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I. INTRODUCTION

INTEREST in the problem of ionospheric aerodynam-
ics, the theory of flow of a rarefied ionospheric
plasma around moving bodies, has started to attract
attention the instant the first artificial earth satellite
was launched. The main results of the research in this
field through 1964 were reported in the review'11 and
in the monograph'21. Since that time, essentially new
results were obtained, and the present review is de-
voted to their description. Mention should be made
here, first, of the response of the flow to the electric
field due to the perturbation of the plasma by the body.
We pay principal attention to this problem in this r e -
view.

For lack of space, we cannot discuss all the topics
in which progress was made in recent years. For the
reader's convenience, however, the bibliography con-
tains also references to articles devoted to problems
connected with flow around bodies, but not discussed
in the review itself.

We start with the conditions that actually exist in
the ionosphere in the region where the charged-parti-
cles concentration has a maximum. In this region the
ion temperature is Ti ~ 1000°K and the electron tem-
perature'31 is Te ~ (1-2 .5)x 103°K. At a body
velocity v0 = 8 x 105 cm/sec, the Mach number turns
out to be of the order of b = (Mv2/2T)1/2 ~ 8-6 , and
it can be assumed that
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of the fact that the characteristic dimension of the in-
homogeneity, which arises when the body moves, is Ro,
and the characteristic potentials are ~Tg /e . The left
side of (5) is then of the order of Te/eRo, and the
right side is of the order of 4?7e(Ne - Ni). Their ratio
is

(6)

This means that when condition (3) is satisfied it is
possible to neglect the left side of (5) completely, and
we can write in lieu of (5) the quasineutrality condition
Ne = Ni, or

This, however, calls for certain remarks. The point
is that the quasi-neutrality is certainly violated in the
immediate vicinity of the surface of the body. Near the
surface there is a screening layer of thickness of the
order of the Debye radius, in which the potential dis-
tribution depends on the boundary conditions on the
body and on the potential of the body. By virtue of the
condition (3), the thickness of this layer is in general
small. It is important, however, that the plasma is
strongly rarefied in the region behind the body, so that
the Debye radius can be much larger than in the sur-
rounding space. Here, in the "region of maximum
rarefaction"'-1'2-', the deviations from quasineutrality
are appreciable. Let us estimate the dimension I of
this region behind a disc of radius Ro placed in a
plasma stream. The minimum density on the z axis
behind the disc is of the order of (at T e = Ti)

(see formula (73a) of Ch. IX). Therefore the dimension
I is determined by the relation

l~bi/itb. " Y'2 expl~2~y!")' D~\iiut«J '
V 2 "1/2 /

It follows therefore that under the conditions of the
ionosphere I ~ 0.5R0. We see that the maximum value
of / is much larger than D, but still smaller than Ro.
This means that in the greater part of the perturbed
region the deviations from quasineutrality are small,
although the dimensions of the maximum rarefaction
region turn out to be quite appreciable.*

The transition from (5) and (7) leads to more than
just an appreciable simplification of the calculations.
Such a transition eliminates the electric charge e from
the equations. Indeed, if we introduce in place of <p the
dimensionless potential

ip = -5?- • \" I
1 e

then the equation will no longer contain e. This
changes greatly the dimensional character of the equa-
tions, since the natural parameter with the dimension
of length, the Debye radius, disappears together with

•The case when the dimension of the region of maximum rarefaction
is comparable with Ro was considered in [2] (p. 127). It should be noted
at the same time that Nmm was calculated there without allowance for
the influence of the electric field on motion of the ions, and this led to
larger values of the rarefaction and greatly increased the dimensions of
the region of maximum rarefaction.

e.* All that remains in the problem are parameters
characterizing the dimensions of the body. This causes,
in particular, the picture of flow at a given velocity
around bodies of similar shape to be similar. In addi-
tion, the relative concentration N/No (where No is the
concentration of the unperturbed plasma) turns out to
be independent of No.

We note also that the dimensional structure of Eqs.
(4) and (7) turns out to be the same as in the equations
of hydrodynamics of an ideal compressible liquid. This
indicates that the fundamental phenomena may be
similar in character to hydrodynamics.

We shall now use the condition (2)—the slowness of
the body motion compared with the electron velocity.
Under real conditions, the surface of the body usually
has a negative potential <p0. If

exp (JSS.)\ Te }

then the electron current on the body is small and dis-
turbs little the equilibrium of the electron gas. The
electrons are then in equilibrium in all the regions of
the plasma where the potential is negative and there
are no potential wells. (Some of the electrons cannot
enter a region where there are potential wells without
collisions.) Actually this pertains to the entire per-
turbed region behind the body, where the electron
density is thus given by the Boltzmann formula

(9)

Substituting (9) in (7), we obtain a direct equation for
cp in terms of f:

(10)

Let us simplify, finally, Eq. (4) by using the "hyper-
sonic" character of the motion of the body, as ex-
pressed by the inequality (1). If we choose the z axis
along the direction of the incoming stream, then (4)
takes the form

VzW^~yi~dFi ~M~~dz~~dVz ~M dr, Sv, '

where rx and Vj are the projections of the vectors r
and v on the plane perpendicular to the z axis. If con-
dition (1) is satisfied, the perturbed region turns out to
be elongated along the z axis. If its transverse dimen-
sion is ~R0, then its longitudinal dimension is of the
order of bR0. Therefore | a^p/ari | 3> d<p/dz and the
term with d<p/dz can be neglected. In addition, in the
reference frame considered with the body we have vz
« v0, i.e., the thermal scatter of the ions in the z
direction can be neglected. We finally obtain

-Q (ID

This equation does not contain vz at all. We can there-
fore introduce J fdvz in place of f as the unknown func-
tion.

