection with the mechanism
of autophasing discovered by Veksler and McMillanc"'5^
(see also1-83). Below, we shall introduce and study non-
linear resonance with the example of relatively simple
one-dimensional models, beginning with the rather gen-
eral case of a non-linear oscillator acted on by an ex-
ternal periodic perturbation (Sec. 2.1), and ending with
an "elementary" model (Sec. 3.1). The fundamental
method of study will be analytical estimation based par-
tially on the current ergodic theory (Chap. 3), and
corroborated by numerical experiments with the "ele-
mentary" model (Chap. 4).

The theory of stochasticity makes it possible to pic-
ture the overall structure of the phase space of a non-
linear oscillatory system, which proves to be permeated
everywhere by a dense system (Sec. 2.4) of non-linear
resonances. Owing to the interaction of these resonan-
ces in the neighborhood of the separatrix of each of them,
a so-called stochastic layer always arises. The latter is
the nucleus of instability. This fact was known in gen-
eral form even by Poincare ,^6'3 and has been studied in
detail by Mel'nikov^62-! who was able to calculate the
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so-called splitting of the separa t r ix , which charac ter-
izes the lower bound of the width of the stochastic layer.
The upper bound was est imated in^ 2 0 ' 8 ] by using the
stochasticity theory, and it proved to agree in order of
magnitude with the splitting of the s e p a r a t r i x . Recently,
Alekseev'-63-' has r igorously proved the existence in the
stochastic layer of quasi-random t ra jec tor ies , thus jus-
tifying the name of the layer.

For a system having one degree of freedom, the
ra ther thin stochastic layers of different resonances do
not intersect in the phase plane (see, e.g., Fig. 1).
Hence, the instability is localized within one stochastic
layer, and is not dangerous from the pract ical stand-
point. Rigorous t reatment of this problem in the KAM
theory [ 5 9 ^ makes it possible to formulate and prove in
this case the theorem of permanent (t — °°) stability of
motion. The same situation also a r i s e s in an autonomous
system having two degrees of freedom, since i ts motion
is confined in phase space to a surface of constant en-
ergy. We shall call both these cases one - dimensional.
In the multidimensional case, the stochastic layers of
different resonances generally intersect one another to
form an intr icate system of " c h a n n e l s " along which dif-
fusion can occur to great dis tances, i .e . , rea l instability.
The f irst example of such an instability was constructed
by Arnol'dJ-35-1 Hence i t is usually called Arnol 'd diffu-
sion. The semiqualitative theory of this instability has
been developed i n C 8 ] .

The width of a non-linear resonance and its stochastic
layer i s determined by the size of the " p e r t u r b a t i o n "
with respect to the " u n p e r t u r b e d " sys tem, which we
understand to be a so-called maximally stable system
(Sec. 3.3), i .e . , a system having separable var iables . If
the perturbation is great enough, adjacent resonances in
phase space overlap (Sec. 2.3). Then the stochastic
layers broaden to the size of their resonances to form
a continuous stochastic region in phase space. Here a
strong s tochast ic instability a r i s e s (including even the
one-dimensional case). This is the most dangerous
instability of non-linear osci l lat ions. This review is
mainly concerned with describing this instability in par-
t icular with the examples of simple models (Chaps. 2, 3)
and some applications (Chaps. 5 and 6).

For the r e a d e r ' s convenience , we also summarize
the fundamental ideas and concepts of the current ergodic
theory (Chap. 3).

The stochasticity theory not only permits one to ob-
tain practical ly-important c r i t e r i a and character i s t ics
of instability of non-linear osci l lat ions, but also to t race
in detail the transit ion from dynamic to s tat is t ical des-
cription of the motion of a mechanical sys tem. The
lat ter i s essent ia l for a deeper and more correct under-
standing of the s tat is t ical models . This problem i s dis-
cussed briefly in Chap. 7, and also in Sec. 3.6. We refer
r e a d e r s who are interested in this problem in greater
detail to the excellent monograph of Krylov,^ 1 3 ] whose
studies have appeared to us to be the first step toward
constructing a physical theory of stochasticity.

2. A ONE-DIMENSIONAL NON-LINEAR OSCILLATOR
ACTED ON BY A PERIODIC PERTURBATION

The fundamental problem of this review i s to demon-
st ra te the phenomenon of stochastic instability of non-

FIG. 1. Diagram of the phase trajectories in the neighborhood of
two resonances with moderate non-linearity (2.6). (Δω)ψ is the width
of the non-linear resonance; Δ is the frequency spacing between adjacent
resonances. The dotted lines show the separatrices of the first-order ap-
proximation; they break down in subsequent approximations, and sto-
chastic layers are formed in their place, which are shown by the cross-
hatching (Sec. 6.1).

l i n e a r o s c i l l a t i o n s by m e a n s t h e s i m p l e s t m o d e l s t h a t a r e

s t i l l p h y s i c a l ( i . e . , b e a r a r e l a t i o n t o a c t u a l m e c h a n i c a l

s y s t e m s ) . One s u c h m o d e l i s a o n e - d i m e n s i o n a l n o n -

l i n e a r o s c i l l a t i o n s by m e a n s the s i m p l e s t p o s s i b l e

m o d e l s t h a t a r e s t i l l p h y s i c a l ( i . e . , b e a r a r e l a t i o n to a c -

t u a l m e c h a n i c a l s y s t e m s ) . One s u c h m o d e l i s a o n e -

d i m e n s i o n a l n o n l i n e a r o s c i l l a t o r a c t e d on by a p e r i o d i c

p e r t u r b a t i o n , a s d e s c r i b e d i n t h e I n t r o d u c t i o n . T h e p a t -

t e r n of m o t i o n of t h i s m o d e l i s v e r y p i c t o r i a l , but a s we

s h a l l s e e , not a t a l l t r i v i a l . S o m e i m p o r t a n t p r a c t i c a l

p r o b l e m s c a n be r e d u c e d t o t h i s m o d e l . S o m e of t h e m ,

i n c l u d i n g a l s o m u l t i d i m e n s i o n a l m o d e l s (in t h e f i r s t a p -

p r o x i m a t i o n ) , w i l l be d i s c u s s e d b e l o w . Of c o u r s e , t h i s

d o e s n o t m e a n a t a l l t h a t one c a n s o l v e a l l n o n - l i n e a r o s -

c i l l a t i o n p r o b l e m s wi th the d i s c u s s e d m o d e l . H o w e v e r ,

a s we s h a l l s e e b e l o w , i t p e r m i t s one t o s t u d y the funda-

m e n t a l f e a t u r e s of n o n - l i n e a r o s c i l l a t i o n s , by m e a n s of

w h i c h we c a n a p p r o a c h the s o l u t i o n of m o r e c o m p l e x

p r o b l e m s . A m o n g the l a t t e r , for e x a m p l e , a r e t h e s o -

c a l l e d A r n o l ' d di f fus ion, a s p e c i a l f o r m of s t o c h a s t i c i n -

s t a b i l i t y of m u l t i d i m e n s i o n a l s y s t e m s . We s h a l l n o t t r e a t

i t in any d e t a i l , and s h a l l r e f e r i n t e r e s t e d r e a d e r s t o the

s p e c i a l s t u d i e s ^ 3 5 ' 8 3 ( see a l s o C h a p . 6).

H e n c e f o r t h we s h a l l a l w a y s a s s u m e t h e p e r t u r b a t i o n

t o be s m a l l i n o r d e r t o a l l o w a p p r o x i m a t e m e t h o d s . F o r

t h i s r e a s o n , the f u n d a m e n t a l ef fect of t h e p e r t u r b a t i o n

i n v o l v e s r e s o n a n c e . T h i s s t a t e m e n t i s not s o o b v i o u s f o r

a n o n - l i n e a r a s for a l i n e a r s y s t e m , but i t s t i l l p r o v e s

t o b e c o r r e c t (Sec . 2 .2) .

2.1. An Isolated Ν on-linear Resonance

The most convenient variables to describe the motion
of a non-linear oscil lator a re the var iables : action (I)
and angle (Θ). The action is related to the energy W of
the system be the relation

dW (/)
dl -ω (Ι),

where ω (I) is the frequency of the non-linear oscil la-
t ions. When there is a perturbation, the equations of
motion of the osci l lator in t e r m s of the variables ( Ι , Θ)
of the unperturbed motion have the form:
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dV(l, Θ, fl)

( 2 . 1 )

V (Ι, θ,

Here S6 i s the Hamiltonian, while the perturbation eV i s
smal l (~e ^ 1) and periodic in θ and η with a period
of 2π. The phase 9- c h a r a c t e r i z e s the external perturba-
tion having a period Τ = 27Τ/Ω. We shall take the non-
linearity of the osci l lator to be i t s non-isochronicity,
i .e. , dependence of the oscillation frequency on the en-
ergy. The following dimensionless p a r a m e t e r serves to
character ize the non-linearity:

(2.2)/ cfr>

Anharmonicity of the osci l lat ions, i .e . , presence of
higher harmonics , does not necessar i ly involve non-
l ineari ty. Thus, revolution of a re lat iv is t ic part icle in a
magnetic field gives an example of a non-l inear, but
harmonic osci l lator. On the other hand, motion of an
ul t rare lat iv i s t ic part icle in a rectangular potential well
i s an anharmonic oscillation having a constant frequency.

In the general case , the perturbation eV is expanded
in a double Four ie r s e r i e s

-Γ_ ν „('>
_ ei(w<M-n0) _)_ (2.3)

A resonance (m, n) (the m are harmonics of oscilla-
tions of the oscillator with the nth harmonic of the ex-
ternal perturbation) is determined by the condition

m£2-i-mo«0. (2.4)

The required accuracy of this equality depends on the
width of the resonance (see below in Sec. 2.2.).

The simplest case is that of a single resonance:
ΐ ϊ ΐ ,η = + 1 ( ω « Ω ) . Then two (real) t e r m s remain in the
summation of (2.3). One of these, having the argument
$• — θ (ω, Ω > 0) is the resonance proper , while the other
($ + Θ) is a high-frequency perturbat ion. We can neglect

the l a t ter t e r m in the first approximation, e.g., on the
bas i s of the KBM averaging method (Krylov-Bogolyubov-
M i t r o p o l ' s k u t 1 ' 2 1 1 ) . More subtle effects of such a per-
turbation will be discussed below (see Chap. 6).

If the width of the resonances i s smal l enough, then
only one resonance can occur under the given initial
conditions. We shall call it the r e a l resonance, or s im-
ply the resonance of (2.4). Under these initial conditions,
al l other t e r m s in the summation of (2.3) correspond to
virtual resonances .* Natural ly, virtual resonances affect
the motion. However, in a non-linear sys tem, this effect
does not amount to a tr ivial superposition, and we shall
call it the interaction of resonances .

Whenever the spacing between resonances is " l a r g e
enough", a t e r m that will be defined more precisely
below (Sec. 2.3), the isolated-resonance approximation
must st i l l be satisfied, in which we can ignore i n t e r a c -
tion of resonances . This corresponds with the ordinary
KBM method of averaging. If we retain only one reson-
ance t e r m in the summation of (2.3), and introduce the

*We note that not every virtual resonance can become real, since
the condition (2.4) is not generally satisfied by all m, n.

resonance phase φ τ η η = m$ +ηθ, we get from (2.1) the
equations of motion in the form

ψηιη = "ΐΏ -;- ηω (I) -\- enlmn cos ψ,η η,
( 2.5)

where the pr ime denotes the derivative with respect to
the action I.

