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1. INTRODUCTION

THE main event in the physics of elementary particles
in the last decade was the discovery of a large number
of resonances in hadron systems.

If we disregard the resonances in the 7N system
(isobars), an intensive study of resonances started in
1960, when the p meson was discovered, followed by the
w meson. At the present time, there are approximately
25 meson and about 40 baryont'"’J resonances (if each
isomultiplet is regarded as one resonance). These dis-
coveries were unexpected by the theoreticians, but with
increasing number of discovered resonances, the num-
ber of theoretical models and schemes for resonance
classifications increased much faster. First to be men-
tioned among these are schemes based on the SU(3) sym-
metry and the Regge-Gribov theory. A detailed theoreti-
cal analysis of resonances from the point of view of
various models is not within the scope of the present
article, and we refer the interested reader to the re-
views®™") where he can find also other references
to earlier work. It must be emphasized that both the
SU(3) symmetry and the Regge-Gribov theory were not
invented specially to explain resonances, but it turned
out that many characteristics of resonances are very
well explained by them. However, for a final judgement
concerning the success of any particular model there is
still not enough experimental data on the quantum num-
bers of the resonances, particularly their spins and
parities. We present only two examples. According to
the SU(3) symmetry model, the Z-baryon resonances
with spin and parity 1/2° form an octet, a member of
which, in particular, should be the resonance Z(1610).
However, the spin and parity of this resonance have not
yet been established. The same pertains also to the pro-
posed Z{5/2") resonance Z(1915) of the octet.

For the Regge-trajectory model, it would be very im-
portant to confirm the fact that the meson resonance
A,p (1315) actually has spin and parity 2°, thus per-
mitting this resonance to lie on the so-called R-trajec-
tory"®!!, which determines, for example, the asymptotic
behavior of the cross section of the process
7p — 1°n,"? etc.

There have been a large number of recent papers
dealing with the Veneziano duality model (see the re-
view'?). This model uses essentially the fact that the
number of resonances can become infinite with increas-
ing mass, and the Regge trajectories can become linear.
If the reader looks at Rosenfeld’s tables“‘”, he will see
that these assumptions do not contradict the existing
data; the mass of the last heaviest baryon resonance is
3230 MeV, but its spin and parity are known.

Thus, it becomes urgently necessary to obtain
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methods of determining the quantum numbers of the
resonances at arbitrarily large resonant masses. Such
methods were developed and used many times in recent
years, and are the subject of the present review.

2. GENERAL FORMULATION OF THE PROBLEM

This review is devoted to methods of determining
the spin and parity of resonances. Methods of deter-
mining other quantum numbers (mass, width, isotopic
spin) can be found, for example, in the book!**! and in
the reviews %3,

Assume that the resonance x of interest to us is
produced in the reaction

b+by—rtcott .. o (2.1)

and then decays via one of the channels
T~—>ay-- g, (2.2)
r—>ay+ @+, (2.3)

or via several channels of the type (2.2) and (2.3)
(4-particle decay of x will be considered only under the
condition that it has a cascade character, i.e., one of
the particles in the reaction (2.2) and (2.3) decays in
turn into two or three particles).

We introduce some definitions concerning the reac-
tion (2.1), which will be used throughout the review:

1) The production plane x is the plane containing the
momenta of the incoming particle and the resonance x
in the l.s. of the reaction (2.1).

2) The Z system (Y system) is the coordinate sys-
tem in which the Z (Y) axis is chosen to be the direction
normal to the x production plane.

3) The Capps condition is defined as the situation
wherein parity is conserved in the reaction (2.1), the
particles b, and b, are not polarized, and the momenta
and spin states of the particles c,, ¢, ..., ¢, are not
measured.

We are interested in the determination of the spin
and parity of the resonance x. To this end we can use
the following information obtained in the experimental
study of the reaction (2.1) and the decay (2.2) or (2.3)
(we note, however, that in practice, in concrete experi-
ments, it is possible to obtain only part of the informa-
tion listed below):

1) The angular distribution of x in the c.m.s. of the
reaction (2.1).

2) The angular distribution of the x decay products
and the angular distribution of the polarization of the
x decay products in the rest system of x.

3) The energy distribution (the distribution on the
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Dalitz plot) of the products of the decay (2.3) in the rest
system of x.

In the study of many resonances, successful use was
made of the methods of determining j and 74, based on
the assumption that the momenta of the decay products
of x are small. These methods include first of all the
analysis of the distribution of the decay products (2.3)
on the Dalitz plot. These methods can be used when the
energy release in the decay of x is given by

(2.4)

where p is the pion mass. For a detailed description of
these methods see ®®®*,

Another method used successfully in practice is that
of Adair, for the use of which it is necessary to select
cases in which x is emitted forward or backward rela-
tive to the incident beam within a range of small angles

(2.5)

AE < p,

ﬂgp./kx,

where k, is the momentum of x in the c.m.s. of the
production reaction. Adair’s method is described
in[24,25,50,52] .

It is clear that when the energy in reaction (2.1) in-
creases and the mass x increases, the conditions (2.4)
and (2.5) for the applicability of the aforementioned
methods are violated. Therefore to determine the quan-
tum numbers of the resonances at high energies one can
use only methods based on the general conservation laws
of quantum mechanics—the law of conservation of the
angular momentum and parity in reaction (2.1) and in
the decays (2.2) and (2.3).

The development of such methods is the subject of a
large number of theoretical and experimental investiga-
tions, where use is made of the relations derived for
these quantities from the conservation laws. Although
a large number of such relations have been obtained,
it is difficult for the experimenter to cope with them in
applications, owing to the lack of a unified theoretical
approach to the problem. The point is that many of these
relations contain identical information on the quantum
numbers of the resonance and are essentially equivalent,
but different methods of experimental-data reduction
are needed for their application. Furthermore, in some
relations the experimental information is not com-
pletely used.

In the prevent review we develop a universal method,
based on the conservation laws, for investigating the
quantum numbers of resonances, namely the method of
polarization moments. Besides providing a unified
theoretical approach to the problem, this method has
also the advantage that it makes it possible to use the
entire experimental information, and also to unify and
simplify to the largest extent the computer reduction
of the experimental data (this is discussed in detail in
the review and in Appendix I). This method can be
used for any decay of the type (2.2) or (2.3).

The gist of the method of polarization moments con-
sists in the following. The distribution of the products
of the decay (2.2) or (2.3) depends on the spin state of
x, which we specify with the aid of polarization moments
(PM). We note that resonances with large masses de-
cay, as a rule, in cascade fashions, i.e., the particles
ay, produced in the reactions (2.2) and (2.3) are in turn
unstable. The distribution of the decay products of aj
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(which is a function of the direction of the emission of
a; in the rest system of x, and also of the direction of
the emission of the decay products of ay in the rest
system of ak) is conveniently characterized by quanti-
ties which we shall call cascade polarization moments
(CPM), which are natural generalizations of PM. We
note that the set of CPM contains complete information
on the distribution in question (just as the Fourier co-
efficients define completely a periodic function).

The CPM are determined in simple manner in ex-
periment, and they are connected by relations that
follow from the conservation laws. The coefficients in
these relations depend on j and 7, —the spin and parity
of x. Substituting the experimentally obtained CPM in
the indicated relations, we can obtain the value of j and
7)x at which the relations are satisfied—this indeed is
the procedure of determining j and 7,.

The method of polarization moments as applied to
the physics of resonances is discussed in a number of
papersu,u,1e,za,33,ss,3a-4o,seJ’ in the review 22! , and in
the Byers review™’ (where decays of fermions with
parity nonconservation are considered). Recognizing
that the two reviews were published only in the form of
preprints and are not readily available at present, we
have undertaken to describe consistently and compactly
the method of polarization moments. At the same time,
considerable space has been allotted in our review to
concrete decays, and also to experimental investigations
with which the application of the method is illustrated.

The present review does not consider one of the most
important methods of determining the quantum numbers
of baryon resonances, namely the phase-shift analysis.
This method has long been used by experimenters and
is well known to them. The latest accomplishments in
the field of reduction of experimental data on 7N scat-
tering by the phase-shift analysis method is the subject
of a review by Shchegel’skir 41,

The review was organized in the following manner.

In Ch. 3 we consider the spin state of one particle
and present two methods of its description—with the aid
of the density matrix and with the aid of the PM. It also
deals with very important properties of PM, which will
be needed later on, and with the method of determining
the PM from the experimental data. At the end of this
chapter, the spin state of two particles is discussed.

In Ch. 4 we consider the general theory of two-
particle decay of the resonant state. It is first neces-
sary to write down the amplitude of the decay in terms
of the most convenient parameters. Such parameters
are the helicity amplitudes of the decay, A,, the proper-
ties of which are discussed in detail. Knowing A, and
the PM of the resonance x, we can determine the spin
state of the decay product of x, namely the PM of the
particle a;. If a, itself decays, then the angular distri-
bution of the products of this decay depends on the PM
of the particle a;. It is convenient to introduce here the
CPM, thM. We then establish a relation between the

CPM, which can be used for the determination of the
spin and parity of the resonance x, and consider the
question of the experimental determination of the CPM.
Ch. 5 is devoted to concrete decays: j — 0 + Q,
j—1+0,j—1/2+0,j—3/2+0.
In Ch. 6 we investigate three-particle decay of reson-
ances. Just as for two-particle decay, we first intro-
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duce convenient parameters, in terms of which the scat-
tering amplitude fr'ﬁ)\(‘" 1, w2 is expressed. We then

again introduce CPM, and from the general properties
of the invariance against rotations and reflection we ob-
tain relations between CPM. These relations make it
possible to determine the spin and parity of the reson-
ance X. For an experimental determination of the CPM
it is necessary to have the angular distribution of the
decay (2.3), and also the angular distribution of the de-
cay of a, (if the spin of a; is not equal to zero). The
general formulas are used for concrete decays: a) decay
into three spinless particles, b) decay into a fermion
and two spinless particles.

In Ch. 7 we show how to use the laws of conservation
in the reaction of production of the resonance for the
determination of its quantum numbers. In particular,
we investigate the problem of employing a polarized
proton target for the determination of the quantum num-
bers of an isobar decaying into a non-strange baryon
and spinless particles.

3. SPIN DENSITY MATRIX AND POLARIZATION
MOMENTS

a) The Density Matrix and Its Properties

Assume that the system containing the investigated
resonance x is described by a wave function g(m, ),
where m is equal to the projection of the spin of x on
the Z axis in a specified coordinate system XYZ, and o
is the aggregate of all the remaining variables describ-
ing the system.

We assume for concreteness that x decays into two
spinless particles. The wave function of the decay
products of x depends only on m (it does not depend
on @ !) and is equal, as is well known, to ij(a!, ),

where Y, isa spherical function; the angles ¢ and ¢

. specify t]he direction of the momentum of one of the
products of the decay of x with respect to the axes XYZ.
The probability density of the decay of x in the direction
defined by the angles ¢ and ¢ is obviously

7
= D W, %m0 Vi (8 @) Ym0, @)

mm=—j «
i
= D oY (B, @) Yim (8, 9), (3.1)
m, m'=—j
where
Pmm‘zzlp(m, a) p* (m', o), —jgm, m<j. (302)

We see that to find the probability density of the de-
cay of x in a given direction it is necessary and suffi-
cient to know the matrix ppm (3.2), which is called
the spin density matrix or simply the p matrix.

The properties of the p matrix are discussed in de-
tail in articles and books (see, for example, **%27)
These properties can be easily obtained from the defini-
tion (3.2) and we shall only list them:

omm'=Phem  (hermiticity) (3.3)

Jj
Y eum=Spp=1 (normalization) (3.4)
0< P < 1, (3.5)
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H
MZL_], PrmePrmrm = SP P2 1. (3.6)

The equal sign in (3.6) holds only for the pure state
X, which is characterized by the fact that the spin state
of x does not depend on the remaining variables*. This
means that the resonance and the remaining part of the
system are described separately by the functions ¢{(m)
and x(a) (i.e., p(m, @) = ¢(m) x(@)). In this case we have,
in accordance with (3.2),

(3.7

In the general case of a partly polarized state, the
number of real parameters defining the p matrix is

Prmir = @ (m2) @* (m).

re @b =1 (3.8)

(3.8) can be easily obtained from (3.3) and (3.4).

In most practical cases, the number of independent
parameters is smaller than in (3.8). For example, if the
Capps condition is satisfied in the reaction (2.1), then in
the Z system

for odd (3.9)

This theorem was proved by Capps'*!. It reflects the
fact that when the Capps condition is satisfied the p
matrix is a function of vectors lying in the production
plane of x. This means that the elements of the matrix
Pmm’ remain unchanged upon reflection in the produc-
tion plane of x. On the other hand, it is known (see, for
example,?) that Ppm: — VMM -, following the
reflection in the XY plane. If we choose the production
plane of x to be the XY plane, then we get (3.9) from the
last two statements.

pmm'zo m—m’.

b) Polarization Moments and Their Properties

In the analysis of the angular distribution of the
decay products of the resonance, it is more convenient
to specify its polarization state not by means of the p
matrix, but by means of the polarization moments (PM)
T1,M, which are connected with p,yy, - by the formula

3

Tim= . ,;?"l_j Pmm'ng', M (3.10)
where cﬁ L 2re Clebsch-Gordan coefficients (CGC).
b

The CGC properties used in this review are listed in
Appendix I; more details on CGC can be found in the
books®%?,

The PM were used many times to describe the polar-
ization state of nuclei and elementary particles (see,
for example, ®+°"7),

Let us demonstrate the advantage of parametrization
of the polarized state of x with the aid of PM, using the
decay of x into two spinless particles as an example.

