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1. INTRODUCTION

1 HE main event in the physics of e lementary par t ic les
in the last decade was the discovery of a large number
of resonances in hadron sys tems.

If we d i s regard the resonances in the JTN system
(isobars), an intensive study of resonances s tarted in
1960, when the ρ meson was discovered, followed by the
ω meson. At the present t i m e , there a r e approximately
25 meson and about 40 baryon resonances (if each
isomultiplet is regarded a s one resonance). These d i s -
coveries were unexpected by the theoret icians, but with
increasing number of discovered resonances, the num-
b e r of theoret ical models and schemes for resonance
classifications increased much faster . F i r s t to be men-
tioned among these a r e schemes based on the SU(3) sym
metry and the Regge-Gribov theory. A detailed theoret i
cal analysis of resonances from the point of view of
var ious models is not within the scope of the present
a r t i c l e , and we refer the interested r e a d e r to the r e -
views C e l ' 7 1 > 7 2 : l , where he can find also other references
to e a r l i e r work. It must be emphasized that both the
SU(3) symmetry and the Regge-Gribov theory were not
invented specially to explain resonances, but it turned
out that many c h a r a c t e r i s t i c s of resonances a r e very
well explained by them. However, for a final judgement
concerning the success of any par t icu lar model there i s
sti l l not enough experimental data on the quantum num-
b e r s of the resonances, part icular ly their spins and
p a r i t i e s . We present only two examples . According to
the SU(3) symmetry model, the Σ-baryon resonances
with spin and par i ty 1/2* form an octet, a member of
which, in part icular , should be the resonance Σ(161Ο).
However, the spin and pari ty of this resonance have not
yet been established. The same perta ins also to the pro
posed Σ(5/2+) resonance Σ(1915) of the octet.

F o r the Regge-trajectory model, it would be very im
portant to confirm the fact that the meson resonance
A 2 J J ( 1 3 1 5 ) actually has spin and pari ty 2*, thus p e r -
mitting this resonance to lie on the so-called R-tra jec-
t o r y w x : i , which determines , for example, the asymptotic
behavior of the c r o s s section of the p r o c e s s
7 f p - 7 ? V e l ] e tc .

There have been a large number of recent papers
dealing with the Veneziano duality model (see the r e -
v i e w i 7 S 3 ) . This model u s e s essential ly the fact that the
number of resonances can become infinite with i n c r e a s -
ing m a s s , and the Regge t ra jector ies can become l inear .
If the r e a d e r looks at Rosenfeld's t a b l e s ' 7 0 3 , he will see
that these assumptions do not contradict the existing
data; the m a s s of the la s t heaviest baryon resonance i s
3230 MeV, but its spin and pari ty a r e known.

Thus, it becomes urgently necessary to obtain

methods of determining the quantum numbers of the
resonances at a rb i t rar i ly large resonant m a s s e s . Such
methods were developed and used many t imes in recent
y e a r s , and a r e the subject of the present review.

2. GENERAL FORMULATION OF THE PROBLEM

This review is devoted to methods of determining
the spin and parity of resonances . Methods of de ter-
mining other quantum numbers (mass, width, isotopic
spin) can be found, for example, in the book1 5 2·1 and in
the reviews ii4r2B1,

Assume that the resonance χ of interes t to us is
produced in the reaction

. + * . (2.1)

- and then decays via one of the channels

χ —*α(-; a2, (2.2)

o r v i a s e v e r a l channels of the type (2.2) and (2.3)
(4-particle decay of χ will be considered only under the
condition that it has a cascade character , i .e. , one of
the par t ic les in the reaction (2.2) and (2.3) decays in
turn into two or three part ic les) .

We introduce some definitions concerning the r e a c -
tion (2.1), which will be used throughout the review:

1) The production plane χ is the plane containing the
momenta of the incoming par t ic le and the resonance χ
in the l .s . of the reaction (2.1).

2) The Ζ system (Y system) is the coordinate sys-
tem in which the Ζ (Υ) axis is chosen to be the direction
normal to the χ production plane.

3) The Capps condition i s defined as the situation
wherein pari ty i s conserved in the reaction (2.1), the
part ic les b i and b 2 a r e not polarized, and the momenta
and spin s tates of the par t ic les Ci, c 2 , ..., c n a r e not
measured.

We a r e interested in the determination of the spin
and parity of the resonance x. To this end we can use
the following information obtained in the experimental
study of the reaction (2.1) and the decay (2.2) or (2.3)
(we note, however, that in pract ice , in concrete exper i-
ments , it i s possible to obtain only p a r t of the informa-
tion listed below):

1) The angular distribution of χ in the c .m.s . of the
reaction (2.1).

2) The angular distribution of the χ decay products
and the angular distribution of the polarization of the
χ decay products in the res t system of x.

3) The energy distribution (the distribution on the
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Dalitz plot) of the products of the decay (2.3) in the res t
system of x.

In the study of many resonances, successful use was
made of the methods of determining j and ηχ, based on
the assumption that the momenta of the decay products
of χ a r e smal l . These methods include f irst of all the
analysis of the distribution of the decay products (2.3)
on the Dalitz plot. These methods can be used when the
energy re lease in the decay of χ is given by

, (2.4)

where μ is the pion m a s s . For a detailed descript ion of
these methods see" °~ ! 4 J .

Another m e t h o d u s e d successfully in pract ice is that
of Adair, for the use of which it i s necessary to select
cases in which χ is emitted forward or backward r e l a -
tive to the incident beam within a range of small angles

(2.5)

where k x i s the momentum of χ in the c .m.s . of the
production react ion. Adai r ' s method is described

i n 124,25,50,52]_
It is c l e a r that when the energy in reaction (2.1) in-

c r e a s e s and the m a s s χ i n c r e a s e s , the conditions (2.4)
and (2.5) for the applicability of the aforementioned
methods a r e violated. Therefore to determine the quan-
tum numbers of the resonances at high energies one can
use only methods based on the general conservation laws
of quantum mechanics—the law of conservation of the
angular momentum and parity in reaction (2.1) and in
the decays (2.2) and (2.3).

The development of such methods is the subject of a
large number of theoret ical and experimental investiga-
tions, where use is made of the relat ions derived for
these quantities from the conservation laws. Although
a large number of such relat ions have been obtained,
it is difficult for the exper imenter to cope with them in
applications, owing to the lack of a unified theoretical
approach to the problem. The point is that many of these
relat ions contain identical information on the quantum
numbers of the resonance and a r e essential ly equivalent,
but different methods of experimental-data reduction
a r e needed for their application. F u r t h e r m o r e , in some
relat ions the experimental information is not com-
pletely used.

In the prevent review we develop a universal method,
based on the conservation laws, for investigating the
quantum numbers of resonances, namely the method of
polarization moments . Bes ides providing a unified
theoret ical approach to the problem, this method has
also the advantage that it makes it possible to use the
entire experimental information, and also to unify and
simplify to the larges t extent the computer reduction
of the experimental data (this is discussed in detail in
the review and in Appendix ΙΠ). This method can be
used for any decay of the type (2.2) or (2.3).

The gist of the method of polarization moments con-
s i s t s in the following. The distribution of the products
of the decay (2.2) or (2.3) depends on the spin state of
x, which we specify with the aid of polarization moments
(PM). We note that resonances with large m a s s e s d e -
cay, as a rule, in cascade fashions, i .e. , the par t ic les
ajj, produced in the react ions (2.2) and (2.3) a r e in turn
unstable. The distribution of the decay products of a k

(which is a function of the direction of the emiss ion of
a k in the r e s t system of x, and also of the direction of
the emission of the decay products of a k in the res t
system of a k ) i s conveniently character ized by quanti-
t ies which we shall call cascade polarization moments
(CPM), which a r e natural generalizations of PM. We
note that the set of CPM contains complete information
on the distribution in question (just as the Four ier co-
efficients define completely a periodic function).

The CPM a r e determined in simple manner in ex-
per iment, and they a r e connected by relat ions that
follow from the conservation laws. The coefficients in
these relat ions depend on j and η χ —the spin and parity
of x. Substituting the experimentally obtained CPM in
the indicated relat ions, we can obtain the value of j and
η χ at which the relat ions a r e satisfied—this indeed is
the procedure of determining j and η χ .

The method of polarization moments as applied to
the physics of resonances i s discussed in a number of
p a p e r s " ' 1 4 ' 1 8 ' 2 8 ' 3 3 ' 3 5 ' 3 8 " 4 0 ' 5 " , in the rev iew [ 2 4 " 2 β ] , and in
the Byers rev iew [ 5 7 J (where decays of fermions with
pari ty nonconservation a r e considered). Recognizing
that the two reviews were published only in the form of
prepr int s and a r e not readily available at present , we
have undertaken to descr ibe consistently and compactly
the method of polarization moments . At the same t ime,
considerable space has been allotted in our review to
concrete decays, and also to experimental investigations
with which the application of the method i s i l lustrated.

The present review does not consider one of the most
important methods of determining the quantum numbers
of baryon resonances, namely the phase-shift analysis .
This method has long been used by exper imenters and
is well known to them. The latest accomplishments in
the field of reduction of experimental data on πΝ scat-
tering by the phase-shift analysis method is the subject
of a review by Shchege l ' sk i t 1 7 4 3 .

The review was organized in the following manner .
In Ch. 3 we consider the spin state of one part ic le

and present two methods of its description—with the aid
of the density matr ix and with the aid of the PM. It also
deals with very important proper t ie s of PM, which will
be needed la ter on, and with the method of determining
the PM from the experimental data. At the end of this
chapter, the spin state of two part ic les is discussed.

In Ch. 4 we consider the general theory of two-
part ic le decay of the resonant s tate. It is f irst neces-
sary to write down the amplitude of the decay in t e r m s
of the most convenient p a r a m e t e r s . Such p a r a m e t e r s
a r e the helicity amplitudes of the decay, Α λ , the p r o p e r -
t ies of which a r e discussed in detai l . Knowing Α λ and
the Ρ Μ of the resonance x, we can determine the spin
state of the decay product of x, namely the PM of the
part ic le &i. If a i itself decays, then the angular d i s t r i -
bution of the products of this decay depends on the PM
of the part ic le a i . It is convenient to introduce here the
CPM, tf 'M. We then establish a relation between the

CPM, which can be used for the determination of the
spin and parity of the resonance x, and consider the
question of the experimental determination of the CPM.

Ch. 5 i s devoted to concrete decays : j — 0 + 0,
j — 1 + 0, j — 1/2 + 0, j — 3/2 + 0.

In Ch. 6 we investigate three-par t ic le decay of reson-
ances . Just a s for two-particle decay, we f irst i n t r o -
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duce convenient p a r a m e t e r s , in t e r m s of which the s c a t -
ter ing amplitude f^X^i , <χ>ύ i s expressed. We then
again introduce CPM, and from the general proper t ies
of the invariance against rotations and reflection we ob-
tain relat ions between CPM. These relat ions make it
possible to determine the spin and parity of the r e s o n -
ance x. For an experimental determination of the CPM
it i s necessary to have the angular distribution of the
decay (2.3), and also the angular distribution of the d e -
cay of a i (if the spin of a i i s not equal to zero) . The
general formulas a r e used for concrete decays: a) decay
into three spinless par t ic le s , b) decay into a fermion
and two spinless par t ic les .

In Ch. 7 we show how to use the laws of conservation
in the reaction of production of the resonance for the
determination of i ts quantum numbers . In par t icular ,
we investigate the problem of employing a polarized
proton target for the determination of the quantum num-
b e r s of an i sobar decaying into a non-strange baryon
and spinless p a r t i c l e s .

3. SPIN DENSITY MATRIX AND POLARIZATION
MOMENTS

a) The Density Matrix and Its Properties

Assume that the system containing the investigated
resonance χ is described by a wave function $(m, a),
where m i s equal to the projection of the spin of χ on
the Ζ axis in a specified coordinate system XYZ, and a
is the aggregate of all the remaining var iables d e s c r i b -
ing the system.

We a s s u m e for concreteness that χ decays into two
spinless p a r t i c l e s . The wave function of the decay
products of χ depends only on m (it does not depend
on a !) and is equal, a s is well known, to Yjm(«>, ψ),

where Y- m i s a spherical function; the angles t? and ψ
specify Che direction of the momentum of one of the
products of the decay of χ with respect to the axes XYZ.
The probability density of the decay of χ in the direction
defined by the angles J and φ i s obviously

i
(3.6)

•j§· = 2 Σ Ψ* ("»'• «) Ψ (™. «) >%' (»· Ψ) γΡη (0, Φ)
m, m'=—j a.

w h e r e

• = 2 ψ (»». α)ψ·(ηι', α), —

, Ψ ) . ( 3 . D

(3.2)

We see that to find the probability density of the d e -
cay of χ in a given direction it is necessary and suffi-
cient to know the matr ix p m m ' (3.2), which is called
the spin density matr ix or simply the ρ matr ix .

The proper t ies of the ρ matr ix a r e discussed in d e -
tail in a r t i c l e s and books (see, for example, 1 5 ' 6 2- 1).
These proper t ies can be easi ly obtained from the defini-
tion (3.2) and we shall only l ist them:

Ρ - · = Ρ Λ (hermiticity) (3.3)

2.pmm = Spp = l (normalization) (3.4)

0 < P m m < i , (3.5)

The equal sign in (3.6) holds only for the pure state
x, which i s character ized by the fact that the spin state
of χ does not depend on the remaining var iab les* . This
means that the resonance and the remaining p a r t of the
system a r e described separately by the functions i?(m)
and χ(α) (i.e., ip(m, a) = <ρ(ΐη)χ(αθ). In this case we have,
in accordance with (3.2),

pmm' = <p(m)9*(m'). (3.7)

In the general case of a part ly polarized state, the
number of rea l p a r a m e t e r s defining the ρ matr ix is

r = (2M-l) 3 -l ; (3.8)

(3.8) can be easily obtained from (3.3) and (3.4).
In most pract ical cases , the number of independent

p a r a m e t e r s is smal ler than in (3.8). For example, if the
Capps condition is satisfied in the reaction (2.1), then in
the Ζ system

for odd m — m'. (3.9)

This theorem was proved by Capps . It reflects the
fact that when the Capps condition is satisfied the ρ
matr ix is a function of vectors lying in the production
plane of x. This means that the e lements of the matr ix
P m m ' remain unchanged upon reflection in the produc-
tion plane of x. On the other hand, it i s known (see, for
example, ' 3 7 3 ) that p m m , - ( - D m ~ m P m m , following the
reflection in the XY plane. If we choose the production
plane of χ to be the XY plane, then we get (3.9) from the
last two s ta tements .

b) Polarization Moments and Their Properties

In the analysis of the angular distribution of the
decay products of the resonance, it is m o r e convenient
to specify its polarization state not by means of the ρ
matr ix , but by means of the polarization moments (PM)

> which a r e connected with p m m < by the formula

TLM = m^__.P^CZ'.LM, (3.10)

a r e Clebsch-Gordan coefficients (CGC).where d m , . . ,
j m ' , LM

The CGC proper t ies used in this review a r e listed in
Appendix I; more details on CGC can be found in the
books 1 5 * 9 3 .