2.2. Phase Oscillations in the Approximation of
Moderate Non-linearity

Let the parameter a in (2.2) satisfy the condition of
moderate non-linearity:

ε<α<1/ε. (2.6)

A s w e s h a l l s e e b e l o w , t h e v a r i a t i o n Δ Ι = I - I r i s a l w a y s

smal l in this case ( |ΔΙ| <^ I r ) , where the value I r c o r r e -
sponds to exact resonance (mfl + ηω(ΙΓ) = 0. Hence,
independently of the form of the function ω(Ι), V m n ( I ) of
the motion near a non-linear resonance of (2.5) is ap-
proximately described by the following (conservative)
universal Hamiltonian:

(Δ')2

-,-enVmn ( (2.7)

The system of (2.7) resembles a pendulum of m a s s
(ηω') ' 1 in a gravitational field having an acceleration
g = €n2o)'Vm u . Figure 1 shows the pattern of t ra jector ies
in the phase plane I, i/)mn for two non-linear resonances
without taking account of the interaction between them.
In the initial phase plane (Ι , Θ) of the osci l lator, the
chain of resonances i s closed, and it contains η regions.
Each such region contains a stable equilibrium position,
or an elliptical stationary point* ( i^ m n = ir; g > 0), which
i s indicated in Fig. 1 by the symbol Q . Adjacent regions
are separated by positions of unstable equilibrium, or
by a hyperbolic stationary point (tl>mn = 0; g > 0, symbol
x in Fig. 1). The tra jectory connecting two consecutive
hyperbolic points, which is indicated in Fig. 1 by a dot-
ted l ine, is called the separat r ix . It bounds the region of
non-linear resonance within which phase oscil lations
occur, i .e . , limited variation in the phase $ m n . The
phase var ies monotonically in time outside the separa-
t r ix . The maximum width of the non-linear resonance
(dimensions of the separatr ix) is determined from (2.7):

(Δω)φ = ω' (Δ/), = 4

(2.8)

where Ω η ι η is the frequency of the smal l phase osci l la-
t ions. With moderate non-linearity as in (2.6), the varia-
tion of both I and ω i s smal l :

I ~ V α ω/"'
• (' eaVmTJti>I,

T h i s j u s t i f i e s t h e u n i v e r s a l d e s c r i p t i o n of a n o n - l i n e a r

r e s o n a n c e u s i n g t h e H a m i l t o n i a n of ( 2 . 7 ) .

W e c a n e x p l a i n t h e p h y s i c a l m e a n i n g of t h e p h a s e o s -

c i l l a t i o n s a s f o l l o w s . O w i n g t o t h e n o n - l i n e a r i t y , a

c h a n g e i n t h e a m p l i t u d e of t h e o s c i l l a t i o n s a t a r e s o n a n c e

c a u s e s t h e f r e q u e n c y of t h e o s c i l l a t i o n s t o d e p a r t f r o m

t h e r e s o n a n c e v a l u e . H e n c e , i t s t o p s f u r t h e r c h a n g e i n

t h e a m p l i t u d e of t h e o s c i l l a t i o n s . H o w e v e r , t h e f r e q u e n c y

s h i f t t h a t a r i s e s h e r e l e a d s t o d e p a r t u r e f r o m t h e r e s o n -
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ance phase, so that the amplitude of the oscil lations
finally begins to vary in the opposite direction, the os-
cillation frequency again r e t u r n s to the resonance value,
e t c .

Although non-linearity thus even stabil izes an isola-
ted resonance, i .e . , it r e s t r i c t s the variation ΔΙ, the
lat ter proves to be substantially la rger according to
(2.8) than in the non-resonance case : ΔΙ ~ el. This
justifies the distinguishing of resonances in a non-linear
sys tem. For the same reason, the rea l parameter in
the expansion when a ~ 1 i s VF, ra ther than e. In par-
t icular , in the f irst approximation in t e r m s of VF, we
can neglect the last t e r m in Eq. (2.5) for >pmn, which is
a l inear correction term for the frequency.* We must
take it into account only when e > a. In par t icular , the
condition for stabilization of a resonance by non-linearity
can be obtained approximately from the e s t i m a t e t

enV'mn =£ η (Δω)φ,

or

* " ' ' (^mn)2 '
(2.9)

A p p a r e n t l y , n o n - l i n e a r r e s o n a n c e w a s f i r s t s t u d i e d b y

L a g r a n g e i n c o n n e c t i o n w i t h t h e s o - c a l l e d l i b r a t i o n a l

m o t i o n of p l a n e t s , [ 3 ] a n d i n a m o r e e x p l i c i t f o r m , i n t h e

t h e o r y of a c c e l e r a t o r s i n c o n n e c t i o n w i t h t h e m e c h a n i s m

of a u t o p h a s i n g d i s c o v e r e d b y V e k s l e r a n d M c M i l l a n [ 4 ' 5 ]

( s e e a l s o 1 - ^ ) . W e h a v e a d o p t e d t h e f u n d a m e n t a l t e r m i n -

o l o g y c o n c e r n i n g n o n - l i n e a r r e s o n a n c e f r o m t h e l a t t e r

s t u d i e s . A u n i v e r s a l t h e o r y o f n o n - l i n e a r r e s o n a n c e i n

t h e a p p r o x i m a t i o n of m o d e r a t e n o n - l i n e a r i t y h a s b e e n

g i v e n i n C 7 ] ( s e e a l s o 1 1 8 1 1 ) .

2 . 3 . I n t e r a c t i o n of N o n - l i n e a r R e s o n a n c e s

I n t e r a c t i o n of n o n - l i n e a r r e s o n a n c e s i s t h e f u n d a m e n -

t a l e f f e c t t h a t w e s h a l l t a k e up i n t h i s s t u d y . I t s s i g n i f i -

c a n c e c o n s i s t s i n t h e f a c t t h a t t h e v e r y d a n g e r o u s

s t o c h a s t i c i n s t a b i l i t y of n o n - l i n e a r o s c i l l a t i o n s a r i s e s

w h e n t h e i n t e r a c t i o n i s s t r o n g e n o u g h .

E v i d e n t l y , i n t e r a c t i o n of r e s o n a n c e s d e p e n d s o n t h e

r a t i o o f t h e w i d t h ( Δ ω ) ^ , ( 2 . 8 ) o f t h e r e s o n a n c e t o t h e
d i s t a n c e t o t h e n e a r e s t n e i g h b o r i n g r e s o n a n c e
Δ = Ι ω ΐ + ι - ω ϊ 1 ( s e e F i g . 1 ) ·

W e s h a l l c a l l t h e q u a n t i t y

<Δ ω>φ ( 2 . 1 0 )
S~ Δ

t h e c o u p l i n g c o n s t a n t o f t h e r e s o n a n c e s .

T h e i s o l a t e d - r e s o n a n c e a p p r o x i m a t i o n c o r r e s p o n d s

to the condition: s ^ 1. On the other hand, when s ΐϊ. 1,
which implies overlap of adjacent resonances, the pat-
tern of motion must change substantially. In fact, as
the universal Hamiltonian of (2.7) shows, an isolated
non-linear resonance is equivalent to the motion of a
system in a certain potential well. When there a re sev-
e r a l resonances , there a re just as many wells (see Fig.
1). If s ί ϊ 1, the adjacent wells m e r g e , so that the sys-

*This term remains even for a linear oscillator.
tSchoch [66] and Mel'nikov [62] have made detailed studies of reso-

nance with weak non-linearity; Ford and Lunsford [8S] have recently
discovered a qualitatively new phenomenon: the persistence of a con-
siderable region of stochasticity with an arbitrarily weak non-linearity.

tern can travel from one well to another.* Evidently,
this implies the development of a certain instability.
Our fundamental asser t ion consists in the idea that
stochastic instability of non-linear oscil lations se t s in
when the coupling constant s ϊ ϊ 1, i .e . , the motion be-
comes highly i r r e g u l a r and seemingly random (see Sec.
3.6). Hence, we can also call the coupling constant s the
stochasticity p a r a m e t e r .

We shall call the condition

s ~ l (2.11)

the stochasticity boundary.
Apparently, stochastic instability of non-linear os-

cillations was f irst observed in numerical experiments
by Goward and Hine,^ 9 ] who also obtained c r i t e r i a of
instability like (2.11). Analytical e s t imates a r e given
in'-10^, where arguments a re a lso given in favor of the
idea that this instability is s tochast ic. The lat ter view-
point has subsequently been corroborated in a s e r i e s of
studies, which are reviewed in the monographs' · 8 ' 1 1^
(see also below). It turned out that stochastic instability
is a special case of manifestation of s tat is t ical laws.
The relation of the la t ter to instability was f irst noted in
an especially constructed example by Hedlund and
Hopf .* 1 2 ] Krylov C l 3 ] has analyzed it in detail for the
case of molecular collisions, and Anosov and Sinai'-1'1"16-'
have proved it r igorously under very general conditions.

We shall describe below the fundamental features ,
the mechanism, and nature of stochastic instability,
using the example of simple models .

2.4. A Basic Model of Stochasticity of a Hamiltonian
System

Let us examine the special case of a periodic per-
turbation of a non-linear osci l lator in the form of very
brief " p u l s e s " that depend only on the phase Θ:
V(I, θ ) ^ τ ν ( θ ) Σ ) 6 ( t - k T ) (2.1). Then we can write

k
the equations of motion in the form of a canonical t r a n s -
formation Ι, θ — Γ, θ":

! ^ 7) (2.12)

which has the generating function F ( I , Θ) = Γθ +
+ eV(6)). This transformation descr ibes the change in
the quantities I and θ when acted on by a single " p u l s e " ,
or as we shall say henceforth, in one s tep. Of course,
when Τ — 0, the transformation (2.12) goes over into the
Hamiltonian equations (2.1), but without a l inear c o r r e c -
tion t e r m for the frequency, because of the condition
that_we have adopted: 9V/8I = 0. The last express ion
for I, where f(0) ~ 1 is a dimensionless function of the
phase, while I o i s a constant having the dimensions of
action that has been introduced to make the relat ions
more graphic.

F u r t h e r , let us examine the special case in which
ί(θ) = sin Θ, i .e . , the perturbation has only one harmonic.
We can write the condition for resonance in the form
Τω = 2πηι, where m i s an integer. In t e r m s of the differ-
ential equations (2.1), or as we shall say, of continuous

real.
*We note that several adjacent resonances then simultaneously become
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time, this system of resonances corresponds to expan-
sion of a periodic δ-function in a Fourier series:

-Μ·)= 2

Here the spacing between resonances is Δ = 2ττ/Τ = Ω ,
while V m i = 2Io/T (2.3), (2.12). The stochasticity param-
eter of (2.10) takes on the form

(2.13)

First of all, we shall show from simple physical con-
siderations that when s 3> 1, the motion of the system
of (2.12), which we shall call the basic model of stochas-
ticity,* actually resembles randomness.C10] In order not
to do this, let us call attention to the fact that the two
variables I and θ play quite different roles in the motion
of the system in (2.12). The phase space of the system
is a cylinder that is closed in θ and infinite in I. The
change in I per step is always small, since ε « 1. We
can easily see that the transformation of the phase here
has fundamentally the nature of an dilatation, the coeffi-
cient of which we shall define to be

/'(Θ). (2.14)

The latter expression is derived from (2.12). By com-
parison with (2.13), we find that |K| ~ s2.

When Κ ^ 1, two essential processes occur. The
first of these is local instability of motion, which means
an exponential divergence of neighboring trajectories,
at least in phase: (Δ6>η) = (Δθ)0 (Κ)η. Here Κ(θ) is the
geometric mean of the dilatation coefficient along the
trajectory, and η is the serial number of the transforma-
tion step, or the discrete time. The second process, the
so-called mixing, is in this case a distribution of trajec-
tories emerging from a small region Δθ < 2ir/|K| over
the entire phase range of 2ir even after a single step. It
is easy to envision that this leads to disappearance of
correlations in the sequence of phases 60, &i, ••·, &n.
That is, the motion becomes seemingly "random" in
terms of phase. Of course, these arguments are too
greatly simplified. Nevertheless, as we see it, they are
very pictorial. This is very important because the exact
mathematical theory of motion of even such a simple
model as (2.12) still faces insuperable obstacles. Still,
it proves possible to deepen somewhat these pictorial
ideas by using the modern ergodic theory (Chap. 3). Let
us imagine for a moment that we have already proved
the "randomness" of the motion in terms of phase.
Then we arrive at a typical situation in modern statis-
tical mechanics in deriving a kinetic equation in the
random-phase approximation. One usually postulates
that the angular variables are random quantities, and
this makes it possible to write the kinetic equation for
the distribution function of the action variables, which
serve as the integrals of motion of the unperturbed sys-
tem. We refer the reader to the special studies^ 1 7 ' 1 8 '" 3

for the details of deriving the kinetic equation (see also
Chap. 7).