We change over directly to dimensionless variables.

* The fact that e drops out of the equations does not mean, of
course, that the electric fields produced during the motion are negligible.
To the contrary, the transition from (5) to (7) corresponds formally to
the limit as e -> <*>.
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We put*

Substituting (12) in (11) and (7) we obtain a system of
equations in which all the possible simplifications have
been made.

dt ~ Up 2 dp du
p f* (13)

Let us proceed to formulate the boundary conditions
for the system (13). We assume that the surface of the
body is such that all the ions falling on it recombine,
i.e., they fly off in the form of neutral atoms. This
corresponds, with sufficient accuracy, to the ordinary
conditions on a metallic surface[5]. The condition for
the absence of reflected ions,

if nv > o/ - (14)

(n—normal to the surface of the body) should then be
satisfied on the surface of the body. We note first that
the absence of reflected particles and the neglect of
the velocity spread in the direction of z in (13) result
in no perturbation at all in front of the body. If we
place the origin at the most forward point of the body,
this means

-exp( — p«2) if
(15)

The boundary condition (14) is then rewritten in the
dimensionless variables (12) in the form of a condition
on the contour of the cross section of the body

g — 0 if 11(11 > — nzb,

where nx is the normal to the contour of the section of
the body in the plane t = const. Recognizing that nzb
= cot a, where a is the angle between the normal n
to the surface and the t axis (in the coordinates p and
t), we obtain ultimately

(16)if n,u> —clga.
The cross section, of course, changes with t. For ex-
ample, the contours of the cross section of a spherical
body are circles of radius r( t) = {l - b2[t - (l/b)]2}1 /2 .
In addition, at large distances from the body, the per-
turbations should decrease:

£-^exp( — $u?) as | p., t —>oo. (17)

An important simplification of the boundary condi-
tions for not too strongly elongated bodies (i.e., bodies
whose longitudinal dimension is of the order of the
transverse one) is connected with the fact that in terms
of the coordinates p and t the body becomes flattened
by a factor b = (Mvf/2Te)1/2. The ratio of the longi-
tudinal dimension to the transverse one, in terms of

*We introduce in the definition of the dimensionless ion velocity u
the electron temperature Te, bearing in mind that under our conditions
Te > Tj. In general it is necessary to introduce into this definition the
larger of the two quantities, Te or Tj, since it is precisely the higher tem-
perature which determines the characteristic features of the motion.

the variables p and t, is of the order of 1/b. There-
fore when b ^> 1 the body itself can be replaced by a
plate coinciding with the maximal cross section of the
body. Aligning, in addition, the origin t = 0 with the
plane of the maximum cross section S, we rewrite the
boundary conditions (15) and (16) as t — -K) in the
form

0, if i?op lies inside 5;
exp( — p«2), if ffop lies outside (18)

The physical meaning of (13) with boundary condi-
tion (18) is clear: they determine how the ions fill, in
a time t, an empty region equal to the maximum cross
section of the value S in the plane p . This should be
the situation in the case of large Mach numbers
b » 1 : the rapidly moving body absorbed all the ions
in a cylindrical region with a transverse dimension
equal to the maximum cross section of the body, after
which this region becomes filled with plasma*.

It should be borne in mind that the discontinuous
character of the boundary conditions (18) leads to a
singularity in the last terms of the Eq. (13) at t = 0 at
the points p0 lying on the contour of the maximum
cross section of the body. Let us therefore pay special
attention to the vicinity of the singnlarity points. We
put £ = ni(p0 - p) (where n0 is the normal to the cross
section S at the point of the contour p0), and we con-
sider small values of i; and t:

\l\«U * « i . (19)
When the condition (19) is satisfied we can neglect the
curvature of the contour near the point p0 . In addition,
the ions flowing around the other edge of the body do
not have time to fall on the observation point. The
problem then has no characteristic spatial dimension.
In this case the solution of (13) can depend only on the
ratio £/t, i.e., the motion is self-similar. Putting

>=—U \ g (x, ui, u*) dun,

x - 4 . (20)

we obtain from (13) the following equation for the func-
tion ga

[4]:

( « S - T ) ^ - - } | | ^ - ( l l l I gadu^^O. (21)

The boundary condition (18) for the function ga is re -
written in the form

• exp(-pV) $ = TJT,),
(22)

Equation (21) with boundary condition (22) no longer
contains any singularities. The solution of (21), which
will be obtained in the next section, describes the dis-
tribution of the ions near the edge of the body. It con-
stitutes thus the "rule for circling around" the singu-
larities arising in Eq. (13), and plays a special role in

*We note that the solution obtained with the boundary conditions
(18) is valid only at a sufficiently large distance from the surface of the
body, or more accurately when t > b"2'3. The exact distribution near
the surface of the body can be obtained only by using the boundary
conditions (16).
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the analysis of the character of the perturbation of the
plasma in the region close to the body (t <SC 1). The
boundary condition (18) as t — +0 is rewritten in the
form

g (p, u) = exp (— pu?,) ga (T, — u5), (23)

where T = ni(p0 - p)/t, po is the point of the contour
of maximum cross section, ni is the normal to the
contour at the point p0, u^ is the velocity in the normal
direction, and UJJ is the velocity in the tangential
direction. The function ga(T, u^) is defined by Eqs.
(21) and (22).

The solution of (13) with boundary condition (16) is
a universal function of p, u, t, and |3. Consequently,
after going over to dimensional quantities, formula (12)
expresses the similarity law in the motion: the pic-
tures of the flow around bodies whose contours are the
same in terms of the variables £, and t are similar.
The ratio of the true lengths of the bodies, for example,
is equal to the ratio of their velocities.