The PM were used many t imes to descr ibe the polar-
ization state of nuclei and elementary par t ic les (see,
for e x a m p l e , t e 4 " e 7 J ) .

Let us demonstrate the advantage of parametr izat ion
of the polarized state of χ with the aid of PM, using the
decay of χ into two spinless par t ic les as an example.
If we represent the products of the spherical functions
in (3.1) in the form (II, 7') of Appendix II, then, with
allowance for (3.10), we obtain

da
L

(3.11)

£, = 0 M=-L
Let us multiply (3.11) by Υ £ Μ ( * ι ψ) and integrate

with respect to the solid angle, taking into account the

*The pure state is called also the completely polarized state. In the
opposite case one says that the resonance (particle) is partly polarized.
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orthonormality property of the spherical functions. We
obtain

where

IMW, <P)>=

«, φ)),

φ).

(3.12)

(3.13)

< Υ* Μ(»>, φ)) is determined from the experimental data

by means of the formula

(Y'L (3.14)

where the summation is carried out over all cases of
the decay of χ into two spinless par t ic le s , and η is the
total number of c a s e s . It is obvious that (3.14) is the
limit of (3.13) as η tends to infinity.

Formulas (3.14) and (3.12) make it possible to obtain
quite easily the P M * from the experimental data, where
it is much more difficult to determine the ρ matr ix from
(3.1) (especially in the case of large spin). At any r a t e ,
there i s no simple algorithm such as (3.12) and (3.14)
for the reconstruct ion of the ρ matr ix in the case of
a r b i t r a r y spin.

We shall verify in what follows that for other types
of decay of χ it is m o r e convenient to use the PM than
the ρ matr ix .

The PM can be interpreted in the following manner:
the ρ matr ix of a part ic le with spin j (just as the product
of wave functions of two par t ic le s with spin j) is a super-
position of spin functions with values of the spin from
zero to 2j. According to the rule for the addition of
angular momenta, the condition (3.10) se lects from this
superposition a function with spin L and projection M.
Such an interpretat ion of the PM i l lus t ra tes formula
(3.12) quite well.

We emphasize that the definitions of the polarized
state of χ with the aid of the ρ matr ix and with the aid
of the PM a r e perfectly equivalent: knowing the ρ matr ix
we can find the PM from formula (3.10) and, conversely,
knowing the PM we can establish the ρ matr ix by means
of the formulat

Ρ Τ Ϊ Ϊ Τ Ι Ϊ ' ' - _ ^ j ( 3 . 1 5 )

The proper t ie s (1.3)—(1.6) of the ρ matr ix c o r r e -
spond to the following p r o p e r t i e s of the PM:

min C%, LO < TL0< max C>, Lo t ,

2 2 (2L+l)\TLM\*<2j + l.

L=0 M=-L

(3.16)
(3.17)

(3.18)

(3.19)

*We note that by virtue of (1.6) only T L M with YLM having even L
contribute to the angular distribution (3.11). Consequently it is impos-
sible to determine T\j^ with odd L from the decay into two spinless
particles, i.e., the distribution (3.11) does not contain complete infor-
mation on the polarization of x.

t Formula (3.15) is obtained by multiplying (3.10) by [2L + l)/(2j +
1)] X Cim,' L M , summing over L, and M,, and using (1.3), (1.4b), and
(I4f))

JLimitationsof the type (3.18) exist also when Μ Φ 0. For

In (3.18), the maximum and minimum values of C i m

a r e taken at fixed j and L. •* '
F o r m u l a s (3.16)-(3.19) a r e obtained from (3.3)-(3.6)

with allowance for (3.10), ( l .4e)-( l .4f) , and (1.5).
F r o m the definition (3.10) and (I.I) it follows that

TLM = 0, if \M\>L, o r £ > 2 ; \ (3.20)

Therefore, with account taken of (3.16) and (3.17), we
conclude that the number of independent real p a r a m -
e t e r s specifying all the PM is equal to

2
L=0

which naturally coincides with the number of ρ-matr ix
p a r a m e t e r s in (3.8).

We present one more useful formula

4

(3.21)
which can be readily obtained with the aid of (1.8) and
(3.4).

Just like the ρ matr ix , the PM a r e specified relative
to a definite coordinate sys tem. When the coordinate
system is rotated through the Euler angles α, β, and γ,
the PM a r e transformed as follows:

(3.22)

where Τ

D

/ is the PM in the new system, and

,(a, β, γ) a r e the Wigner D functions*.
M M

T h e C a p p s t h e o r e m (3.9) in t e r m s of t h e P M r e a d s
a s f o l l o w s : if t h e C a p p s c o n d i t i o n i s s a t i s f i e d , t h e n we
have in the Ζ system

r L M = 0 for odd Μ (3.23)

and in the Υ system

ThM=(-y)LnM. (3.24)

Formula (3.23) follows from (3.9) and (3.10), while
(3.24) is obtained from (3.23) by using (3.22), (II. 1), and
(Π.4'), and recognizing that the Υ system is obtained by
rotating the Ζ system through the Euler angles
(0, π/2, π/2).

A s s u m e t h a t t h e p a r t i c l e a i p r o d u c e d in t h e d e c a y
(2.2) o r (2.3) h a s a s p i n s . I t s p o l a r i z a t i o n s t a t e c a n b e
described both by the density matr ix ρ λ λ , and by the
PM t ^ (this symbol of the PM for a i is used to d i s-
tinguish it from the PM of the resonance T j ^ ) . It is
c l e a r that p^^, and t ^ have the same proper t ies as

P m m ' a n d T L M · F o r example,

2 2
1=0 μ = - (

«00 =
i f o r l > 2 s .

( 3 . 1 5 ' )

( 3 . 1 6 ' )

( 3 . 1 7 ' )

( 3 . 2 0 ' )

F i n a l l y , l e t u s c o n s i d e r b y w a y o f a n e x a m p l e , t h e P M

more details concerning limitations of this type see [57 ].

* F o r d e t a i l s o f D f u n c t i o n s s e e t h e b o o k s [ 6 · 1 2 · 1 3 ] . T h e D f u n c t i o n s

a r e d e f i n e d s o m e w h a t d i f f e r e n t l y i n t h e s e b o o k s . W e f o l l o w R o s e ' s d e f -

i n i t i o n [ 1 2 ] . M a n y u s e f u l f o r m u l a s f o r t h e D f u n c t i o n s a r e c o n t a i n e d i n

I 1 0 ' 1 1 ] . I n A p p e n d i x I I a r e g i v e n o n l y t h e D - f u n c t i o n f o r m u l a s u s e d i n

t h e p r e s e n t r e v i e w .
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of a part ic le with spin 1/2. Its ρ matr ix is usually wr i t-
ten in the form

ρ = (1 + ρσ)/2,

where ρ is the polarization vector . F r o m (3.10) we ob-
tain

2Όο = 1, TtQ = Pz/V3, Τι±1=-(ρχ^ίρτ)/νΈ. (3.25)

The remaining T L M vanish in accord with (3.20).

c) The ρ Matrix and PM of Two Particles

The polarization state of two par t ic les with spins j ι
and j 2 i s character ized by thei r common polarization
matr ix p m m ' m m', which generally speaking does not

reduce to a product of the ρ m a t r i c e s of the two p a r t i -
cles (there is a correlat ion between the polarizations of
the two par t ic les) . The spin projections m i and mj of
the f irst par t ic le , and m 2 and m 2 of the second, a r e
specified in t e r m s of the r e s t sys tems of the c o r r e -
sponding par t ic les relative to definite coordinate s y s -
t e m s .

Jus t a s in the case of one part ic le , it i s possible to
character ize the polarization s tate of two par t ic les by
using in place of the ρ matr ix the PM T L M L M ,

which a r e connected with ρ , m j n / by a formula
s imi la r to (3.10): ι ι> 21 2

71
1 Ll-W

, La«2
X1 /"M"ZJ ĵjm

(3.26)

The inversion formula is obtained in analogy with
(3.15) and takes the form

1 1 (3.27)

4. TWO-PARTICLE DECAY O F RESONANT S T A T E .

GENERAL THEORY

a) D e c a y Amplitude

We c o n s i d e r the d e c a y of the invest igated r e s o n a n c e

* - « , + «,, (4.1)

w h e r e a i and a 2 a r e p a r t i c l e s o r r e s o n a n c e s with definite
quantum numbers . We denote by k x , ki, and k 2 the m o -
menta of the corresponding p a r t i c l e s , by ηχ, η ι, and η2

their par i t ie s , and by j and s the spins of χ and ai . The
spin of the part ic le a 2 will be assumed equal to z e r o ,
this being the case of greates t pract ica l in teres t . At the
end of the section we shall general ize the resu l t s to the
case when a 2 a lso p o s s e s s e s a spin.

We specify a coordinate system XYZ in the res t sys-
tem of x. The state of the decay products of χ is speci-
fied by the following quantit ies: t> and ψ— the polar and
azimuthal angles of kj (relative to the axes XYZ), and
λ—the projection of the spin of a 2 on the direct ion of k 2

(λ is called the helicity of the part ic le a j . If the pro jec-
tion of the spin χ on the Ζ axis is equal to m, then the
wave function of the decay products of χ is equal to

The var iables of this function a r e the direction ki (the
angles «? and φ) and the helicity λ of the part ic le a ^

It is c lear that the decay of χ should be character ized
by invariant quantities determined by the dynamics of
the decay and a r e independent of the choice of the axes
XYZ. Such quantities a r e the Α λ . They a r e called the
helicity amplitudes of the decay*.

Let us show how (4.2) is derived and let us explain
the physical meaning of Α λ .

Let the projection of the spin of χ on a certain
direction Z ' equal λ. By virtue of the conservation of
the momentum in the decay (4.1), the emiss ion of the
part ic le a i in the direction Z ' is possible only if the
helicity of a i is equal to λ. We denote the amplitude of
such a decay by [(2j + 1)/4π]1 / 2Αλ where [2j + 1)/4π] 1 / 2

is a normalization factor. It is obvious that Α λ does not
depend on the choice of the coordinate system XYZ.

Let us consider a spin state of χ such that the pro jec-
tion of the spin on the Ζ axis in the XYZ system is equal
to m. In this case the spin function x, which has a p r o -
jection λ on the direction ki, is equal to DJ*, (φ, ·ί>, 0).

mA
(As is well known' 1 0 " 1 3 3 , in rotation the spin-function
transformation matr ix is made up of D functions.
Consequently, <jm |R(<p, rf, O)|jX> = D* Αφ, *, 0),

mA
where R i s the rotation operator) .

Thus, if χ has a spin projection m on the Ζ axis, then
the product of [(2j + 1)/4π] ι 7 2Αχ by DJ* (φ, ,>, 0) is none
other than the wave function of the decay products of x,
i .e. , we a r r i v e at (4.2).

In Appendix IV we give a r igorous derivation of (4.2),
and also prove the property (4.4), described in the next
i tem, of the helicity amplitudes of the decay.

b) Properties of Αλ

If j 2 s, then the number of decay helicity amplitudes
Αλ is equal in the general case to the number of the
spin states of the particle a.u i.e., to (2s + 1).

On the other hand, if j < s, then by virtue of (II.8)
the number of Αλ does not exceed (2j + 1). Thus,

if
if

;>s, (4.3)

However, not all the amplitudes a r e independent. If
parity i s conserved in the decay (4.1), then

Α = σΛ_λ, (4.4)

where

σ=(ηινη«)(-ΐ)*" 5 · (4.5)

Relations (4.4) a r e the s tart ing point for the d e t e r -
mination of j and ι? χ. They mean that the Α χ with non-
negative λ a r e independent. This is a consequence of
the fact that in parity-conserving decays (4.1), out of
all the possible orbital momenta (which take on values
from lj — si to j + s and whose number is equal to 2s + 1
or 2j + 1), the only admissible ones a r e those having the
same parity, such that (-1)* = (ηχ/ηιη^).

The Α λ a r e expressed in t e r m s of the orbital decay

θ, 0). (4.2)
*The helicity amplitudes in different processes were first considered

by Zastavenko [ " ] .
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ampl i tudes A by m e a n s of the formula ( s e e , for e x -
ample,1 1^)

(4.6)

In o r d e r for the function (4.2) to be normalized, i.e.,

i, (4.7)

it is necessary that Α λ satisfy the normalizat ion condi-
tion

Σ μ λ | * = 1· (4.8)

In (4.7) and (4.8), the summation is over the values of λ
given by (4.3).

c) Connection Between Amplitudes of the Decay χ and
the Polarization State of the Products of Its Decay.
Cascade Polarization Moments

In the preceding subsection we have noted that the
relat ions (4.4) between the decay helicity amplitudes Α λ

a r e the s tart ing point for the determination of j and ηχ.
It i s c l e a r that the amplitudes Α λ influence above al l
the polarization state of the part ic le Xi, which can be
determined experimentally.

The polarization s tate of the part ic le a i will be
character ized ei ther by the density matr ix p( a i ) or by

λλ'
the P M Both pj~u, and t, a r e d e t e r m i n e d in the

r e s t s y s t e m of a ! re la t i ve to the a x e s X ' Y ' Z ' shown in
Fig . 1.

FIG. 1

If the system containing the resonance χ is described
by the function tp(m, a) (m is the projection of the spin
of χ on the Ζ axis and a a r e the remaining var iables of
the system), then the angular distribution of the decay
products of χ a r e determined from the formula

, Φ).

Taking into account the definition (3.2) of the reson-
ance ρ matr ix , we rewri te (4.9) in the form

#, Φ)= Σ . Σ
m, τη'=—j λ

β, φ). (4.10)

The density matr ix of the part ic le a i is obtained in
analogy with (4.10):

1
' ι (β, <p) φ). (4.11)

The ρ matr ix (4.11) i s normalized in accordance with
(3.4) and, of course , is a function of <> and φ .

We make the following transformations in (4.11): we
express the ρ matr ix of χ in t e r m s of the PM T ^ j ^ in
accordance with formula (3.5), and replace

Φ^ λ and Ψ·' , . , by their values (4.2). After simple

algebraic calculations in which formulas (Π.4), (II. 7),
(1.2), and (1.4) a r e used, we obtain

= (ΑλΑΙ/ίπ) Σ Σ (2L +l) CV. ΐΛ-λ-Dii* λ-λ· (φ, #, 0) TLM.
L-0M=-L (4.12)

Relat ion (4.12) c o n n e c t s the po lar izat ion s ta te of the
part ic le a i with the decay amplitude Α λ and with T - M ,
which a r e the PM of x. F r o m (4.12) we can obtain
a relation more convenient for pract ical applications.
To this end, we multiply (4.12) by Ό^ ,(φ, ,?, 0) and

integrate over the solid angle with allowance for the
orthogonality property of the D functions (Π.6). We ob-
tain

(4.13)

We have already noted that the polarization state of
the part ic le is best described with the aid of the PM,
since the PM a r e e a s i e r to determine from experiment
than the ρ matr ix . We therefore express the ρ matr ix
of the part ic le a i in (4.13) in t e r m s of its PM t/μ, using
formula (3.15')· We a r r i v e at the resul t

Σ K2z+i)/(2s+i)i <;;;>,,
1=0

(4.14)

where

4 M = f «ίμ^Μμίψ. «,0)/(*,ip)dcOsdd<p. (4.15)

The quantit ies tr1 wi l l be c a l l e d the c a s c a d e p o l a r -

izat ion m o m e n t s (CPM) of the p a r t i c l e ai . Th i s name i s

m o s t appropriate for the fo l lowing r e a s o n .
A s s e e n from (4.15), to find the C P M it i s n e c e s s a r y

to have the angular distr ibut ion of t^ in the r e a c t i o n
w h e r e i n the p a r t i c l e a i i s produced* un th i s c a s e , in
the d e c a y of the r e s o n a n c e x) . In Ch . 3 we have noted
that ί;μ can be determined from the angular distribution
of the decay products of a i (if a i is stable, then to de-
termine t ^ it is necessary to sca t te r a i by an analyzer
target) . Thus, to find the CPM it is necessary to have
the distribution function in the cascade of the production
and decay (or the scattering) of the part ic le a i , this
function being dependent both on the direction of the
momentum of a i and on the direction of the momenta of
the decay products of a i .