If we represent the products of the spherical functions
in (3.1) in the form (II, 7‘) of Appendix II, then, with
allowance for (3.10), we obtain

d 2j L

0\

wT=2 2
L=0 M=—-L

Let us multiply (3.11) by Y;:M(J, @) and integrate
with respect to the solid angle, taking into account the

2L 41

SO0, woTuwY e (8, @), (3.11)

*The pure state is called also the completely polarized state. In the
opposite case one says that the resonance (particle) is partly polarized.
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orthonormality property of the spherical functions. We
obtain

(Cﬂ) L(l)_1 (YiM (ﬁv (P»v (3-12)

J—
Tom= 2L+1

where

Vix (8, o) = | Yix(®, 9)da(®, o). (3.13)

(YiM(J, ¢)) is determined from the experimental data
by means of the formula

Yin (¥, 9) :—2 Yin (%, 1), (3.14)
de=1

where the summation is carried out over all cases of

the decay of x into two spinless particles, and n is the

total number of cases. It is obvious that (3.14) is the

limit of (3.13) as n tends to infinity.

Formulas (3.14) and (3.12) make it possible to obtain
quite easily the PM* from the experimental data, where
it is much more difficult to determine the p matrix from
(3.1) (especially in the case of large spin). At any rate,
there is no simple algorithm such as (3.12) and (3.14)
for the reconstruction of the p matrix in the case of
arbitrary spin.

We shall verify in what follows that for other types
of decay of x it is more convenient to use the PM than
the p matrix.

The PM can be interpreted in the following manner:
the p matrix of a particle with spin j (just as the product
of wave functions of two particles with spin j) is a super-
position of spin functions with values of the spin from
zero to 2j. According to the rule for the addition of
angular momenta, the condition (3.10) selects from this
superposition a function with spin L and projection M.
Such an interpretation of the PM illustrates formula
(3.12) quite well.

We emphasize that the definitions of the polarized
state of x with the aid of the p matrix and with the aid
of the PM are perfectly equivalent: knowing the p matrix
we can find the PM from formula (3.10) and, conversely,
knowing the PM we can establish the p matrix by means
of the formulat

27 L
prme = D} )

L=0 M=—-L
The properties (1.3)—(1.6) of the p matrix corre-
spond to the following properties of the PM:

2L-+1
Z]ji C;m IMTLM

(3.15)

Trar={—1MT7 _n, (3.16)
Too=1, (3.17)
minC o< Tro<max il 1o 1, (3.18)
2 L
S @L+D)|Tin < 2i+1. (3.19)
SomEL

*We note that by virtue of (I.6) only T1,M with Y[ M having even L
contribute to the angular distribution (3.11). Consequently it is impos-
sible to determine T p with odd L from the decay into two spinless
particles, i.e., the distribution (3.11) does not contain complete infor-
mation on the polarization of x.

tFormula (3.15) is obtained by multiplying (3.10) by [2L + 1)/(2j +
] X ij LMy summing over L, and M,, and using (1.3), (I.4b), and
(1.41).

fLimitations of the type (3.18) exist also for T{ )y when M # 0. For
more details concerning limitations of this type see [57].

LR
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In (3.18), the maximum and minimum values of CJ™ L
are taken at fixed j and L. jm, Lo

Formulas (3.16)—(3.19) are obtained from (3.3)—(3.6)
with allowance for (3.10), (1.4e)—(1.4f), and (I.5).

From the definition (3.10) and (1.1) it follows that
Trnw=0, if (3.20)

Therefore, with account taken of (3.16) and (3.17), we
conclude that the number of independent real param-
eters specifying all the PM is equal to

|M|>L, or L>2j

2j
2 2L+ 1)y —4=(2j+1)2—1,

which naturally coincides with the number of p-matrix
parameters in (3.8).
We present one more useful formula
i
(m3= 3 mpum =

M=}

JU+,

(3.21)
which can be readily obtained with the aid of (I.8) and
(3.4).

Just like the p matrix, the PM are specified relative
to a definite coordinate system. When the coordinate
system is rotated through the Euler angles «, B, and v,
the PM are transformed as follows:

[J Gg+0@Eji—1 (21+3)]‘/2Tzo+

L
Tiw= D) Diw (a

M=-—L

By v) Toars (3.22)

where TLM’ is the PM in the new system, and

MM’(a B
The Capps theorem (3.9) in terms of the PM reads

) are the Wigner D functions¥*.

as follows: if the Capps condition is satisfied, then we
have in the Z system
Tiy=0 for odd M (3.23)
and in the Y system
Tyse=(—1)EThy. (3.24)

Formula (3.23) follows from (3.9) and (3.10), while
(3.24) is obtained from (3.23) by using (3.22), (II.1), and
(11.4), and recognizing that the Y system is obtained by
rotating the Z system through the Euler angles
(0, 7/2, 1/2).

Assume that the particle a, produced in the decay
(2.2) or (2.3) has a spin s. Its polarization state can be
described both by the density matrix p,,, and by the
PM ty, {this symbol of the PM for a, 1s used to dis-
tinguish it from the PM of the resonance TLM)' It is
clear that p,,, and tlu have the same properties as
Pmm’ and Ty . For example,

28 I

pM,:l;) .1:2_: (214 1)/(2s + 1)) Cok iy, (3.159)
b= (— )8 tf,, (3.167)
too—1, (3.177)
tn=0, if |pi>1, or I>2. (3.20")

Finally, let us consider by way of an example, the PM

*For details of D functions see the books [¢:12:13] . The D functions
are defined somewhat differently in these books. We follow Rose’s def-
inition ['?]. Many useful formulas for the D functions are contained in
[1%11] In Appendix II are given only the D-function formulas used in
the present review.
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of a particle with spin 1/2. Its p matrix is usually writ-
ten in the form

p=(1-+po)2,

where p is the polarization vector. From (3.10) we ob-
tain

Tw=po/ V3, Tiza=—(pxTFipy)/ VE (3.25)
The remaining Ty, vanish in accord with (3.20).

To=1,

¢) The p Matrix and PM of Two Particles

The polarization state of two particles with spins j;
and j2 is characterized by their common polarization
matrix Pm,m! m,m} which generally speaking does not

reduce to a product of the p matrices of the two parti-
cles (there is a correlation between the polarizations of
the two particles). The spin projections m; and m; of
the first particle, and m; and m] of the second, are
specified in terms of the rest systems of the corre-
sponding particles relative to definite coordinate sys-
tems.

Just as in the case of one particle, it is possible to
characterize the polarization state of two particles by
using in place of the p matrix the PM Ty, M, AL M

which are connected with p ‘ by a formula

m m m
similar to (3.10): 1 M2tz
Tron, Lapy = 2 Z ;1111:; LiMy ;:::: LoMaPmymi, mgmg
my1, m{ ma, My
—h<my, my<jy, —fa<<my, mu<ias, 0<Li<2f;, 0Ly <2,
(3.26)

The inversion formula is obtained in analogy with
(3.15) and takes the form

2j1 2fa

"2 2

=0 L,

QL +1) 2Ly 1) mivmy Cim T
@i+ 1) @lp+1)  “dmi, LMy jamg, LyMg © LMy, LaMg-

(3.27)

pmlml mamg

4, TWO-PARTICLE DECAY OF RESONANT STATE.
GENERAL THEORY

a) Decay Amplitude
We consider the decay of the investigated resonance
(4.1)

where a; and a; are particles or resonances with definite
quantum numbers. We denote by ky, ki, and k; the mo-
menta of the corresponding particles, by 7y, 71, and 7.
their parities, and by j and s the spins of x and a,. The
spin of the particle a; will be assumed equal to zero,
this being the case of greatest practical interest. At the
end of the section we shall generalize the results to the
case when az also possesses a spin.

We specify a coordinate system XYZ in the rest sys-
tem of x. The state of the decay products of « is speci-
fied by the following quantities: ¢ and ¢ —the polar and
azimuthal angles of k, (relative to the axes XYZ), and
A—the projection of the spin of a; on the direction of k;
(x is called the helicity of the particle a)). If the projec-
tion of the spin x on the Z axis is equal to m, then the
wave function of the decay products of x is equal to

T —> @y a,

Wia (8, @)= [(2) + 1)/4n)/24.D5 (g, 9, 0). (4.2)

M. S. DUBOVIKOV and Yu. A. SIMONOYV

The variables of this function are the direction k, (the
angles ¢ and ¢) and the helicity A of the particle a,.

It is clear that the decay of x should be characterized
by invariant quantities determined by the dynamics of
the decay and are independent of the choice of the axes
XYZ. Such quantities are the Ay. They are called the
helicity amplitudes of the decay*.

Let us show how (4.2) is derived and let us explain
the physical meaning of A,.

Let the projection of the spin of x on a certain
direction Z' equal A. By virtue of the conservation of
the momentum in the decay (4.1), the emission of the
particle a; in the direction Z’ is possible only if the
helicity of a; is equal to A. We denote the amplitude of
such a decay by [(2j + 1)/47]'/2A, where [2j + 1)/41]*/2
is a normalization factor. It is obvious that A, does not
depend on the choice of the coordinate system XYZ.

Let us consider a spin state of x such that the projec-
tion of the spin on the Z axis in the XYZ system is equal
to m. In this case the spin function x, Wh1ch has a pro-
jection A on the direction k,, is equal to DJ (¢, 3, 0).

(As is well known'****? in rotation the spin- function

transformation matrix is made up of D functions.
Consequently, {jm [R(¢, ¢, 0)|jr) = D] ((p, $, 0),

where R is the rotation operator).
Thus, if x has a spin pro;ectlon m on the Z axis, then
the product of [(2j + 1)/4n] 2A by DI * ((p, #, 0) is none

other than the wave function of the decay products of x,
i.e., we arrive at (4.2).

In Appendix IV we give a rigorous derivation of (4.2),
and also prove the property (4.4), described in the next
item, of the helicity amplitudes of the decay.

b) Properties of A,

If j = s, then the number of decay helicity amplitudes
A is equal in the general case to the number of the
spm states of the particle a;, i.e., to (2s + 1).

On the other hand, if j < s, then by virtue of (IL.8)
the number of A, does not exceed (2j +1). Thus,

—s<ALs, if s,

—i<hgy, M j<s

However, not all the amplitudes are independent. If
parity is conserved in the decay (4.1), then

(4.3)

An=0A_y, (4.4)

where
0 = (M) {— 1), (4.5)

Relations (4.4) are the starting point for the deter-
mination of j and 7. They mean that the A, with non-
negative A are independent. This is a consequence of
the fact that in parity-conserving decays (4.1), out of
all the possible orbital momenta (which take on values
from |j — sj to j + s and whose number is equal to 2s +1
or 2j + 1), the only adm1551ble ones are those having the
same parity, such that (- 1)¢ = (ng/n172).

The A, are expressed in terms of the orbital decay

*The helicity amplitudes in different processes were first considered
by Zastavenko [°].
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amplitudes A"’ by means of the formula (see, for ex-

ample , {10] )
its

A;,:lz

=|j—s|

(22 + 1)/(2] + DIVCT, 24D, (4.6)

In order for the function (4.2) to be normalized, i.e.,
3 {1l deos ¥ dp=1, (4.7)
A

it is necessary that A, satisfy the normalization condi-
tion

;]Am:i. {4.8)
In (4.7) and (4.8), the summation is over the values of A
given by (4.3).

c) Connection Between Amplitudes of the Decay x and
the Polarization State of the Products of Its Decay.
Cascade Polarization Moments

In the preceding subsection we have noted that the
relations (4.4) between the decay helicity amplitudes Ay
are the starting point for the determination of j and 7.
1t is clear that the amplitudes A, influence above all
the polarization state of the particle x,;, which can be
determined experimentally.

The polarization state of the particle a; will be
characterized either by the density matrix p)&x) or by
the PM tlp.' Both p)(&l,) and tlu are determined in the
rest system of a, relative to the axes X'Y'Z’ shown in
Fig. 1.

‘Z ZI
Yl
7 k,
XV
Y
?
X FIG. 1

If the system containing the resonance x is described
by the function y(m, @) (m is the projection of the spin
of x on the Z axis and a are the remaining variables of
the system), then the angular distribution of the decay
products of x are determined from the formula

i
10, =22= 3 3N, @)v(m, ) Vs (®, ¢) T (9, ).
m,m'=—j A a (4.9)
Taking into account the definition (3.2) of the reson-
ance p matrix, we rewrite (4.9) in the form

1@ 9= 3 3 pon¥a (8 9) ¥ (8, @) (4.10)

m,

The density matrix of the particle a, is obtained in
analogy with (4.10):

LR
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(a
o = 7 ) 2

m, m'=—

Omm Wi (8, @) ¥inar (8, ). (4.11)
i

The p matrix (4.11) is normalized in accordance with
(3.4) and, of course, is a function of ¢ and ¢.