3. FUNDAMENTAL CONCEPTS OF ERGODIC THEORY

Ergodic theory is a branch of mathematics that
studies discrete or continuous transformations having a
preserved measure (integral invariant). As the name
shows, ergodic theory arose from attempts to create a
basis for statistical laws, i.e., derive them from
dynamic equations of motion. Its currently most inter-
esting object (at least for physicists) is the case of
maximum instability of motion of a Hamiltonian system.
The opposite case of maximum stability is treated by
the KAM theory (see Sec. 6.1). According to the Liou-
ville theorem, the integral invariant (and the measure of
space) is the phase volume, the element of which we
shall denote by dr . We shall set the total volume of the
limited phase space of the system to be Γ = 1.

The aim of this chapter is to explain by simple exam-
ples the fundamental concepts and language of modern
ergodic theory, and thus to facilitate reading the special
studies in this field. We are convinced that familiarity
with this theory is now an urgent necessity for all those
who are interested in the problem of stability of non-
linear oscillations and allied problems.

Furthermore, we shall use the most recent results
of ergodic theory for a more detailed analysis of the
motion of the basic model of (2.12) (see Sec. 3.5).

3.1. An Elementary Model of Stochasticity

First of all, we should simplify even further the
basic model of (2.12). This involves the fact that ergodic
theory is applicable mainly to systems having a finite
phase space, which is not true of the basic model. The
motion of the latter actually resolves into two substan-
tially different processes (when s >· 1): dynamic mo-
tion within a limited region of phase space that gener-
ates a "random" succession of phases θ0) θ1} ..., θη,...;
and unlimited diffusion in I. Only the former of these
processes is related properly to ergodic theory,
whereas the latter is described by the kinetic equation.
We shall show how one can separate the two processes,
using the example of the basic model. For convenience
in writing down the transformation, we shall start by
transforming to the new phase φ = θ/2π having the period
of unity. It is convenient to assign the latter by the
operation of taking the fractional part: {x } = χ - [x],
where [x] is the integral part. Now let us introduce in-
stead of I the new variable ψ = {Τω(Ι)/2ττ}. The meaning
of this is that we want to distinguish only those changes
in I that lead to a change in the phase ψ, and thus to
eliminate the diffusion process. In the new variables,
the transformation takes on the form

φ = {φ + kf (ψ)}, ψ={ψ+φ} (3.1)

"The meaning of this term is explained below (Sec. 6.3), after we
have seen which properties of stochasticity are described by this model,
and which are not; the basic model was introduced in [ l 0].

and is also canonical. Here k = eo)l 0T/2ir. The phase
space of the system of (3.1) i s now r e s t r i c t e d to a unit
square having sides that are identical in p a i r s , or to a
unit t o r u s . We shall call the model of (3.1) the elemen-
tary model.

In this chapter, we shall use i t along with other s im-
ple models to i l lustrate the fundamental concepts of
modern ergodic theory.

To avoid misunderstanding, we emphasize that not
only do we not intend to furnish a proof of the theorems
of ergodic theory, but not even to formulate them ex-
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actly. Our fundamental aim is to explain as graphically
as possible, if we can so say i t , the physical meaning of
ergodic theory.

We recommend to r e a d e r s who a r e interested in the
properly mathematical side of this theory, first of al l ,
the book by Halmos,'-23-' which is apparently the most
accessible of the specialized texts . The current state of
the theory has been presented r a t h e r fully in the reviews
by Rokhlin and by Anosov and Sinai.1-163

3.2. Methods of Describing Motion in Ergodic Theory

The start ing point is the phase tra jectory of the mo-
tion, i .e. , the tra jectory in the phase space x(t) of the
system, where χ denotes the phase vector (the set of
coordinates in phase space). For the e lementary model
of (3.1), χ = (φ, φ), while the time is d i scre te : t = η
(integer). We shall call such a motion a cascade ,EleJ
Motion in continuous t ime, as given, e.g., by differential
equations, is called a flow.

Another way of describing motion involves use of
some function f(x) of the point in phase space, which is
generally complex. The latter can be any quantity, e.g.,
the energy of the sys tem. However, we shall assume
below for the sake of graphic presentation that f (x) is
the distribution in phase space that is usual in stat is t ical
mechanics, or the (phase) densityJ- 2 2 ]

A singular density (f = δ(χ - x o ( t ) ) ) is equivalent to
description in t e r m s of a single t ra jectory. In ergodic
theory, one usually uses a non-singular density f(x), ex-
cluding special t ra jector ies in quantity of measure zero .
However, we note that a non-singular density is unob-
servable in principle (unrealizable)*, and therefore it
can be used only as an auxiliary, intermediate concept.

The time variation of the phase density f (x, t) is de-
termined by the motion of the system along phase tra jec-
t o r i e s :

T, i) = /(7>, t)\ (3.2)

Here Τ is the operator for displacement of the phase
point along the tra jectory in the time T , and S^. is the
operator for the variation in the function during the same
time (the class ical analog of the S-matrix; see, e.g.1-2 4 3).
For a cascade, the operator Τ is given by a t ransforma-
tion, e.g., (3.1). The meaning of introducing the new
operator S-p is that it is l inear, while it i s also unitary
for a transformation that is revers ib le and that pre-
serves m e a s u r e .

An important character i s t ic of the operator S-p is i ts
spectrum. F i r s t let us define the sca lar product of two
vectors in Hubert space as

It will be convenient for us henceforth to introduce the
correlat ion coefficient of the functions g, ft: p(g, f)

*This is implied even by the fact that a non-singular density does
not obey the inverse Poincare theorem, which is valid for any Hamil-
tonian system (see Sec. 3.4).

tSometimes one uses also the normalized correlation coefficient: (g,
f)= [<g, O-(gXf>]/[«g2>-<g>2)«f2>-(f>2)]'/2. Here and below: <f> =
JfdF; sometimes one uses another notation: (f, 1>(3.3).

In the s p e c i a l c a s e in which g = S T f , one speaks of
autocorre lat ion. According to the t h e o r e m of

Khinchin,^ 5 ' 2 " 3 th is d e t e r m i n e s the s p e c t r u m S(w):

(i'r/, / )= ] e«"^((o)<Ao; (3.4)

Here Τ i s a variable p a r a m e t e r , so that the autocorre la-
tion is a function of Τ and a functional of f. Of course ,
the correlat ion spectrum S(u>) depends on f, but the type
of spectrum does not depend on f within certain
l i m i t s P 6 3 Below we shall deal with two fundamental
types of spectra , discrete and continuous. In the f o r m e r
c a s e , the spectra l density S(w) = Σ Ck6(w - w k ) . In the

k
lat ter case, the function S(u>) is continuous and finite.

3.3. Ergodicity of Motion, or How Probability Appears
in Dynamic Theory

Ergodicity of motion is perhaps the best-known
property of a s tat is t ical sys tem. This concept was in-
troduced into physics by Boltzmann, and it is usually a s -
sociated with the idea of t ra jector ies of motion that uni-
formly fill (according to an invariant measure) all of the
accessible phase space. Moreover, ergodicity implies
that in the limit (as t — °°) the fraction of the time (t^A)
that the system spends in any element (A) of phase space
is proportional to the phase volume Γ ^ of this e lement:

WA — lim -^- — —~. W»̂ /

The existence of the l imit in (3.5) is the central
(Birkhoff-Khinchin) theorem of the class ical ergodic
theory, and it permits one to introduce the concept of
probability for a single dynamic t r a j e c t o r y P 5 1 In (3.5),
w ^ denotes the probability that the system will occupy
the region Α.* The agreement between probability as
thus introduced with our empir ica l concept of it will be
discussed in Sec. 3.6.

The Birkhoff-Khinchin theorem 1 1 2 5 3 implies the exis-
tence of the limit in (3.5) only from the existence of a
finite invariant m e a s u r e . Hence, all Hamiltonian sys-
tems are ergodic in a certain sense . In order to explain
this asser t ion, which seems strange at f irst glance, we
must make more precise the concept of "access ib le
phase v o l u m e " that figures in the definition of ergodicity
given above. In some cases , e.g., the e lementary model
of (3.1), this can be all of phase space. However, usually
only a certain subspace is " a c c e s s i b l e , " as defined by
single-valued integrals of motion.*·2 8 3 In an autonomous
(closed) sys tem, there is always at least one such integ-
r a l , the energy W, which defines the energy surface
W = const in phase space. It has the number of dimen-
sions 2N — 1, where Ν is the number of degrees of free-
dom of the system.

*For a system that consists of a very large number Ν ->· °° of identi-
cal subsystems, or "particles", one can use another definition of the
probability in phase space of a single "particle" (the so-called μ-space):
wa = lim (Na/N). This is the usual way of introducing the distribution
function in μ-space. However, in this case one must adopt additional
assumptions on the permissible initial conditions that wa depends on
for any Ν -> °». [27] The phase space of the entire system in which the
probability (3.5) is defined is called the Γ-space.
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We shall call a system maximally stable if it posses-
ses Ν single-valued integrals. Then the "accessible
phase volume" is reduced to a surface of Ν dimensions.
In terms of the separable variables of action and angle,
this is an N-dimensional torus:

/ = const, θΛ = ίω,, (/ , , . . . , 7Κ) + Θω.

A l a r g e r n u m b e r of s i n g l e - v a l u e d i n t e g r a l s , up t o 2N - 1,
Ν

is possible only on resonance tor i Σ) ni-Wi. = 0 (where
k = l

the n k a re i n t e g e r s ) ^ 2 8 ! the m e a s u r e s of which in the
phase space of the system are z e r o .

On non-resonance tor i that have m e a s u r e s of unity in
phase space, the phase t ra jectory i s not closed, and i t
covers the ent ire t o r u s . The lat ter property is called
transit iv i ty (on the torus) . According to the Birkhoff
theorem,l- 2 5 ] transitivity is equivalent to ergodicity. In a
somewhat simplified fashion, one can formulate this
theorem as follows: if a t ra jectory fills any region of
phase space, then i t fills it uniformly (in t e r m s of the
measure imposed on it , see the following r e m a r k ) . How-
ever , in physics, one understands as ergodicity a case in
which the motion i s transit ive on the energy surface.*
If this condition is not satisfied, then the system can
always be divided into ergodic components. This means
that one can always r e p r e s e n t all of the phase space as
a sum (union) of a finite or countable number, or even a
continuum of subspaces . In each of the subspaces, mo-
tion is t rans i t ive, and hence ergodic. An example of this
i s the above-mentioned multitude (continuum) of tor i of
a maximally stable sys tem.

Thus, the problem of ergodicity is reduced to seeking
the maximum region of transit ive motion.

In spectroscopic language, ergodicity is equivalent to
the condition that the number unity should be a non-
degenerate eigenvalue of the operator Sip. This condition
e n s u r e s transit ivi ty of motion. Otherwise, subspaces
a r i s e that a r e invariant during motion, and the system
breaks down into ergodic components in number equal to
the number of different eigenfunctions corresponding to
the eigenvalue unity.

Uniform filling of phase space by the tra jectory leads
to relaxation of any init ial distribution function f (x, t) to
a c o n s t a n t p 3 ^ the lat ter is always an eigenfunction of
the operator S^ having the eigenvalue unity, as i s implied
by the express ion (3.2). This property of ergodic motion
can be expressed by the equality

J(x~T) = lim \ Σ ShTf (x, t) = (/(x, t)), (3.6)

H e r e , as we see from the definition, the overline denotes
averaging over the time in t e r m s of the step T . The
equality f = ( f ) holds almost everywhere in phase space,
i .e . , perhaps except for a set of points of measure zero .
The la t ter qualification is typical of the ent ire ergodic
theory.