*The definition (4.15) of the CPM does not require that aj must be
produced in the decay (4.1). If, for example, a! is produced in a four-
particle reaction, then it is still possible to introduce a CPM in accord-
ance with formula (4.15), with i? and ψ specifying the direction of the
momentum of a, in the c.m.s. of this reaction.



528 Μ . S . D U B O V I K O V a n d Y u . A . S I M O N O V

d) Experimental Determination of the CPM

The eas ies t to determine experimentally is ΤΪο ·
Indeed, from (3.17') and (4.15) we obtain

too =(^Λίθ(φ, Φ> 0)'/· (4.16)

In (4.16) and throughout th is r e v i e w we u s e the fo l lowing
notation:

where the summation is over all cases of the investiga-
ted decay (which can be also of the cascade type), and
t a . i s the value of t a in the i-th case . In (4.16) we have

1

Equation (4.16) is the limit of (4.15) a U = μ = 0),
when η tends to infinity.

The r m s e r r o r of the quantity a ( t a ) is calculated
from the formula

Unlike ΐ™Μ, the other CPM of the part ic le a i can be
determined experimentally only if the momenta of the
decay products of a i a r e measured.

Let a i decay into two p a r t i c l e s . The direction of the
momentum of one of the decay products will be speci-
fied by the angles y and ψ' in the res t system of a i
relative to the axes X 'Y 'Z' , which must be chosen in the
manner shown in Fig. 1.

We shall show la ter on that the Ρ Μ of a χ a r e d e t e r -
mined from the experimental data by means of the
formula

ίΐμ— ϊ((£*μο(φ\ ΦΊ 0)>> (4.19)

where the coefficient γι depends on the concrete decay.
Thus, for example, if a x decays into two spinless p a r t i -
cles, then it follows from (3.12), (II.2), and (4.19) that

yi(s -* 20) = (C?s, .ο)'1. (4.20)

F r o m (4.19) and (4.15) w e obtain the fol lowing f o r m -
ula for the e x p e r i m e n t a l determinat ion of the C P M *

^ f = yt (ΰίίμ (φ, θ, 0 ) ΰ μ 0 ( φ ' , θ', 0)). (4.21)

We r e c a l l once m o r e that we u s e the notation (4.17) in
(4.21).

The e r r o r s of the C P M a r e ca lcu lated by m e a n s of
formula (4.18).

e) P r o p e r t i e s of the C P M

Let u s note cer ta in p r o p e r t i e s of the C P M .
It fo l lows from (4.15), (II.8), and (3.20' ) that

z"' = 0, if | μ [ > £ , ΟΓ \M\>L, ΟΓ | μ | > ί , Or l>2s.

(4.22)
F r o m (4.14) and (3.20) we conclude that

0, if L>2j. (4.23)

*It is seen from (4.20) that in the decay c^ -* 20 at odd 1 we have
7; -»• °°. A similar situation occurs also in the parity-conserving decay
aj -»• 1/2 + 0. It is clear that in these cases it is impossible to use for-
mula (4.21) to determine t ^ M with odd /. This question will be dis-
cussed in detail later.

F r o m (4.15), (3.16'), and (Π.4) we obtain the relation

tf~"=--(-l)Mtff*, (4.24)

which is always satisfied, regard les s of the p r o c e s s in
which the part ic le a i was produced. Therefore the CPM
with non-negative Μ (or μ) a r e independent.

F r o m (4.14) we can express the CPM with the aid of
(1.2) by means of the formula

λ Σ s
(4.25)

If parity is conserved in the decay (4.1), then we ob-
tain from (4.25), (4.4), and (l.4f)

/fif

(, = (-l) t+'i™'. (4.26)

It follows from (4.24) and (4.26) that if the part ic le a x

was produced in a parity-conserving decay (4.1), then
the tLM W i t h non-negative Μ and μ a r e independent.

It is c lear from (4.15) that CPM a r e specified with
respect to definite axes XYZ (in the r e s t system of x)
and X 'Y 'Z' (in the res t system of ai) . Whereas the
direct ions of the axes X 'Y 'Z ' must be chosen as shown
in Fig. 1, the direct ions of XYZ a r e in general a r b i -
t r a r y . However, if the Capps condition is satisfied in
the reaction (2.1) of χ production, then the XZ axes a r e
best chosen in the plane of this reaction (i .e., the CPM
a r e best specified in the Υ system). When XYZ is so
chosen, we get the relation

tff = (-l)'tff. (4.27)

This relation can be easily derived from (3.24), (4.25),
(4.24), and (4.26).

f) CPM and Determination of the Quantum Numbers of
the Resonance

This is the main problem in Ch. 4. Assume that
parity is conserved in the decay (4.1). We then get from
(4.4)

ΑκΑΙ-οΑλΑ*_λ. = 0. (4.28)

Substituting (4.14) in this formula, we obtain relat ions
for the determination of j and ηχ:

i-v, ν ^ (2Γ
ο ^ νμΛ™. = 0.

(4.29)

The p r i m e at the summat ion s ign m e a n s that the s u m m a -
tion must be c a r r i e d out only o v e r even I and I' o r only
o v e r odd o n e s * .

The u s e of (4.29) for the determinat ion of j and JJX i s
b a s e d on the fact that the coe f f i c ients of t h e s e re la t ions
depend on j via d x ) and σ.

]λ,ίμ
The procedure for determining j and ηχ i s as follows:

in (4.29) it i s necessary to substitute the experimentally
obtained CPM and to choose j and σ such a s to satisfy
(4.29). After j and σ a r e determined, the pari ty is de-

*The fact that (4.29) is satisfied separately for even and odd / and /'
can be verified with the aid of (4.26) and (I.4f). It is, however, very
easy to obtain this relation if the Capps conditions are satisfied in the
reaction (2.1). In this case relation (4.27) holds, from which it follows
that at even / and V the CPM are real, and at odd ones they are imagi-
nary.
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termined by means of formula (4.5).
Such a simple procedure is realized if the errors

and the background are quite small. If the errors are
not small, then only the most probable values of j and
τ; can be determined. To this it i s necessary to calcu-
late by the χ 2 method the probability of satisfaction of
(4.29) for different values of j and σ (details on the χ 2

method a r e given in Appendix ΙΠ). We note that as a rule
(4.29) is m o r e sensitive to σ than to j . Therefore in the
experiments the pari ty of the resonance is determined
m o r e definitely than the spin.

Relations (4.29) (as well a s (4.14), from which they
a r e derived) a r e valid when t ^ M j s averaged over a

region of the angles of the production of x. It is t h e r e -
fore possible to employ the ent i re s ta t i s t ics obtained in
the experiment.

At different values of L and M, the relat ions in (4.29)
a r e independent. In addition, at fixed L and M, the r e l a -
tions for which

0 < λ ' < λ < 5 (4.30)

a r e independent. This follows from (4.24) and (4.26).

g) D e t e r m i n a t i o n of the P o l a r i z e d State of a R e s o n a n c e

and Its D e c a y Ampl i tudes

After determining j and ηχ, the experimentally ob-
tained CPM can be used to calculate the PM of x,

2 v z

2J 2.
21+1

+ 1
(4.31)

sum tl·
virtue of (l.4f), the

(=0 >.=-a
This formula is obtained from (4.14) when account is
taken of (4.8).

The pr ime in (4.31) denotes that it is necessary to

for which L and I have the same parity (by
^ M with different par i t ie s of L

and I cancel out in the sum (4.31). It is c lear that
formula (4.31) is valid only if CJ* * 0 for all λ.

]λ, Lo

T o c a l c u l a t e t h e d e c a y a m p l i t u d e s i t i s p o s s i b l e t o

u s e f o r m u l a s (4 .14) . We n o t e t h a t w i t h t h e a i d of (4.14)

it i s possible to find Α λ only accurate to within a com-
mon phase.

We present one more useful formula

. 0)),

where

, = (

(4.32)

(4.33)

These formulas a r e obtained from (4.25) and (4.16).
If the amplitudes of the decay of a resonance a r e d e -

termined during the course of its investigation, then
formula (4.33) makes it possible to determine γ-^. It is
then possible to use (4.32) for an experimental
determination of the PM of this resonance, if the la t ter
is produced by decay of another resonance (i.e., if it
itself plays the role of the part ic le a i in the decay (4.1)).
In this case (4.32) is written in the form (4.19) with the
obtained values of J-J.

The general theory of two-particle decays is devel-
oped i n r i 4 ] .

In the next chapter we shall apply the general theory
to concrete decays.

h) Decay of a Resonance Into Two Particles with Non-
zero Spin

Let us general ize the principal resu l t s of the present
section to include the case with both par t ic les a i and a 2

produced in the decay (4.1) have nonzero spins Si and s 2 .
The polarized state of a i and a 2 will be character ized

by the PM tj j „ , analogous to (3.26). The indices

h, μ ι , and J2, μ2 a r e determined in the r e s t sys tems of
the corresponding par t ic les ; the axes XJYJZJ and X 2Y 2Z 2

have opposite direct ions, with XJY^Zi directed in the
same manner a s X 'Y 'Z ' in Fig. 1.

The CPM a r e determined in analogy with (4.15):

(4.34)

( 4 . 3 5 )

The proper t ie s of the CPM a r e analogous to
(4.22)-(4.24):

,LM _ , ,,tftM<
ι ί ι - μ ι . ' 2 - μ 2 — ^ x) iiini, huz-

I f p a r i t y i s c o n s e r v e d i n t h e d e c a y ( 4 . 1 ) , t h e n w e h a v e

i n a n a l o g y w i t h ( 4 . 2 6 )

' f i - μ ι . <2-μ2 — ν — ί ) ' ! i m , !»μ«· ( 4 . 3 6 )

I n t h e g e n e r a l i z a t i o n o f ( 4 . 2 7 ) i t i s n e c e s s a r y t o r e -

p l a c e ( - l P b y ( - l ) * i + Z 2 .

F o r a g e n e r a l i z a t i o n o f ( 4 . 2 9 ) f o r t h e d e t e r m i n a t i o n

of j and ηχ, and for the i r application to the decays
j — 1/2 + 1/2 and j — 1 + 1/2 s e e t l 4 J .

5. TWO-PARTICLE DECAY OF THE RESONANT

STATE. CONCRETE DECAYS

a) Decay of a Boson into Two Spinless Particles

We have shown e a r l i e r (see Ch. 3, b) that in the de-
cay of a boson resonance into two spinless par t ic les
there is no asymmetry with respect to the reflection of
the produced par t ic les in the angular distribution of the
decay products, and no T j ^ with odd L appear in the
decay of x. For even L, the PM of x a r e determined in
the experiment by means of the formula

rLM = (i-12, O ( φ , », 0)>, ( 5 . 1 )

which can be readily obtained from (3.12) and (Π.2).
What conclusion can be drawn with respect to j and

η on the bas i s of an analysis of the angular distribution
of the products of the decay of x? If parity is conserved
in the decay, then

- l ) j . (5.2)

As to j , it i s possible to establish for it only a lower
limit. By virtue of (4.23)

j>LlnsJ2, (5.3)

where L m a x is the largest value of L for which
^ D M o ^ ' 1>> °^ e x c e e d s t h e level of the e r r o r s . More
information concerning the value of j than is contained
in (5.3) can be obtained only in individual c a s e s . Let us
stop to discuss this in g r e a t e r detai l .

Assume that in the analysis of the decay of x it turns
out that L m a x = 2. We then obtain from (3.15), (1.7),
(1.8), (5.1), (Π.1), and (II.3)
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. (5.4)

From (3.5) and (5.4) we obtain the inequality

-l,'5«Pa(cosd)>.<(/ + l)/5(2/-l), (5.5)

which can help establish the spin of x*. A similar
analysis can be carried out in the case when L

max
= 4.

Let us consider by way of an example the experiment
of Carmony and Van der W a l l e U 5 J . They investigated
the p r o c e s s π+ρ -— ιτ*ρπ° at an incoming-pion momentum
1.25 GeV/c. 1684 events were selected for the dipion
m a s s in the p-meson region 27 m 2 £ M 2 :£ 33 m 2 and
for the recoil proton momentum 100—400 MeV/c. The
authors obtained the c r o s s section

da/dcos β = [(26.4 ± 2,4) cos2 0 - (1,0 ± 1.4) cos d + (6.9 ± 0,7)] m b ,

(5.6)
where i? i s the angle between the incoming π and out-
going IT* in the dipion res t sys tem.

F r o m (5.6) we get

<*<««»)>= ( J 1F^P^°S *>dcos<>) / ( ί TOT<*«*»)
= 0.224 ±0.019. (5.7)

This value of <P2(cos «»)> satisfies the inequality
(5.5) only if j = 1.

We note that (Paicos >?)) and the errors must be
calculated directly from the experimental data, using
formulas such as (4.17) and (4.18), whereas we have
calculated (P2(cos <?)> by using the result (5.6) given
by the authors ofU5i.

b) Decay of a Boson into a γ Quantum and a Spinless
Particle

A photon cannot have z e r o helicity. Therefore in the
decay χ — y + 0 only the decay amplitudes Ai and A-i
differ from zero . Taking this c i rcumstance into account,
we obtain from (4.32), (4.33), (4.8), and (l.4f) for even L

<£>MO(<P. 0, O)) = CHLOTLM. (5.8)

Let χ have two decay channels, χ —* γ + 0 and
χ — 0 + 0. By investigating the angular distribution of
the decay of χ through both channels, we can establish
j (the parity of χ is determined from formula (5.2)).
Indeed, comparing (5.1) and (5.8), and taking (1.16) into
account, we obtain

(DU (φ, θ, 0) ) ( ^ 0 + 0 ) = 0.

(5.9)
In the derivation of this relation we took it into a c -

count that the PM of χ ( T L M ) do not depend on the chan-
nel through which χ decays.