For not too elongated rapidly moving bodies, the
boundary conditions (18) hold true. In this case the
pictures of flow around bodies having similar maximal
cross sections are similar. For example, if the maxi-
mum section of the body is a circle of radius Ro, then,
taking into account the cylindrical symmetry of the
problem, we obtain from (12) the following expression
for the ion distribution function:

This formula expresses the similarity rule in this case;
the particle density in the perturbed zone can then be
represented in the form

(tan 6 = r i / z ) . In particular, at large distances behind
the body (z » R0(Mv2/2Te)1/2), the function fi, as
shown in[2] (Sec. 15), takes the form

, , nflg Mo}

The function f2 for T e / T i = 1 was determined in[6>7].
We note that the established similarity laws are

similar to those existing in hypersonic aerodynam-
ics t 8 ] . This is not surprising, if we recall the already
mentioned dimensional similarity between the corre-
sponding equations.

in. FLOW AROUND A HALF-PLANE

Let us consider the flow around an infinite half-
plane. Let the y axis be parallel to the edge of the
half-plane, and the p axis orthogonal to it. Obviously,
the distribution function g(t, p, u) does not depend on

g(t, p, u) = (24)

Recognizing, in addition, that the problem contains no
characteristic spatial dimension, we conclude that the
function gi can depend only on the ratio p/ t , i.e., the
motion is self-similar in this case. The function gi
consequently coincides identically with the function
ga(T» u0 considered in the preceding section (T = p/ t ,

u£ = u). It is described by the self-similar equation
(21) with boundary conditions (22).

Before we proceed to investigate (21) in general
form1-9-', let us consider first two limiting cases corre-
sponding to different values of the temperature ratio

1. Assume first that

P <C 1. (25)

In this case, as seen from (10), the potential q> is small
and we can neglect the term containing <p in the kinetic
equation. Introducing the dimensionless quantities

(the notation in (12) and (20) is not convenient when
T e — 0; see the footnote preceding Eq. (12)), we obtain
the equations and the boundary conditions in the form

g—>exp( — M2) > —oo; -0, (26)

This means that 9g/8r differs from zero only when
u = T. Therefore

-j*- = A («) 0 (U — T). \i I )

Let us integrate this equation with respect to dr from
-oo to +°°, and let us use (26). As a result we get

4(M) = £|T-+<»—£'*-,-« — —exp( —u2).

If we now integrate (27) with respect to T from —<*> to
T and use the obtained values A(u), then we get*

exp (— u*) if T < u,
0 if T > « . (28)

Accordingly, the particle density is given by the
form

(29)

where *(x) is the probability integral. We present
also an asymptotic formula for Nn(r) as T — ~ (i.e.,
near the plane itself)

exp(-T2)
2 T/jtr 1. (30)

2. We now consider another limiting case

T, €Te, p » 1.

In this case the thermal velocity of the ions is smaller
than the ordered velocity acquired by them in the elec-
tric field. Therefore there is no need to use the kinetic
equation. It suffices to write down the equations
directly for this translational velocity v. Such an equa-
tion has the same form as the hydrodynamics equation,
in which the pressure gradient is replaced by the force
exerted by the electric field. In the stationary caset

*In this case the motion of the ions is identical to the motion of the
neutral particles, since the action of the electric field on the ions is neg-
ligibly small when the condition (25) is satisfied. Therefore formula
(28) can be readily obtained by starting directly from the geometrical
picture of free particle motion.

tWe note that the system (31) coincides with the system of equations
for the isothermal motion of an ideal gas with temperature Te.
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we have
e d(f Te VN

"Af" A" ' ( 3 1 )

d i v ( v i V ) - O .

M a k i n g t h e s a m e s i m p l i f i c a t i o n s a s i n t h e d e r i v a t i o n of

( 1 3 ) , w e o b t a i n

du , - du 1 dN_ _ „

<•=vP y •

F i n a l l y , c h a n g i n g o v e r t o t h e v a r i a b l e x , w e g e t

1 dN
' 2AT dx

du

(32)

(33)

T h e s y s t e m ( 3 3 ) h a s t w o s o l u t i o n s : o n e i s t r i v i a l ,

N = c o n s t a n d u = c o n s t ; t h e o t h e r i s

(34)

w h e r e C i s a n a r b i t r a r y c o n s t a n t ( s e e [ n ] , p . 4 4 3 ) .

T h e c o n t i n u o u s s o l u t i o n s a t i s f y i n g t h e b o u n d a r y

c o n d i t i o n ( 2 2 ) ( N = N o , u = 0 w h e n x — <*>) i s of t h e

f o r m

i f
1

1 / 2 '

if - ^ j . (35)

T h e e l e c t r i c f i e l d p r o d u c e d a s a r e s u l t of t h e f l o w i s

g i v e n b y

2 '
F=~ din N

0,

_ - * - . (36)

T h e l i n e x = - 1/V~2~ i s a w e a k - d i s c o n t i n u i t y l i n e

s e p a r a t i n g t h e r e g i o n s of t h e r e s t i n g a n d m o v i n g g a s .