We make the following transformations in (4.11): we
express the p matrix of x in terms of the PM Tq )y in
accordance with formula (3.5), and replace

i i*
Y and Y
algebraic calculations in which formulas (I1.4), (IL.7),
(1.2), and (1.4) are used, we obtain

by their values (4.2). After simple

1(8, ¢)pis?
L

23
— (A D D RL+1) Ch, pawDig, ama (9,9, 0) Trar.
E0 ML (4.12)
Relation (4.12) connects the polarization state of the
particle a, with the decay amplitude AA and with TLM’
which are the PM of x. From (4.12) we can obtain
a relation more convenient for practical applications.

To this end, we multiply (4.12) by DI&I (g, ¢, 0) and
,A—2A

integrate over the solid angle with allowance for the
orthogonality property of the D functions (11.6). We ob-
tain

{ p89Dk s v (@9, 0)X 1(3, g)dcos b dg

=i
le' LA

AL T Ly (4.13)

We have already noted that the polarization state of
the particle is best described with the aid of the PM,
since the PM are easier to determine from experiment
than the p matrix. We therefore express the p matrix
of the particle a; in (4.13) in terms of its PM t;,, » using
formula (3.15). We arrive at the result

28 X
1-26 [2L+1)/(2s+ 1] Co 1t = €I LA ALT e, (4.14)
where

5= { 6n.Dfiu (9, 9,0)1(8,9) d cos ¢ de. (4.15)

The quantities tlLM will be called the cascade polar-

ization moments (CPM) of the particle a;. This name is
most appropriate for the following reason.

As seen from (4.15), to find the CPM it is necessary
to have the angular distribution of t; , in the reaction
wherein the particle a; is produced*u(in this case, in
the decay of the resonance x). In Ch. 3 we have noted
that tlu can be determined from the angular distribution
of the decay products of a, (if a, is stable, then to de-
termine t7,, it is necessary to scatter a; by an analyzer
target). Tﬁus, to find the CPM it is necessary to have
the distribution function in the cascade of the production
and decay (or the scattering) of the particle a;, this
function being dependent both on the direction of the
momentum of a; and on the direction of the momenta of
the decay products of a;.

*The definition (4.15) of the CPM does not require that a, must be
produced in the decay (4.1). If, for example, a, is produced in a four-
particle reaction, then it is still possible to introduce a CPM in accord-
ance with formula (4.15), with ¢ and ¢ specifying the direction of the
momentum of a, in the c.m.s. of this reaction.
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d) Experimental Determination of the CPM

The easiest to determine experimentally is TOI‘O'M
Indeed, from (3.17’) and (4.15) we obtain

£58" = (Do (p, ¥, O)y. (4.16)

In (4.16) and throughout this review we use the following
notation:

)= ta,s (4.17)
i=1

where the summation is over all cases of the investiga-

ted decay (which can be also of the cascade type), and

ty. i8 the value of t, in the i-th case. In (4.16) we have

-nL
ty = DMO(qp, 8, 0).

Equation (4.16) is the limit of (4.15) at I = p =0),
when n tends to infinity.

The rms error of the quantity a(ta> is calculated
from the formula

d(aita)) = [2"_" %,— % ( é tai)z}uz.
==t i=1

Unlike tg'éM, the other CPM of the particle a, can be
determined experimentally only if the momenta of the
‘decay products of a; are measured.

Let a, decay into two particles. The direction of the
momentum of one of the decay products will be speci-
fied by the angles ¢’ and ¢’ in the rest system of a,
relative to the axes X’Y’Z’, which must be chosen in the
manner shown in Fig. 1.

We shall show later on that the PM of a; are deter-
mined from the experimental data by means of the
formula

(4.18)

ton== 70 (Dha (@', ¢, O, (4.19)

where the coefficient y; depends on the concrete decay.
Thus, for example, if a, decays into two spinless parti-
cles, then it follows from (3.12), (I1.2), and (4.19) that

(4.20)

From (4.19) and (4.15) we obtain the following form-
ula for the experimental determination of the CPM*

i ==y (Djpu (9. 8, 0) Dpo (@', 0, O)). (4.21)

vi{s — 20)= {7, o

We recall once more that we use the notation (4.17) in
(4.21).

The errors of the CPM are calculated by means of
formula (4.18).

e) Properties of the CPM

Let us note certain properties of the CPM.
1t follows from (4.15), (I1.8), and (3.207) that

th'=0, if |p|>L, Oor |M|>L, OF |u|>I, Or I>2s
(4.22)
From (4.14) and (3.20) we conclude that
=0, if L>2j. (4.23)

*It is seen from (4.20) that in the decay o; > 20 at odd ! we have
4; —> 0. A similar situation occurs also in the parity-conserving decay
a; — 1/2+ 0. It is clear that in these cases it is impossible to use for-
mula (4.21) to determine tI]ﬁM with odd /. This question will be dis-

cussed in detail later.
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From (4.15), (3.16), and (11.4) we obtain the relation
0o = (=M, (4.24)

which is always satisfied, regardless of the process in
which the particle a; was produced. Therefore the CPM
with non-negative M (or p) are independent.

From (4.14) we can express the CPM with the aid of
(1.2) by means of the formula

(4.25)

5
LM 8h '
tyy =Ty (7L 2 Cir, wCiv, LudaAly) .
y Ai=—s

If parity is conserved in the decay (4.1), then we ob-
tain from (4.25), (4.4), and (1.4f)

LM LY
42 = (— )

(4.26)

1t follows from (4.24) and (4.26) that if the particle a,
was produced in a parity-conserving decay (4.1), then
the tlI:LM with non-negative M and u are independent.

It is clear from (4.15) that CPM are specified with
respect to definite axes XYZ (in the rest system of x)
and X’Y’Z’ (in the rest system of a;). Whereas the
directions of the axes X'Y’Z’ must be chosen as shown
in Fig. 1, the directions of XYZ are in general arbi-
trary. However, if the Capps condition is satisfied in
the reaction (2.1) of x production, then the XZ axes are
best chosen in the plane of this reaction (i.e., the CPM
are best specified in the Y system). When XYZ is so
chosen, we get the relation

M = (=) eEM, (4.27)
This relation can be easily derived from (3.24), (4.25),
(4.24), and (4.26).

f) CPM and Determination of the Quantum Numbers of
the Resonance

This is the main problem in Ch. 4. Assume that
parity is conserved in the decay (4.1). We then get from
(4.4)

Al — 04 A% =0, (4.28)

Substituting (4.14) in this formula, we obtain relations
for the determination of j and 74!
. 28 23
Clro L l;ﬁ’ @L4+1) o, wutEY — o 1 IZ:‘;(ZZ’ FAYC .t ),
(4.29)

The prime at the summation sign means that the summa-
tion must be carried out only over even ! and I’ or only
over odd ones*,

The use of (4.29) for the determination of j and 7, is
based on the fact that the coefficients of these relations

depend on j via CJA _ ) ando.
P ! iA, Lu

The procedure for determining j and 7y is as follows:
in (4.29) it is necessary to substitute the experimentally
obtained CPM and to choose j and ¢ such as to satisfy
(4.29). After j and ¢ are determined, the parity is de-

*The fact that (4.29) is satisfied separately for even and odd 7 and /'
can be verified with the aid of (4.26) and (1.4f). It is, however, very
easy to obtain this relation if the Capps conditions are satisfied in the
reaction (2.1). In this case relation (4.27) holds, from which it follows
that at even ! and I’ the CPM are real, and at odd ones they are imagi-

nary.
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termined by means of formula (4.5).

Such a simple procedure is realized if the errors
and the background are quite small. If the errors are
not small, then only the most probable values of j and
7. can be determined. To this it is necessary to calcu-
la’fte by the x? method the probability of satisfaction of
(4.29) for different values of j and o (details on the x?
method are given in Appendix III). We note that as a rule
(4.29) is more sensitive to o than to j. Therefore in the
experiments the parity of the resonance is determined
more definitely than the spin.

Relations (4.29) (as well as (4.14), from which they

are derived) are valid when tlLiiM is averaged over a

region of the angles of the production of x. It is there-
fore possible to employ the entire statistics obtained in
the experiment.

At different values of L and M, the relations in (4.29)
are independent. In addition, at fixed L. and M, the rela-
tions for which

0NV <hCs (4.30)
are independent. This follows from (4.24) and (4.26).

g) Determination of the Polarized State of a Resonance
and Its Decay Amplitudes

After determining j and 7, the experimentally ob-
tained CPM can be used to calculate the PM of x, Ty

2s s
Ten=2 X 2L 10/Ch o) Y. (4.31)

25+1
I=0 A=-—s
This formula is obtained from (4.14) when account is
taken of (4.8).

The prime in (4.31) denotes that it is necessary to

sum tI;M for which L and ! have the same parity (by
virtue of (I.4f), the tlL(‘)M with different parities of L
and ! cancel out in the sum (4.31). It is clear that

formula (4.31) is valid only if CI* _ = 0 for all A.
jA, Lo

To calculate the decay amplitudes it is possible to
use formulas (4.14). We note that with the aid of (4.14)
it is possible to find A, only accurate to within a com-
mon phase.

We present one more useful formula

L' =12 (Do (@, 9, 0}, (4.32)
where
VL:(A_‘,ZI_SC;;:,LUIAA,IZ)_I. (4.33)

These formulas are obtained from (4.25) and (4.16).

If the amplitudes of the decay of a resonance are de-
termined during the course of its investigation, then
formula (4.33) makes it possible to determine vy, Itis
then possible to use (4.32) for an experimental
determination of the PM of this resonance, if the latter
is produced by decay of another resonance (i.e., if it
itself plays the role of the particle a, in the decay (4.1)).
In this case (4.32) is written in the form (4.19) with the
obtained values of y;.

The I.general theory of two-particle decays is devel-
oped in*'*’,

In the next chapter we shall apply the general theory
to concrete decays.

A
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h) Decay of a Resonance Into Two Particles with Non-
zero Spin

Let us generalize the principal results of the present
section to include the case with both particles a; and a»
produced in the decay (4.1) have nonzero spins s, and s,.

The polarized state of a; and a; will be characterized
by the PM tllﬂ;,lzl»lz’ analogous to (3.26). The indices

l1, 1, and Iz, {2 are determined in the rest systems of
the corresponding particles; the axes X{Y{Z]and X;Y}Z}
have opposite directions, with X]Y;Z] directed in the
same manner as X'Y'Z’ in Fig. 1.

The CPM are determined in analogy with (4.15):

thoh, = § L, tauaDRt, o (9, 9, OV (B, 9) dcos @ dp (4.34)

The properties of the CPM are analogous to
(4.22)—(4.24):

LM LM*
Lii—na, ta—pg = (A 1)Mt11m, falla" (4'35)

If parity is conserved in the decay (4.1), then we have
in analogy with (4.26)

LM _ Lotlytlg LM
ty—py. la—piz =(— 1) T g, Tane

(4.36)
In the gleneralization of (4.27) it is necessary to re-
place (1)’ by (- 1)litls,
For a generalization of (4.29) for the determination
of j and 7, and for their application to the decays
j—1/2+1/2andj — 1 + 1/2 see'™.

5. TWO-PARTICLE DECAY OF THE RESONANT
STATE. CONCRETE DECAYS

a) Decay of a Boson into Two Spinless Particles

We have shown earlier (see Ch. 3, b) that in the de-
cay of a boson resonance into two spinless particles
there is no asymmetry with respect to the reflection of
the produced particles in the angular distribution of the
decay products, and no T M with odd L appear in the
decay of x. For even L, the PM of x are determined in
the experiment by means of the formula

Trar=(CR, 10y (Dhpo (9, B, 0)), (5.1)

which can be readily obtained from (3.12) and (I1.2).
What conclusion can be drawn with respect to j and

71, on the basis of an analysis of the angular distribution

ofthe products of the decay of x? If parity is conserved

in the decay, then

(5.2)

As to j, it is possible to establish for it only a lower
limit. By virtue of (4.23)

e = Nyt (— 1)

7> Linax/2, (5.3)

where L, is the largest value of L for which
(DIL\‘,IO(QD, J, 0)) exceeds the level of the errors. More
information concerning the value of j than is contained
in (5.3) can be obtained only in individual cases. Let us
stop to discuss this in greater detail.

Assume that in the analysis of the decay of x it turns
out that L, = 2. We then obtain from (3.15), (1.7),
(1.8), (5.1), ?ff.l), and (11.3)
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Im2—j (i +1)
FG+1D

5 (Ot 0omem) = gy [1—5 (Pr(cos )] . (5.4)

From (3.5) and (5.4) we obtain the inequality

—1/5.<(Py (cos ) < (j +1)/5 (2 — 1), (5.5)
which can help establish the spin of x*. A similar
analysis can be carried out in the case when L. = 4.

Let us consider by way of an example the experiment
of Carmony and Van der Walle"*®’. They investigated
the process 7'p —~ 1r'p1r° at an incoming-pion momentum
1.25 GeV/c. 1684 events were selected for the d1p10n
mass in the p-meson region 27 m? = M?=< 33 m and
for the recoil proton momentum 100—400 MeV/c The
authors obtained the cross section

do/d cos & =[(26.4 = 2,4) cos? ¢ — (1,0 = 1.4) cos & 4 (6.9 3= 0,7)] mb,
. (5.6)
where ¢ is the angle between the incoming 7" and out-
going 7" in the dipion rest system.
From (5.6) we get

(Pz(cosﬂ))=(5 dcos’O ——— Py (cos #) d cos & / deodwsﬁ)

=0.224 4 0,019.