In determining j with the aid of (5.9), the experimen-
tal data must be reduced by the χ 2 method.

c) Decay of a Boson Into Particles with Spin 0 and 1

Let us consider the case when the part ic le aj p r o -

*We note that if χ is emitted forward in the production reaction
(Adair's situation), then the angular distribution of the decay products
of χ contains additional information on the spin of x. This question,
however, is outside the scope of the present review (Adair's analysis
for a boson resonance decaying into two spinless particles can be
found, for example, in [ M l S 2 ] ) .

duced in the decay of the r e s o n a n c e (4.1) has spin 1
(the sp in of p a r t i c l e a 2 i s 0). Accord ing to (4.3), there
a r e three decay ampl i tudes Ai, Ao, and A-i (if j > 1).
By v i r tue of parity c o n s e r v a t i o n in the decay of x , we
have from (4.4) and (4.5)

Ao =

I)1-».

(5.10)

(5.11)

(5.12)

In order to determine the spin and the parity of χ
with the aid of relations (4.29), it is necessary to deter-
mine experimentally the CPM of the particle a^ Ac-
cording to (4.22), at s = 1 there are only t ^ M , t L ^ t L M .

Let ai decay in turn into two spinless particles. In
Sec. a of this chapter we have noted that no PM with
odd I appear in such a decay. Therefore t L ^ cannot be
determined from experiment. On the other hand, it is
possible to determine from experiment t^M a n ( j t^M

The former is determined from (4.16), and a formula
for the latter is obtained from (4.21) and (4.20) by sub-
stituting s = 1*:

μ (φ, ϋ, 0)) (5.13)

Thus, in o r d e r to determine j and η χ in the decay
χ — 1 + 0 (with subsequent decay 1 — 0 + 0), we can use
relation (4.29) only for even I and I'.

Let us write down (4.29) for even I and I' at s = 1.
If σ = 1, then substitution in (4.29) of λ = λ' = 0 and

also λ = 1 and λ ' = 0 resul t s in identit ies. On the other
hand, if σ = — 1, then, at the indicated values of λ and λ '
we obtain respectively the relations

4 M = 0, L even, (5.14)

(5.15)

Substituting in (4.29) λ = λ ' = 1 and summing over
even I and I' with the aid of (1.16) and (1.17), we obtain

Μ£+1) J I'00 -> V Ύ h» ) - |.~2Γ<Γ+Ϊ) l] h2 ==°'
(5.16)

w h e r e L a r e even*.
When j and ηχ a r e d e t e r m i n e d by the χ 2 method, i t i s

f i r s t n e c e s s a r y to find the probabi l i ty of satisfying the
hypothes i s (5.14) and (5.15) (see Appendix ΠΙ). If th i s
probabi l i ty i s s m a l l , then it can be s ta ted that σ = 1. In
t h i s c a s e it i s n e c e s s a r y to find the probabi l i ty of s a t i s -

*We recall that the angles # and φ determine the direction of the
momentum of the particle aj in the rest system of x relative to arbi-
trary axes XYZ, and # ' and φ' determine the direction of the momen-
tum of one of the decay products of a.t relative to the axes X'Y'Z'
(which must be chosen in the manner shown in Fig. 1) in the rest sys-
tem of a[ . If ai is a vector meson that decays into three pseudoscalar
mesons, then formulas (4.16) and (5.13) remain valid as before, except
that the angles # ' and φ' must define now the direction of the normal
to the plane of the decay of the vector meson in its rest system.

*We note that in the case of odd L all the CPM entering in (5.16)
and (5.14) are equal to zero. This can be readily verified with the aid of
(1.4), (5.11), and (4.25).
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fying the hypothesis (5.16) for different values of j only
σ = 1, and then to choose the most probable j . On the
other hand, if the probability of satisfying the hypothesis
(5.14) and (5.15) turns out to be large, then no conclu-
sions can be drawn with respect to σ, since (5.14) and
(5.15) can be satisfied also when σ = 1 (relations (5.14)
and (5.15) a r e a consequence of the fact that when
σ = — 1 we always have Ao = 0, but for an " a c c i d e n t a l "
reason it may turn out that Ao = 0 a l so at σ = 1). In this
case it i s necessary to find the probability of satisfying
(5.16) for different j at both values σ = ±1 and to choose
the most probable values of j and σ.

Formulas (5.14)-(5.16) were obtained by C h a n g t l 8 J .
The described procedure of determining j and ηχ

will be i l lustrated with concrete experiments somewhat
la ter , after we consider a few more general questions.

It may turn out that in the decay (4.1) the spinless
par t ic le i s identical with one of the products of the decay
of part ic le a i . Then, owing to the interference of the
identical p a r t i c l e s , the formulas obtained in this sub-
section must be revised. It is c lear that the revision is
meaningful when the width of the resonance a i greatly
exceeds the experimental resolution (for example in the
case of the ρ meson).

Let us consider, for example, the decay

• p°Ji (5.17)

The interference of ir~ mesons takes place only when
the invariant itlir* and ir~2ir

+ m a s s e s l ie in the ρ band
(i.e., in the case of intersect ion of the ρ band on the
Dalitz plot).

Since the distribution of the ρ-meson decay products
in the absence of interference is symmetr ica l with
respect to interchange of the momenta (i.e., with respect
to reflection of the momenta of the ρ mesons in the res t
system of p), we can use re lat ions (5.14) —(5.16) to d e -
termine j and ηχ. However, when calculating t p M by

formulas (4.16) and (5.13) it i s necessary to discard the
cases when the ρ bands intersect , and the cases in
which the invariant m a s s of the n' mesons l ies in the
ρ band must be taken with weight 2. If in the decay
(5.17) there a r e cases of intersect ions of ρ bands, when
the invariant m a s s of the v~ mesons also l ies in the
ρ band (i.e., c a s e s when the invariant m a s s of each pa i r
of ir mesons l ies in the ρ band, a s is the case for the
decay of the A2 meson), then the i r contribution to t i ^

i s taken into account in a m o r e complicated manner (for
more detai ls see 1 1 7 · 1 ).

The correct ion of t L M for the decay A 2 meson can

be found i n ' 1 8 3 , and turned out to be not l a r g e r than 5%.
Let us stop to discuss the determination of the PM of

χ ( T L M ) . F r o m (4.31), (4.16), (5.13), and (1.16) we ob-
tain

w h e r e t h e L a r e e v e n .

If ηχ = ηιηζ(-1)ΐ, then Ao = 0 in accord with (5.11)
and (5.12), and we obtain from (4.32), (4.33), (4.8), and

^ - ( C i l , to)"1 <•»«<> (φ, Ο, 0)}. (5.19)

where the L a r e even. The e r r o r s S T L M a r e calculated

from a formula s imi lar to (4.18).
If χ decays into two pseudoscalar mesons, or into a

pseudoscalar and a vector meson, then according to
(5.2) we have ηχ = (—1)J. F r o m a comparison of (5.1)
with (5.19) we obtain, with the aid of (1.16), additional
relations for the determination of j :

(L- even). (5.20)

It i s c lear from (5.13) and (4.16) that the CPM d e -
pend on the choice of the axes XYZ, relative to which
the angles t» and φ a r e defined. Equations (5.14)—(5.16)
a r e valid for any choice of XYZ. It is most convenient,
however, to direct the Υ axis along the normal to the
plane of χ production. In this case , in accordance with
(4.27), all the t ^ M a n c j t ^ M should be pure rea l in the

absence of a background. If the x-production reaction
has a per ipheral character , then the Ζ axis is best d i-
rected along the momentum of the incoming part ic le in
the res t system of x, and the Υ axis along the normal to
the reaction plane. Such a system of coordinates will be
called the Treiman-Yang sys tem' 5 9 · 1 .

By way of an example let us consider the experimen-
tal work of Ascoli et a l . w o ] , who investigated the quan-
tum numbers of the Β meson in the reaction

it" -r Ρ —* B~ -f- ρ (5.21)

at an incoming 7r~-meson momentum 5 GeV/c. The p r o -
duced Β meson decays in accordance with the scheme

B-- (5.22)

The method described above can be used for the d e -
cay (5.22), with the angles i»' and φ ' in (5.13) defining
the direction of the normal to the plane of decay of the
vector meson ω in its res t system relative to the axis
X 'Y 'Z ' (see Fig. 1).

I n t e o : i , the CPM was calculated in the Treiman-Yang
system, and the authors subtracted the background (we
shall not d iscuss the procedure used in'80"1 to subtract
the background, since this question is beyond the scope
of the present survey). In Table I a r e given those CPM
values ofLeo* which a r e outside the l imits of e r r o r s .

Table I

CPM

Numerical value
and etroi

(15

0.222+0.079

ho

—0.136+
+0.056

Χ»!·)»,», Φ')/

—0.166+0.056

= Re <Do2 (Φ. #, φ')>

0.076±0.038

I t i s e a s y t o s h o w t h a t t h e C P M 11°, a n d 1 1 ? g i v e n i n

T a b l e I a r e c o n n e c t e d w i t h t h e C P M t | S a n d tfz ( s e e

f o r m u l a ( 5 . 1 3 ) ) b y m e a n s o f t h e f o r m u l a s *

3 T>o _ *2° 4_ 1/ JL f
2 f2Q — lon ι γ 2 ( 5 . 2 3 )

* W e n o t e t h a t ( 5 . 2 4 ) i s v a l i d i f t h e r e i s n o b a c k g r o u n d i n t h e d e c a y

o f t h e v e c t o r m e s o n . I f t h e b a c k g r o u n d o f t h e v e c t o r m e s o n i s n o t v e r y

s m a l l , t h e n i t i s m o r e c o n v e n i e n t t o u s e t * ° t h a n t S , f o r t h e i n f l u e n c e

o f t h e b a c k g r o u n d i s s m a l l e r i n t h e c a l c u l a t i o n o f t .
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ξ=-/{ιϊ· (5.24)

To determine the spin and parity of the Β meson it is
first necessary to calculate the probability of the hypo-
thesis (5.14) and (5.15). As reported by the authors
of

L e o ]

all the are smaller than the errors; the
hypothesis (5.15) are therefore likely. With the aid of
Table I and (5.23) it is easy to verify that at L = 2 and
Μ = 0 we get χ2 < 1 for the hypothesis (5.14) (i.e., the
hypothesis is likely). At L = 0, Eq. (5.14) takes the
form

1 —ΐ/"Ϊ0ί™ = 0. (5.14')

From the value of t2S (and of the error) given in
Table I it is easy to find that χ2 = 1.5 for the hypothesis
(5.14'); the corresponding probability is 22%, i.e., the
hypothesis (5.14') is likely.

We have already explained that when the hypotheses
(5.14) and (5.15) are satisfied it is impossible to draw
any definite conclusion concerning the value of σ.
Therefore the hypothesis (5.16) must be investigated by
the χ2 test at different values of j and at both values
σ = ±1. In terms of Π8 and t"|2, Eq. (5.16) takes the form

Table II lists the results of an investigation of the
hypothesis (5.16') by the χ2 test for different values of
the spin and parity of the Β meson. The same table
gives the values of the PM (T20) for the Β meson, calcu-
lated for those values of j and 7jg which are compatible
with the experimental data. T 2 0 was calculated for 1+ by
formula (5.18), and for 2+ and 3" by formula (5.19). The
last column of Table II gives the mean-square values of
the Β-meson spin projection on the Ζ axis, as calculated
by formula (3.21). (The Ζ axis was chosen to be the
direction of the momentum of the incident pion in the
rest system of B.) In addition, the density matrix ele-
ment poo is given for V.

Table Π

1+

2"

3+
1-
2+

3"

λ 2

2 . 7

1 1 . 7

1 1 . 5

1 1 . 7
2 . 7

1.1

Probabi l i ty , %

10

0 . 0 7

0 . 0 7

0 . 0 7

10

29

Conclus ion

T h e h y p o t h e s i s ( 5 . 1 6 ) is

c o m p a t i b l e w i t h t h e experi-

m e n t a l d a t a .

T h e h y p o t h e s i s ( 5 . 1 6 ) is

i n c o m p a t i b l e wi th t h e

e x p e r i m e n t a l d a t a .

D i t t o

D i t t o

T h e h y p o t h e s i s ( 5 . 1 6 ) is

c o m p a t i b l e wi th t h e

e x p e r i m e n t a l d a t a .
D i t t o

Tin

— 0 . 4 5 + 0 . 1 8

—

—

0 . 5 1 ± 0 . 2 1

0 . 3 5 ± 0 . 1 4 5

« > ) ' / !

Poo T -
= 0 . 8 1 ± 0 . 1 9

_

—

1 . 9 6 ± 0 . 2

2 . 6 ± 0 . 2 2

W e s e e f r o m T a b l e I I t h a t t h e m e t h o d o f p o l a r i z a t i o n

m o m e n t s h a s m a d e i t p o s s i b l e i n w o : l t o r e f u t e t h e q u a n -

t u m n u m b e r s 1 " , 2~, 3 + , e t c . , b u t d i d n o t p e r m i t a s t r i c t

c h o i c e b e t w e e n 1 + , 2*, 3 " , e t c .

However, it is seen from the same Table Π that in the
case of 1+ the element pOo predominates in the ρ matrix
of the Β meson, and in the case of 2* and 3" the predom-
inant elements are p m m with m *• 0. Therefore, if the

quantum numbers of the Β meson are 2+, 3 , etc., then a
drop should occur in the distribution with respect to t
at small t (t = — (kg — k^)2 is the square of the momentum
transferred to the Β meson in the reaction (5.21). On
the other hand, if there is no drop, then only 1+ is possi-
ble*.

InC e o : l, the distribution with respect to t turned out to
be proportional to exp(At), where A = 4 GeV~2. There-
fore the quantum numbers of the Β meson are most
likely Γ .

The reaction (5.21) was investigated at the Institute
of Theoretical and Experimental Physics ί 1 Ί 1 at an in-
coming pion momentum 3.25 GeV/c. The conclusions
concerning the quantum numbers and amplitudes of the
B-meson decay mLe01 and'77·1 are in good agreement.
But the polarization given"for the Β meson in the two
references is quite different, pointing to a different
mechanism of the reaction (5.21) at incoming-pion mo-
menta 5 and 3.25 MeV/c.

d) Decay of an Isobar into a Baryon and a Spinless
Particle

Let us consider the decay (2.1) in the case when χ is
an isobar, ai a baryon (with spin 1/2), and a2 is a spin-
less particle. According to (4.3), there are two helicity
amplitudes of the decay, Ai/2 and A - ^ . By virtue of
parity conservation, they are connected by a relation
analogous to (4.4) and (4.5):

Ανϊ = οΑ_, (5.25)

(5.26)

We shall discuss two problems: 1) the determination
of j and ηχ and 2) the determination of the polarization
state of the isobar x.

Let us consider the first problem. The relations for
the determination of j and ηχ are obtained from (4.29)
substituting (1.12) and the explicit values of C 1 / 2 λ

ι /2λ, ιμ
(and a l s o by tak ing into a c c o u n t the fact t h a t the p a r t i -
c l e s with sp in 1/2 have only tJjjM a n c j t L M a s C P M ) :

(2/ 1) t\f - a V2L (L-i)

t

= U. (5.27)

From (4.25), (5.25), (l.4f), and (1.12) it follows that

«^ = 0, if L is even, (5.28)

Therefore (5.27) can be used for the determination
of j and τ)χ only for odd L. To this end it is necessary

i JM ^ M
j ) χ y

to d e t e r m i n e e x p e r i m e n t a l l y tJjM and t ^ M for the

b a r y o n .