T h e f i r s t d e r i v a t i v e s of u a n d N a r e d i s c o n t i n u o u s o n

t h i s l i n e . T h e d i s c o n t i n u i t y of t h e e l e c t r i c f i e l d i n t e n -

s i t y s i g n i f i e s t h a t a s c r e e n i n g e l e c t r i c l a y e r e x i s t s o n

t h i s l i n e . A c t u a l l y , of c o u r s e , t h i s l a y e r h a s a f i n i t e

t h i c k n e s s ~ D . t l 2 ]

W e n o t e t h a t a s y m p t o t i c a l l y , a t l a r g e v a l u e s of x ,

E q . ( 3 5 ) l e a d s t o m u c h l a r g e r v a l u e s of N t h a n E q . ( 3 0 )

( N ~ e x p - X-/2") i n p l a c e of N n ~ e x p ( - x 2 ) ) . T h i s , a s

w i l l b e s h o w n l a t e r , i s t h e g e n e r a l r e s u l t w h e n |3 i s

f i n i t e , a n d i s c o n n e c t e d w i t h t h e s t r o n g i n f l u e n c e of t h e

e l e c t r i c f i e l d o n t h e i o n m o t i o n , s i n c e s o m e of t h e i o n s

a r e a c c e l e r a t e d b y t h e e l e c t r i c f i e l d . ( T h e s a m e i s

s e e n b e l o w i n F i g . 2 b , w h e r e t h e p l o t f o r N n i s s h o w n

b y t h e d a s h e d l i n e . )

W e p r o c e e d t o a n i n v e s t i g a t i o n of E q . ( 2 1 ) i n t h e

c a s e of a r b i t r a r y v a l u e s /3 — 1 . E q u a t i o n ( 2 1 ) i s of

f i r s t o r d e r . A s i s w e l l k n o w n , t h e d e t e r m i n a t i o n of t h e

f u n c t i o n g a ( u , x) r e d u c e s i n t h i s c a s e t o a d e t e r m i n a -

t i o n of t h e c h a r a c t e r i s t i c s of t h e e q u a t i o n , i . e . , of t h e

c u r v e s o n w h i c h t h e f u n c t i o n g a h a s a c o n s t a n t v a l u e .

T h e e q u a t i o n of t h e c h a r a c t e r i s t i c s t a k e s t h e f o r m

1 F(x) (37)

w h e r e

) = - P ^ ( l n I g du).

W h e n x — - - w e h a v e F — 0 a n d t h e c h a r a c t e r i s t i c s

a r e t h e s t r a i g h t l i n e s u = c o n s t . A t e a c h l i n e t h e d i s -

t r i b u t i o n f u n c t i o n h a s t h e v a l u e e x p ( - 0 u 2 ) . T o d e t e r -

m i n e t h e v a l u e of g a t t h e p o i n t ( u , x ) , i t i s n e c e s s a r y

t o f i n d t h e c h a r a c t e r i s t i c t h a t p a s s e s t h r o u g h t h i s

p o i n t . T h e v a l u e of g a t t h e p o i n t ( u , x ) i s t h e n e q u a l

t o e x p ( - / 3 u 2 ) , w h e r e u 0 i s t h e o r d i n a t e of t h e l i n e

u = u 0 r e a c h e d b y t h e c h a r a c t e r i s t i c a t T — — <*>. L e t

u s i n v e s t i g a t e q u a l i t a t i v e l y t h e c o u r s e of t h e c h a r a c -

t e r i s t i c s i n t h e ( u , T ) p l a n e . F i r s t of a l l , i t i s o b v i o u s

t h a t F > 0 , s i n c e t h e c o n c e n t r a t i o n of t h e p l a s m a d e -

c r e a s e s w i t h i n c r e a s i n g x . T h i s m e a n s t h a t t h e v a l u e

of d u / d x a l o n g a l l t h e c h a r a c t e r i s t i c s i s l a r g e r t h a n

z e r o w h e n u > T , i . e . , t h e v e l o c i t y u a l o n g t h e c h a r a c -

t e r i s t i c i n c r e a s e s m o n o t o n i c a l l y w i t h i n c r e a s i n g x .

I t i s v e r y i m p o r t a n t t h a t n o n e of t h e c h a r a c t e r i s t i c s

c a n c r o s s t h e s t r a i g h t l i n e u = T . I n d e e d , n e a r t h e

p o i n t x = T o , i n w h i c h u = T , t h e s o l u t i o n of E q . ( 3 7 )

i s of t h e f o r m

B o t h b r a n c h e s of t h i s c u r v e a r e d i r e c t e d t o w a r d s

l a r g e r x . T h e r e f o r e , t a k i n g i n t o a c c o u n t t h e f a c t t h a t

U ( T ) i s m o n o t o n i c a l o n g t h e c h a r a c t e r i s t i c s w h e n

u > T , w e c o n c l u d e t h a t t h e c h a r a c t e r i s t i c c r o s s i n g t h e

l i n e u = T c a n n o t b e l o n g t o t h e f a m i l y of c h a r a c t e r i s -

t i c s e m e r g i n g f r o m t h e r e g i o n T — - » , w h e r e w e

c e r t a i n l y h a v e u > T .

T h e f o r e g o i n g i n v e s t i g a t i o n s h o w s t h a t i n o u r p r o b -

l e m t h e d i s t r i b u t i o n f u n c t i o n g a i s e q u a l t o z e r o w h e n

u < T . Indeed, a t l a r g e n e g a t i v e T , t h e f u n c t i o n g a i s

M a x w e l l i a n a n d t h e r e a r e n o p a r t i c l e s w i t h u < x , o w -

i n g t o t h e e x p o n e n t i a l d e c r e a s e of t h i s f u n c t i o n w h e n

u — ± » . T h e s e c h a r a c t e r i s t i c s w i l l h e n c e f o r t h n o t

c r o s s t h e l i n e u = x , s o t h a t n o p a r t i c l e s w i t h u < T

w i l l a p p e a r . T h i s f a c t h a s a s i m p l e p h y s i c a l m e a n i n g .