This value of {P3(cos #)) satisfies the inequality
(5.5) only if j = 1.

We note that {(Pj(cos #)) and the errors must be
calculated directly from the experimental data, using
formulas such as (4.17) and (4.18), whereas we have
calculated (Pz(COS ‘9)> by using the result (5.6) given
by the authors oft!

(5.7)

b) Decay of a Boson into a ¥ Quantum and a Spinless
Particle

A photon cannot have zero helicity. Therefore in the
decay x — y + 0 only the decay amplitudes A, and A,

differ from zero. Taking this circumstance into account,

we obtain from (4.32), (4.33), (4.8), and (I.4f) for even L

(D% (@, 9, 0))=Cl{, Lol Ly (5.8)

Let x have two decay channels, x — y + 0 and
x — 0 + 0. By investigating the angular distribution of
the decay of x through both channels, we can establish
j (the parity of x is determined from formula (5.2)).
Indeed, comparing (5.1) and (5.8), and taking (I.16) into
account, we obtain

—;7((['1—1_—:))-] (Dlito (@) 8, 0zs010y=0.
(5.9)
In the derivation of this relation we took it into ac-
count that the PM of x (Ty ) do not depend on the chan-
nel through which x decays.
In determining j with the aid of (5.9), the experimen-
tal data must be reduced by the x* method.

(Do (@1 B Mizsrt) — [1 —

c) Deéay of a Boson Into Particles with Spin 0 and 1

Let us consider the case when the particle a; pro-

*We note that if x is emitted forward in the production reaction
(Adair’s situation), then the angular distribution of the decay products
of x contains additional information on the spin of x. This question,
however, is outside the scope of the present review (Adair’s analysis
for a boson resonance decaying into two spinless particles can be
found, for example, in [2*:52]).

M. S. DUBOVIKOV and Yu.
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duced in the decay of the resonance (4.1) has spin 1
(the spin of particle a2 is 0). According to (4.3), there
are three decay amplitudes Aj, Ag, and A, (if j = 1).
By virtue of parity conservation in the decay of x, we
have from (4.4) and (4.5)

Ay =o04_,, (5.10)
Ay =04, (5.11)
0= (nMe/ns) (— 1)L, (5.12)

In order to determine the spin and the parity of x
with the aid of relations (4.29), it is necessary to deter-
mine experimentally the CPM of the particle a,. Ac-
cording to (4.22), at s = 1 there are only tkM t}'u , tLM.

Let a; decay in turn into two spinless particles. In
Sec. a of this chapter we have noted that no PM with
odd ! appear in such a decay. Therefore t{-‘M cannot be
determined from experiment. On the other hand, it is

possible to determine from experiment toléM and t%ﬁ’l

The former is determined from (4.16), and a formula
for the latter is obtained from (4.21) and (4.20) by sub-
stituting s = 1*:

52— — V52D (9, ©, 0) Djo (@', 0, 0. (5.13)

Thus, in order to determine j and 7y in the decay
x — 1 + 0 (with subsequent decay 1 — 0 + 0), we can use
relation (4.29) only for even I and I’.

Let us write down (4.29) for even land I’ at s = 1.

If o = 1, then substitution in (4.29) of A =X’ = 0 and
also A = 1 and A’ = 0 results in identities. On the other
hand, if ¢ = —1, then, at the indicated values of A and A’
we obtain respectively the relations
(5.14)

Y _VI0 =0, L even,

1 =0, (5.15)
Substituting in (4.29) A = A’ = 1 and summing over
even ! and !’ with the aid of (I.16) and (1.17), we obtain

[ttty ] (5 Y T ) o VB[40 ] o

(5.18)
where L are even*.

When j and 7, are determined by the x* method, it is
first necessary to find the probability of satisfying the
hypothesis (5.14) and (5.15) (see Appendix III). If this
probability is small, then it can be stated that ¢ = 1. In
this case it is necessary to find the probability of satis-

*We recall that the angles ¢ and ¢ determine the direction of the
momentum of the particle a, in the rest system of x relative to arbi-
trary axes XYZ, and ¢’ and ¢’ determine the direction of the momen-
tum of one of the decay products of a, relative to the axes X'Y'Z’
(which must be chosen in the manner shown in Fig. 1) in the rest sys-
tem of a; . If a; is a vector meson that decays into three pseudoscalar
mesons, then formulas (4.16) and (5.13) remain valid as before, except
that the angles 9 and ¢’ must define now the direction of the normal
to the plane of the decay of the vector meson in its rest system.

*We note that in the case of odd L all the CPM entering in (5.16)
and (5.14) are equal to zero. This can be readily verified with the aid of
(1.4), (5.11), and (4.25).
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fying the hypothesis (5.16) for different values of j only
o =1, and then to choose the most probable j. On the
other hand, if the probability of satisfying the hypothesis
(5.14) and (5.15) turns out to be large, then no conclu-
sions can be drawn with respect to ¢, since (5.14) and
(5.15) can be satisfied also when o = 1 (relations (5.14)
and (5.15) are a consequence of the fact that when

o =—1 we always have A, = 0, but for an ‘‘accidental”’
reason it may turn out that A, = 0 also at ¢ = 1), In this
case it is necessary to find the probability of satisfying
(5.16) for different j at both values ¢ = =1 and to choose
the most probable values of j and 0.

Formulas (5.14)—(5.16) were obtained by Chang'*®?.
The described procedure of determining j and Ny
will be illustrated with concrete experiments somewhat
later, after we consider a few more general questions.
It may turn out that in the decay (4.1) the spinless
particle is identical with one of the products of the decay

of particle a;. Then, owing to the interference of the
identical particles, the formulas obtained in this sub-
section must be revised. It is clear that the revision is
meaningful when the width of the resonance a; greatly
exceeds the experimental resolution (for example in the
case of the p meson).

Let us consider, for example, the decay

(5.17)

The interference of 7~ mesons takes place only when
the invariant 717" and 77" masses lie in the p band
(i.e., in the case of intersection of the p band on the
Dalitz plot).

Since the distribution of the p-meson decay products
in the absence of interference is symmetrical with
respect to interchange of the momenta (i.e., with respect
to reflection of the momenta of the p mesons in the rest
system of p), we can use relations (5.14)—(5.16) to de-

termine j and n,. However, when calculating t{-;LM by

formulas (4.16) and (5.13) it is necessary to discard the
cases when the p bands intersect, and the cases in
which the invariant mass of the 7~ mesons lies in the

p band must be taken with weight 2. If in the decay
(5.17) there are cases of intersections of p bands, when
the invariant mass of the 7° mesons also lies in the

p band (i.e., cases when the invariant mass of each pair
of m mesons lies in the p band, as is the case for the

decay of the A, meson), then their contribution to tlIZ,LM

is taken into account in a more complicated manner (for
more details see'"?)
The correction of t

(18]

z—> pn —> it g,

lp.M for the decay A; meson can

be found in , and turned out to be not larger than 5%.
Let us stop to discuss the determination of the PM of
x (T, ). From (4.31), (4.16), (5.13), and (I.16) we ob-
tain
Por= (3¢}, 20 { Do (@ 9, 0) [3 — £
__5L(L+1)
2/ (/1)

(5.18)
Do, 9, 0)] >,
where the L are even.
K, = 71M2{1)], then Aq = 0 in accord with (5.11)
e(md (5.12), and we obtain from (4.32), (4.33), (4.8), and
1.4f)

(5.19)

where the L are even. The errors GTLM are calculated

Trae={(CH, Loy (Do (@, 8, 0)).
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from a formula similar to (4.18).

If x decays into two pseudoscalar mesons, or into a
pseudoscalar and a vector meson, then according to
(5.2) we have 7, = (-1)J. From a comparison of (5.1)
with (5.19) we obtain, with the aid of (1.16), additional
relations for the determination of j:

1
Do (@, ¥, 0Nest-10-— [1 —M] (Dhro (@, 0, OPesgto-=0

2j(j41)
(L— even). (5.20)

It is clear from (5.13) and (4.16) that the CPM de-
pend on the choice of the axes XYZ, relative to which
the angles ¢ and ¢ are defined. Equations (5.14)—(5.16)
are valid for any choice of XYZ. It is most convenient,
however, to direct the Y axis along the normal to the
plane of x production. In this case, in accordance with
(4.27), all the tEM and tl—ﬁw should be pure real in the

absence of a background. If the x-production reaction
has a peripheral character, then the Z axis is best di-
rected along the momentum of the incoming particle in
the rest system of x, and the Y axis along the normal to
the reaction plane. Such a system of coordinates will be
called the Treiman-Yang systemm] .

By way of an example let us consider the experimen-
tal work of Ascoli et al.'®®?, who investigated the quan-
tum numbers of the B meson in the reaction

(5.21)

at an incoming 7 -meson momentum 5 GeV/c. The pro-
duced B meson decays in accordance with the scheme

np—>B+p

B —onmto (5'22)
]—-—> ataal,

The method described above can be used for the de-
cay (5.22), with the angles ¢’ and ¢’ in (5.13) defining
the direction of the normal to the plane of decay of the
vector meson w in its rest system relative to the axis
X'Y'Z' (see Fig. 1).

In‘®®! the CPM was calculated in the Treiman-Yang
system, and the authors subtracted the background (we
shall not discuss the procedure used in'®? to subtract
the background, since this question is beyond the scope
of the present survey). In Table I are given those CPM
values of"®? which are outside the limits of errors.

Table I

T

5
38 =<5 sinz0—1)x ReTE

xDda (o, #, )  |=Re <Dha(a. 8,9

0.222+0.079) —0.136+
=+0.056

Numerical value ~—0.166-+0.056 0.076+0.038

and error

It is easy to show that the CPM t 25 and t 23 given in
Table I are connected with the CPM t3 and t2 (see
formula (5.13)) by means of the formulas*

3~

2 t;g=t33+]/§ £, (5.23)

*We note that (5.24) is valid if there is no background in the decay
of the vector meson. If the background of the vector meson is not very
small, then it is more convenient to use t2{ than tgg, for the influence

0

of the background is smaller in the calculation of t 2"
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To determine the spin and parity of the B meson it is
first necessary to calculate the probability of the hypo-
thesis (5.14) and (5.15). As reported by the authors
of'**! all the tLM are smaller than the errors; the
hypothes1s (5. 15) are therefore likely. With the aid of
Table I and (5.23) it is easy to verify that at L = 2 and
M = 0 we get x* < 1 for the hypothesis (5.14) (i.e., the
hypothesis is likely). At L = 0, Eq. (5.14) takes the
form

(5.24)

1— V108 =0. (5.14")

From the value of t3g (and of the error) given in
Table I it is easy to find that x* = 1.5 for the hypothesis
(5.14'); the corresponding probability is 22%, i.e., the
hypothesis (5.14’) is likely.

We have already explained that when the hypotheses
(5.14) and (5.15) are satisfied it is impossible to draw
any definite conclusion concerning the value of o.
Therefore the hypothesis (5.16) must be investigated by
the x® test at dlfferent values of j and at both values
0 =+1. In terms of t 2 and { 25, Eq. (5.16) takes the form

12 LEAY o 50
ito [Ty —2]m=o.

L(L+1)
T=hH(L12)

(5.167)

Table II lists the results of an investigation of the
hypothesis (5.16) by the x° test for different values of
the spin and parity of the B meson. The same table
gives the values of the PM (T3} for the B meson, calcu-
lated for those values of j and 1y which are compat1b1e
with the experimental data. Tz was calculated for 1* by
formula (5.18), and for 2* and 3~ by formula (5.19). The
last column of Table II gives the mean-square values of
the B-meson spin projection on the Z axis, as calculated
by formula (3.21). (The Z axis was chosen to be the
direction of the momentum of the incident pion in the
rest system of B.) In addition, the density matrix ele-
ment poo is given for 17,

Table II
Fi:] X2 Probability, % Conclusion Tz2o (m2yl/2
! —_
1+ 2.7 10 The hypothesis (5.16) is —0.452-0.18]  pog ==
compatible with the experi- =0.81+0.19
mental data.
2= 1.7 0.07 The hypothesis (5.16) is — —
incompatible with the
experimental data.
3+ 11.5 0.07 Ditto e -
1- 1.7 0.07 Ditto — —
2+ 2.7 10 The hypothesis (5.16) is 0.51+0.21 | 1.96+0.2
compatible with the
3 1.4 29 experimenta data. 0.35:£0.145 2.62-0.22

We see from Table II that the method of polarization
moments has made it possible in'®*"? to refute the quan-
tum numbers 17, 27, 3%, etc., but did not permit a strict
choice between 1°, 27, 37, etc.

However, it is seen from the same Table II that in the
case of 1’ the element poo predominates in the p matrix
of the B meson, and in the case of 2° and 3™ the predom-
inant elements are ., with m = 0. Therefore, if the
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quantum numbers of the B meson are 2*, 37, etc., then a
drop should occur in the distribution with respect to t

at small t (t = — (kg — k,)® is the square of the momentum
transferred to the B meson in the reaction (5. 21) On

the other hand, if there is no drop, then only 1° is possi-
ble*.

In'®®!, the distribution with respect to t turned out to
be proportional to exp(At), where A = 4 GeV2, There-
fore the quantum numbers of the B meson are most
likely 1°.