If the b a r y o n a i d e c a y s in t u r n without c o n s e r v i n g

p a r i t y , in a c c o r d a n c e with the s c h e m e

Oi-*N-\-n (5.29)

(N—baryon, Π—pseudoscalar meson), then its polariza-

*It can be thought that at an incoming pion energy 5 GeV the reac-
tion (5.21), albeit in a crude approximation, is described by the Regge-
pole model (see the review [6I]). Then the matrix element of the reac-
tion is proportional to (-t)m'2. But in any other peripheral model the
cross section of the reaction (5.21) should decrease at small values of t
if the Β meson is produced with a spin projection m Φ 0.
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t i o n s t a t e (and C P M ) c a n b e d e t e r m i n e d f r o m t h i s d e c a y .
A s i s w e l l k n o w n , w h e n p a r i t y i s not c o n s e r v e d in t h e

reaction (5.29) the angular distribution of Ν (in the res t
system of ai) i s given by

(5.30)

where Ω is the solid angle in the a i r e s t system, ρ is the
ai polarization vector, and ν i s a unit vector in the d i-
rection of the momentum of Ν (in the r e s t system of ai).

The asymmetry coefficient a is different for concrete
decays (5.29). Table ΠΙ l i s t s the values of a for a num-
b e r of decays. The data were borrowed from the review
of Rosenfeld et a l . t 7 o : l F r o m (5.30) we easily obtain a
formula for the experimental determination of p:

p = (3/a)<v>. (5.31)

F r o m (5.31) and (3.25) we obtain a formula for the ex-
per imenta l determination of the PM of a i

ί , 0 : = - ^ - ( ο ο 5 * ' ) ^ - ^ - { Ο ί , ( φ ' , » ' , 0)),

i i ± i - T ] / | ^ < s i n # ' e ™ - > ^ J ^ _ < O i i o ( < p \ θ', ϋ)>.(5.32)

We took i n t o a c c o u n t in (5.32) t h e fac t t h a t t h e P M of
a i a r e d e s i g n a t e d t ^ (and n o t T . „ ) and t h a t t h e y a r e

d e f i n e d r e l a t i v e t o t h e a x e s X ' Y ' Z ' ( s e e F i g . 1).
F r o m (5.32) a n d (4.15) w e o b t a i n a f o r m u l a f o r t h e

e x p e r i m e n t a l d e t e r m i n a t i o n of t h e C P M of a i

~- (DL,fli (φ, β, 0) DU ( φ ' , β', 0)). (5.33)

The e r r o r s of the CPM a r e determined by formula
(4.18). The notation (4.17) is used in (5.31)-(5.33).

Thus, substituting the experimentally obtained CPM
(5.33) in (5.27) we can determine j and ηχ. The exper i-
mental data must be reduced by the χ 2 method (see
Appendix ΙΠ).

The described method was used to determine j and
ηχ of the i sobars Σ*(1385) (see, for example, C 2 9 > 7 5 J ) ,
Ξ*(1530) (see, for e x a m p l e / 3 0 ' 7 6 3 ) . The resu l t s of t30J

were used by us in Appendix ΙΠ to i l lustrate the χ2

method.

Relations (5.27) were derived by Byers and
F e n s t e r [ 2 8 J .

We emphasize that the method of polarization m o -
ments makes use of all the information concerning the
spin and pari ty of the i sobar, and could therefore be
used successfully in investigations employing other
methods (for example the work of Shafer and co-
workers ' 3 1 · 1 ) who investigated the angular distribution
of the longitudinal and " m a g i c " polarization of the Λ
hyperon produced in the Σ* (1385) — Λ + it) decay.

Table m . Asymmetry
coefficient in strange -

baryon decays

Decay

Λ — > ρ + π~

Σ + - ^ ρ + π»

Σ* -^η-ί-τι*

Σ~ — > η + π~

Ξ-—> Λ + π -

Asymmetry
coefficient α

0.6455+0.0159

—0.9547+0.0696

—0.0175+0.0390

—0.0604+0.0469

—0.4070+0.0370

In conclusion we present formulas for the experi-
mental determination of the PM of x (these formulas can
be easily obtained from (4.25), (5.25), and (5.33)):

(5.34)«Γ 0)),

where L a r e even, and

>, (5.35)

w h e r e L a r e o d d .

We recal l that in (5.32)-(5.35) the angles ύ and φ,
{ύ' and ψ') define the direction of the momentum of
ai(N) in the r e s t system of x(ai) relative to the axes
XYZ (X'Y'Z'). If the direction of XYZ i s a r b i t r a r y (but
is frequently convenient to choose XZ to be the plane of
x production), then X 'Y 'Z ' a r e directed as shown in
Fig. 1.

We see from (5.34) and (5.35) that to determine T L M
with even L it is necessary to have only the angular
distribution of the decay of x, and to determine T L M
with odd L it is necessary to have the angular dis tr ibu-
tion of the polarization of a i (i.e., besides the x decay it
is also necessary to investigate the ai decay (5.29),
where a is the asymmetry coefficient in the la t ter d e -
cay). Thus, if a i is a stable baryon, then only the PM
with even L can be determined.

Incidentally, if the baryon a i is stable, then it is im-
possible to determine j and ηχ with the aid of (5.27), and
a polarized proton target must be used for this purpose
(see Ch. 7).

In this review we do not consider fermion decay with
pari ty nonconservation, since the hyperons Λ, Σ, and Ε
have already been well investigated, and the s tat i s t ics
a r e still patently inadequate for the study of the Ω
hyperon. The decay of fermions with pari ty nonconser-
vation is discussed in the reviews C 5 7 ' 5 S ) 2 4 : i and in the
original p a p e r s t 2 3 ' 2 7 ' 4 5 - 4 7 : l .

e) The Decay j — 3/2 + 0

Assume that the decay (4.1) of the isobar x produces
an i sobar a i with spin 3/2 (and known parity) and a
spinless part ic le a 2. According to (4.3) there a r e four
helicity amplitudes of the decay (if j > 3/2), A± !/2 and
A+3/2. By virtue of parity conservation, they a r e con-
nected by relat ions s imi lar to (4.4) and (4.5):

-4-3 (5.36)
The re lat ions for the determination of j and η a r e

obtained by substituting in (4.29) the equations
(1.11) —(1.15) and the explicit values of C3

3%y ιβ:

V(L - 1) (L + 2) if? - σ (/ -: -1/2) iff = 0, (5.37)

l/70(L-l)(L + 2) 4 V - σ (/ + 1/2) (3 \'ϊ iff -f 2 / 7 iff) = 0; (5.38)

in (5.37) and (5.38) the L a r e even;

(7 + 1/2) / ( L - l ) ( L + 2) iff - σ [L (L + i) - 2 (7 -• l/2)s] 4 " - 0,

(7+ 1/2) / ( L - 1) (L+ 2) (3/2 i f f + 2 /Tiff) ^ 5 · 3 9 )

- σ [£ (L + 1) - 2 (ί + 1/2)3] /TO if? = 0,

Γ ^ (2/ + D Ι ' ί ' , , ι π ^ , ,/,-,ικ, (5.40)
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Γ V(£
"L 0 -

( 5 . 4 2 )

i n ( 5 . 3 9 ) - ( 5 . 4 2 ) t h e L a r e o d d .

F o r m u l a s ( 5 . 3 7 ) - ( 5 . 4 2 ) w e r e d e r i v e d b y S h a f e r 1 3 3 3 ;

i n h i s p a p e r , r e l a t i o n ( 5 . 4 1 ) c o n t a i n s a n e r r o r a n d i s

n u m b e r e d ( 3 7 ) . H e a l s o g i v e s r e l a t i o n s o b t a i n e d u n d e r

t h e a s s u m p t i o n t h a t t h e a m p l i t u d e w i t h t h e s m a l l e s t

o r b i t a l a n g u l a r m o m e n t u m i s d o m i n a n t i n t h e j — 3 / 2 + 0

d e c a y .

To determine j and ηχ with the aid of re lat ions
(5.37)-(5.42) it is necessary to determine t^M^ the
CPM of a i . Ιμ

Let the i sobar a i decay with parity conservation into
a baryon and a spinless part ic le in accordance with the
scheme

ai-*N' + W. (5.43)

Then t 2 w , the PM of a i , a r e determined from this decay
by formula (5.34) (except that T L M in (5.34) must be
replaced by t ^ , and •& and ψ by t»' and ψ', since in the
decay (5.43) a i plays the role of χ and N ' plays the role
of a i ) . We thus obtain from (5.34) and (4.15) a formula
for the experimental determination of tpM;

i£" = — Κ5(θΜμ(<Ρ. β·. 0)Ομ0(φ', <•', 0)>. (5.44)

Thus, by studying the angular distribution in the d e -
cays (2.1) and (5.43) it i s possible to determine from
formulas (4.16) and (5.44) the values tJ;M a n d t L M o f

the CPM of a i . In this case it i s possible to use for the
determination of j and ηχ only the relat ions (5.37) and
(5.39).

To use the remaining relat ions (5.38) and
(5.40)—(5.42) it i s necessary to determine experimen-
tally t L ^ * and t L ^ . This is possible only if the baryon

N ' produced in the decay (5.43) is in turn unstable and
decays with pari ty nonconservation in accordance with
the scheme

A"_^jV" + n·. (5.45)

Then ί Χ μ and ί 3 μ a r e determined by formula s imi lar to

(5.35) (with T L M replaced by tj and i? and φ by t»' and

φ ' , a s explained above):

ί/μ = 3 (a'Cl'il Ijl ,ο)"1 (cos ΰ·"βμ0 (φ', *', 0)), (5.46)

where α ' is the asymmetry coefficient in the decay
(5.45), ι?" is the angle between the direction of the m o -
mentum of N' (in the r e s t system of a i ) and the d i r e c -
tion of the momentum of N " (in the r e s t system of N') .

F r o m (5.46) and (4.15) we obtain formulas for the
experimental determination of t L M and

, (m, ϋ. 0 ) β μ 0 ( φ ' , * ' , 0)cosfl·"), (5.47)

μ ( φ , 0, Ο)Ζ>μο(φ', «', 0) cos ·Υ). (5.48)

We r e c a l l t h a t i n (5.44) a n d ( 5 . 4 6 ) - ( 5 . 4 8 ) t h e a n g l e s

t» and φ {•&' and φ') specify the direction of the momen-
tum of a i (N') in r e s t system of χ (ai) relative to the
axis XYZ (X'Y'Z'). The direct ion of XYZ i s a r b i t r a r y
(but it i s frequently convenient to choose XZ in the χ

production plane) and X 'Y 'Z ' must be chosen in a man-
ner shown in Fig. 1.

6. THREE PARTICLE DECAY OF A RESONANT
STATE

a) Three-particle Amplitudes Decay and Their Proper-
ties

Assume that in the decay

χ—*«ι + α2 + α3 (6.1)

the par t ic les a 2 and a 3 a r e spinless , the spin of χ is j ,
and the spin of a i is s. This i s the case of greatest
pract ical interest . The momenta and the par i t ies of the
part ic les a r e respectively k x , k 1 ( k 2 , k 3 ; TJX, 7?ι, ηζ, η3.

We choose the coordinate axes XYZ in the r e s t sys-
tem of x. The state of the decay products of χ a r e
specified by the following quantities: the angles »> and
φ , which determine the direction of the momentum of
one of the par t ic les (for example, k 2 ) relative to the
axes XYZ, the angle Φ, which specifies the position of
the χ decay plane (Fig. 2), the energies ω χ and ω 2 (ω 3 i s
determined by the energy conservation law), and finally
the helicity λ of the part ic le a i .

If the projection of the spin of χ on the Ζ axis is m,
then the wave function of the decay products of χ is
given by (see Appendix IV)

). (φ, ϋ, Φ; (ιΗ, ω2) = .
2π

p, *,Φ).

(6.2)

The decay amplitudes fgj^tai» ωζ) do not depend on
the choice of the axes XYZ; they can differ from zero
only if

ϊ. (6.3)

f j ^ d i i , ω 2 ) has a physical meaning analogous to Αχ for
the two-particle decay (see Ch. IV), namely,
(Vj + 1/2/2ττ)ί^λ is the amplitude of the decay of χ with
a spin projection in on the Ζ axis, if the momentum k 2

is directed along Z, the plane of the decay (6.1) coincides
with XZ, and the helicity of the part ic le a i is λ.

If the function (6.2) is normalized, then we obtain,
taking (Π.5) into account

J s
(6.4)

χ Χ

The Υ' axis is parallel to k2 X k t.

F I G . 2
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The condition (6.4) is analogous to the normalization
condition (4.8) for the amplitudes of the two-particle
decay.

By virtue of parity conservation in the decay (6.1),
the following relation holds between the decay ampl i-
tudes

/ £ , > „ ω2) = / ( - 1 ) λ - ί ; / _ ~ _ λ ( ω 1 , oj), ( 6 . 5 )

1)J-*. ( 6 . 6 )

w h e r e

( 6 . 1 1 )

The der ivat ion of (6.10) and (6.11) i s ana logous to the
der ivat ion of (4.25) f rom (4.2) .

It fo l lows f r o m (6.11), (6 .4) , and (6.5) that

7~ ~ - = f t -
>mXt m'K' 'τη,'λ', τηλ' (6.12)

For a proof see Appendix IV.
We note that other parametrizations of the wave func-

tion of three particles are possible (see, for example,
the article of Berman and Jacob1 1 1 3 and the review126·1),
but we shall not use them in this review.

b) Cascade Polarization Moments for Three-particle
Decay

The polarization s tates of χ and a i will be c h a r a c -
ter ized by the polarization moments T^yj and t ^ in

their res t systems relative to the axes XYZ and X'Y'Z',
respectively. Whereas the choice of the axes XYZ is
a r b i t r a r y (except that for convenience XZ should be
chosen in the x-production plane), the axes X 'Y 'Z ' must
be chosen as shown in Fig. 2.

It will be convenient in what follows to use the c a s -

cade polarization moments (CPM) of the particle

in the three-particle decay (6.1). These are given by

' = l ·
Φ; ω,,

( 6 . 7 )

where ΐ(ψ, #, Φ; ω ι, ω 2 ) is the distribution of the prod-
ucts of the decay (6.1) with respect to the angles and
the energies . We note that (6.7) is analogous to the
definition (4.15) of the CPM for the two-particle decay.