*Since the total phase volume is invariant, the imposed measure is
determined in this case by the volume of the layer between two nearby
energy surfaces having AW = const -*• 0, or F(S) » S/grad W(x), where
S is the area of the energy surface.

T h e r e l a t i o n (3.6) e x p r e s s e s t h e w e l l - k n o w n e q u a l i t y
i n s t a t i s t i c a l m e c h a n i c s of t i m e (f) a n d p h a s e ( ( f ) )
a v e r a g e s . H o w e v e r , i t i s e s s e n t i a l t o e m p h a s i z e t h a t
r e l a x a t i o n in a n e r g o d i c s y s t e m o c c u r s o n l y i n t h e t i m e
a v e r a g e , w h e r e a s the funct ion f(x, t ) g e n e r a l l y v a r i e s
q u a s i p e r i o d i c a l l y , s i n c e the s p e c t r u m c a n be d i s c r e t e
(see a b o v e ) .

T h e c o n d i t i o n of e r g o d i c i t y (in a g iven s e t ) c a n a l s o
be e x p r e s s e d by u s i n g t h e c o r r e l a t i o n c o e f f i c i e n t of t h e
f u n c t i o n s f(x, t ) and g(x) ( p T ( f , g) = p ( S T f , g)) (Sec. 3.2)
i n t h e f o r m :

pT (/, g) == lim i 2 pkT (/, g) = 0. (3.7)

It turns out1-233 that ergodicity implies that

I n t h e s p e c i a l c a s e g(x) = f(x, 0 ) , w e g e t a n a n a l o g o u s r e -
l a t i o n f o r the a u t o c o r r e l a t i o n .

F i n a l l y , we s h a l l i n t r o d u c e a n o t h e r i m p o r t a n t q u a n -
t i t y : the t r a n s i t i o n p r o b a b i l i t y Wj^(T) b e t w e e n t w o r e g -
i o n s of p h a s e s p a c e Aj a n d Ajj. T h e b a s i s f o r i n t r o d u c i n g
s u c h a q u a n t i t y i s t h e fac t t h a t t r a j e c t o r i e s t h a t l ink t h e
two r e g i o n s a l w a y s e x i s t f o r e r g o d i c m o t i o n . L e t TAj be
t h e r e g i o n i n t o w h i c h the r e g i o n Aj t r a n s f o r m s i n t h e
time Τ by motion along the trajectories. Its measure of
overlap with the region A k is*: r i k ( T ) = Γ(ΤΑΑ Π
and we shall call the transition probability:

(3.8)

where wj is the probability that the trajectory will enter
the region A;, which is equal to the measure Tj of the
region (Γ = 1) (see above).

We can derive the relation (3.8) directly from (3.7)
by taking as the functions f(x, 0) and g(x) the so-called
character i s t ic functions of the regions Aj and A^, i .e . ,
functions that a re equal to unity within the correspond-
ing regions, and zero outside.

3.4. Motion Involving Mixing, or Turbulence of Phase
Flow

According to the preceding section (Sec. 3.3), the
spectrum of an ergodic system can be d i sc re te , and this
means that i ts motion is quasiperiodic. A character i s t ic
feature of such motion is i t s regular i ty . In par t icular ,
this implies that the trajectory r e t u r n s to the start ing
point within a given accuracy after a definite interval of
time having an upper bound. An example of this is mo-
tion on the surface of a two-dimensional torus with con-
stant frequencies ω,, and ω 2 whose rat io i s i r ra t ional .
The frequencies of the spectrum in this case a r e :
cojjj = ko>i + Ιω2, where k and I are in teger s . When
ωι "C ω 2 or u>2 ^ u»i, the regulari ty of the circuit of the
torus i s especially graphic. The pattern of motion then
resembles the scanning of the ray on a television screen,
and it has nothing in common with our intuitive notion of
a random p r o c e s s . Hence, ergodicity is too weak a
property from the standpoint of creating a model of a
random p r o c e s s . To use a hydrodynamic analogy, we
can say that the phase flow, i .e . , the set of all t ra jector-

*I.e., the common part of the regions TAj and
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ies in the phase space of the system is laminar in this
case . A turbulent phase flow is called mixingl*3] (see
Sec. 2.4). This is one of the fundamental concepts of
modern ergodic theory, as contrasted with the class ical
theory, which stops with ergodicity. In the language,
respectively, of relaxation of density, corre lat ion, and
transi t ion probability, an exact definition of mixing has
the form:

lim/(*,i) = <

IimpT(/, g) =
(3.9)

A c h a r a c t e r i s t i c feature of these re lat ions i s the i r r e -
versibil ity of the relaxation process in mixing, in dis-
tinction from the quasiperiodic variation in time of the
quantities f (x, t ) , Ρ χ ( ί , g), and w i k ( T ) when only the
ergodicity of (3.6)—(3.8) ex i s t s . In other words, in
ergodicity, the limiting values a re attained only in the
time average, while in mixing, they a r i se asymptotically
after a long enough t i m e . This i s a lready considerably
closer to our intuitive notion of a random p r o c e s s . In
par t icu lar , mixing gives r i se not only to the concept of
probability, but a lso to that of statist ical ly independent
events (for a single t r a j e c t o r y ! ) . For example, the lat ter
might be the passage of the tra jectory into different reg-
ions of phase space (the last relation in (3.9)). We note
that the second relation in (3.9) is the well-known law in
stat is t ical mechanics of uncoupling of time corre la t ions .

We shall introduce another auxiliary concept that will
help in explaining more deeply the mechanics of mixing.
This i s the so-called weak mixing, as defined by the
equivalent conditions

\f(x,t)-(f(x, t))\ =0,

|pr(/ ,g) |=0,

\wik(T)-wiWk\ =
(3.10)

At f irst glance, this is very s imi lar to ergodicity (cf.
(3.6)—(3.8)). However, the essent ia l difference consists
in the fact that here we take the absolute values of the
quantities as approaching z e r o . Hence, in fact, the
property of weak mixing is closer to mixing in (3.9)
than to ergodicity.

With weak mixing, recurrence of the density f (x, t) is
possible. That i s , it can deviate strongly from the
equilibrium (limiting) value for any t —- °°. However, the
frequency of these deviations, or their duration, must
approach zero as t —· °°.

According to ergodic theory f-23^ weak mixing is
equivalent to a continuous spectrum of the operator S-p.
This implies that strong mixing also has a continuous
spect rum. This i s a lso implied directly by the i r r e v e r -
sible nature of the relaxation process in (3.9).

According to the relations (3.9), i r revers ib i l i ty of the
relaxation process does not contradict the inverse
Poincare theorem, C 2 3 J since the lat ter deals with the
phase tra jectory of the motion, r a t h e r than with the dis-
tribution function (cf. Sec. 3.2).* We shall take up this
problem in somewhat g rea ter detai l , because a false
understanding of the inverse theorem has become wide-

spread in the physics l i terature as being an asser t ion of
quasiperiodicity of motion (see, e.g.^ 1 9 ' 2 9 ' 3 0-'). If we take
the latter t e r m literal ly, it i s equivalent to a discrete
spectrum of motion*^36-' and of autocorre lat ions . Never-
the les s , the spectrum is continuous in mixing, although
the inverse Poincare theorem, which r e s t s only on the
existence of an invariant m e a s u r e , r e m a i n s valid, of
course . Perhaps this e r r o r is terminological to a con-
siderable extent, and a r i s e s from stretching the concept
of quasiperiodic motion. It is important to emphasize
that recurrence of t ra jector ies i s substantially different
in nature when the spectrum of motion is d i scre te , or
continuous. In the former case , r e c u r r e n c e is regular
in the sense that there i s a lower non-zero bound for the
frequency of recurrence for a given accuracy of r e c u r -
r e n c e . In other words, r e c u r r e n c e necessar i ly occurs
in the course of a finite time interval . In the lat ter case,
the lower bound of the frequency of r e c u r r e n c e i s z e r o ,
in spite of the fact that recurrence will occur an infinite
number of t i m e s , according to the Poincare theorem.'-2 3^
The motion along the tra jectory i s i r r e g u l a r
( "aper iodic") in the lat ter case, and to no extent contra-
dicts a " r e a l " random process , and in par t icular , a
state of s tat is t ical equilibrium (with fluctuations ! ) .
Hence, the statements that one somet imes encounters
that s tat is t ical notions a re inapplicable to large enough
time intervals that exceed the Poincare cycle'-30-' a r e
er roneous in thei r very e s s e n c e . t The relat ions (3.9)
show that the situation is just the opposite: the longer
the time interval , the more exact s tat is t ical ideas a re
in mechanics .

3.5. K-entropy and the Kinetic Equation

Mixing brings about relaxation to a state of s tat is t ical
equil ibrium. However, this property generally does not
suffice for deriving the kinetic equation that descr ibes
the relaxation process itself. The point is that a dynamic
system can be described statist ical ly only after l imiting
relat ions like (3.9) have been satisfied to a given degree
of accuracy. Let this occur over the time ~τ η . Then the
character i s t ic diffusion time that is defined by the
kinetic equation must be much l a r g e r : Tp 3> τ . This
inequality can be satisfied, inasmuch as the diffusion
and mixing can refer to different coordinates of phase
space. F o r example, such a situation occurs in our
basic model of (2.12). Here diffusion occurs in I, and it
i s character ized by a time scale : r D ~ e~2 (in s teps) .
However, mixing affects fundamentally the phase Θ, and
it occurs in a t ime τη ~ 1 (for a more detailed discus-
sion of this problem, see Chap. 7).

The law of relaxation (uncoupling of corre lat ions)
upon mixing in (3.9) i s a lso of no little importance . The
point is that, under usual conditions (in par t icu lar , in a
limited volume), diffusion leads to exponential relaxa-

*We note that this theorem is sometimes formulated imprecisely (see,
e.g. [51]).

*More exactly, the term quasiperiodic even denotes a certain special
type of discrete spectrum having a finite number of fundamental fre-
quencies: ω Π ι n N = Π] αϊ! + . . . + n^cdis). In the general case of a dis-
crete spectrum, one refers to an almost-periodic function.

t However, we note that the kinetic equation actually becomes inap-
plicable for large times, since it does not describe the fluctuations, which
are substantial for these times. Of course, however, this does not mean
that a statistical description is generally inapplicable.
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tion. Hence, clearly, if we want to have a s tat i s t ical
descript ion with sufficient accuracy, then uncoupling of
corre la t ions at least must a lso follow an exponential law
(but, of c o u r s e , with a s h o r t e r character i s t ic t ime). It
turns out that rea l mechanical sys tems usually actually
obey such a mixing law. This fact was f irst established
by Krylov.£ 1 3 ] La ter , independently of Krylov's work,
Kolmogorov'·31-1 introduced a special quantity, the
entropy of a dynamic system (h), which i s equal in order
of magnitude to the rec iproca l of the time for uncoupling
of corre la t ions . Below we shall cal l this quantity the
Krylov-Kolmogorov entropy, or the K-entropy.*

Str ict definition of K-entropy i s conveniently associa-
ted with the property of local instability of motion (Sec.
2.4), which c h a r a c t e r i z e s the divergence of neighboring
t r a j e c t o r i e s . One can study local instability by means of
l inearized equations of motion, or variat ional equations,
which a r e a lso called tangential transformation." '

F i r s t we shall examine the case of a cascade defined
by some transformation. Let I and I' be the length of
the tangential vector (the distance between the two
tra jector ies) before and after the t ransformation. Then
the K-entropy of the cascade can be defined a s c i 5 ]

λ—1 —χ.
(3.12)

Λ = 1

ί ^ 1 η ( τ ) · (3.11)

Here the overline denotes t ime-averaging (Sec. 3.3),
i . e . , averaging along the trajectory of motion. This ex-
press ion is convenient for finding the entropy experi-
mentally, e.g., by numerical solution of the equations of
motion (Chap. 4). In the given case of a cascade, accord-
ing to (3.11), the K-entropy charac ter izes the mean
divergence per step of neighboring t ra jec tor ie s .