Indeed, a t t h e i n i t i a l i n s t a n t t = 0 , a l l t h e p a r t i c l e s l i e

o u t s i d e t h e h a l f - p l a n e ( i . e . , a t p < 0 ) . T h e r e f o r e a t t h e

p o i n t p / t = x t h e r e c a n a p p e a r p a r t i c l e s h a v i n g a

v e l o c i t y u > p / t . T h i s i s a l l t h e m o r e c o r r e c t if a c -

c o u n t i s t a k e n a l s o of t h e i n f l u e n c e of t h e e l e c t r i c f i e l d ,

s i n c e i t o n l y i n c r e a s e s t h e i o n v e l o c i t y u .

W e n o t e f u r t h e r t h a t t h e m a x i m u m v a l u e of t h e d i s -

t r i b u t i o n f u n c t i o n a t a n y v a l u e of x i s e q u a l t o u n i t y .

T h i s f o l l o w s f r o m t h e f a c t t h a t a t a n y v a l u e of T t h e r e

i s o n t h e p l a n e ( u , x ) a c h a r a c t e r i s t i c o n w h i c h g a = 1 .

Indeed, t h e a b s e n c e of t h i s c h a r a c t e r i s t i c a t s o m e

v a l u e of x w o u l d m e a n t h a t t h i s c h a r a c t e r i s t i c , a t

s o m e f i n i t e x , h a s t u r n e d b a c k w a r d s , w h i c h i s i m p o s -

s i b l e i n v i e w of t h e m o n o t o n i c c h a r a c t e r of u ( x ) . T h i s

p r o p e r t y l e a d s t o a n i m p o r t a n t c o n c l u s i o n c o n c e r n i n g

t h e a s y m p t o t i c b e h a v i o r of g a ( u , x ) a s x — + » . I n d e e d ,

t h e c o n c e n t r a t i o n h a s a n o r d e r of m a g n i t u d e

Au, (38)

w h e r e A u i s t h e w i d t h of t h e c u r v e of t h e d i s t r i b u t i o n

f u n c t i o n . B u t a s x — - « w e h a v e n ( x ) — 0 , a n d c o n s e -

q u e n t l y a l s o A u — 0 . I n o t h e r w o r d s , w i t h i n c r e a s i n g

x t h e i o n s b e c o m e m o r e a n d m o r e m o n o c h r o m a t i c , a n d

t h e i r t e m p e r a t u r e d e c r e a s e s . T h i s m a k e s i t p o s s i b l e

t o u s e d i r e c t l y t h e h y d r o d y n a m i c f o r m u l a s ( 3 4 ) a n d ( 3 5 )

f o r t h e d e t e r m i n a t i o n of t h e a s y m p t o t i c b e h a v i o r of g a

a n d n ; a c c o r d i n g t o t h e s e f o r m u l a s , t h e a v e r a g e i o n
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velocity should be

V2
This means that when r — + °° all the characteristics
should condense near the straight line

Figure 1 illustrates the behavior of the characteristics
when /3 = T e / T i = 1. The asymptotic behavior of the
concentration is determined by the formula (34):

n = Cexp(— (39)

where the constant C should be determined by joining
together with the numerical solution. We indicate im-
mediately that when T e = Ti(/3 = 1) we get C » 0.71,
and when Te 3> Tj, according to (35), we have
C = e"1« 0.373. (The plot of n(r) for j3 = °° is shown
dashed in Fig. 2a). To determine n(r) for all values
of r , the characteristics were determined numer-
ically[9]. The solution was obtained in steps of r . The
values of n(r) and F ( T ) were calculated for each step.
The obtained value of F was used to calculate the in-
crement Au for the next step:

The obtained values of n(r) at different /3 are shown
in Fig. 2. Figure 3 shows plots of the distribution func-
tion ga(u) at different values of T (for the case (3 = 1).
It is seen from the figure that in the region of strong
rarefaction (p/t = T ̂ > 1) the ion velocity distribution
acquires a needle like character. The effective ion-
velocity spread Au or the effective ion temperature
Tieffj as seen from (38) and (39), decrease rapidly and
exponentially with increasing T:

(A«)»~exp(-2K2T). (40)

This has a strong influence on the stability of the per-
turbed zone behind the moving body (see Ch. XI). Plots
of the dimensionless force F and of the potential ip
are shown in Fig. 4. Figure 5a shows, in the variables
p and t, the constant-density surfaces obtained for
flow around a half-plane.

The calculations have to be refined in the case of
large values of T. The point is that so far we have
assumed vz = v0 throughout (including in the transition
from (31) to (32)) and we have neglected the derivatives
with respect to z. It is easy to understand that this ap-
proximation is no longer valid when x ~ z, i.e., when

T>6. (41)

Indeed, at such values of r the potential energy of

FIG. 1. Flow around a half-plane:
behavior of the characteristics in the
(u, T) plane for 0 = Te/Tj = 1.

the ions eq> becomes of the order of Mvo/2, so that
the value of vz is appreciably altered by the field. On
the other hand, the derivatives with respect to z in-
crease with increasing T and also become appreciable
in the region (41). It is important, however, that under
the condition (41) we certainly have T » 1. The ions
are therefore monochromatic. This makes it possible
to use the equations of hydrodynamics (31), which can
be rewritten for the dimensionless quantities u and ip
in the form

" I k • J
These equations can be easily solved in polar coordi-
nates (see[11^, Sec. 101). We introduce the azimuthal
angle <p, reckoned from the z axis, by means of the
relation

All the quantities will be, as before, functions only of

-2 -1 0 I 3 3 It r

10''

2 3
t

b)-i a i
a)

FIG. 2. Flow around a half-plane: a) plot of concentration n = N/No
against T; b) the same in a logarithmic scale (0 = 1).