The CPM of ai can be determined experimentally.
Thus, for example, by vir tue of (3.17') we obtain from
(6.7) a formula for the experimental determination of

t L M M .
00

( 6 . 8 )

O t h e r t ^ M M a r e d e t e r m i n e d e x p e r i m e n t a l l y , d e p e n d -

i n g o n t h e m e t h o d of d e t e r m i n i n g t ^ . F o r e x a m p l e , if

a i i s a b a r y o n d e c a y i n g w i t h p a r i t y n o n c o n s e r v a t i o n i n

a c c o r d a n c e w i t h t h e s c h e m e ( 5 . 2 9 ) , t h e n w e o b t a i n f r o m

( 5 . 3 2 ) a n d ( 6 . 7 ) a f o r m u l a f o r t h e e x p e r i m e n t a l d e t e r -

m i n a t i o n of t

- (ΟμΟ ( φ ' . Φ)), (6.9)

w h e r e a i s t h e a s y m m e t r y c o e f f i c i e n t i n t h e d e c a y

(5.29), and •&' and ψ' a r e the angles that determine the
direction of the momentum of N, which is produced in
the decay (5.29), in the res t system of a i relative to the
axes X 'Y 'Z ' (see Fig. 2).

In (6.8) and (6.9) we use the notation (4.17). The e r -
r o r s a r e calculated in accordance with (4.18). F r o m
(6.2) it follows that

.Cfe ,*h> =.,,). (6.10).LMM
tin T

LM( Σ _ Σ

.LMM* , , •.Μ+Μ+μ .L-M-M
hn = ( — 1 ) ti-n

/ ~ , ^ λ , = / ( - ΐ ) λ ' ~ ' " ' / - λ _~._ν, (6.14)

ϊ · ' " 1 " 1 " Χ ' " Χ " Λ ' " α " λ ' ( β . 1 5 )
Let us note certain propert ies of the CPM.
F r o m (6.7), (3.16), (3.16'), and (Π.4) it follows that

(6.16)

F r o m (6.10), (6.13), and (l.4f) it follows that

LMM , . sL+l+M+n ,LM-M (6.17)

If the Capps condition i s satisfied in the χ production
reaction and if XZ a r e chosen in the plane of this r e a c -
tion, then it follows from (6.10), (6.12), (6.13), (3.24),
and (I.4e) that

ί ΐ μ Λ ' * = ( — 1 ) ' t\nM • ( 6 . 1 8 )

T h e p r o p e r t i e s ( 6 . 1 6 ) — ( 6 . 1 8 ) c o r r e s p o n d t o t h e p r o p -

e r t i e s ( 4 . 2 4 ) , ( 4 . 2 6 ) , a n d ( 4 . 2 7 ) o f t h e C P M f o r t h e t w o -

p a r t i c l e d e c a y .

c ) D e t e r m i n a t i o n o f t h e S p i n a n d P a r i t y o f a R e s o n a n c e

D e c a y i n g i n t o T h r e e P a r t i c l e s

F r o m ( 6 . 1 0 ) w e e x p r e s s f ^ ~ / j . , w i t h t h e a i d of
(1.2) a n d ( 1 . 4 ) : m A , m A

2j 2s
7 — — V V (ZL^
• ml·., νι·λ·~ ΖΛ ΖΛ (2/4

L=0 1=0 . . .

F r o m (6.14) and (6.19) we obtain a relation for the d e -
termination of j and η χ :

2j 2s _ __

£Ξοι-=ο ' 'm'·LM μ

_ 2j 2»
f I \ ^ ' ~ m ' ^ " ^ ' / Ο Γ ' ' Ί \ / Ο 7 ' L i \ / ^ m s^A

— i ( — * j /j /j \itL· —γ- 1 f yil —\- i) L· . ~ , j , ^r, l^s—λ', Ι μ
L ' = 0 I'—0 ' "

/.L'M'M' irn \ l\ IC f)f\\

Χ (ί(-μ' / i t ' ) l r ) = U. \O.uU)

T h e p r i m e a t t h e s u m m a t i o n s i g n d e n o t e s t h a t t h e s u m -

m a t i o n m u s t b e c a r r i e d o u t o n l y o v e r e v e n L + / a n d

L ' + I', o r o n l y o v e r o d d o n e s * .

S i n c e t h e C P M t L M M a r e d e t e r m i n e d e x p e r i m e n t a l l y ,

( 6 . 2 0 ) i s a s y s t e m o f e q u a t i o n s l i n e a r i n ( l / T L M ) , a n d

t h e c o e f f i c i e n t s o f t h e s e e q u a t i o n s d e p e n d o n j ( v i a

C ^ m ~ ) a n d I . A s a r u l e , t h e n u m b e r o f e q u a t i o n s

j m ' , L M .

e x c e e d s t h e n u m b e r o f u n k n o w n s ( t h i s w i l l b e v e r i f i e d

w i t h c o n c r e t e e x a m p l e s ) . T h e m o s t p r o b a b l e v a l u e s o f

j and η can therefore be determined by the χ 2 method,

* T h e f a c t t h a t ( 6 . 2 0 ) i s sat i s f ied s e p a r a t e l y for e v e n and o d d / + L

and Γ + L' can be verified with the aid of (6.17) and (I.4f).
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by choosing the v a l u e s of j and ηχ in b e s t a g r e e m e n t
with the s y s t e m (6.20).

It follows f rom (6.10) that the r e l a t i o n s (6.20) r e m a i n

valid when t ^ M M and Τ a r e averaged over any
Ιμ LM

region of the angles of product ion of x, and t h e r e f o r e in
the d e t e r m i n a t i o n of j and ηχ we can u s e the e n t i r e
s t a t i s t i c s obtained in the e x p e r i m e n t . By v i r t u e of
(6.17), the^independent r e l a t i o n s a r e (6.20) with non-
negative Μ and M', i .e . ,

0 < m ' < m < / . (6.21)

In (6.20) i t i s poss ib le for each L any value Μ > 0,
and an independent equation i s obtained for each M.

If the χ product ion r e a c t i o n sa t i s f ie s the Capps c o n -
IV

di t ions, then t L M M and Τ a r e p u r e r e a l o r p u r e
Ζμ LM

i m a g i n a r y in a c c o r d a n c e with (6.18) and (3.16), and
t h e r e f o r e (6.20) i s a s y s t e m of equat inos with r e a l c o -
efficients re la t ive to r e a l unknowns.

The a n g l e s ύ- and φ in (6.2) and (6.7) can b e u s e d to
define the d i r e c t i o n of any v e c t o r lying in the plane of
the decay (6.1). The va lues of the C P M obtained in each
c a s e a r e k inemat ica l ly independent; consequently, in
each c a s e independent s y s t e m s (6.20) a r e obtained (with
the exception of the c a s e j = 1, I = - 1 ) . Thus, by s p e c i -
fying by m e a n s of the angles $ and φ the d i r e c t i o n s of
the different v e c t o r s , it i s poss ib le to i n c r e a s e the n u m -
b e r of independent equations (6.20), while the n u m b e r of
unknown T ^ M r e m a i n s the s a m e a s b e f o r e .

It may t u r n out that for c e r t a i n L al l the T ^ j ^ = 0.
Then the unknowns in (6.20) should b e taken to be the
quant i t ies T p M

T h e n u m b e r of u n -

knowns in (6.20) i n c r e a s e s , but if it i s s t i l l s m a l l e r
than the n u m b e r of equat ions, then j and ηχ can be d e -
t e r m i n e d .

The T^jyj a r e d e t e r m i n e d incidental ly when j and ηχ

a r e d e t e r m i n e d f rom (6.20). It should be veri f ied
w h e t h e r the T L M satisfy the condition that the ρ m a t r i x
of χ i s non-negat ive 1 2 ^. In addit ion, formula (6.19) can
be used to ca lcula te ί ^ λ m ' X ' a n c * *"0 ν β Γ ^ ν w h e t h e r
condit ions (6.15) a r e sat is f ied.

The g e n e r a l theory of t h r e e - p a r t i c l e s decays was
developed i n ' 1 1 ' 3 4 ' 3 5 · 1 . Let u s apply the g e n e r a l f o r m u l a s
to c o n c r e t e d e c a y s .

d) Decay of a Boson Into Three Spinless Part ic les

In the decay j — 30, the only C P M of a i a r e t L

J MM >

and these a r e d e t e r m i n e d f rom e x p e r i m e n t by m e a n s of
formula (6.8). Taking t h i s c i r c u m s t a n c e into account ,
we w r i t e down the s y s t e m (6.20) for the d e t e r m i n a t i o n of
the spin and p a r i t y of x:

Η
I)1'. (6.22)

The p r i m e at the s u m m a t i o n s ign denotes that the
summat ion m u s t b e c a r r i e d o v e r e v e n L and L ' o r o v e r
odd o n e s . In (6.22) and s o m e of the fol lowing f o r m u l a s ,
the arguments φ , t>, and Φ of the D functions a r e omitted,
but they a r e of course implied. According to the general

proper t ies (6.17) of the CPM, the following relat ions
should be satisfied:

If the Capps conditions a r e satisfied in the χ produc-
tion reaction and if XZ is chosen to be the plane of this
reaction, then according to (6.18) the values of
^ M M ^ 1 li>> * ^ should be rea l .

By way of i l lustration let us consider the system
(6.22) for the decay of 2 — 30, I = + 1 . At in = in ' = 0
and 1 = 1, Eq. (6.22) becomes an identity. At the r e -
maining in and m ' satisfying (6.21), we obtain the follow-
ing equations from (6.22):

a) for even L:

5 «OMO> - V 6 (DMZ))/TZM + 12 ((Olf-o) + 1 / - | - (Dwz)) j TlM. = 0,

(6.24)

io (D%0)/T2M - 3 «£>JU> - Vn (Dkx-k))iTiU. = υ, (6.2 5)

VTO (DMi)!T2M - VI ((Djj'i) + V"7 (I>ir3»/7W = (6.26)

b) for odd L

= 0. (6.27)

I n o r d e r t o c o n f i r m o r r e j e c t t h e h y p o t h e s i s j = 2 ,

I = 1 it i s necessary to find χ 2 for the system
(6.24)-(6.26), by choosing the optimal rat io T ^ / T ^ , .

The number of independent equations can be increased
by using the angles i> and ψ to specify the direct ions of
different vectors lying in the χ decay plane. It is poss i-
ble to obtain in the same manner several independent
equations (6.27) (with the same unknowns T j M and Τ Μ , )

and to investigate them likewise by the χ 2 method.
In C 3 5 3 i s given the system (6.22) for the cases j = 1, 2

and I = ± 1 .
An equivalent method of determining j and η χ in the

j — 30 decay was developed i n ' 3 6 3 .

e) Decay of an Isobar Into a Baryon and Two Spinless
Particles

In this decay, the polarization of the produced baryon
is best character ized by the polarization vector p . We
shall accordingly consider the following CPM of the

baryon: p £
Χ

by means of the formula

p L M M ( p L M M j w h i C h a r e de termined
Υ it

Χ/(φ, ϋ, Φ; (•>!, iu2)dcosi)d(fdOdu>ldaz. (6.28)

The p ^ M M a r e connected with t L , ^ M by f o r m u l a s

analogous to (3.25):

fLMM —

w i t h X ' Y ' Z '

rf.MiI fLMM _ - τ ; j nLMM\ 5.29)

a s shown in F ig . 2 .

the p r o p e r t i e s (

of the C P M have r e s p e c t i v e l y the f o r m s

I n t e r m s o f p i t ^ M t h e p r o p e r t i e s ( 6 . 1 6 ) a n d ( 6 . 1 7 )
Χ Υ Ζ

nI.MM* — I i \M+M nL-M-M fLMM* _. / Λ\Μ+Μ tL-M-M• M + M T _ M _

ι Px-.y,

pLMM = / \\L+^'+i pLil-M pLMM = l ^\

' " " J = (— i)L+"t\;!f~M.

M+M tL-il-i

L+M .

(6.31)
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T h e s e f o r m u l a s w e r e o b t a i n e d wi th a l l o w a n c e f o r

(6 .29) .

If the Capps condition is satisfied in the χ production
reaction and if X and Ζ lie in the plane of this react ion,
t h e n c e conclude from (6.18) and (6.29)_that
t J j M M and P y M a r e rea l , while p^MM a r e imaginary.

If the baryon decays with parity nonconservation in a c -
cordance with the scheme (5.29), then we obtain from
(5.31) and (6.28) a formula for the experimental d e t e r -
mination of pry^yL·,:

pLMM — (3/α) (νχ' y z'DL ~(tPi ^) Φ))) ( 6 . 3 2 )

w h e r e a i s t h e a s y m m e t r y c o e f f i c i e n t i n t h e d e c a y ( 5 . 2 9 )

and ν i s the unit vector along the momentum of Ν in the
ai re s t system, tJ^MM is determined in experiment by
formula (6.8), where the notation (4.17) is employed.

Substituting in (6.20) the values of C 1 ^ ^ and

taking (6.29) into account, we obtain relat ions for the
determination of j and η

Σ (2£-

2j
y

(6.33)

These equations a r e valid if the par i t ie s of L and L ' a r e
reversed simultaneously.

By way of i l lustrat ion let us consider the decay
1/2 ^ 1 / 2 + 0 + 0. F r o m (6.33) we obtain the following
relat ions:

A c c o r d i n g to (6.6)

(6.34)
Ml = 0,

ii IT m

IT Λ) =

) = o,

Μ = 0, 1

Μ = 0,1

Μ = 0,1

Λί = 0, 1

/ - ( η ,

A system of Eqs . (4.33) for the decay 3/2 ^ 1 / 2 + 0
+ 0 i s given in 1 3 5 · 1 .

7. PRODUCTION OF A RESONANCE IN A FOUR-
PARTICLE REACTION AND THE DETERMINATION
OF ITS QUANTUM NUMBERS

a) Reaction Amplitudes and Their Properties

Let the resonance χ be produced in the pari ty con-
serving reaction

b,-b2-*c + x. (7.1)

The spins, p a r i t i e s , and momenta of the par t ic le s p a r -
ticipating in the reaction (7.1) will be denoted r e s p e c -
tively s b i , s b a , s c , j ; i j b i , 7 7 b 2 , T)c, ηχ; k b i , k b a , k c , k x .

The spin s tates of the par t ic le s will be specified by
the projections m on axes lying in the plane of the r e a c -

tion (7.1) in the c .m.s . (the Υ axis is directed along the
normal to the reaction plane).

The reaction (7.1) is described by the amplitudes

PmHmbi, ™ Λ (Κ, Κ,; kc, kx) = (kcmc, kxmx \ 11 kblmbl, kbimH). (7.2)

By virtue of parity conservation, the transit ion
operator Τ commutes with the operator of reflection in
the plane of the reaction (7.1). F r o m this we obtain r e -
lations between the amplitudes (7.2):

- S ( - l ) ""' (7.3)

(7.4)

The proof of (7.3) is perfectly analogous to the proof
of (6.5), which i s given in Appendix IV.

We have omitted in (7.3) the momenta of the par t ic les
in the reaction amplitudes, since the momenta a r e the
same in the left and right s ides (the momenta a r e not
changed by reflection in the reaction plane!)

Relations of the type (7.3), which follow from parity
conservation in the reaction (7.1), were f irst obtained
by A. B o h r t 3 7 ] (except that i n ' 3 " the spin-quantization
axis was chosen to be normal to the reaction plane).

With the aid of (7.3) (or the Bohr formulas) we obtain
relations between the polarization effects in par i ty-
conserving r e a c t i o n s ' 1 9 ' 3 8 · 1 , which can be used to d e t e r -
mine the spin and parity of x.