Now we shall proceed to a flow, which we shall en-
vision as the l imit of a cascade whose step duration
Τ — 0. Then we have from (3.11):

h^Wli:Vn\-T))- (3.11a)

This expression immediately gives r i se to an exponen-
tial law of growth of local instability:

l(t) = l(O)eht.

According to (3.11a), the K-entropy equals the mean
increment of this instability.

The theory^ 1 5 3 permi t s one to derive an expression
that i s m o r e convenient for analytically calculating the
K-entropy directly in t e r m s of the p a r a m e t e r s of the
sys tem. F o r a cascade, this can be done a s follows.
Like every l inear transformation, a tangential t r a n s -
formation i s character ized by a m a t r i x whose product
of eigenvalues Π λ | = 1, because of conservation of phase

volume. If the transformation coefficients, and this i m -
plies also the λ^, were constant, then instability would
correspond simply to r e a l λ^, while complex conjugate
values of λ̂  would correspond to local stability. The
elementary model of (3.1) with ί(ψ) = ψ gives an example
of such a very simple case . Uncomplicated calculations
give the eigenvalues and eigenvectors :

where Κ(ψ) = kf'(ψ) = k in the given case; θ i s the angle
between the ψ axis and the eigenvector having λ > 1; the
lat ter expressions give the limiting values as Κ — °°.
Local stability corresponds to the interval

- 4 < x < 0 . (3.13)

The motion i s unstable for the remaining values of K.
Figure 2 depicts schematically the transformation of

a smal l region of phase space in the la t ter case . The
region expands exponentially (~λ η ) along the eigenvec-
t o r having λ* > 1, and i t contracts along the vector hav-
ing λ" < 1. The mixing process begins when the length
of the region attains the maximum dimensions of the
phase region of the system (Fig. 2, cf. Sec. 2.4).

We can easi ly see that, a s t — °°, the direction of
almost any tangential vector will approach the direction
of the expansion eigenvector. Hence, (3.11) goes over
into

/ι = 1ηλ+. (3.14)

In the typical c a s e in which the coef f ic ients of the
tangential t ransformat ion a r e var iable (in phase s p a c e ) ,
the problem of loca l instabi l i ty i s cons iderab ly compl i-
cated. On the one hand, instabi l i ty can occur e v e n for
complex-conjugate values of λ, owing to p a r a m e t r i c
resonance. On the other hand, rea l λ(χ) do not yet guar-
antee local instability, since expansion of a phase region
can turn into compress ion, owing to rotation of the
eigenvectors . In turn, this can lead to limited oscil la-
tions of neighboring t ra jec tor ies , i .e . , local stability.*
In this case, we must find the solution of the l inearized
equations over the entire time axis . We note that an
analogous procedure has a lready been applied for a long
time in hydrodynamics'·3 2-' to obtain the cr i ter ion for ap-
pearance of turbulence.

On the other hand, local instability is possible even
when h = 0, although i t does not grow exponentially in
this case . F o r example, a local instability I <* t formally
exists for any non-linear osci l lat ions, owing to the fre-
quency shift between t r a j e c t o r i e s . However, by all r e a -
sonable c r i t e r i a , such motion should be considered
stable. On the contrary, there a re examples of mixing
(i.e., unquestionably unstable motion) having h = 0. This
shows that the property of local instability must be used
with some caution. A r igorous mathematical study of
this problem for an extensive c lass of dynamic sys tems
has been made only relatively recently by Anosov and
S i n a i . c " " i e ] They showed that exponential local instabil-
ity for all initial conditions, both in the fundamental and
tangential spaces , entai ls s tat is t ical p r o p e r t i e s : positive
K-entropy,* mixing, and ergodicity.

The Anosov-Sinai theory p e r m i t s us to amplify some-
what the resul t given above for the e lementary model.
Namely, Oseledets and Sinai have shown that the motion
of this model shows stat is t ical propert ies if

*See below with regard to its relation to thermodynamic entropy.

*One says that this transformation acts in tangential space.

*In particular, the latter effect can be observed in the example [86]
of a special non-linear transformation constructed by McMillan.

*We shall henceforth say simply K-entropy, always assuming that
h > 0 .
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|/ '(ψ) |>£\ (3.15)

where C > 0 i s a certain constant. The meaning of the
la t ter condition consists in the idea that there a re no
stable regions in (3.13) if k > 4/C i s large enough.

This resul t i s the most that modern ergodic theory
can give for an oscil latory sys tem. Owing to taking the
fractional part in (3.1), the perturbation proves not to be
smooth under the condition (3.15). In the r e a l c a s e , s ta-
ble regions can exist near the points f' = 0 for any
k — °°. This rules out the possibility of r igorous appli-
cation of the modern theory.* On the other hand, the
dimensions of these regions approach zero with i n c r e a s -
ing k:

^~W- (3.16)

Hence, we can assume that one can actually neglect the
effect of the stable regions, in spite of the inapplicability
of the r igorous theory, provided only that k » l . Num-
e r i c a l experiments with the e lementary model ultimately
confirm this conclusion, although they show that it i s far
from tr ivial (Chap. 4). Upon adopting this conclusion, we
can determine that the stochasticity boundaries for the
elementary model lie in order of magnitude at Κ ~ 4.
By using (2.13), we get for the bas ic model of (2.12):
s ~ 2. This agrees with the initial es t imate of (2.11).
There is no point in refining the la t ter e s t imate , since
the very concept of the stochasticity boundary is approxi-
m a t e . Indeed, there i s an ent i re t ransi t ional zone (s ~ 1)
having a very complex s t ructure in the phase plane.

In the case being treated where λ(χ) is var iable, the
K-entropy is expressed in t e r m s of some value of λ*(χ)
averaged over phase space. l - 1 5 ] The overall situation is
somewhat simplified for the e lementary model when
Κ ^ 1, because the direction of the eigenvectors r e -
mains almost constant here (3.12), except for a narrow
phase interval (Αψ ~ 1/k) near the stability region of
(3.13). The general theory'-15'8^' leads to the express ion

(3.17)

3 3 3

Analogously, for the bas ic model we get

Λ « Ι η | ε ω ' / 0 7 Ί + <1η|/'(θ)|>. (3.18)

F i g u r e 2 d e m o n s t r a t e s g r a p h i c a l l y t h a t l o c a l i n s t a b i l -
i t y of m o t i o n c o m b i n e d wi th l i m i t e d p h a s e s p a c e of a
s y s t e m l e a d s t o m i x i n g of t r a j e c t o r i e s . H e n c e we c a n
s a y t h a t l o c a l i n s t a b i l i t y i s the o r i g i n a l c a u s e of the m i x -
i n g p r o c e s s , and t h i s i m p l i e s a l s o t h a t i t s e r v e s t h u s for
a l l t h e s t a t i s t i c a l p r o p e r t i e s of t h e d y n a m i c s y s t e m .
T h i s i s why t h e K - e n t r o p y i s t h e m o s t e s s e n t i a l s t a t i s t i -
c a l c h a r a c t e r i s t i c of a d y n a m i c s y s t e m , a s Krylov'- 1 3^
a l s o h a s e m p h a s i z e d .

A s A n o s o v showed,'-1 4-' e x p o n e n t i a l l o c a l i n s t a b i l i t y of
m o t i o n g i v e s r i s e t o a n o t h e r h i g h l y i m p o r t a n t p r o p e r t y
of a s t o c h a s t i c s y s t e m : i t s c o a r s e n e s s , o r s t r u c t u r a l
s t a b i l i t y . A s we know ( s e e , e . g . W ) , the l a t t e r i m p l i e s
t h a t t h e t o p o l o g i c a l s t r u c t u r e of t h e p h a s e t r a j e c t o r i e s
i s i n d e p e n d e n t of s m a l l v a r i a t i o n s i n t h e e q u a t i o n s of

FIG. 2. A schematic representation of the mixing process for the
elementary model of (3.1) with ΐ(ψ) = φ (k > 1). The initial region is
the square; the numerals give the step number. The direction of exten-
sion approximately coincides with the diagonal of the phase square,
while the direction of compression coincides with the φ axis.

m o t i o n . T h i s m a k e s i t p o s s i b l e t o r e s t r i c t the t r e a t m e n t
i n s t u d y i n g s t o c h a s t i c i t y to t h e f i r s t a p p r o x i m a t i o n of the
p e r t u r b a t i o n t h e o r y , a n d a l s o t o a p p l y w i d e l y v a r i o u s a p -
p r o x i m a t e m o d e l s .

T h e e x a m p l e in F i g . 2 s h o w s t h a t c o a r s e m i x i n g of
large (~1) regions of phase space occurs in a t ime τ η

~ h" 1 . In addition, the overall pat tern of development of
local instability lets us conclude that fine mixing, i .e . ,
mixing of small regions, occurs with a delay: t(A0)
~ (|ln A 0 | )/h, where Δ ο i s the original size of the region.
This es t imate also character izes the dependence of the
spatial scale of mixing on the time (A0(t)).

In conclusion, let us take up the relation of K-entropy
to ordinary thermodynamic entropy/8- 1 As we know, the
la t ter character izes the s tat i s t ical state of a sys tem,
and it depends only on the distribution function f22^

(3.19)= - jdr/In(/r 0 );

*To fill out the picture, we note that there are no stable regions in
another mechanical system: colliding spheres, which are a model in a
certain sense for molecular systems. This permitted Sinai [34] to prove
rigorously its statistical properties.

Here Γ ο i s a certain constant that has the dimensions of
volume of phase space. In stat ist ical physics, this con-
stant is defined by quantizing phase space : Γ ο = (27rh)N.
The physical meaning of the quantity Γ ο is that it charac-
ter izes the minimum cell of subdivision of phase space .
In the class ical case, one can also introduce a minimum
cell by the following considerat ions. In its physical
meaning, the entropy character izes the s tat is t ical prop-
e r t i e s of the system that a r i se from the mixing p r o c e s s .
However, the lat ter i s character ized by the scale ~ Δ 0

(see above). Hence, we can assume that Γ ο ~ A0(t).

The new entropy H(f, Δο) thus defined now charac ter-
izes not only the stat is t ical state of the system (as a
function of f ) , but also the dynamics of mixing (as a
function of A 0 (t)). F o r an a r b i t r a r y fixed Δ ο , we re turn
to the ordinary thermodynamic entropy of (3.19), which
is defined in c lass ical physics apart from an a r b i t r a r y
constant (-In Γ ο ) . This means that we neglect here the
res idual dynamic correlat ions in regions of the scale
Δ ο . When f is fixed (i.e., the s tat is t ical state of the sys-
tem is fixed), we get another entropy, which c h a r a c t e r -
izes the mixing process . In the lat ter case , it is con-
venient to choose f = 1, i .e . , the state of s tat i s t ica l
equilibrium. The entropy H ( l , Δο) thus defined i n c r e a s e s
monotonically for any system that shows mixing. How-
ever, in the case of exponential local instability of mo-
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tion, the quantity H ( l , Δο) proves to be asymptotically
proport ional to the t i m e . Hence, it i s natural to intro-
duce i ts mean rate of variation a s a character i s t ic of
the mixing:

(3.20)— Iim4- ί dT In Δο (/) = h.
I-»oo * J

And this i s the dynamic entropy that Kolmogorov intro-
duced to describe the process of m i x i n g P 1 ^

3.6. Is Motion Involving Mixing a True Random P r o c e s s ?

This question lies outside the framework of purely
mathematical theory, but it i s essent ia l for physics. A
formal definition of a random p r o c e s s includes two fun-
damental requirements (see, e .gJ- 3 7 ] ) . The f irst is the
possibility of introducing probability; this e n s u r e s the
existence of the l imit in (3.5) for an ergodic sys tem.
The second requirement, the so-called i r regular i ty of
the p r o c e s s , ultimately implies that this p r o c e s s lacks
an algori thm. Evidently, the second requirement is
violated by definition in dynamic sys tems . However,
this requirement is not convincing from the standpoint
of physics . Moreover, we can suppose that the imagined
property of i r regular i ty belongs to those propert ies that
a r e unobservable in pr inciple. In fact, any (temporally)
finite realization of even an " a b s o l u t e l y " random proc-
e s s can always be approximated by some regular func-
tion, e.g., a F o u r i e r or Taylor s e r i e s . Of course, we
can convince ourse lves that some p r o c e s s i s regular by
predicting its future c o u r s e . However, any apparent i r -
regular i ty may prove actually to be the realization of a
r a t h e r complex a lgori thm. Hence, we assume that the
requirement of i r regu lar i ty can be eliminated from the
definition of a random process.*'-8^ Instead of th i s , we
can base the definition of a random p r o c e s s on the mo-
tion of an ergodic dynamic system that shows mixing and
K-entropy. In ergodic theory, such sys tems are called
K-systems after Kolmogorov, who discovered themJ-3 1^

In fact, the motion of a K-system is regular in a cer-
tain sense , and this i s manifested, in par t icu lar , in
res idual autocorre la t ions . However, these corre la t ions
decay exponentially with t ime, so that we can neglect
them under the condition ht ~3> 1. One might object that
such a definition of a random p r o c e s s would be i m p e r -
fect. However, this i s just we observe experimental ly,
since a process of s tat i s t ica l relaxation always p r e -
serves a contribution of the initial s t a t e , although it is
exponentially smal l .