The reaction (5.21) was investigated at the Institute
of Theoretical and Experimental Physics!""! at an in-
coming pion momentum 3.25 GeV/c. The tonclusions
concerning the quantum numbers and amplitudes of the
B-meson decay in'®® and""? are in good agreement.
But the polarization given for the B meson in the two
references is quite different, pointing to a different
mechanism of the reaction (5.21) at incoming-pion mo-
menta 5 and 3.25 MeV/c.

d) Decay of an Isobar into a Baryon and a Spinless
Particle

Let us consider the decay (2.1) in the case when x is
an isobar, a; a baryon (with spin 1/2), and a. is a spin-
less particle. According to (4.3), there are two helicity
amplitudes of the decay, A;/2 and A_;/». By virtue of
parity conservation, they are connected by a relation
analogous to (4.4) and (4.5):

Ao =0A4_1, (5.25)

0 = (ne/Mem) (— 1)1/, (5.26)
We shall discuss two problems: 1) the determination
of j and 1y and 2) the determination of the polarization
state of the isobar x.
Let us consider the first problem. The relations for
the determination of j and 7, are obtained from (4.29)

substituting (I.12) and the explicit values of C‘/: )? "

(and also by taking into account the fact that the parti-
cles with spin 1/2 have only tiM and t{-ﬁw as CPM):

@i+ )R —o VILE 1) i —o. (5.27)

From (4.25), (5.25), (I.4f), and (1.12) it follows that

(5.28)

Therefore (5.27) can be used for the determination
of j and 7y only for odd L. To this end it is necessary
to determine experimentally tLM and t; M for the
baryon.

If the baryon a, decays in turn without conserving
parity, in accordance with the scheme

ti =0, if L is even,

(5.29)

(N—baryon, Il —pseudoscalar meson), then its polariza-

as—> N -+ 11

*It can be thought that at an incoming pion energy 5 GeV the reac-
tion (5.21), albeit in a crude approximation, is described by the Regge-
pole model (see the review [%1]). Then the matrix element of the reac-
tion is proportional to (—t)™/2. But in any other peripheral model the
cross section of the reaction (5.21) should decrease at small values of t
if the B meson is produced with a spin projection m # 0.
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tion state (and CPM) can be determined from this decay.

As is well known, when parity is not conserved in the
reaction (5.29) the angular distribution of N (in the rest
system of a,) is given by

(5.30)

where Q is the solid angle in the a; rest system, p is the
a) polarization vector, and v is a unit vector in the di-
rection of the momentum of N (in the rest system of ai).

The asymmetry coefficient a is different for concrete
decays (5.29). Table III lists the values of a for a num-
ber of decays. The data were borrowed from the review
of Rosenfeld et al.'” From (5.30) we easily obtain a
formula for the experimental determination of p:

de/dQ — (1 + apv)/4a,

(5.31)

From (5.31) and (3.25) we obtain a formula for the ex-
perimental determination of the PM of a,

VV (cos §') = —19(01 (¢’, 9, O),

p=(3/a) (v).

by =

tisyi=F Y -5?<sinﬁ’e*'iq“) V (D (¢', 9, O)). (5.32)

We took into account in (5.32) the fact that the PM of
a are designated t;, (and not Ty pp 2nd that they are

defined relative to the axes X'Y'Z’ (see Fig. 1).
From (5.32) and (4.15) we obtain a formula for the
experimental determination of the CPM of a,

LM
2T

V3 Dk (@, 9, 0) Do (&, ¥, O). (5.33)

The errors of the CPM are determined by formula
(4.18). The notation (4.17) is used in (5.31)—(5.33).

Thus, substituting the experimentally obtained CPM
(5.33) in (5.27) we can determine j and 7y. The experi-
mental data must be reduced by the x? method (see
Appendix III).

The described method was used to determine j and
Ny of the isobars Z*(1385) (see, for example,**™),
=*(1530) (see, for example, 7). The results of "
were used by us in Appendix ITI to illustrate the x*
method.

Relations (5.27) were derived by Byers and
Fenster *®’.

We emphasize that the method of polarization mo-
ments makes use of all the information concerning the
spin and parity of the isobar, and could therefore be
used successfully in investigations employing other
methods (for example the work of Shafer and co-
workers™'!) who investigated the angular distribution
of the longitudinal and ‘“magic’’ polarization of the A
hyperon produced in the Z* (1385) — A + 7) decay.

Table III. Asymmetry
coefficient in strange-
baryon decays

Agymmetry

Decay coefficient ¢

A—>pta~
It —> p+ad
X —>n4at
- —>nda-
Z-—>A4a-

0.64554-0.0159
—0.9547+0.0696
—0.01752-0.0390
—0.0604--0.0469
—0.4070£0.0370
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In conclusion we present formulas for the experi-
mental determination of the PM of x (these formulas can
be easily obtained from (4.25), (5.25), and (5.33)):

Trar = (CH5 o) 658 — (13 L) (Do (. B, O, (5.34)

where L are even, and
Toae=V B (CHE o) 5 =3 (@C1/3, o)™ (cos ' Do (¢, 8, 0)), (5.35)

where L are odd.

We recall that in (5.32)—(5.35) the angles # and ¢,
(s’ and ¢’) define the direction of the momentum of
a,(N) in the rest system of x(a,) relative to the axes
XYZ (X’'Y'Z’). If the direction of XYZ is arbitrary (but
is frequently convenient to choose XZ to be the plane of
x production), then X'Y'Z’ are directed as shown in
Fig. 1.

We see from (5.34) and (5.35) that to determine T,
with even L it is necessary to have only the angular
distribution of the decay of x, and to determine Ty,
with odd L it is necessary to have the angular distribu-
tion of the polarization of a, (i.e., besides the x decay it
is also necessary to investigate the a; decay (5.29),
where « is the asymmetry coefficient in the latter de-
cay). Thus, if a, is a stable baryon, then only the PM
with even L can be determined.

Incidentally, if the baryon a, is stable, then it is im-
possible to determine j and 7, with the aid of (5.27), and
a polarized proton target must be used for this purpose
(see Ch. 7).

In this review we do not consider fermion decay with
parity nonconservation, since the hyperons A, Z, and =
have already been well investigated, and the statistics
are still patently inadequate for the study of the Q
hyperon. The decay of fermions with parity nonconser-
vation is discussed in the reviews™*®%! and in the
original papers? 45471

e) The Decayj —3/2 +0

Assume that the decay (4.1) of the isobar x produces
an isobar a, with spin 3/2 (and known parity) and a
spinless particle a,. According to (4.3) there are four
helicity amplitudes of the decay (if j = 3/2), A, 1/ and
A:3/2. By virtue of parity conservation, they are con-
nected by relations similar to (4.4) and (4.5):

Agp=0dy2, A_1p=04y,
o= (na/mime) (— )72
The relations for the determination of j and ny are

obtained by substituting in (4.29) the equatlons
(I1.11)—(1.15) and the explicit values of Cs/zﬁ Iyt

(5.36)

VIE=D(L 12 & —a( - 1/2) 5 =0, (5.37)

VIOL =L F2)th —o (4 1/2) BV 2 42 V7 i) =0, (5.38)
in (5.37) and (5.38) the L are even;

(GH12) VL= T+2) 51— [L(L+1)—2(j+ 1231 3 0,
G+V)VE-DLT2)BV2 i +2 VT3 (. 39)
*U[L(L+1)A2(1+1/2)21 V70 55 =0,

2741 1/2 = 5.40
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VZ—0h&1D _
[ =12 G+~ VI-D&+r2 1)(L+2) ]2V35t33 _0('5 41)

@I+ V2SN +e VIEZ+ DRV TH —2 V21 =0;
(5.42)
in (5.39)—(5.42) the L are odd.

Formulas (5.37)—(5.42) were derived by Shafer!®’;
in his paper, relation (5.41) contains an error and is
numbered (37). He also gives relations obtained under
the assumption that the amplitude with the smallest
orbital angular momentum is dominant in the j — 3/2 + 0
decay.

To determine j and n_ with the aid of relations
(5.37)—(5.42) it is necessary to determine tIM, the
CPM of a:. lu

Let the isobar a; decay with parity conservation into
a baryon and a spinless particle in accordance with the
scheme

a,—> N’ +1I'. (5.43)
Then t, ,, the PM of a,, are determined from this decay
by formula (5.34) (except that TLM in (5.34) must be
replaced by tl , and +# and ¢ by ¢’ and ¢’, since in the
decay (5.43) a, plays the role of x and N’ plays the role
of a;). We thus obtain from (5.34) and {4.15) a formula
for the experimental determination of t}’y

&Y = — V5 (D5 (9, 0, 0) Do (9, ', O)). (5.44)

Thus, by studying the angular distribution in the de-
cays (2.1) and (5.43) it is possible to determine from
formulas (4.16) and (5.44) the values toléM and tl—ﬁw of

the CPM of a,. In this case it is possible to use for the
determination of j and Ny only the relations (5.37) and
(5.39).

To use the remaining relations (5.38) and
(5.40) —(5.42) it is necessary to determine experimen-

tally tL‘liVI and t LM This is possible only if the baryon

N’ produced in the decay (5.43) is in turn unstable and
decays with parity nonconservation in accordance with
the scheme

(5.45)
Then t,; and t,, are determined by formula similar to

(5.35) (with Ty py replaced by t;,, and ¢ and ¢ by 4’ and
¢’, as explained above):

N - N 411",

tin=3 (@'C3/5 {3, 10) " cos §"Dyo (9", 9', 0P, (5.46)
where a’ is the asymmetry coefficient in the decay
(5.45), ¢” is the angle between the direction of the mo-
mentum of N’ (in the rest system of a1) and the direc-
tion of the momentum of N” (in the rest system of N’).

From (5.46) and (4.15) we obtain formulas for the

; inati LM LM

experimental determination of t m and ts m

5 = B3V 15/a’) (DX (0, B. 0) DLy (¢', O, 0)cosd”y, (5.47)

5 = — (V' 35/a’) (Dl (@, B, 0) Dio(9’, 97, 0)cos 9. (5.48)

We recall that in (5.44) and (5.46) —(5.48) the angles
¢ and ¢ (¢’ and ¢’) specify the direction of the momen-
tum of a; (N’) in rest system of x (a)) relative to the
axis XYZ (X’Y'Z’). The direction of XYZ is arbitrary
(but it is frequently convenient to choose XZ in the x
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production plane) and X'Y‘Z‘ must be chosen in a man-
ner shown in Fig. 1.

6. THREE PARTICLE DECAY OF A RESONANT
STATE

a) Three-particle Amplitudes Decay and Their Proper-
ties

Assume that in the decay
(6.1)

the particles a; and as are spinless, the spin of x is j,
and the spin of a; is s. This is the case of greatest
practical interest. The momenta and the parities of the
particles are respectively ky, ki, k2, ks; 7y, 71, 712, 7s.

We choose the coordinate axes XYZ in the rest sys-
tem of x. The state of the decay products of x are
specified by the following quantities: the angles # and
¢, which determine the direction of the momentum of
one of the particles (for example, k) relative to the
axes XYZ, the angle @, which specifies the position of
the x decay plane (Fig. 2), the energies w, and w; (w; is
determined by the energy conservation law), and finally
the helicity A of the particle a,.

If the projection of the spin of x on the Z axis is m,
then the wave function of the decay products of x is
given by (see Appendix IV)

T—>ay+ay+a,

o (9. 8, @5 0, 0) = VLI (6.2)

ae 1.J jﬁl (o4, ) DZ’""m((P, v, ®).

P

The decay amplitudes fn~1)\(“’1 , wz) do not depend on
the choice of the axes XYZ; they can differ from zero
only if

(6.3)

(wl, w;) has a physical meaning analogous to AA for

the two-particle decay (see Ch. IV), namely,
(Vi + 12/2m)1fg;, is the amplitude of the decay of x with
a spin prOJectlon i on the Z axis, if the momentum k;
is directed along Z, the plane of the decay (6.1) coincides
with XZ, and the helicity of the particle a; is A.

If the function (6.2) is normalized, then we obtain,
taking (I1.5) into account

—j<m<j, —s<h<s,

] 8
DI Sifm(ml, ©,) |2 dw, dooy = 1.

M= A=—s

(6.4)

The Y axis is parallel to k; X k;.
FIG. 2
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The condition (6.4) is analogous to the normalization
condition (4.8) for the amplitudes of the two-particle
decay.

By virtue of parity conservation in the decay (6.1),
the following relation holds between the decay ampli-
tudes

fan (@0, @) =T (— 1" f = (o1, wp), (6.5)

I = (Ne/mgmama) (— 1)/, (6.6)
For a proof see Appendix IV.

We note that other parametrizations of the wave func-
tion of three particles are possible (see, for example,
the article of Berman and Jacob'**! and the review'®’),
but we shall not use them in this review.

b) Cascade Polarization Moments for Three-particle
Decay

The polarization states of x and a, will be charac-
terized by the polarization moments Ty ) and tlu in

their rest systems relative to the axes XYZ and X'Y'Z’,
respectively. Whereas the choice of the axes XYZ is
arbitrary (except that for convenience XZ should be
chosen in the x-production plane), the axes X’Y’Z’ must
be chosen as shown in Fig. 2.