Let us consider par t icu lar c a s e s .

b) Use of a Spinless Target to Determine the Spin and
Parity of a Boson Resonance

In the reaction of the type

() + 0~»a; + 0 (7.5)

the transi t ion amplitudes satisfy, in accord with (7.3)
and (7.4), the relation

Fm^l(-l)mF.m, (7.6)

where ξ is equal to the product of the par i t ies of the
par t ic les taking par t in the reaction (7.5), multiplied by
(—l)j; m is the projection of the spin of χ on an axis
lying in the plane of the reaction (7.5).

The density matr ix of χ is obviously

F r o m (7.6) and (7.7) we obtain

(7.8)

Substituting (3.15) in (7.8) we obtain a relation that can
be used to determine j and η ' 3 9 ' 4 o : l :

2j

L'=0
(7.9)

The pr ime at the summation sign denotes that the sum-
mation can be car r ied out only over even L and L' or
else only over odd ones (this follows from (3.24))*.

*We note that relations (7.9) remain in force also if the boson reso-
nance is produced in the reaction II + p-*x + p(IIisa spinless particle
at high energies and if the main contribution to the amplitude of this
reaction is made by poles in the j plane of only the vacuum group (P,
P', p, R, ω, ιρ-poles [ 6 I ]), with ξ = J)nT)x(-l)>.
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Equations (7.9) a r e obviously valid when the ^
a r e averaged over any region of the x-production angles
in the reaction (7.5), so that to determine j and ηχ we
can use the ent ire s ta t i s t ics in the reaction (7.5).

By virtue of (3.16), the T L M with non-negative Μ a r e
independent. Therefore relat ions (7.9) a r e independent
when

0 < m ' < m < j . (7.10)

If χ decays in accordance with the scheme χ — 20 o r
χ — y + 0 o r else χ — 1 + 0, then, substituting in (7.9)
the formulas (5.1) or (5.8) o r (5.18) and (5.19), r e s p e c -
tively, for the experimental determination of T L M , we
obtain the relat ions between the observed quantit ies.
Specifying different values of j and ηχ we can obtain the
most probable j and ηχ from these relat ions by the χ2

method.
If x decays into three spinless par t ic les , then the

addition of re lat ions (7.9) to the system (6.22) i n c r e a s e s
the number of equations without changing the number of
the unknown T ^ j j · Therefore the reliability with which j
and ηχ a r e determined i n c r e a s e s .

If we eliminate T L M from (7.9) and (6.22), then we

obtain, generally speaking, nonlinear relat ions between

the observed quantities ^ D V V M ^ > «Ί * ) ) · However,

l inear relations will a lso hold (at least up to j = 4) (for
l inear relat ions at j = 1, 2 see UOJv By way of i l lus t ra-
tion, we present one of the l inear relat ions for j = 2,

φΐο (φ, d, Φ)) + K§ ((ΰ?2 (ψ, θ, Φ)> + <£>1ο (φ, #, Φ)»

+ 6(θΐ2(φ. ο, Φ)> = γ . (7.11)

If χ is produced in the reaction (7.5) and decays into
two spinless par t ic les , then, as shown by Peshkin 1 4 1 3

(PZJ (cos Θ)> φ Ο, (7.12)

where P ^ is a Legendre polynomial and θ i s the angle
between the normal to the plane of the reaction (5.5)
and the direction of the momentum of one of the decay
products of χ (in the χ re s t system).

Using Peshkin ' s idea, Ryndin has shown l i Z i that
(7.12) is valid also in the case when x, produced in the
reaction (7.5) decays into three spinless p a r t i c l e s . In
this case ® is the angle between the normals to the
plane of the reaction (7.5) and to the decay plane of χ (in
the re s t system of x). Table TV gives the l imits obtained
i n " 2 3 for <P2j (cos ©)> at j = 0, 1, 2, 3 ( l R and I D denote

·. >R- 'D

i >v

0
1
2

3

^ = '0 =

(Po> = 1

(̂ 2) = */
Vise < V
9/428 < <f

1(IB

5
30/

100

Table

= i)

/429

Ή Ί

Vme -

IV

Forbidden

< (Ρώ < 2 2 5 /i7ie

_ 1

50

Forbidden

β 3 <- 2 < 1 /β7

2 8 β < - ν 2 8 β

*Ιη (7.11), just as in (6.22) and (7.9), the angles ψ, δ, Φ should be
chosen as shown in Fig. 2; the Υ axis is directed along the normal to
the plane of the reaction (7.5).

the products of the p a r i t i e s of the p a r t i c l e s in the r e a c -
tion (7.5) and in the decay (6.1) r e s p e c t i v e l y ) .

The procedure for determin ing j c o n s i s t s s imp ly of
determin ing the h ighest < P L ( c o s ®)>; then j = L m a x / 2 .
Moreover, if ( P 2 j (cos θ ) ) l ies between the upper or

between the lower l imits for the c a s e s I R = I D = 1 and
I R = I p = — 1, then it is possible to determine also the
parity of x. It is necessary to bear in mind, however,
that the lower l imit of |( P2j (cos ©)) | is quite small and
can be the resul t of the background. Therefore the most
reliable method of determining j and ηχ is to solve the
systems (7.9) and (6.22).

c) Use of a Polarized Proton Target to Determine the
Spin and Parity of an Isobar

If the isobar decays into a stable baryon (nucleon)
and a spinless part ic le o r into a stable baryon and two
spinless par t ic le s , then j and ηχ cannot be determined
with the aid of relations (5.27) and (6.33), since the CPM
of a stable baryon, t ^ M a n ( j pLMM cannot be d e t e r -

mined from experiment.
We shall show that the spin and parity of the isobar

can be determined also without the aforementioned
CPM, provided the i sobar is produced in a reaction with
a polarized proton t a r g e t " 3 ' 4 4 3

0 + x. (7.13)

This quest ion d e s e r v e s attention, s i n c e the method of
po lar iz ing proton t a r g e t s h a s been e x t e n s i v e l y u s e d
recent ly .

The po lar izat ion of the proton and of the i sobar wil l
be speci f ied in the i r r e s t s y s t e m s re la t i ve to the a x e s
X1Y1Z1 and XYZ r e s p e c t i v e l y , with the coordinate a x e s
d i rected a s fo l lows:

ζ i lk, (7.14)

where kjj and k 0 a r e the l . s . momenta of the i sobar and
of the incoming part ic le in the react ion (7.13). With
such a c h o i c e of a x e s , the ampl i tudes of the react ion
(7.13) sat is fy, in a c c o r d with (7.3) and (7.4), the re lat ion

F —t( \r v. m — &l — '

vj-1/2

(7.15)

(7.16)

where I ' i s the product of the p a r i t i e s of the s p i n l e s s
p a r t i c l e s taking part in the react ion (7.13); m(f ) i s the
projection of the isobar (proton) spin on the axis Ζ (Zi).

The i sobar density matr ix is expressed in t e r m s of
the amplitudes of the reaction (7.13) in accordance with
the formula

i/2

= 2 *
v, v ' = - i / 2

(7.17)

where ovv, a r e Pauli m a t r i c e s , ρ is the polarization
vector of the proton target, so that (1 + ρ ·α)ννι/2 is i t s
density matr ix, and . F i s the square of the matr ix e le-
ment summed over the spin s ta tes . Accurate to the
phase volume, . F i s equal to the differential c r o s s s e c -
tion of the reaction (7.13).

Assume that we investigate the production of an i so-
b a r in reaction (7.13) in the same plane and at equal
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angles on opposite sides of the incident beam. It follows
from (7.14) that p X l > 0 and p X l < 0 when the isobar is

scattered to one side and to the other, respectively.
Accordingly, we shall call positive the side for which
ΡΧι> Ο and negative the one for which p X l < 0.

We denote by 3* and T* the probability of the

transition and the PM of the isobar for scattering in the
positive or negative direction respectively (at the same
angle and in the same plane).

Substituting (3.15) in (7.17) we obtain, taking (7.15)
and (l.4f) into account

(2£ + 1) CZ-, LM Im Ttu - . Im TlM)

- (2; + 1) Im (Fm, mFtl/2, m< + -F-1/2, mF\n, -·)• (7.18)

If t h e t a r g e t i s p o l a r i z e d t h e n , a c c o r d i n g to (3.24),
I m T L M = 0 f o r e v e n L.

By virtue of (3.16), the T ^ j ^ with non-negative Μ
a r e independent, and therefore (7.18) a r e independent if

0 < m ' < m < ; . (7.19)

F r o m this condition we can easily calculate that the
number of independent relat ions (7.18) is ( j 2 — 1/4).

The T L M w ^ n even L can be determined exper imen-
tally by means of formula (5.34) without measuring the
polarization of the baryon produced as a resul t of the
isobar decay. Therefore relat ions (7.18) can be used to
determine the spin and pari ty of an isobar decaying into
a stable baryon and a spinless par t ic le .

Substituting (5.34) in (7.18) we obtain

ρ,Λ
2 (2£ -r 1) ( ό .
t 0

o) Im Ι Σ Avo (<fit #,, 0)

- Σ £&o (Φ,·, ·»,, υ)) = ξ (
l

2i-l
V \

Χ Im ( 2 I № |« Dii'-o («Pi, #/, 0) + 2 I № \J OM-O (<tj, #;, 0)), (7.20)
1=1 j=l

w h e r e t h e i n d e x i i s u s e d t o r e n u m b e r t h e c a s e s of i s o -
b a r p r o d u c t i o n in t h e p o s i t i v e s i d e , and j f o r t h e n e g a -
t i v e s i d e .

S i n c e r e l a t i o n s (7.18) r e m a i n in f o r c e if t h e i r a v e r a g e
o v e r a n y r e g i o n of i s o b a r p r o d u c t i o n a n g l e s in t h e r e -
a c t i o n (7 .13) , t h e s u m m a t i o n in (7.20) c a n b e c a r r i e d o u t
l i k e w i s e o v e r a n y r e g i o n of i s o b a r p r o d u c t i o n a n g l e s .
We recal l that the angles & and φ specify the direction
of the baryon momentum in the res t system of χ relative
to the axis XYZ (see Fig. 1). The axes XYZ and XxYiZi
a r e chosen in accordance with (7.14).

In (7.20), account was taken of the fact that p z is the
same for all cases of i sobar production.

By specifying different values of j and ηχ we can d e -
t e r m i n e , from the ( j 2 - 1/4) relat ions (7.20), the most
probable values of j and ηχ by the χ 2 method.

We present an example. If j = 3/2, then two relat ions
(7.20) a r e obtained

Pz, Im I 2 °?o (<Pi, »,·, 0 ) - 2 O?o (ft- *,-• 0))
i=l i=l

= I Im Ι.Σ I Px, \i Oio (φ*, «u 0) + .Σ I Px, \j£>!o (φ;, * j , 0)},

ρ?Λ Im ( Σ #io («Pi, •»,·, 0) - Σ #20 (φ,-, «j, 0))
1=1 3=1

= -1 Im ( Σ Ι Ρχι Ιι #ϊο («Pi, θ,, 0) + Σ I Pxl \j #ιο (φ,-, #;, 0)).

(7.21)

If χ decays into a baryon and two spinless par t ic les ,
then according to (6.10) and (6.8) we have

Τ — A (D^n((D ft ΦΥ/ (7 22)

where

A, = { (7.23)

a r e determined by the dynamics of the decay.
Substituting (7.22) in (7.18), we obtain ( j 4 - 1/4) l inear

homogeneous equations with respect to (j — 1/2) unknown
A L (L even, L * 0). These equations differ from (7.20)
in that (CJ \fz L , , ) " 1 and DJ^ {ψ, ύ, 0) a r e replaced by A L

and Djjo(<p, •&, Φ) (we recal l that the angles φ , ι>, and Φ
a r e defined in the r e s t system of x, as shown in Fig. 2).
Choosing A L and satisfying in the best manner the ob-
tained equations, it i s possible to determine the most
probable values of j and 7}χ by the χ 2 method. For j = 3/2
the relations (7.21) hold, with the substitution

D J J O ( ? , 4, 0) — , ti>, Φ) (the A 2 cancel out).

We a r e grateful to the experimental group of the
Institute of Experimental and Theoretical Physics ,
pr imar i ly V. K. Grigor 'ev, I. A. Erofeev, G. K. Kliger,
V. Z. Kolganov, G. S. Lomkatsi, V. T. Smolyankin, and
G. D..Tikhomirov for fruitful discussions of the r e -
view t 2 * ' a e ]

 t on the bas i s of which the present ar t ic le was
written. The authors a r e grateful to L. I. Lapidus for a
discussion of questions connected with a polarized p r o -
ton target , and to S. M. Bilenkii and to R. M. Ryndin,
for prepr int s and repr in t s of their p a p e r s . The authors
a r e deeply grateful to L. D. Okun' who read the initial
var iant of the manuscript and made a large numbe of
valuable r e m a r k s , which we took into account in the
final vers ion of the a r t i c l e .

APPENDICES

I. CLEBSCH-GORDAN COEFFICIENTS

The Clebsch-Gordan coefficients (CGC) d m .
JlHll ,]8lTl2

a r e produced upon quantum-mechanical addition of the
angular momenta. They differ from zero if

which agrees with the well known rule for the addition
of angular momenta.

The CGC satisfy the orthogonality relat ions

31 h
Σ Σ CJTm,.^,

mi=-ii m2=~h
Ji+j's i

J=l Jl-ial m~—i
and the symmetry relations

(1.2)

(1.3)

_ , t . ί - ή - m Γ 2/

! ^ l> L 2/Ί
2/+1

2,2+l J
1 " 2 a»-™*.
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= (_i)ji+M-jCjm (l.4c) The D functions satisfy the symmetry relat ions

D'mn(f, 0, Φ) = (-1 . Φ).

We present some par t icular values of the CGC:

ci0,L0 ,./,/2

vim, Ι Ο " ~uj-m, 10 — '

'im, 2D~^j-m, 2 0 s

L - l

(1.5)

( 1 . 7 )

( 1 . 8 )

Γ (2/-L)l -|l/2 • Γ Π 2 ; (τ g\

L(2,--i)(2/-£+i)!J /. ί ^ π ^ - υ , γ

(in (1.9), L a r e odd),

L i _ (1.10)(2/-/.)!

(in 1.10, L a r e even).
In this review we use the following relat ions between

the CGC:

( L I D

(1-12)

L (Z, + !)-(/ +1/2)2 [i + (_i)l+l] c J.1 / 2 ^ ^g.

rjl/2 (Τ 14)
"-jl/2, L0· χ 1 · - ι τ Γ '

V0

3/2) (/ -1/2) (Z. -2)

Μ3/2
t - j - 3 / 2 , 1 3 - L . c j ; ^ L 0 , ( 1 . 1 5 )

l U ^ - f ^ f K - ( 1 - 1 6 )

« ι _ r £ ( £ - H ) T / 2 ^ J O
U j - 1 , L 2 - L ( i - l ) ( L + 2 ) J « · L 0 '

( 1 . 1 7 )

( 1 . 1 8 )

( i n ( 1 . 1 6 ) - ( 1 . 1 8 ) , L a r e e v e n . )

A d e s c r i p t i o n o f t h e e x i s t i n g t a b l e s o f C G C i s g i v e n

i n t h e b o o k £ 7 J , p p . 2 6 - 2 8 . I n t h e b o o k ' " a r e g i v e n

t a b l e s o f t h e C G C f o r U + j 2 + ] 3 £ 1 6 , j m a x - 6 , a n d

a l s o a l g e b r a i c f o r m u l a s f o r s p e c i f i e d v a l u e s o f J 2 a n d m 2 .