A " t r u e " random p r o c e s s , as fixed, say, by the prob-
ability of a transit ion (a Markov process) can be t reated
here a s the limiting case of the motion of a K-system,
in which we can neglect the regular phase of growth of
exponential instability (see Sec. 3.5), and this implies
also neglecting the res idual corre la t ions . Correspond-
ingly, the entropy of a " t r u e " random process h = °°.

Thus, as we see i t , the idea i s not ruled out that any
random process in nature i s real ized by the motion of
some K-system. However, we are far from thinking that
this i s the only possibility a t present . Hence, we use the
t e r m stochasticity for a K-system and its motion, and

keep for the concept randomness i ts former , somewhat
mystical content.

Stochasticity i s possible only in a non-linear system,
since a l inear system is always maximally stable
(Sec. 3.3). Hence, stochasticity makes it possible to con-
st ruct a non-linear model of s tat is t ical laws. To fill out
the picture, let us reca l l that there i s a lso a quasil inear
model of s tat is t ical laws, which was introduced by
Bogolyubov^3 8 3, and which has now been made the basis
of stat ist ical mechanics . It is based on using an infin-
itely large thermostat (N — •») with random initial con-
ditions .c c > 2 73 The two models have been compared in
detail i n c ^ .

4. NUMERICAL EXPERIMENTS

As we noted above (Sec. 3.5), the problem of the mo-
tion of even the e lementary model of (3.1) with a smooth
perturbation proves to be insolvable by modern ergodic
theory because of the regions of stability near the points
f = 0. The difficulties that a r i se here prove to be very
deep, and they involve the very complicated s t ructure of
the phase space of the s y s t e m ^ 3 9 1 On the other hand,
if ί(ψ) i s smooth, the dimensions in t e r m s of phase of the
stable regions approach zero (Αφ ~ 1/k) (3.15) as k —• » .
Hence it is reasonable to a s s u m e , a s has been done
above (Sec. 3.5), that we can neglect the stable regions
when k » l . One naturally r e s o r t s to an experiment,
" r e a l " or numerica l , to tes t this assumption. The fun-
damental problem here i s to se lect the best model. We
think that one need not work with very complex models
that a re necessar i ly close to rea l mechanical s y s t e m s ,
although some control experiments with such models
are highly desirable (see Chap. 5).* We think that the
elementary model exhibits fully enough the phenomenon
of stochastic instability in all i t s complexity and variety.
This will become especially evident somewhat later on,
when we have become acquainted with the stochastic
layer near the separatr ix (Sec. 6.1).

The detailed numerical experiments with the elemen-
tary model described in'-39^1 confirm that the motion of
the elementary model becomes stochastic when k > l
(actually a lready when k > 6).t

5. STOCHASTIC FERMI ACCELERATION

Before we proceed to a more detailed description of
the mechanism of stochastic instability (Chap. 6), we
shall examine a simple example of an actual mechanical
system in which this instability a r i s e s .

In 1949, in order to explain the source of cosmic
rays , F e r m i proposed a mechanism of s tochast ic accel-
eration upon collision of charged part ic les with moving
magnetic clouds in i n t e r s t e l l a r space J·49-1 In explaining
this mechanism, F e r m i used an analogy with molecular
coll is ions, and t rea ted the magnetic cloud as a gigantic
part ic le . However, because such a cloud i s a m a c r o -
scopic object whose motion would seem to be deter-
mined by dynamic laws, the question a r i s e s of whether
stat is t ical laws are applicable h e r e , and if so, to what

*Postnikov [37] had come to an analogous conclusion earlier.

*Stochastic instability has recently been studied in a large series of
experiments with an electron beam in an accumulator. [84]

t We recall that the stochasticity boundary lies at k ~ 4 (Sec. 3.5).
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extent. Only in 1961 did Ulam try to elucidate this ques-
tion by numerical experiments on a very simple model.

5.1. The One-dimensional Model of UlamC 4 4 : i

The model is a part icle moving between two plane-
para l le l , infinitely heavy, and absolutely e last ic walls.
One of them is fixed, while the other osci l lates accord-
ing to a definite given law. Thus the lat ter serves as a
model for a moving magnetic cloud. A numerica l calcu-
lation of the motion of this system1-4 4 3 gave a negative
resul t : accelerat ion was hardly observed. The velocity
of the part icle somet imes became as much as 3—4
t imes the velocity of the wall, and in most cases was of
the order of magnitude of the velocity of the wall. How-
ever , according to the F e r m i mechanism, the mean
velocity of the part icle should have increased indefinitely
in proportion to the time J-is^

We give below a brief analysis of the motion of this
model, following'-45-'.

Let the wall oscillate according to a " s a w t o o t h " law
in such a way that its velocity var ies l inearly with the
time within each half-period. F u r t h e r , let the minimum
distance between the walls be I, and the amplitude of the
oscil lations of one of them be a. Then the motion of the
particle between them can be described by the following
approximate transformation,* which is valid under the
condition a *K I, the case which proves most interest ing
(see below):

(5.1)

Here ν and ν a re the absolute values of the velocity of
the part icle before and after collision with the wall;
V/4 i s the amplitude of the velocity of the wall; and φ i s
the phase of the oscillation of the wall at the moment of
impact , as defined on the interval (0, 1). The second
equation of (5.1) is approximate; it takes account of the
phase shift only for the minimum path length of the par-
ticle between collisions of 2 I, the additional smal l seg-
ment ~ a being neglected.

The transformation (5.1) i s of the same type as the
basic model of (2.12). We can find the condition for
stochasticity most simply by using the relation (2.14):

• \κ\ = (5.2)

We find therefrom the stochasticity region in t e r m s of
velocity:

V l i / I
2 l ' a •

(5.3)

A r a t h e r u n e x p e c t e d c o n d i t i o n (a "C I) m u s t b e s a t i s f i e d

i n o r d e r t o g e t an a p p r e c i a b l e a c c e l e r a t i o n (v 2 > V ) .

F i g u r e 3 s h o w s t h e v e l o c i t y d i s t r i b u t i o n f u n c t i o n of

the part ic les as expressed in t e r m s of the parameter Κ
for different values of the ra t io a//. These data were
obtained in1-45-1 by numerical integration of the exact
equations of motion of Ulam's model.

The distribution function was constructed from a
single tra jectory, and was defined as the rat io of the
number of collisions of the part icle with the wall that

0 0.5 ΙΚΓ'/2 1,0

FIG. 3. The velocity distribution function of the particles in the
Ulam model ν » |Kf'/ 2(5.2). l -a//=2.5 X 10"3;2-a// = 10"4;3-a// =
2.5 Χ 10"5.

put t h e p a r t i c l e i n t o t h e given v e l o c i t y r a n g e t o the t o t a l

n u m b e r of c o l l i s i o n s , w h i c h w a s 1 0 5 . We s e e t h a t t h e

d i s t r i b u t i o n funct ion b r e a k s off r a t h e r e x a c t l y a t the

va lue |K| = 4 .

5.2. The Mult id imens ional C a s e

T h e s i t u a t i o n c h a n g e s s u b s t a n t i a l l y f o r the c a s e of

two (or m o r e ) d i m e n s i o n s . In p a r t i c u l a r , S i n a i h a s

r i g o r o u s l y proved'- 3 4 ^ t h a t s t o c h a s t i c i t y a l w a y s e x i s t s

i n the e l a s t i c c o l l i s i o n of a n y o b j e c t s wi th a c o n v e x s u r -

f a c e . We c a n r a t h e r g r a p h i c a l l y i m a g i n e t h i s r e s u l t t o

a r i s e f r o m e x p o n e n t i a l d i v e r g e n c e of c l o s e t r a j e c t o r i e s

due t o s c a t t e r i n g by the convex s u r f a c e . On the c o n t r a r y ,

e x i s t e n c e of c o n c a v e r e g i o n s on the s u r f a c e c a n p r o d u c e

r e g i o n s of s t a b i l i t y . A v e r y s i m p l e e x a m p l e m i g h t be a

m o d i f i c a t i o n of U l a m ' s m o d e l i n w h i c h one of t h e w a l l s

i s s l i g h t l y c o n c a v e a n d the m u l t i d i m e n s i o n a l p r o b l e m i s

t r e a t e d . E v i d e n t l y , t h e t r a n s v e r s e m o t i o n wi l l be s t a b l e

h e r e , and h e n c e a s t o c h a s t i c i t y l i m i t w i l l e x i s t , a s i n the

o n e - d i m e n s i o n a l c a s e .

5.3. The Stochatron

A s e a r l y a s 1948, B u r s h t e i n , V e k s l e r , a n d K o l o m e n -

s k i i p r o p o s e d u s i n g o r d i n a r y a c c e l e r a t o r s l ike t h e p r o -

t o n s y n c h r o t r o n o r s y n c h r o t r o n i n a s t o c h a s t i c mode.'- 4 6-'

T o do t h i s , t h e y p r o p o s e d a p p l y i n g an a c c e l e r a t i n g h i g h -

f r e q u e n c y vo l tage h a v i n g a r a n d o m p h a s e . By u s i n g

s t o c h a s t i c i n s t a b i l i t y , one c a n a c h i e v e s u c h a m o d e of

a c c e l e r a t i o n wi th a n o r d i n a r y ( r e g u l a r ) h i g h - f r e q u e n c y

v o l t a g e , w h i c h i s a p p a r e n t l y m o r e c o n v e n i e n t i n p r a c t i c e .

L e t us d e r i v e t h e c o n d i t i o n s f o r s t o c h a s t i c a c c e l e r a -

t i o n , whi le r e s t r i c t i n g the t r e a t m e n t f o r t h e s a k e of s i m -

p l i c i t y t o the c a s e of a h o m o g e n e o u s m a g n e t i c f ie ld B . *

We can w r i t e t h e e q u a t i o n s of m o t i o n i n the f o r m of a

t r a n s f o r m a t i o n of t h e t y p e of t h e b a s i c m o d e l :

cosy.

ωΒ (W)

(5.4)

Here W is the total energy of the part ic le; U and ω are
the amplitude and frequency of the accelerat ing voltage;
and ω-β = eBc/W i s the L a r m o r frequency of the re la-
tivistic par t ic le . We derive the condition for s tochas-
ticity in a way analogous to (5.2): |K| = 2;rq(eU/W) |sin tp\
·>£• 4, or

*For the exact equations of motion for this model, see [4 5]. *More realistic estimates are given in [8].
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w Bc (5.5)

where q = ω/ω-ο i s the high-frequency r a t i o .
We can easi ly see that the stochasticity boundary in

(5.5) corresponds to the condition for the so-called
microtron acceleration'-4 7-' in which a monotonic varia-
tion of the energy o c c u r s , a s i s highly unusual for a non-
linear system.