It will be convenient in what follows Nto use the cas-

cade polarization moments (CPM) tlI-;LMM of the particle
a, in the three-particle decay (6.1). These are given by

. S 1D (@, 8, ©) I (@, B, B; o, 0y)dcos & do dD do, dwy,
(6.7)
where I(¢, 4, &; w,, wz) is the distribution of the prod-
ucts of the decay (6.1) with respect to the angles and
the energies. We note that (6.7) is analogous to the
definition (4.15) of the CPM for the two-particle decay.
The CPM of a, can be determined experimentally.
Thus, for example, by virtue of (3.17') we obtain from
(6.7) a formula for the experimental determination of
tLMIVI;
00

LM M
00

(D3t (9, 9, D). (6.8)

Other thMM are determined experimentally, depend-

ing on the method of determining tlu' For example, if

a; is a baryon decaying with parity nonconservation in
accordance with the scheme (5.29), then we obtain from
(5.32) and (6.7) a formula for the experimental deter-

mination of t{JMM:

£ = V3 Dl (of, 9, 0) Dl (g, B, @), (6.9)
where « is the asymmetry coefficient in the decay
(5.29), and ¢’ and ¢’ are the angles that determine the
direction of the momentum of N, which is produced in
the decay (5.29), in the rest system of a, relative to the
axes X'Y'Z’ (see Fig. 2).

In (6.8) and (6.9) we use the notation (4.17). The er-

rors are calculated in accordance with (4.18). From
(6.2) it follows that
J
tﬁl"’—TW( g__ X WCn | ), (6.10)

Tn, m==—3j

o
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where

Tan 5w = § Fio (01 @0) P, (0, o) doydo. (6.11)
The derivation of (6.10) and (6.11) is analogous to the
derivation of (4.25) from (4.2).
It follows from (6.11), (6.4), and (6.5) that

Tﬁx, oY j’f}nw, A (6.12)
Fan, son —(— M5y o (6.13)
N A VAl SR (6.14)

0<fm,m<1' |fﬁ;., ma 12<fm,’1‘.17\f77v;,',%w~

AZ 7m,m= 1,
- (6.15)
Let us note certain properties of the CPM.

From (6.7), (3.16), (3.16"), and (I1.4) it follows that

t{‘u‘”' —(— 1)M+ﬁ+u tzL__.i‘"'ﬁ. (6.16)
From (6.10), (6.13), and (I.4f) it follows that
tﬁfm (— 1)L+Z+IT{+|,¢ t{“ﬁ‘[ﬁ. (6.17)

If the Capps condition is satisfied in the x production
reaction and if XZ are chosen in the plane of this reac-
tion, then it follows from (6.10), (6.12), (6.13), (3.24),
and (I.4e) that

R

(6.18)

The properties (6.16) —(6.18) correspond to the prop-
erties (4.24), (4.26), and (4.27) of the CPM for the two-
particle decay.

c) Determination of the Spin and Parity of a Resonance
Decaying into Three Particles

From (6.10) we express fo

.+ with the aid of
(1.2) and (1.4):

m)\m

f?.x, e T

2j 28
(2L+1) (211 m sk
2 Z TZT—}—-)_ET;T%C;M Lwcs’v lu(tﬁLWM/TLM)- (6-19)
=0 I=

From (6.14) and (6.19) we obtain a relation for the de-
termination of j and 7,:

I I\4L°,

28 L~
2 (2L + 1) ( l+1)c’.~'-", CSA MO /Tm)

2j 28

— (=) 2 2 e e ner O L O
X (T o) = 0. (6.20)

The prime at the summation sign denotes that the sum-
mation must be carried out only over even L + / and
L’ +1’, or only over odd ones*.

Since the CPM tlI;lMM are determined experimentally,
(6.20) is a system of equations linear in (1/Typ)» and
the coefficients of these equations depend on j Mla

C]m I\N’I) and I. As a rule, the number of equations

exceeds the number of unknowns (this will be verified
with concrete examples). The most probable values of
j and 1y can therefore be determined by the x* method,

*The fact that (6.20) is satisfied separately for even and odd !+ L
and I’ + L’ can be verified with the aid of (6.17) and (1.4f).
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by choosing the values of j and 7y in best agreement
with the system (6.20).
It follows from (6.10) that the relations (6.20) remain

valid when tUMM gng T
LM

region of theuangles of production of x, and therefore in
the determination of j and 7, we can use the entire
statistics obtained in the experiment. By virtue of
(6.17), the independent relations are (6.20) with non-
negative M and M’, i.e.,

are averaged over any

(6.21)

In (6.20) it is possible for each L any value M = 0,
and an independent equation is obtained for each M.
If the x production reaction satisfies the Capps con-

ditions, then tlLMM and T

imaginary in agcordance with (6.18) and (3.16), and
therefore (6.20) is a system of equatinos with real co-
efficients relative to real unknowns.

The angles ¢ and ¢ in (6.2) and (6.7) can be used to
define the direction of any vector lying in the plane of
the decay (6.1). The values of the CPM obtained in each
case are kinematically independent; consequently, in
each case independent systems (6.20) are obtained (with
the exception of the case j = 1,1 =—1). Thus, by speci-
fying by means of the angles # and ¢ the directions of
the different vectors, it is possible to increase the num-
ber of independent equations (6.20), while the number of
unknown Tty ) remains the same as before.

It may turn out that for certain L all the Ty pr = 0.
Then the unknowns in (6 20) should be taken to be the

quantities TlLuM = (tLMM/ TLM . The number of un-

knowns in (6.20) increases, but if it is still smaller
than the number of equations, then j and 7Ny can be de-
termined.

The TLM are determined incidentally when j and My
are determined from (6.20). It should be verified
whether the T1, satlsfy the condition that the p matrix
of x is non-negatwe[ In addition, formula (6.19) can
be used to calculate fm)\ R and to verify whether

conditions (6.15) are satisfied.

The general theory of three-particles decays was
developed in'**** Let us apply the general formulas
to concrete decays.

ogm <m<j.

are pure real or pure

d) Decay of a Boson Into Three Spinless Particles

In the decay j — 30, the only CPM of a, are tLMM,
and these are determined from experiment by means of
formula (6.8). Taking this circumstance into account,
we write down the system (6.20) for the determination of
the spin and parity of x:

23
S 7 D) ) , D50
2 (L4-1)CE, LM( Troar ILZ @L +ycim, L —7_‘14_‘]:1— =<0,

(6.22)

The prime at the summation sign denotes that the
summation must be carried over even L and L’ or over
odd ones. In (6.22) and some of the following formulas,

Ogm' <m<j, I =mnmmaa(—1Y.

the arguments ¢, $, and & of the D functions are omitted,

but they are of course implied. According to the general
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properties (6.17) of the CPM, the following relations
should be satisfied:

Di_5 (9, 8, D) =(— (6.23)

If the Capps conditions are satisfied in the x produc-
tion reaction and if XZ is chosen to be the plane of this
reaction, then according to (6.18) the values of
<th~4(¢, 8, ®)) should be real.

By way of illustration let us consider the system
(6.22) for the decay of 2 = 30, I=+1. At =m’ =0
and I = 1, Eq. (6.22) becomes an identity. At the re-
maining fii and M’ satisfying (6.21), we obtain the follow-
ing equations from (6.22):

a) for even L:

O (Dh (9, ©, @Y.

(<DMO>—”V6<DM‘7>)/T2M‘T 12 (D IOH-]/ (Dhr3) /TAM =0,
(6.24)
10 (D310Y/Tane =3 (Do) — V70 (D)) Tane = 0, (6.25)
VIO DI Tone V3 (Dt + VT (D)) Tire = (6.26)
b) for odd L

(D}M)/T,M+]/; (Dirr ,)—|-]/3 (Dirs)) /TsM,:o. (6.27)

In order to confirm or reject the hypothesis j = 2,
I =1 it is necessary to find x2 for the system
(6.24)—(6.26), by choosing the optimal ratio Tpy/T

The number of independent equations can be increased
by using the angles ¢ and ¢ to specify the directions of
different vectors lying in the x decay plane. It is possi-
ble to obtain in the same manner several independent
equations (6.27) (with the same unknowns T ;, and T /)

and to investigate them likewise by the x% method.

In®®! is given the system (6.22) for the cases j = 1,2
and I = £1.

An equivalent method of determining j and 7, in the
j — 30 decay was developed int®?,

e) Decay of an Isobar Into a Baryon and Two Spinless
Particles

In this decay, the polarization of the produced baryon
is best characterized by the polarization vector p. We

shall accordmgly con51der the following CPM of the
baryon: pLMM, p%MM, pLMM which are determined

by means of the formula

PR S Py vy, zDMM((P' 9, ®)
o X I{g, 9, @; oy, ws)dcos & dp dD do, do,. (6.28)
The pLMM are connected with tLMM by formulas

X'Y'z2’ y1
analogous to (3.25):

tLM}T{ =
V3
with X'Y'Z’ directed as shown in Fig. 2.

}(%MZ,, the properties (6.16) and (6.17)
of the CPM have respectively the forms

LM
Pzi

(6.29)

Kar¥ = i ply,

’ 141

1/ 6

In terms of p

PRI = (— )T Lo b B radie — ()M L3 (6,30)
pXMM =(— 1)L+M4-1PL\1?'\1, pézlwﬁ:(ﬁnLJrM pz‘,,_y_ﬁ’
tldgl i — ( . 1>L+Mt{],3'f—31. (6 -31)
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These formulas were obtained with allowance for
(6.29).

If the Capps condition is satisfied in the x production
reaction and if X and Z lie in the plane of this reaction,
then we conclude from (6.18) and (6.29) that

tLMM LMM

and Py are real, while pLMM are imaginary.

X'z’

If the baryon decays with parity nonconservation in ac-
cordance with the scheme (5.29), then we obtain from
(5.31) and (6.28) a formula for the experimental deter-
LMM .

X'Y'z’

= (3/a) (vx, v, 22 D5 (0, B, D)),

mination of p

P, (6.32)
where @ is the asymmetry coefficient in the decay (5.29)
and v is the unit vector along the momentum of N in the
a; rest system. t%;MM is determined in experiment by
formula (6.8), where the notation (4.17) is employed.
Substituting in (6.20) the values of Cx/a;"l . and

taking (6.29) into account, we obtain relations for the
determination of j and n,

2i—1

Y@L )OI Ty — i (— 1)

T oves! 0 N
YL O F Tewy =0, (6.33)
L =1
it odd _
S QLANCE (PR — 1 (=)
Leven 251 . -
x 2 ern O Lt P 1T ag) == 0.

even

These equations are valid if the parities of L and L’ are
reversed simultaneously.

By way of illustration let us consider the decay
1/2 — 1/2 + 0 + 0. From (6.33) we obtain the following
relations:

IMOLIVEPMHZO M

mo IVZP”“‘O M=
PO+ 1V 8 (10 Ty =0, M
1“11]/(3([’”“/7‘131) =0, M

According to (6.6)

I == (Nx/mymen)-

A system of Eqs. (4.33) for the decay 3/2 —

12 +0
+ 0 is given in'®’

7. PRODUCTION OF A RESONANCE IN A FOUR-
PARTICLE REACTION AND THE DETERMINATION
OF ITS QUANTUM NUMBERS

a) Reaction Amplitudes and Their Properties

Let the resonance x be produced in the parity con-
serving reaction

(7.1)
The spins, parities, and momenta of the particles par-
ticipating in the reaction (7.1) will be denoted respec-
tlvely Sbl» sza scy 1 lel, T)bar nc; nx; kb]_’ kbzy kc; kx'
The spin states of the particles will be specified by
the projections m on axes lying in the plane of the reac-

by by —>c+zx.

-
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tion (7.1) in the c.m.s. (the Y axis is directed along the
normal to the reaction plane).
The reaction (7.1) is described by the amplitudes

(7.2)

F"‘blmbz mmy, (kbu kbz; ke, kx) = (kcmcv Fexmy { T I kblmbp kbzmbz>‘

By virtue of parity conservation, the transition
operator T commutes with the operator of reflection in
the plane of the reaction (7.1). From this we obtain re-
lations between the amplitudes (7.2):

mhl—%-mb2~mc—‘m

F’"bfmbz; mem, g (* 1) xF—vnbl—mbz; —m e (7~3)

= (Menemomig) (— 1) (7.4)

The proof of (7.3) is perfectly analogous to the proof
of (6.5), which is given in Appendix IV.

We have omitted in (7.3) the momenta of the particles
in the reaction amplitudes, since the momenta are the
same in the left and right sides (the momenta are not
changed by reflection in the reaction plane!)

Relations of the type (7.3), which follow from parity
conservation in the reaction (7.1), were first obtained
by A. Bohr™®™ (except that in'*"? the spin-quantization
axis was chosen to be normal to the reaction plane).

With the aid of (7.3) (or the Bohr formulas) we obtain
relations between the polarization effects in parity-
conserving reactions*%! , which can be used to deter-
mine the spin and parity of x.