Π. WIGNER FUNCTIONS

The D functions ^^^Ψ, Jj Φ) a r e produced when
spherical functions (spherical spinors) a r e rotated
through the Euler angles

(Π.1)

D functions with integer j a r e connected with the
spherical functions by means of the formula

and also the orthogonality relat ions

j " i , <Φ. *. φ ) DUn· (Φ. *. φ> d c o s ϋ df ίφ = 2J+T δ«·δ™»-δηη-, ( ϋ . 5)

\ D (φ, u, 0) D . ( φ , tj, 0) d cos it αφ = - ^ "ji'o ' \ l l . w

T h e r e i s a f o r m u l a f o r t h e e x p a n s i o n of a p r o d u c t o f

t w o D f u n c t i o n s ,

< „ «P, «, Φ) J>j;.n. (φ, *, Φ) =

F r o m ( I I . 2 ) , ( I I . 4 ) , a n d (II .7 ) w e g e t

2j

. _ n + n . (φ, #, Φ).

(II.7)

DLn(Φ. β> φ) = °. e c j I H lml>/. πΗ6» l«l>/· (Π.8)

m . REDUCTION OF EXPERIMENTAL DATA B Y THE

x

2 METHOD

In determin ing the spin and parity of a resonant s tate
by the χ2 method, it is necessary first to find the lower
limit of j . From the condition (4.23) we conclude that
^ 0 Γ F e r m i ° n resonance

and for boson resonance

w h e r e L ° 5 f v a n d

(ΠΙ.1')

are the maximum values of

L for which there are nonzero CPM.
In order to find L m a x , we number for each fixed

value of L the independent CPM (since the real and
imaginary parts of the CPM are independent, we assign
to them different numbers) and denote them by t a . We
find the error matrix by means of the formula

i=l

e value of t a in the i-th ca

cay, and η is the number of decay cases:

(ΠΙ.2)

where t a . is the value of t a in the i-th case of the de-

(ΠΙ.2')

Calculating the inverse matr ix U"1^ ,, we find χ 2 by
means of the formula

2= Σ <'<.>«£.«„.>.
α , α = 1

(ΠΙ.3)

Yim(«, Φ ) - j / - 2 ^ - ^ * o ( τ . «.ο)-

so that, for example,

(Π.2)
where m is the rank of the e r r o r matr ix, equal to the
number of independent CPM determined in the exper i-
ment.

F o r the obtained value of χ 2 and the number of d e -
(II.3) g r e e s of freedom we determine, using the tables of the
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probability integral (see, for example,U a 2), the proba-
bility that the deviation of ( t a ) from zero (at a given
L) is equal to or larger than the value found in our ex-
periment. The maximum value of L for which this
probability turns out to be small must be substituted in
(ΙΠ.1) and (ΠΙ.1')·

It i s now necessary to establish the value of j and η χ

for which the experimental data satisfy best the re la-
tions (4.29) or (6.20), the only admissible values of j
being those satisfying (ΙΠ.1) and (III.1').

For fixed value of j and ηχ, one calculates the proba-
bility of satisfying the hypothesis (4.29) o r (6.20). The
procedure for calculating this probability coincides
fully with the one just descr ibed.

2 [68 69 5
More detai ls on the χ method can be found in '
By way of an example, Table V present s the resu l t s

obtained by the Shlein g r o u p ί 3 0 2 , who investigated the
decay Ξ * (1530) —- Έ + τι.

Hypothesis

,§«=<>

Ί"-ο. '"'••• «

ί*Λί--.-0

' ΐ μ = "
AM π ,5Λί Α

/„ --ο. ί1μ ο

ί ( 2 / 4 - 1 ) 1 ^ - 1 / 2 / . (L :-1)

^ 10

f ( 2 , - ! - l ) i 5 f - T / 2 / . ( / . + l)

2 1 (2/-ί l)/,i f-l-l/2/,(/. ,-l)

T a b l e V

,L.li
11

,Ζ,ΛΓ
M l

.LM
M l

.L.V
M l

X2

16 5

1 2 . 0

2 9 . 2

7 . 6

7 . 6

1 8 . 2

1 0 . 3

1.5

9 . 5

0 . 9

N u m b e r of

degrees of

f reedom

3

ϋ

9

5

10

15

/x

*

4

Proba-
bility

0.0003

0.036

0 (1002

0.11

0..Ί8

0.20

0.016

0.65

0.023

0.8Ί

Conclusion

/ m l n - = 3 / 2

D3, unlikely

P3 ,a likely

Fb, unlikely

Dh ,2 likely

It is seen from this table that the parity is d e t e r -
mined more definitely than the spin.

IV. AMPLITUDES OF TWO-PARTICLE AND THREE-
PARTICLE DECAY AND THEIR PROPERTIES

Assume that in the pari ty-conserving decay (6.1) the
spins of the par t ic les a i , a 2 , and a3 a r e respectively
Si , S2, and S3.

The state of the produced par t ic le s can be c h a r a c -
ter ized in the r e s t system of x by the following quanti-
t ie s : the angles <i> and φ , which determine the direction
of the momentum of one of the par t ic les (for example,
a 2 ) , the angle Φ, which specifies the position of the
plane of the decay (6.1) (see Fig. 2), the energies ωι
and ω 2 (ω 3 i s determined by the energy-conservation
law), and also the helicit ies λ ι , λ 2 and λ 3 , which c h a r -
acter ize the spin state of the par t ic les a i , a 2 , and a 3 .

If x is in a state with a spin projection on the Ζ axis
equal to m, then the wave function of the products of the
decay (6.1) is obviously

ν,ηλ,λζλ3 (<P. *• φ ; ω,, ω2) - = (φ, β, Φ; ω,, ω,; λ,, λ2, λ3 | Τ | jm), ( IV. 1)

w h e r e T i s t h e o p e r a t o r o f t h e t r a n s i t i o n ( 6 . 1 ) .

We denote by R(a, β, γ) the operator of rotation
through the Euler angles α, β, and γ and carry out cer-
tain transformations in the right-hand side of (IV. 1):

<<p, #, Φ; ω,, ω2; λ,, λ2, λ3 | ί'Ι /m> = «;m Ι ί1"1" Ι ψ. #, Φ", ω!, ω2; λ,, λ2, λ3»*

= ((jm | Τ+R (φ, ϋ, Φ) | 0, 0, 0; ω,, ω2; λ4, λ2, λ3»*

= (ijm | R (φ, β, Φ) Τ* | 0, 0, 0; ω,, ω2; λ,, λ2, λ3))*. ( I V . 2 )

It c a n b e r e a d i l y s e e n f r o m F i g . 2 t h a t

|0, 0, 0; ωι, ω 2 ; λι, λ2, λ3) is such a state of the parti-
cles a i , a 2 , and a 3 , wherein the momentum k2 is direc-
ted along the Ζ axis, and the plane of the decay (6.1)
coincides with XZ. It is obvious that

Λ (φ, Ο, Φ)|0, 0, 0; ω,, ω2; λ,, λ2, λ3)==|φ, β, Φ; ω,, ω2; λ,, λ2, λ3).

S i n c e | j m ) ( - j < i n < j ) i s t h e t o t a l s e t o f t h e s t a t e s

of t h e p a r t i c l e x , i t f o l l o w s t h a t ( I V . 2 ) c a n b e f u r t h e r

t r a n s f o r m e d :

(</m | Α (φ, #, Φ) Τ* Ι 0, 0, 0; ω,, ω2; λ4, λ2, λ3))· =
ί

= ^ «/'» Ι Λ (φ, #, Φ) I im))* ((/m Ι Τ * | 0, 0, 0; ω,, ω2; λ,, λ2, λ 3»·
7 Ϊ Ι = — j

i _ ~

- V (ϋ, 0, 0; ω,, ω2; λ,, λ2, λ 3 | f | ;m> ( φ , | « ( φ , β, Φ) | jm))·.

~n'~j ( I V . 3 )

A s i s w e l l k n o w n , t h e t r a n s f o r m a t i o n m a t r i x o f t h e

s t a t e s I j m ) u p o n r o t a t i o n i s m a d e u p o f D f u n c t i o n s , s o

t h a t

(jm I R ( φ , ϋ. Φ) I jm) = D> _ (cp, ϋ, Φ).
mm

F r o m ( r V . l ) - ( l V . 4 ) i t f o l l o w s t h a t

η,λ1λ2λ3 (Φ. ΰ · φ : ω,, ω2) = ( ν ( ω ι .

( I V . 4 )

>. ο, φ),

(IV. 5)

w h e r e

=• (0, 0, 0; ω,, ω 2 ; λ,, λ2, λ 3 | Γ | jm

F r o m p a r i t y c o n s e r v a t i o n i n t h e d e c a y ( 6 . 1 ) w e o b t a i n

r e l a t i o n s b e t w e e n t h e d e c a y a m p l i t u d e s

/ ~ λ ι λ Λ 3 ( ω , , ω2)-.= /(-1) λ ι + λ 2 + λ »-" '/-^_λ 1 -λ,-λ 3 (ω 1 , ω2),

•^=(ηχ/ηιη 2 η3)(-ΐ)^ η " 5 2 ^ 3 · ( I V . 7 )

T o p r o v e ( I V . 7 ) , l e t u s c o n s i d e r t h e o p e r a t o r

γ=Αή(ο, π, 0), (IV.8)

where Ρ is the inversion operator.
R(0, n, 0) is obviously the operator of rotation

through an angle ττ about the Υ axis. It is therefore
clear from (IV.8) that Ϋ is the operator of reflection in
the XZ plane.

In the parity-conserving decay, Τ and Υ commute,
so that

i- = Y2T-i. (IV.9)

We substitute (IV.9) in (IV.6) and recognize that Ϋ,
acting on the states Ijm), |0, 0, 0; ωι, ω 2 ; Xly λ 2, λ 3 ) ,
does not change the momenta of the particles and that
the spin states of the particles in accordance with (IV.4)
are altered in the following manner:

) = PR(0, η, 0) | ϊ , λ> = fl'v, λ (0, π, 0) | s, λ')

λ>. (IV.10)

A f t e r t h e i n d i c a t e d s u b s t i t u t i o n w e o b t a i n e d ( I V . 7 ) ,

q . e . d .
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We note that in the decay (6.1) the angles φ, t>, and Φ
can be defined in a manner different from than that in
the present review. The wave function of the products
of the decay will have, as before, the form (IV.5). The
new decay amplitudes will be linear combinations of the
old ones. The relations that follow from the parity con-
servation will, of course, differ from (IV.7) (for more
details s e e " 1 ' * " ) .

In the two-particle decay (4.1), the state of the parti-
cles ai and a 2 (the spins of which are equal to Si and s 2)
can be characterized by the angles t> and φ, which
specify the direction of the momentum of one of the
particles (in the rest system of x), and the helicities
λι and λ 2 .

If χ is in a state with a spin projection on the Ζ axis
equal to m, then the wave function of the decay products
(4.1) is equal to

ψ».λ,λ>(*. <Ρ)<=[<2/+U/Ιπ]1 2 . 1 λ ΐ λ 2 0 ; * λ ι-ί.2<Ί'. », 0). ( i V . l l )

w h e r e

^ 2 = (^/(2/+l)] 1 / 2 (0, 0; λ,, λ 2 |Γ |/ , λ ,-λ 2 ) . ( I V . 1 2 )

( I V . 1 1 ) a n d ( I V . 12) c a n b e o b t a i n e d i n e x a c t l y t h e s a m e

m a n n e r a s ( I V . 5 ) a n d ( I V . 6 ) , i f i t i s r e c o g n i z e d t h a t

Ι φ , 0; λ,, λ2> = Λ(φ, d, 0)|0, 0; λ,, λ2), ( IV. 13)

and that the decay of χ along the Ζ axis is possible only
if m = λ ι — λζ·

If parity i s c o n s e r v e d in the d e c a y (4.1), then the
amplitudes of the decay Α λ λ satisfy the relat ions

i)^ 8 l-S 2. (IV.14)

(IV.14) can be proved in exactly the same manner a s
(IV.7).

SYMBOLS AND DEFINITIONS USED IN THE REVIEW

1. Symbols

x—resonance whose quantum numbers a r e
to be determined;

j , r?x—spin and pari ty of the resonance x;
a k —(k = 1, 2 o r k = 1, 2, 3 ) - p r o d u c t s of the

decay of the resonance x;
s—spin of part ic le a i ;

p m m / — s p i n density matr ix of x;
Ρχχ>—spin density matr ix of a i ;

TLJVJ—polarization moments (PM) of x;
tjy —polarization moments (PM) of a i ;

t, β, γ)— Wigner functions;

A^—helicity amplitudes of two-particle
decay of χ (4.1) if part ic le a 2 i s spin-
less ;

σ =(J7x/»hη2(— l ) ^ ~ s , where Ju and r\z a r e
the par i t ie s of the par t ic les in the d e -
cay (4.1);

t ^ M — c a s c a d e polarization moments (CPM)
of the par t ic le a i in the decay (4.1);

t L

1 n

( t a ) = — Σ ' a w**-h summation carried out
n i=l l

over all cases of the investigated de-
cay, ta.—value of t a in the i-th case,

n— total number of decay cases;

N—baryon;
Π —pseudoscalar meson;
a —asymmetry coefficient in the decay

(5.29);
P — polarization vector of a part ic le with

spin 1/2;
v— unit vector in the direction of the m o -

mentum of Ν in the decay (5.29);
ί~ λ (α>ι, ω2)— amplitude of three-par t ic le decay (6.1);

I =(i? x / '7iJ?2i?3)(-l)^~ s ; r)i, Vz, 773 - p a r i t y

Λ of par t ic les in the decay (6.1);
—cascade polarization moments of the

"^ par t ic le a i in the decay (6.1).

2. Definitions

Plane of production of x—plane containing the m o -
menta of the incoming part ic le and of the resonance χ
in the l .s . of the reaction (2.1).

Ζ system (Y system)—coordinate system in which
the Z(Y) axis is chosen to be a normal to the plane of
production of x.

Treiman-Yang system—Υ system in which the Ζ axis
is directed along the momentum of the incoming p a r t i -
cle in reaction (2.1) in the res t system of x.

Capps condition—a situation wherein the part ic les
b i and b 2 in reaction (2.1) a r e not polarized, the mo-
menta and the spin s tates of the par t ic les c i , C2, .. ., c n

a r e not measured, and is conserved.
Plane of decay of x—plane in the r e s t system of x,

containing the momenta of the products of its decay in
the case of three-par t ic le decay (6.1) of x.
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