-3,0 -10 -1.0
FIG. 3. Flow around a half-plane: distribution function ga(u) for

different values of T.

FIG. 4. Flow around a half-plane:
dependence of the dimensionless po-
tential ^ = -e(p/Te and of the electric
field intensity F on T.

-3 -Z -! 2 3 it 5
t
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FIG. 5. Surfaces of constant ion density. The values of n = N / N o

are indicated in the figures, a) Flow around a half plane ifi = T e / T ; = 1);
b) flow around a rounded edge of a body (J3 = 1, b = y ' M v § / 2 T e = 8).

T , o r , w h a t i s t h e s a m e , of <p.

F r o m t h e f i r s t e q u a t i o n w e g e t a r e l a t i o n i n d i c a t i n g

t h e p o t e n t i a l c h a r a c t e r of t h e v e l o c i t y u :

dur

dtp ^'

a n d t h e B e r n o u l l i e q u a t i o n

tudinal velocity. Therefore , ultimately all the ions fall
on the back surface of the half-plane. Fur ther , the ion
concentration on this surface remains constant and
equals

Of course , the quasil inear approximation (7) no longer
holds at a sufficiently close distance from the edge of
the half plane, at large values of b.

IV. FLOW OF A PLASMA CONTAINING AN ION
MIXTURE AROUND A HALF PLANE

In an appreciable region of the ionospheric plasma,
at altitudes from 400 to 1500 km, there a r e ions with
different masses (mainly oxygen and hydrogen, and to
a l esser extent helium [ 3 ]) . Prac t ica l in teres t therefore
attaches to the flow of a plasma containing an ion mix-
ture around a body. The se l f -s imi lar equation for the
problem of flow around a half plane can be readily
written out also for this case . Of course , Eq. (21) is
now replaced by a sys tem of equations for the dis t r ibu-
tion functions of each type of ion. For example, in the
case of two types of ions with masses Mi and M2 we
have

where ip0 is an a rb i t ra ry constant.
The continuity equation in t e r m s of the components

u r and u<p is

Using the foregoing equations, we can reduce the con-
tinuity equation to the form

whence
_ I

F u r t h e r , i n t e g r a t i n g t h e e q u a t i o n f o r u p , w e g e t

«r = -y£ (cp - (f o)

(cp0 i s a s e c o n d a r b i t r a r y c o n s t a n t ) . A s a r e s u l t

2 |- = I'o —-y- 1—-<p<p0—^ .

Under the condition

T « b, cp C 1

this expression should go over into (39), from which

We finally obtain an expression for the ion density

n=C(P)eXp(-l/2&<p—f.) . (42)

We note two important features of the obtained
formulas . F i r s t , near the plane, the longitudinal ion
velocity is

/
~2T7 -,/~T7
-Jtu*=-V ~w •

The e lec t r ic field r e v e r s e s even the sign of the longi-

- ^ ^ [ i n ( 5 * * -

here

The boundary conditions as T — °° a r e

(43)

T h e s o l u t i o n of ( 4 3 ) n o w d e p e n d s n o t o n l y o n /3 = T e / T i ,

b u t a l s o o n t h e m a s s r a t i o M i / M 2 a n d o n t h e r a t i o of

t h e i n i t i a l c o n c e n t r a t i o n s a = N 2 O / N i o .

L e t u s a n a l y z e t h e a s y m p t o t i c b e h a v i o r of t h e s o l u -

t i o n of l a r g e v a l u e s of r . T o t h i s e n d , j u s t a s i n C h . H I ,

w e u s e t h e h y d r o d y n a m i c e q u a t i o n s

/.. -\ dJV« , »r da* r. , . dut
iH

dx + di J ~ U

We assume for concreteness that M2 > M L At large
values of T, there remain in the main the lighter pa r t i -
c les , r egard less of the rat io of their initial concentra-
tions . Assuming therefore that N2 *C Ni, we find from
(44) that at T » 1 the concentration and the velocity of
the light par t ic les a re described as before by formulas
(34). For heavy par t ic les we obtain from (45)

N.i = C exp I • (46)

W e s e e t h e r e f o r e t h a t w h e n M 2 S > M i t h e c o n c e n t r a -

t i o n of t h e h e a v y i o n s d e c r e a s e s v e r y s h a r p l y w i t h i n -

c r e a s i n g T . In t h i s c a s e , e v e n f o r a m u c h l a r g e r i n i t i a l

c o n c e n t r a t i o n of t h e h e a v y p a r t i c l e s t h a n of t h e l i g h t
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ones, N20 ~3> Nl0, this concentration decreases with in-
creasing T in accordance with the self-similar solu-
tion (35) only for N 2~ Ni, i.e., up to

1 ln(
TK~ ~\/i

At larger values of T, the curve representing the con-
centration of the heavy particles terminates abruptly,
and in practice only the light particles remain. In par-
ticular, in the ionosphere, the mass ratio for the hydro-
gen and oxygen ions is M2/Mi = 16. In this case the
hydrogen concentration near the rear surface of a
spherical satellite turns out to be much larger than the
oxygen concentration, even if the hydrogen ions
amounted to less than 5% in the unperturbed plasma.

We note that the hydrodynamic equations (44) and
(45) have an integral

It follows from this formula that the location of the
weak discontinuity in the hydrodynamic solution is

When T < T0, the plasma is not disturbed. We see
therefore that the location of the discontinuity is also
shifted very strongly even in the presence of small
admixtures of the light gas.

V. FLOW AROUND A WEDGE

So far we have spoken of flow around a half-plane
that stands perpendicular to the incoming stream. The
results, however, yield immediately the solution for
flow around a half-plane with any angle of attack, and
for flow around a wedge.