Let us consider particular cases.

b) Use of a Spinless Target to Determine the Spin and
Parity of a Boson Resonance

In the reaction of the type
040->z+0 (7.5)
the transition amplitudes satisfy, in accord with (7.3)
and (7.4), the relation
= E(— 1) Fp, (1.6)
where £ is equal to the product of the parities of the
particles taking part in the reaction (7.5), multiplied by
(—~1)J; m is the projection of the spin of X on an axis
lying in the plane of the reaction (7.5).
The density matrix of x is obviously

2
Omm = FrFi/( 3 | Ff?). (7.7)
m=—j
From (7.6) and (7.7) we obtain
pmm’:g(_ 1)m Pm—m’ (7 -8)

Substituting (3.15) in (7.8) we obtain a relation that can
be used to determine j and 1, (39,401,

25
ST QL+ 1)Ch T s =E(— D™ e S [ Sy S

(7.9)

The prime at the summation sign denotes that the sum-
mation can be carried out only over even L and L’ or
else only over odd ones (this follows from (3.24))*.

*We note that relations (7.9) remain in force also if the boson reso-
nance is produced in the reaction Il + p — x + p (Il is a spinless particle
at high energies and if the main contribution to the amplitude of this
reaction is made by poles in the j plane of only the vacuum group (P,

P’ p, R, w, p—poles [*']), with & =nyny(-1).
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Equations (7.9) are obviously valid when the TL.Mm
are averaged over any region of the x-production angles
in the reaction (7.5), so that to determine j and 7, we
can use the entire statistics in the reaction (7.5).

By virtue of (3.16), the Ty ) with non-negative M are
independent. Therefore relations (7.9) are independent
when

(7.10)

If x decays in accordance with the scheme x — 20 or
x —y + 0 or else x — 1 + 0, then, substituting in (7.9)
the formulas (5.1) or (5.8) or (5.18) and (5.19), respec-
tively, for the experimental determination of T p1, we
obtain the relations between the observed quantities.
Specifying different values of j and Nx We can obtain the
most probable j and 7y from these relations by the X
method.

If x decays into three spinless particles, then the
addition of relations (7.9) to the system (6.22) increases
the number of equations without changing the number of
the unknown Ty ). Thereiore the reliability with which j
and 7, are determined increases.

If we eliminate Ty from (7.9) and (6.22), then we
obtain, generally speaking, nonlinear relations between
the observed quantities <DID'/‘IM(¢, #, ®)). However,

linear relations will also hold (at least up to j = 4) (for
linear relations at j = 1, 2 see'®’). By way of illustra-
tion, we present one of the linear relations for j = 2,
I=—-1,¢=—1*

(D30 (9, ®, ON -+ VB (Db2 (9, O, ©))+ (D3 (p, ©, DY)

+6(Dh (g, 0, @py=2 . (7.11)
If x is produced in the reaction (7.5) and decays into
two spinless particles, then, as shown by Peshkin*"’

{Pa;(cos 8)) 5= 0, (7.12)

where sz is a Legendre polynomial and 6 is the angle
between the normal to the plane of the reaction (5.5)
and the direction of the momentum of one of the decay
products of x (in the x rest system).

Using Peshkin’s idea, Ryndin has shown?’ that
(7.12) is valid also in the case when x, produced in the
reaction (7.5) decays into three spinless particles. In
this case ® is the angle between the normals to the
plane of the reaction (7.5) and to the decay plane of x (in
the rest system of x). Table IV gives the limits obtained
int* for (P,i(cos @)) atj =0, 1, 2, 3 (Ig and I, denote

g Ip
. Ig=Ip=1Uglp=1
i

[ (Poy=1
1 (Py)=12/s
2 /196 < (Pq) < 38/y0¢

oL<m <m<j.

Table IV

Ip=Ip=—1(glp) =1 Tplp=1

Forbidden
(Pgy= —1/;
—12/g3 < (Py) <
<—3¥e3
~80/28g < (Pg) <
< —1/ag¢

Forbidden
(Pg)=1/49
(Pgy=28/g3

3 9499 << (Pg) << 109/ 49 | 1/g716 <7 (Pp) < 225/1744

*In (7.11), just as in (6.22) and (7.9), the angles p, &, ® should be
chosen as shown in Fig. 2; the Y axis is directed along the normal to
the plane of the reaction (7.5).
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the products of the parities of the particles in the reac-
tion (7.5) and in the decay (6.1) respectively).

The procedure for determining j consists simply of
determining the highest {Py (cos ®)); thenj =L, /2.
Moreover, if (sz (cos 8)) lies between the upper or

between the lower limits for the cases Iz =1Ipy = 1 and
Ig = Ip = —1, then it is possible to determine also the
parity of x. It is necessary to bear in mind, however,
that the lower limit of KP,(cos ©))] is quite small and
can be the result of the background. Therefore the most
reliable method of determining j and 7y is to solve the
systems (7.9) and (6.22).

¢) Use of a Polarized Proton Target to Determine the
Spin and Parity of an Isobar

If the isobar decays into a stable baryon (nucleon)
and a spinless particle or into a stable baryon and two
spinless particles, then j and 74 cannot be determined
with the aid of relations (5.27) and (6.33), since the CPM

of a stable baryon, t{-ﬁw and pMM = cannot be deter-

X/Y/Z ”
mined from experiment.

We shall show that the spin and parity of the isobar
can be determined also without the aforementioned
CPM, provided the isobar is produced in a reaction with
a polarized proton target 4]

(7.13)

This question deserves attention, since the method of
polarizing proton targets has been extensively used
recently.

The polarization of the proton and of the isobar will
be specified in their rest systems relative to the axes
X1Y17; and XYZ respectively, with the coordinate axes
directed as follows:

Z|| ks,

0O+p—>0-tu.

(7.14)

where ky; and ko are the 1.s. momenta of the isobar and
of the incoming particle in the reaction (7.13). With
such a choice of axes, the amplitudes of the reaction
(7.13) satisfy, in accord with (7.3) and (7.4), the relation

Y[ Y|l (ko ke, Z4 )i Ko,

F‘v.ng(_”v_mF-v,—m, (7.15)

E=a/mp) I (— 1)1, (7.16)
where 1’ is the product of the parities of the spinless
particles taking part in the reaction (7.13); m(v) is the
projection of the isobar (proton) spin on the axis Z (Z,).
The isobar density matrix is expressed in terms of
the amplitudes of the reaction (7.13) in accordance with
the formula
i/2
F Pmm* = 2
v, vV=—1/2
where 0,,,, are Pauli matrices, p is the polarization
vector of the proton target, so that (1 +p-0),,/2 is its
density matrix, and .# is the square of the matrix ele-
ment summed over the spin states. Accurate to the
phase volume, # is equal to the differential cross sec-
tion of the reaction (7.13).
Assume that we investigate the production of an iso-
bar in reaction (7.13) in the same plane and at equal

Fo mFh, me g (14 DOy, (7.17)
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angles on opposite sides of the incident beam. It follows
from (7.14) that py, > 0 and py, < 0 when the isobar is

scattered to one side and to the other, respectively.
Accordingly, we shall call positive the side for which
pX,~ 0 and negative the one for which py, < 0.

We denote by #* and TiM the probability of the

transition and the PM of the isobar for scattering in the
positive or negative direction respectively (at the same
angle and in the same plane).

Substituting (3.15) in (7.17) we obtain, taking (7.15)
and (I.4f) into account

2j—1
Z (2L-Jr 1) ;,",ll"LM (f*ImTLMA 4

wer L=0

1 -
ToxT “Im Try)
2j—1 .
(=D W) Y QL) O e (F I T+ F I )
ver L'=0
== (2f + 1) Im (Fij2, mF 212, mr +Fogpp, wF i, m) (77,18)
If the target is polarized then, according to (3.24),
Im Ty = 0 for even L.
By virtue of (3.16), the Ty pr with non-negative M

are independent, and therefore (7.18) are independent if
(7.19)

From this condition we can easily calculate that the
number of independent relations (7.18) is (j%— 1/4).

The Ty, with even L can be determined experimen-
tally by means of formula (5.34) without measuring the
polarization of the baryon produced as a result of the
isobar decay. Therefore relations (7.18) can be used to
determine the spin and parity of an isobar decaying into
a stable baryon and a spinless particle.

Substituting (5.34) in (7.18) we obtain

O<<m’ <m<j.

2i—1

P74 Z
uet

(2L-+1) (€T, cwlCIHf3, 1) Im (3 Divo (s, 0, 0)

i—1

2j
}I.;_O(ZL' - 1) (C —m LM/CJi/Z o)

— Ei Dl (95, 95 U)) =E(— gy
=

< Im (3 | pxali Ditvo (g, 84, 0) + 2 pxal Dizo (95 95, 0)), (7.20)
where the index i is used to renumber the cases of iso-
bar production in the positive side, and j for the nega-
tive side.

Since relations (7.18) remain in force if their average
over any region of isobar production angles in the re-
action (7.13), the summation in (7.20) can be carried out
likewise over any region of isobar production angles.
We recall that the angles # and ¢ specify the direction
of the baryon momentum in the rest system of x relative
to the axis XYZ (see Fig. 1). The axes XYZ and X,Y,%Z,
are chosen in accordance with (7.14).

In (7.20), account was taken of the fact that pg is the
same for all cases of isobar production.

By specifying different values of j and 7, we can de-
termine, from the (j— 1/4) relatlons (7.20), the most
probable values of j and 7, by the x method.

We present an example. If j = 3/2, then two relations
(7.20) are obtained

prim] T Dio(ei, 8, 00— 3 Do (9 85, 0))
1= 1=

n+ n-

Elm{u I px, i D3o (1, By, 0) 4 2 | px. 15 Do (@), 5, 0)),
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Pz, Im { Z DS (i, i, 0)— ,2 D3y (5, 95, 0))
= —EIm{ 2 | Px: i Do (@1, 01, 0) -+ 2 | px,1; Dho (@50 05, 0)).
(7.21)
If x decays into a baryon and two spinless particles,
then according to {6.10) and (6.8) we have

Trne= A1 (Dino (9, B, OY, (7.22)

where

1/2 j i
ALg( Z 2‘ Ci:: LOfmv 7nv)

v=—1/25__

(7.23)

are determined by the dynamics of the decay.
Substituting (7.22) in (7.18), we obtain (j*— 1/4) linear
homogeneous equations with respect to (j — 1/2) unknown
Ag (L even, L = 0). These equations differ from (7.20)
in that (CJ e, 2 Lo) 'and D (<.0, 3, 0) are replaced by Ay

and DMo(w, 8, ®) (we recall that the angles ¢, 4, and &
are defined in the rest system of x, as shown in Fig. 2).
Choosing Aj, and satisfying in the best manner the ob-
tained equations, it is possible to determme the most
probable values of j and 7, by the x® method. For j = 3/2
the relations (7. 21) hold, Wlth the substitution

DM (¢, s, 0) — D W@, J &) (the A; cancel out).

We are grateful to the experimental group of the
Institute of Experimental and Theoretical Physics,
primarily V. K. Grigor’ev, I. A. Erofeev, G. K. Kliger,
V. Z. Kolganov, G. S. Lomkatsi, V. T. Smolyankin, and
G. D.. Tikhomirov for fruitful discussions of the re-
view™® %) on the basis of which the present article was
written. The authors are grateful to L. I. Lapidus for a
discussion of questions connected with a polarized pro-
ton target, and to S. M. Bilenkif and to R. M. Ryndin,
for preprints and reprints of their papers. The authors
are deeply grateful to L. D. Okun’ who read the initial
variant of the manuscript and made a large numbe of
valuable remarks, which we took into account in the
final version of the article.

APPENDICES

I. CLEBSCH-GORDAN COEFFICIENTS
The Clebsch-Gordan coefficients (CGC) CJm
jimi,jema
are produced upon quantum-mechanical addition of the
angular momenta. They differ from zero if

mytmg=m, |[i—f]l <I<i1+ 7o (1.1)

which agrees with the well known rule for the addition
of angular momenta.
The CGC satisfy the orthogonality relations

j1 jz

2 i
. Z C;Tml szacszlll igma bJJ"BMm" (1-2)
my=—j; me=—ja
j1t-da i
m
Cmﬂx szmcg'lm jomy, =i Bmam? (I°3)
i=|71—jo) m=—j ' :
and the symmetry relations
jmirmmg [ 211 W2
C;InMszms:(_“] o 2f1+1] C;;m?l] -m (1.43.)
o piipmg [ 24 U2
7(_1)1 Jztmy 2]__2+1 32 "7'"2“”“ (I.4b)
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=(— qyfitia— ]ngng iy (1.40)
=(—yi— 1[ ":_11]‘/2 ﬁm;'u; n (1.4d)
=(— 1)j2+mz [ 2/ 111 172 ;1 "1'"1]27"2 (1.49)
— i gl (1.4f)

We present some particular values of the CGC:
C;rmn oo="1 (1.5)

(it 14 (=1 (71)1‘/2[(2/—&! Qi+ V2 LG L2

jo,L0="35 @+ L1y )
g2 (51 (q.6)
cim _Ci—;;: I — (1.7
im, 10= T Yjem, 10 Vioon )
j iom L 3m2—;(+1)
cim =C4 E , (I-8
e B B TR G =1 2 ) )
— ., L
oz 2(~1)L—zi[ R u(r+5)! (1.9)
2. Lo @ +1) @~ L+1)! ( _i),[(b—nqz )
2 7]
(in (1.9), L are odd),
L4
L) ]+—)!

e (2j—Ly! 172 ( 2 1.10
G572, 1o=2(= [(zwi cEs eyl My ey Y (1.10)

(i-=)(5)

(in 1.10, L are even).
In this review we use the following relations between
the CGC:

Cj3/2

1
3872, 10 32y (=173 {0-+3/2) G—1/2)— L (L+1)

U+ A+~ 2, (1.11)
j 14 (—plt!
M 1a = [Z—V’L%(Z i 1) Cil2 o, 1.12)
gz _ LA -G+ [+ (— )Y cii2 )
3172, Lt Y Ry AVE) 15 Lo (1.13)
) L1
ci3/2 - I +D+H (=T —L(L4-1)) citi2 (1.14
YRR VR (=1 =D LI D) (L7 VR )
) L4175
cidrz, o (=" G+ 120 (L—1) (L +2) cite 1.15
YRR Y@ LD Lty R (.15
L(LA1) T
O no= [1—#_“;‘] 3 ror (1.16)
i1 _ L(LL1) 172 s
Gily, La= *[m:’ 5, Lo (1.17)
Li1)q1/2 ;
ot =g [ ] e no- (1.18)

(in (1.16)~(1.18), L are even.)