The inequality in (5.5) shows that a microtron i s con-
verted into a stochatron by increas ing the accelerat ing
voltage of frequency, or by decreasing the magnetic
field.

Finally, we mention another distinctive variant of the
stochatron, which was applied in'·48-' for pre l iminary
heating of a plasma in a s t e l l a r a t o r .

6. THE STOCHASTIC LAYER AND THE CONDITION OF
OVERLAPPING RESONANCES

We shall now proceed to a more detailed description
of the mechanism of stochastic instabil ity. As we shall
see below, the centra l point in elucidating this mechan-
ism i s to study the behavior of the system in the region
in the phase plane that l ies near the separa t r ix of a non-
l inear resonance. We shall conduct this analysis on the
example of the motion of a charged part icle in the field
of two plane waves . C 2 l ]

6.1. Motion of a Par t ic le in the Field of Two Plane
Waves

On the one hand, the system being t reated i s des-
cribed by the general equations of non-linear resonance
(2.1). On the other hand, it i s of independent interes t in
plasma physics . Let one of the waves be a smal l p e r t u r -
bation. We shall write the equations of motion in the
form

mx-- —
e = £,/

kcX — e£,sin (k,r — \t),

or in dimensionless form,

ξ = kox, ν •-- xokox, τ0 = \rm eEak0,

(6.1)

Here 2ητ0 i s the period of the smal l unperturbed oscilla-
t ions. The t ra jector ies of unperturbed motion in the
phase plane a r e analogous to those depicted in Fig. 1,
provided that ξ and ν are plotted as the absc i s sa and
ordinate, respectively. Using the usual operat ions, we
can introduce the new var iables of action (I) and angle
(Θ), and rewri te Eq. (6.1) in the form

/ , (Dig

θ = ω ,

( 6 . 2 )

Here ω = ω(I) i s the non-linear frequency of the unper-
turbed oscil lations of the particle in the potential well.
N e a r the bottom of the well, ω —• 2π/τ 0, while ω —• 0 as
we approach the s e p a r a t r i x .

We shall describe qualitatively the perturbed behavior
of the part icle near the separat r ix (here ω τ 0 <C 1). The
part icle spends relatively little time (~τ 0) near the
center of the well, and i ts velocity ν here i s close to i ts
maximum value. Conversely, most of the t ime

(~2π/ω ?̂> τ0), the particle i s found near the turning
points, where i t s velocity is near z e r o . This fact can
also easily be established formally by exact solution of
the unperturbed problem. If now we substitute on the
right-hand side of (6.2) the unperturbed frequency v, then
the force acting on the particle can be represented in the
form of a succession of very narrow pulses that follow
one another at a very large interval ~u>~1. The change
in the action resulting from a pulse can be written in the
form

w i t o W ' H . (6.3)

Here the integration is performed over an interval of
time containing one pulse. Actually, the fundamental
contribution to the integral comes from a narrow region
of t near the maximum of v(t).'-20-' Hence, the phase η
in (6.3) i s taken at the point of the extremum ξ = ξ0. The
motion in (6.2) can be written approximately in the form
of the following canonical transformation (per step):

av(i, O) (6.4)

dl

Here the generating function V i s equal to

V= ε-=τ- [ dtv (t) cos Q.
τοω(/) J

Since the perturbation V ~ e, we can rep lace V ( I , ,>) by
V ( I , i*) in the equations (6.4) to an a c c u r a c y of t e r m s
~ £ 2 .

The s y s t e m of (6.4) i s analogous to the b a s i c model
of (2.12). We can find the condition for s tochast ic i ty
from (6.4) by using the e x p r e s s i o n (2.14):

π ν ^ Δ / > 4 . (6-5)

Under rather genera l condit ions near the s e p a r a t r i x , we
have the asymptot ic e x p r e s s i o n

where W i s the energy of the p a r t i c l e , and Wo i s the e n -
e r g y at the separatr ix . If we take account of the fact
that ΔΙ ~ ε/τ ο ω, under the condition ντ0 ">> 1, we get from
(6.5) the stochasticity boundary in the

, , 16itω < π/τ0 In ,

|/0-/|<ε70,
(6.7)

Here Io is the value of the action of the particle at the
s e p a r a t r i x . The stochasticity boundary i s defined by
(6.7) symmetr ical ly with respect to the separatr ix for
captured and escaping par t ic le s . Thus we can state gen-
eral ly that a layer of finite width i s formed about the
separat r ix in which the integrals of motion break down.
We shall call it the stochast ic layer (see Fig. 1). When
vr0 ^ 1, the relative size of the stochastic layer is ex-
ponentially smal l , and is of the o r d e r of:'-8'21-'

\w—wo\~ wQe-™<>. (6.7a)

The width of the stochastic layer according to the est i-
mates of (6.7) and (6.7a) agrees in order of magnitude
with the splitting of the separat r ix as derived by
Mel'nikov.'-82-' We note that Mel'nikov's very thorough
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studies nevertheless did not permit him to estimate the
actual width of the unstable layer near the separatrix;
the size of the splitting of the latter gives only a lower
limit of this width. Moreover, serious risks existed that
instability could cover practically the entire resonance
region. The estimates of (6.7) and (6.7a) show, however,
that these risks were trivial, and that the width of the
stochastic layer is generally small.

The problem under discussion is also of interest from
the standpoint of the general theory of non-linear reson-
ance, since it can be interpreted as being a case of inter-
action of two resonances. In this interpretation, the fre-
quency spacing between resonances equals ν, while ac-
cording to (2.8), the width of each of the resonances is
equal, respectively, to 4/τ0 and 4/τ1 = \/eEiki/m. The
resonances overlap completely when e ~ 1 and γτ0 < 1.
Simultaneously, according to (6.7a), they break down
completely.* This result confirms the criterion of
stochasticity in (2.11), and makes it possible to extend
it to the general case of interaction of resonances. We
note that, when e <ΐί 1, the relative width of the stochas-
tic layer is always small, so that the inner region of the
resonances remains stable, regardless of the spacing
between resonances. Hence, the criterion of stochastic-
ity (2.11) implies overlap of resonances of the same
order of magnitude. In the general case, stochastic in-
stability can arise from intersection of narrow stochastic
layers, but only under special initial conditions. The
criterion for such a weak stochasticity has been studied

particle and the wave. In order to determine the width
of the resonance, we shall rewrite Eq. (6.8) in the form

£64,65,8]in'

6.2. Brownian Movement of a Particle in the Field of a
Wave Packet

The study conducted above is a fundamental element
that makes it possible to proceed to construct the general
condition for appearance of stochastic instability. We
can assume that, when a particle moves in complicated
fields, the phase trajectories of the particle have the fol-
lowing topology in the phase plane: the entire plane is
divided into a large number of cells associated with dif-
ferent separatrices and into a region between the separ-
atrices. Each separatrix is associated with a stochastic
layer that is delimited by the "good" trajectories that
have conserved integrals of motion. The individual
separatrices can intersect, and then a broader region of
stochastic motion is formed. Thus the criterion of
stochastic instability is the condition of overlapping
separatrices, or in other words, the condition of over-
lapping resonances of (2.11).

We shall illustrate the aforesaid with the example of
motion of a particle in the field of the wave packet

χ — — 2 Eh cos (kx — αν)
k

(6.8)

having a characteristic spacing Ak between the wave
numbers of adjacent harmonics entering into the packet.
Each plane wave gives rise in the phase plane to a
separatrix encompassing the trajectories of particles
captured by the wave. The dimensions of the separatrix
also determine the width of the resonance between the

cos θ*,

(6.9)

H e n c e we s e e t h a t the v e l o c i t y i s a n a l o g o u s t o t h e v a r i a -

b l e I in t h e e q u a t i o n s (6.2). E v i d e n t l y t h e width of the

s e p a r a t r i x i s

\fv~n. '

T h e s p a c i n g b e t w e e n a d j a c e n t r e s o n a n c e s i s

ΩΗ = cofcxij, (ν) — ω* (ν) = ΔΑ (v — dutjdk),

a n d t h e c o n d i t i o n f o r a p p e a r a n c e of s t o c h a s t i c i n s t a b i l i t y

a c q u i r e s t h e f o r m ^ 2 1 ' 5 2 - '

L e t the c r i t e r i o n (6.10) be s a t i s f i e d by a l l t h e w a v e s in

the p a c k e t h a v i n g p h a s e v e l o c i t i e s f r o m s o m e v m j n t o

v m a x . T h e n , e v i d e n t l y , t h e p h a s e s ^ a r e s t o c h a s t i c i n

t h i s v e l o c i t y r a n g e , whi le t h e m o t i o n of t h e p a r t i c l e i s

a n a l o g o u s t o B r o w n i a n m o v e m e n t , a n d i t s v e l o c i t y in-

c r e a s e s wi th t i m e on t h e a v e r a g e .

We note t h a t s t o c h a s t i c i t y c a n v a n i s h f o r v e r y l a r g e

Κ ί£ Ν (where Ν is the number of waves)J-8] This is
easy to understand in the limiting case where Κ 2> Ν,
in which all the waves form for the particle a single
potential well with slowly varying parameters. In this
regard, we should supplement the criterion (6.10) with
the inequality

7 ,k«- V · ( 6 - 1 0 a )

which was previously derived in1-53^ from somewhat dif-
ferent considerations.

The inequalities (6.10) and (6.10a) are the conditions
for applicability of the so-called quasilinear approxima-
tion in non-linear plasma theoryJ-5^

6.3. Discussion of the Properties of the Basic Model

The examples given in this chapter allow us to ad-
vance the following notions:

1) Breakdown of the separatrix is described by the
equations (6.4), which are equivalent to the basic model
of (2.12).

2) Overlap of separatrices (resonances) in (2.10) is
the condition for appearance of stochastic instability of
motion of a dynamic system.

3) Whenever the motion of the system can be reduced
to the form (2.12), one can estimate the phase correla-
tion function:'-54-'

a n d d e t e r m i n e t h e m i x i n g t i m e

τ,, ~ (Ω In K)-1,

( 6 . 1 1 )

(6.12)

"This conclusion was recently confirmed in [87] by a numerical ex-
periment.

and h e n c e a l s o the K - e n t r o p y (see C h a p . 3) . T h i s i n -

f o r m a t i o n q u i t e s u f f i c e s , not only for t r a n s f o r m i n g t o a

s t a t i s t i c a l d e s c r i p t i o n of t h e s y s t e m u s i n g the k i n e t i c
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equation (Chap. 7), but a l so for analyzing some fine de-
ta i l s of this t ransformation.

4) We shall define the region of applicability of the
bas ic model. Let the perturbation of the system be such
that the change in the state of the system within the time
intervals Ti, T 2 , ..., i s adiabatic (I = const.), while a
considerable (not exponentially small) change in the a c -
tion I occurs at the boundaries of the intervals T j . Let
us denote by At̂  the time region within which I var ies
considerably. Then, under the condition

Δ ί < Γ (6.13)

we can t rans form from the differential equat ions to
f inite-di f ference equations l ike (2.12), i . e . , to the b a s i c
mode l . T h i s i s ach ieved a s fol lowsS** 1 the solution i s
wr i t ten in the WKB approximation within the in terva l s
Ti , and the so lu t ions in adjacent i n t e r v a l s Tj are l inked
by taking account of the change in the action ΔΙ and the
phase Δι>. If the condition (6.13) i s not satisfied, then
one cannot calculate the mixing t ime and the K-entropy
in general form. Never the les s , the condition of over-
lapping resonances always p e r m i t s an e s t i m a t e , how-
ever crude, and the existence of mixing can be es tab-
lished.