Indeed, let us consider, for example, the region 1
near a wedge (p > 0) (Fig. 6a). Let the angle between
the normal nx to the upper face of the wedge and the
vector v0 be ai. Then the equation of the upper face
of the wedge, in terms of the variables p and t, takes
the form

P t » I T f Mv\
-j~ — — 0 ctg a. = T0, 0 = y 2]* •

According to (18), the boundary condition on the surface
is g = 0 when u < T0. But this condition is automat-
ically satisfied for the function ga for all T = p / t .
Therefore the distribution of the concentration in the
region 1 at T < T0 is given by the n(T) curves shown
in Fig. 2. The same pertains also the region 2
(p < 0) with m replaced by a2.

In the case of flow around a wedge, interest at-
taches also to the flux on its surface. The flux on
phase 1 is given, as can be readily seen, by the expres-
sion

(47)/ = N<p</i (T0) cos a, + No ] / ^ - /, (T0) sin a,,

where

h (To) ug(u, xo)du.

A plot of ji/V¥ at j3 = 1 is shown in Fig. 6b, to-
gether with the corresponding curve for the neutral gas
(dashed line). We see, in particular, that for a half-

FIG. 6. Flow around a wedge: a) angle scheme; b) ion flux density
as a function of T0 .

plane moving parallel to its surface, the electric field
at T e = Ti increases the flux on the surface by a factor
of 1.4.* The flux on surface 2 is obtained by replacing
a i with a 2.

VI. FLOW AROUND A ROUNDED EDGE OF A BODY

So far we have investigated flow around a half-plane
or a wedge, i.e., around bodies having a sharp edges.
In this chapter we consider the perturbation of plasma
by a rounded edge of a body[10].

We consider for simplicity the plane problem, i.e.,
flow around a cylindrical surface with generators
parallel to the y axis. The contour of the body in the
(p, t) plane can be arbitrary. As before, we assume
the body to be semi-infinite, i.e., unbounded, for ex-
ample, in the direction of the axis p < 0. We note,
however, that the results obtained in this case are
valid also for a bounded body near its surface, when
the particles that have overtaken the second edge of
the body are insignificant.

It turns out that the solution of our problem is ex-
pressed in terms of the same function ga(r> u) as was
obtained in Ch. III. The parameter T, however, is no
longer equal to p/ t , but is a more complicated func-
tion of p/ t :

T=T(p, t).

Substituting T in (13), we get

jLl^L _L,,il\ L * tty dr _„
ST V dt "f dp I 2 du di dp "

If we now put

then the equation for g will coincide with (21), so that
actually we have

r, —u).

On the other hand

at )x\dt )„/{ up I,

Integrating this equation, we obtain the sought connec-
tion of T with p and t

(48)

*We note that to calculate j ] (T0 ) there is no need to know the dis-
tribution function. Indeed, integrating (21) with respect to du, we ob-

taindj1/dr-T(dn/dT) = O, or/I(T0)-- § T-̂ -dT-T0«(T0)- ̂  " W it.
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where P (T) is an arbitrary function, which must be
determined from the boundary conditions.

Equation (48) defines for each value of T a straight
line on the (p, t) plane, on which the distribution
function is equal to ga(T, -u ) . When p = 0, all the
straight lines intersect at a single point. In this case
T = - p / t and the motion is self-similar, i.e., we re -
turn to the formulas of Ch. HI. When p * 0, these
straight lines generally do not intersect at one point.

The boundary conditions on the surface of the body,
according to (16), are given by

g = 0 if « > ^ ,

(49)

where p = po(t) is the equation of the contour of the
body in the (p, t) plane. The function ga has the
property

ga = Q if u%<x.

Therefore the boundary condition is satisfied if the
equality

is satisfied on the surface, i.e., if

The last two equations express in parametric form
(with t as the parameter) the function p(r) in terms
of the equation of the boundary po(t). Equation (48)
then defines the value of T, and consequently also
ga(i"), at each point p and t.

The foregoing procedure can be very easily effected
geometrically. To this end it suffices to draw a tangent
on the t > 0 side to each point of the contour Po(t)
(see Fig. 5b). On these tangents, the distribution func-
tion has the values ga(T, -u) , where T is the slope of
the tangent to the t axis. Fignre 5b shows the lines of
constant ion concentration in the case of flow around a
circular cylinder (b = 8, /3 = 1). In this case

We see therefore that when t 3> b~2/3 we have
T ~ - p / t . The same result is obtained when the body is
replaced by an infinitesimally thin plate. This means
that at a sufficiently large distance from the rear sur-
face the exact shape of the body, is immaterial, and
only the maximum cross section is of importance
(compare Figs. 5a and b). We have thus obtained the
same region of applicability of the boundary condition
(18) as indicated in the footnote that follows (18).

We note that the solution obtained in this section for
the kinetic equation is analogous to the Riemann solu-
tion for a simple wave in ordinary hydrodynamics (see,
for example, [u ] , Sec. 94).

VII. FLOW AROUND A PLATE

Let us consider the flow around a plate of width
2R0 and of infinite length in the y direction. The
plasma flow is perpendicular to the plane of the plate,
the thickness of which is assumed to be negligibly
small. The distribution of the ions in the perturbed
zone behind the plate is described by an equation that
follows directly from (13) in the two-dimensional case:

Here g(t, p , u) is the dimensionless ion distribution
function, with

u = vJV'WjM, p = x/R0, t ----- (z/ff0) V2fjMv\.
The z axis is directed, as before, parallel to the
velocity of the incoming stream, and the x axis is
perpendicular to v0 and to the axis of the plate.