A description of the existing tables of CGC is given
in the book'™?, pp. 26—28. In the book'®’ are given
tables of the CGC for ji +je +js= 16, jjax = 6, and

also algebraic formulas for specified values of jz and m..

II. WIGNER FUNCTIONS

The D functions D] (@, 9, ®) are produced when
spherical functions (spherlcal spinors) are rotated
through the Euler angles

(m.1)

D functions with integer j are connected with the
spherical functions by means of the formula

2i+1 ,.;
Y jm (8, W):l/ ]41_ Di:o (g, 9, 0),

so that, for example,

Dl (g, B, @)="1"0g ()T,

(11.2)

P (cos 0y =i, (9. (11.3)
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The D functions satisfy the symmetry relations

Din(®, 9, @)=(—1y™ "D _ (¢, 9, ®)=D",__ (@, 9,q), (I1.4)

a @)= (=T d,_ (m—0), (I1.4")

B O=(— 1™ ()= Buns (II.4*)

and also the orthogonality relations
SD’ (g B, D) DIE, (g, 8, Dy d cos® dp dD— 2]“5“5,,,,” e, (11.5)

S Dl (e, B, 0) DI, (g, ¥, 0)dcos ¥ dp= P (11.8)

2j--1 "9 mm'.

There is a formula for the expansion of'a product of
two D functions,

i+
(@8 O)=

L=|j-3"1

L; L
c];ln-‘;"rln CJ:-‘—J ‘n’ Dm.+m n+n’ (9,0, D).

(I1.7)

(¢, O, (]))D’

ﬂm

From (I1.2), (I1.4), and (I1.7) we get

2j
Y jm (0, §) Vim (8, )= 2 VLR o ¥ en @0, (LT)
=0

(p, &, ®)=0, ecam |{m|>j, ambo |n]>j. (]:[.8)

wm

III. REDUCTION OF EXPERIMENTAL DATA BY THE
x® METHOD

In determining the spin and parity of a resonant state
by the xz method, it is necessary first to find the lower

limit of j. From the condition (4.23) we conclude that
for Fermion resonance
j > L084 pa, > (LEER 1+ 1)72, (I11.1)
and for boson resonance
S0 Pl T N (L;’.,ax+1)/2 (111.17)
odd even X
where Lmax and Lmax are the maximum values of

L for which there are nonzero CPM.

In order to find Ly, ,%, we number for each fixed
value of L the independent CPM (since the real and
imaginary parts of the CPM are independent, we assign
to them different numbers) and denote them by t,. We
find the error matrix by means of the formula

Vo = Z {ta, — (e} Uty ~(Eq s (111.2)
i=1
where ty is the value of t,, in the i-th case of the de-
cay, and n is the number of decay cases:

1 n
" Z fa;

Calculating the inverse matrix Uaoz ‘s
means of the formula

(ta) = (1.2

we find x® by

(11.3)

1<l s

~Ms

x2= (hx) Uy,

@,

Bl

where m is the rank of the error matrix, equal to the
number of independent CPM determined in the experi-
ment.

For the obtained value of xz and the number of de-
grees of freedom we determine, using the tables of the
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probability integral (see, for example,*®'), the proba-
bility that the deviation of <ta ) from Zero (at a given
L) is equal to or larger than the value found in our ex-
periment. The maximum value of L for which this
probability turns out to be small must be substituted in
(I11.1) and (TI1.1%).

It is now necessary to establish the value of j and Ny
for which the experimental data satisfy best the rela-
tions (4.29) or (6.20), the only admissible values of j
being those satisfying (II1.1) and (II1.1%).

For fixed value of j and 7y, one calculates the proba-
bility of satisfying the hypothesis (4.29) or (6.20). The
procedure for calculating this probability coincides
fully with the one just described.

More details on the x¥* method can be found in

By way of an example, Table V presents the results
obtained by the Shlein group™®’, who investigated the
decay =*(1530) — = + 7.

168,691

Table V
Number of’ Proba-
Hypothesis %2 |degrees of bility Conclusion
freedom
M =0 16.5 3 0.0003
M=o 2.0 6 0.036
(0, 0 29.2 9 0 0002
thM g 7.6 3 0.1t fmin =3
i =0 761 10 0.58
M0, ¥ 0 18.21 15 0.20
@+ 0 E -V T A | 1003 4 0.016 | Dy, unlikely
3
== — e N
2 ) @i+~ VILWTh A | 15 4 0.65 | Py, likely
; @Y VIDT AN | 95 4 0.023 | Fy,, unlikely
TEY @i 0 RV A | 09| 4 0.84 | D, likely

It is seen from this table that the parity is deter-
mined more definitely than the spin.

IV. AMPLITUDES OF TWO-PARTICLE AND THREE-
PARTICLE DECAY AND THEIR PROPERTIES

Assume that in the parity-conserving decay (6.1) the
spins of the particles a;, az, and az are respectively
S1, Sz, and Ss.

The state of the produced particles can be charac-
terized in the rest system of x by the following quanti-
ties: the angles 4 and ¢, which determine the direction
of the momentum of one of the particles (for example,
az), the angle &, which specifies the position of the
plane of the decay (6.1) (see Fig. 2}, the energies w;
and w; (w3 is determined by the energy-conservation
law), and also the helicities A1, A2 and A3, which char-
acterize the spin state of the particles a,, a,, and as.

If x is in a state with a spin projection on the Z axis
equal to m, then the wave function of the products of the

decay (6.1) is obviously
v.1)

¥ oadaiarg (0 O, @5 @y, @)= =(p, &, @; 0y, 05 Ay, Ay, Ag| T jm),

where T is the operator of the transition (6.1).

We denote by ﬁ(a, B, 7) the operator of rotation
through the Euler angles a, 8, and y and carry out cer-
tain transformations in the right-hand side of (IV.1):

(@, B, D; @y, 03 Ay Ay, A P ljmy=(im | T ¢, &, D; 01, 03 Ay Aa, Ag)*
= ((jm | T*R (g, 8, D) [0, 0, 05 oy, 05 by, Ag, A))*

= (m | R(g, 9, ®)T+]0, 0, 0; 05, 033 Ay, Ay Ag)* (IV.2)

It can be readily seen from Fig. 2 that
0, 0, 0; w;, wa; A1, Az, As) is such a state of the parti-
cles a,, a», and a3, wherein the momentum k; is direc-
ted along the Z axis, and the plane of the decay (6.1)
coincides with XZ. It is obvious that

R(g, 0, @10, 0, 0; 0y, 05 Ay, Ap, Ag)==| @, &, ©; 0y, @23 Ay, R, Ag)

Since |jm)(—j = m = j) is the total set of the states
of the particle x, it follows that (IV.2) can be further
transformed:

(m| R (p, 8, ®) T+[0, 0, 0; 0y, @y &y, Ay, Aady*=
i R
= Y @im|B(g, 0, ©)|jmyys (Gm| 7410, 0, 0 @y, wa; Ay, A, Agh)*
m=—j
j o . -
= 20,0, 0; @, g3 Ay, Ay, Ag{ T | jm) (G| R (s, 9, @) ] jm))*.
(Iv.3)

As is well known, the transformation matrix of the
states |jm) upon rotation is made up of D functions, so
that

m=—i

(m| R (9, 9, )| jm)=DI - (9, 9, ©). (Iv.4)

From (IV.1)—(IV.4) it follows that

_ J p
Vimrstang @ 0 @5 04, 09) = (ViF172/20) 3 Fingaang @0 @D D7~ (g, %, @),
= (1v.5)

where

© - 21
MmAihohg > Oz) = ]/j+1/2

From parity conservation in the decay (6.1) we obtain
relations between the decay amplitudes

f ©, 0, 0; o, @5 Ag, Ag, Ag| T | jm0). (IV-G)

(@1, wg)s= I (—yhthethammp 25 a0 g (0, @),

fmlms
I = mumanz) (— 1) 175275, Iv.7)
To prove (IV.7), let us consider the operator
Y=—BR(0, n, 0), (1v.8)

where P is the inversion operator.

f{(O, 7, 0) is obviously the operator of rotation
through an angle 7 about the Y axis. It is therefore
clear from (IV.8) that Y is the operator of reflection in
the XZ plane. N R

In the parity-conserving decay, T and Y commute,
so that

Teyiyv-L (1v.9)

We substitute (IV.9) in (IV.6) and recognize that ?,
acting on the states [jm), [0, 0, 0; w1, Wz} A1, Az, As/,
does not change the momenta of the particles and that
the spin states of the particles in accordance with (IV.4)
are altered in the following manner:

8
Vs, M=PRO, m, 0O)]s, M=n 3| Di, 2(0, xm, 0)]s, A9
Aia—s

= N (W il M=t s, - (TV.10)

After the indicated substitution we obtained (IV.7),
gq.e.d.
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We note that in the decay (6.1) the angles ¢, ¢, and &
can be defined in a manner different from than that in
the present review. The wave function of the products
of the decay will have, as before, the form (IV.5). The
new decay amplitudes will be linear combinations of the
old ones. The relations that follow from the parity con-
servation will, of course, differ from (IV.7) (for more
details see %),

In the two-particle decay (4.1), the state of the parti-
cles a; and a, (the spins of which are equal to s, and sz)
can be characterized by the angles 4 and ¢, which
specify the direction of the momentum of one of the
particles (in the rest system of x), and the helicities
Az and Az.

If x is in a state with a spin projection on the Z axis
equal to m, then the wave function of the decay products
(4.1) is equal to

(Iv.11)

Fouagng (8 9= 127+ D 20,007 5 o, (0, 8, 0),
where
A, =GR/ T+ D120, 05 Ay, A | T4, Ay— Ay (Iv.12)

(Iv.11) and (IV.12) can be obtained in exactly the same
manner as (IV.5) and (IV.6), if it is recognized that

(Iv.13)

and that the decay of x along the Z axis is possible only
ifm=x;—2z.

If parity is conserved in the decay (4.1), then the
amplitudes of the decay A)\M2 satisfy the relations

(1Iv.14)

(IV.14) can be proved in exactly the same manner as
av.n.

(@, 9 &g, Ad=R (9, 9, 0)[0, 0; Ay, Ay,

Apya,=04_ s pp 0= MNa/1x) (— 1)j~81_52-

SYMBOLS AND DEFINITIONS USED IN THE REVIEW

1. Symbols

x—resonance whose quantum numbers are
to be determined,;
Jj» Nx—spin and parity of the resonance x;
ap—(k =1, 2 ork = 1, 2, 3)—products of the
decay of the resonance x;
s—spin of particle a;;
Pmm-’—spin density matrix of x;
Py /—spin density matrix of a;;

Ty,M—Dolarization moments (PM) of x;
t;, —polarization moments (PM) of a,;

DhM,(a, 8, v)—Wigner functions;

A, —helicity amplitudes of two-particle
decay of x (4.1) if particle a. is spin-
less; )

o =(1y/Mmn2(~1)'" 5, where n, and 7. are
the parities of the particles in the de-
cay {(4.1);

tLM_cagcade polarization moments (CPM)
W of the particle a; in the decay (4.1);

n
(ty? =;11— 2 ty. with summation carried out
i=1 1

over all cases of the investigated de-~
cay, tai—value of t, in the i-th case,

n—total number of decay cases;

N—baryon;
II —pseudoscalar meson;
a—asymmetry coefficient in the decay
(5.29);
P—polarization vector of a particle with
spin 1/2;
v—unit vector in the direction of the mo-
mentum of N in the decay (5.29);
f5: (w1, wz)—amplitude of three-particle decay (6.1);
1 =(ny/n1m2ns) (1I7S; 94, 02, ns —parity
~ of particles in the decay (6.1);
tLMM_cascade polarization moments of the
particle a; in the decay (6.1).

2. Definitions

Plane of production of x—plane containing the mo-
menta of the incoming particle and of the resonance x
in the 1.s. of the reaction (2.1).

Z system (Y system)—coordinate system in which
the Z(Y) axis is chosen to be a normal to the plane of
production of x.

Treiman-Yang system—Y system in which the Z axis
is directed along the momentum of the incoming parti-
cle in reaction (2.1) in the rest system of x.

Capps condition—a situation wherein the particles
b, and b; in reaction (2.1) are not polarized, the mo-
menta and the spin states of the particles c,, ¢z, ..., ¢,
are not measured, and is conserved.

Plane of decay of x—plane in the rest system of x,
containing the momenta of the products of its decay in
the case of three-particle decay (6.1) of x.
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