5) When there i s no overlap of resonances (s <SC 1),
the s tochast ic region degenerates into a system of ex-
ponentially narrow (see (6.7a)) s tochast ic l a y e r s . In the
one-dimensional case of (2.1), these layers do not in ter-
sect in the phase plane, and the motion becomes stable
for any t — °°. This resul t has been proved rigorously
in the Kolmogorov-Arnol'd-Mozer theory for sufficiently
smal l , but finite s . Numerica l experiments (Chap. 4)
show that the boundary of such a permanent stability
l ies near the stochasticity boundary at s ~ 1.

In the multidimensional case , the stochast ic layers of
different resonances always in ter sec t , however smal l s
i s . This can lead to diffusional motion of the system
along these layers within a ra ther large volume of phase
space. The f irst example of this stability was devised by
A r n o r d J - 3 s ] This instabil ity, which has become called
Arnol 'd diffusion, may prove to be essent ia l for various
physical applications.'-8-'

7. THE RANDOM-PHASE APPROXIMATION AND THE
FUNDAMENTAL KINETIC EQUATION (MASTER
EQUATION)

7.1. Analysis of Loss of Memory of the Initial Conditions

The resu l t s given above permit a new approach to
derivation of the fundamental kinetic equation in s ta t i s-
t ical mechanics . The centra l point in deriving such
equations is the hypothesis that the phases a re random
at the init ial instant of t ime (see, e .g . , C 2 7 ] ) . This c i r-
cumstance i s usually called the random-phase approxi-
mation (RPA), and i t s formal content appears as follows
for the special case discussed below. Let f (I , », t) be
the distribution function of the set of actions (Ii , I 2 , ...)
and phases (<>i, H, •·.)• Then the RPA consists in the
idea that f does not depend on the phases at t = 0, i .e . ,

/(/, #, 0) = /(/). (7.1)

F u r t h e r , the examples t reated above show that one
can establish directly from the equations of motion the

cr i ter ion for s tochast ic phases , and as we shall see be-
low, one can find a cr i ter ion under which the condition
(7.1) holds to a required accuracy. A feature of this ap-
proach is a more thorough analysis of the motion of the
system than has been performed thus far.

We shall i l lustrate with a simple example how an
analysis of the stochastic propert ies of a system permi t s
one to derive the kinetic equation under a r b i t r a r y initial
conditions116911 (see alsoE 6 4 ' 2 " 3 ).

We shall t r e a t again a non-linear osci l lator perturbed
by periodic δ-function pulses :

i),
(7.2)

Here e is a smal l p a r a m e t e r , and we shall write the con-
tinuity equation in phase space

Let us expand f and V in Four ie r s e r i e s :

/(/, <M) = Σ /»(/, i)e in*. 1

V(I,«, ί ) = Σ V>.,*(/)ei(n*+llQ" (Ω = 2π/Γ)
Π, ft=—οα i

( 7 . 4 )

(the case being t reated has only t e r m s with η = +1).
Upon substituting (7.4) into (7.3), we get the equation for
the fn:

(7.5)

We note that the passage in Eq. (7.5) to the interaction
representat ion is performed by the transformation

fn —» fn ι j — in \ ω dt >

This i s because the frequency depends on the t ime owing
to the non-l inearity, accord ing to the equations of motion
(7.2). Th is l e a d s t o added dif f icult ies in der iv ing the
kinet ic equation. However , henceforth we sha l l use the
inequality

| Δ θ - ω ί | < ω ί , j

1 (7-6)
Δ0· = ft (i) — 0 (0) = I dt<a.

Jo J
The condition (7.6) i s actual ly equivalent to the VKB ap-
proximat ion.

N o w it i s convenient t o g o o v e r to the Laplace r e p r e -
sentat ion for the fn:

?»(/>)= \ e-rifn(I,t)dt,

and convert Eq. (7.5) to the following form, with account
taken of the inequality (7.6):

~r-j-gT , (7.7)

Here we have denoted in abbreviated form:

gn(I,P)^gn(p), /„(/,<)) =/„(()).

F r o m now on, we shall be interested in the asymptotic
behavior a s t — « , which i s equivalent to ρ — 0. Taking
this into account, we shall c a r r y out the i terat ion of Eq.
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( 7 . 7 ) , a n d k e e p o n l y t h e m a i n ( r e s o n a n c e ) t e r m s . T h i s

g i v e s f o r g 0 :

I \ _ l f I \ ±JL V Γ V'n· ft/n ( 0 ) ' V-n.-kf-n№ I

go (PI — — Io\P) ρ a/ ZJ Lp + i(nM —AU) r ρ — ι(ηω — *Q) J

+ 2 — -^- 2 2-Η>Ιω —*g)' ~̂ ~ i ^'i· 'Ί /o (0) -r- Ο (ε3),

or, if we re turn to the t- representat ion as ρ — 0:

~

"•"^ (7.8)

We see from (7.8) that the t e r m s of the order of e (and
also all the res t of the t e r m s that a r e odd in e) contain
oscillating coefficients that enter simultaneously with
the initial conditions fn(0) (with η φ 0, since V depends
on &). Hence, in the l inear case in which ω = const
and Δ,? = wt, it follows directly that the difference
(ηω - kfi) can be as smal l as i s desired (resonance),
and one cannot eliminate the oscillating t e r m s in (7.8)
by any suitable procedure of averaging over a given
finite interval of t ime. This constitutes the fundamental
difficulty in deriving the fundamental kinetic equation to
be solved by using the RPA. In fact, the condition (7.1)
for fn takes on the form fn(0) = fo(0)6njo-

The situation becomes quite different in the non-
linear case in which ω = ω(Ι). In order to understand
this , let us introduce a discrete time scale with the in-
terval Τ for large t ~ N T (N 2> 1), and express ^(t) = ^
in t e r m s of the initial phase &(0) = <V We can do this by
start ing with E q s . (7.2). To do this , we must integrate a
system analogous to (2.12):

~ m-l ω r- mSin m, 1

= / m 4 - E / m s i n # m , J
(7.9)

W e n o t e t h a t t h e t r a n s f o r m a t i o n ( 7 . 9 ) i s o b t a i n e d a p -

p r o x i m a t e l y f r o m t h e b a s i c m o d e l of ( 2 . 1 2 ) b y t a k i n g a c -

c o u n t i n t h e l a t t e r of t h e s m a l l n e s s of t h e v a r i a t i o n

|I — 11 <SC I . A t r a n s f o r m a t i o n i n t h e f o r m of ( 7 . 9 ) p r o v e s

t o b e c o n v e n i e n t i n e s t i m a t i n g t h e c o r r e l a t i o n f u n c t i o n

One can show [ 5 4 ] that when Κ » 1,

R (t) ~ e-°+«> κ+i*».

If n o w w e i n t r o d u c e t h e d i s t r i b u t i o n f u n c t i o n

(7.10)

then for Κ 3> 1, (7.8) directly gives the kinetic equation
for F :

^Γ = *"*ΊΓ Σ \Vn.,\Hn^-~kil)lr\Vn,k\F. ( ? n )

n, ft>0 '

I t i s u se fu l t o n o t e the fo l lowing two f a c t s : 1) w h e n

Κ <^ 1, averaging over S-o has no effect, since then R(t)
~ β*ω* [1 + O(K)]; 2) since the motion i s ergodic when
Κ 3> 1, averaging over £0 i s equivalent to averaging
over a time much greater than T. The latter implies
that we can average Eq. (7.8) over #0 if the diffusion time

in (7.1) is much greater than Τ (Sec. 3.5). In other
words, the kinetic equation (7.11) is valid for t imes
t ^ T. In this way, it differs from the kinetic equation
derived by the RPA method, which is valid for t ^> tju,
where the interaction time t j n in this case i s the dura-
tion of an impulse ( t i n < T). Thus, the additional a s -
sumption that the phases a r e random at the initial instant
of t ime makes i t possible to extend the region of appli-
cability of the kinetic equation with respect to t i m e .

7.2. Time Scales

As we have noted, the principal feature of the exist-
ing methods of deriving the fundamental kinetic equation
is the use of the RPA in some form or another (see the
review1-70^). Without discussing the problem of the ex-
pedience of the random-phase hypothesis in constructing
the fundamental kinetic equation, we note only that in the
ordinary theories it i s not only convenient, but perhaps
even necessary . The lat ter involves the fact that the
analysis to be conducted of the dynamic equations of
motion of the system is essential ly l inear , and it does
not permit one to take account of the instability that
leads to mixing. Formal ly , this involves the fact that
the frequencies a re considered constant in solving the
equations of motion. Hence, we can call this approach
the quasil inear model of s tat is t ical laws.

Modern ergodic theory permits us not only to fill this
gap, but also to perform a more detailed analysis of
those distribution functions for which we can derive the
fundamental kinetic equation. Since mixing in ergodic
theory essentially involves non-linearity of the sys tem,
it is natural to speak in this case of the non-linear
model of s tat i s t ical laws.

We have already seen in Sec. 7.1 that a kinetic equa-
tion of the Markov type is derived for the " c o a r s e " dis-
tribution function F ( I , t ) , which is obtained from f ( I ,
f (I, .>, t) by averaging over the phase & in the interval
from 0 to 2ff. Here we distinguish the process of
dynamic mixing from stat ist ical relaxation (Sec. 3.5).
However, the mixing process actually involves not only
the phase &, but also I to a l e s s e r degree. Hence, in the
general case , the kinetic equation is valid for a distribu-
tion function that has also been averaged over a finite
interval Δ | . The equation of motion (7.9) implies that
when •? i s extended by ~2ττ, the action I var ies by

Δ? ~ 2πε//Α\ (7.12)

E v i d e n t l y t h i s q u a n t i t y d e t e r m i n e s the c e l l f o r a v e r a g -

i n g the d i s t r i b u t i o n f u n c t i o n . H e r e , a c c o r d i n g t o (7.10),

m i x i n g o c c u r s a f t e r a t i m e

• Γ/Ιη A',' ( 7 . 1 3 )

i . e . , p r a c t i c a l l y a f t e r o n e s t e p . If w e d e c r e a s e t h e

d i m e n s i o n s Aj of t h e c e l l i n c o m p a r i s o n w i t h ( 7 . 1 2 ) , t h e n

m i x i n g s h o w s a n a d d i t i o n a l r e t a r d a t i o n ( s e e S e c . 3 . 5 ) o f

t h e t i m e ( n u m b e r o f s t e p s )

T h e m a x i m u m p e r m i s s i b l e r e t a r d a t i o n i s d e t e r m i n e d by

t h e c o n d i t i o n t h a t t h e k i n e t i c e q u a t i o n s h o u l d b e a p p l i c a -

b l e :

n0T ζ 77ε2
( 7 . 1 5 )
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This directly gives the minimum dimensions of the
averaging cell

- exp — - (7.16)

Now we shall note the characteristic time scales that
are used in deriving the kinetic equation, and arrange
them in order of increasing times.

1) t^n is the interaction time, which in this example
is the duration of the impulse, and is the smallest time.

2) τη = T/ln Κ is the -mixing time, or the time for
uncoupling of phase correlations for the maximum aver-
aging cell of (7.12).

3) τ Δ = n0T + T/ln Κ is the mixing time for the cells
Aj = 2jreI/Kn° with account taken of retardation. When
no = 0, we have τΔ = τη. However, if n0 is defined by
(7.14), then τ Δ = T D . In general , τ η < τ Δ < T D .

4) T D = T / e 2 i s the diffusion t i m e .
We have discussed above only some very simple

problems in which stochastic instability plays a r o l e .
We shall also mention the destruction of magnetic sur-
faces in the s te l l a ra tor under the action of var ious per-
turbations; '- 6 4 ' 6 7 ' 2 0 ' 6 8 - 1 interaction of non-linear waves
and the F e r m i - P a s t a - U l a m p r o b l e m ; [ 7 1 " 7 7 ' 8 1 " 8 3 ] weak
turbulence / · β 9 ] e tc . We hope that this brief review will
a t t ract attention to the discussed problem and will foster
i ts further development.
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