The boundary conditions for Eq. (49) have the form
(23) with t —+0

g(t, P, u) = ga

±£-, it)

If

if (50)

where ga(f, u) is the solution considered in Ch. III for
the self-similar equation. We note that it is sufficient
to consider the problem only for positive values of p,
since

g(t, - p , —u) = g(t, p, u). (51)

The characteristics of Eq. (49) are determined by the
conditions

dp du 1 d I, P j \ ten \
-~- = u, -jf=—T~d~[ \ s ) ' (52)

Changing over to a solution of Eq. (49), we take into
account the fact that in the region closest to the body
(at small values of t), the principal role is played by
perturbation by the edges of the body p = 1 and p = - 1 ,
described by the self-similar solution. It is therefore
convenient to write the function g in the form

/. , II —p ^ 4 ^ I 1+P ^ i (f \ (£\'\\

where ga(T, u) is the self-similar solution obtained
above, and gi is a correction function describing the
mutual influence of the two fluxes. According to the
boundary condition (50), the function gi —• 0 when
t —• 0. An analysis presented in[14] shows that the last
term in (53) is small, for all values of t, compared
with the sum of the first two terms. It is therefore
natural to employ the iteration method to solve (49).
In other words, we can neglect the function gi in the
first approximation g*. We then calculate In J g*du,
and substitute it in (52). The characteristic equations
(52) are then integrated numerically in steps of t,
using the boundary conditions (50). This yields the next
iteration g**, etc. In practice it suffices to calculate
the second iteration*.

The results of the calculation given in t l4 ] for (3=1
(T e = Ti) are shown in Fig. 7. The solid curves are
the constant ion concentration curves.

The ion distribution function g in the perturbed
zone behind the plate is shown in Fig. 8. We see that it

*It is possible to integrate numerically equations (52), without
using iterations, by determining In /g du from the next step (as was
done, for example, in the determination of the self-similar solution). In
the case considered here, however, owing to the poor stability of the
problem, the solution obtained by this method may acquire increasing
oscillations. The increasing oscillations can be suppressed with the aid
of special smoothing operations. The solution obtained then coincides
with sufficient accuracy with that obtained by iteration [1S].
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is of the double-hump type. This reflects the fact that
two streams coming from different edges of the plate
collide.

VIII. FLOW AROUND A CYLINDER

Let us examine the flow around an infinite cylinder
of radius Ro. The plasma flux moves in a direction
perpendicular to the cylinder axis, with velocity v0.
The ion distribution in the perturbed zone behind the
cylinder is described by Eq. (49). As before, relation
(51) holds true. We can therefore consider only values
p > 0. The boundary conditions (16) are of the form

g(t, p, n) = 0
if p=Vl — bH*, u<0,

g(t, p, u) = e-»u*
if t=0,

g(t, p, u) = g(t, p, — u)
if p = 0.

The last condition follows from the symmetry relation
(51).

The characteristic equations are given by (52), as
before. They were integrated numerically in steps of
t. The results of the calculation1^l^ are shown in Fig. 9
for j3 = 1 ( T e = Ti) and b = 2.50; the fignre shows the
constant ion concentration surfaces. Figure 10 shows
the distribution of the relative ion concentration on the
axis behind a cylinder (curve 2) and behind a plate
(curve 1). We see that when t *c 1 the difference be-
tween the two pictures is negligible. The same results
from a comparison of the constant-concentration sur-
faces on Figs. 7 and 9. This should be the case, since,
as indicated in Ch. II, the exact shape of the body is of
little importance for the flow of a plasma stream
around the body if the stream velocity is sufficiently
large b > 1 (and at distances not too close to the
body). Only the maximum cross section of the body is
important. Since the cross sections of the cylinder and
of the plate are equal, their flow patterns for b > l
are perfectly similar.

Using the results obtained in Ch. VI, we can easily
get an analytic expression describing the distribution
of the ions in the immediate vicinity of the cylinder at
t <̂C 1. Just as in the case of a plate, for small values
of t the distribution function is simply equal to the sum
of the distribution functions of the particles that flow
around opposite edges of the body (see formula (53)).
Let the coordinates of the point under consideration be
r and 6 in a cylindrical coordinate system in the
(p, z) plane. We draw from this point tangents to the
surface of the cylinder. The angles of inclination of
the tangents to the z axis are

p1 = b [~ <p2 = b [a

The angle 9 is reckoned from the direction of the body
velocity v0. As shown in Ch. VI, the distribution func-
tion of the ions flowing around the edge of the body is
constant on each tangent and is equal to fa(T, u). The
ion concentration is accordingly expressed in terms of
the self-similar concentration n a :

n(r, Q) = na(Vi) + Kna(^)\
K = \ if (p,/6<n/2, K = 0 if (fi/b>n/2.

This expression agrees well with the numerical calcu-

0.4 0.8 IS 1.6 2J> U Z.B

FIG. 7. Constant-concentration surfaces in the case of flow around
a plate. The values of n = N/Noare indicated on the figure ((3 = 1).

p. 0.3875
t -0.65
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FIG. 8. Ion distribution
function g(u) behind the plate -
№=1).

t-0.85
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f 2 tl

t-1.05

-2 -I
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FIG. 9. Constant concentration surfaces in the flow around a cyl-
inder (|3 = 1, b =VMvJ/2Te= 2.5). The values of n = N/No are indicated
on the figure.

0.6

0.4

FIG. 10. Plot of n = N/No against t at |3 = 0 on the axis p = 0 behind
a plate (1) and a cylinder (curve 2, b =\/Mv̂  /2Te = 2.5).

lation result shown in Fig. 9. In the region near the
body, where the concentration n is exponentially small,
the formula becomes especially simple

n(r, 9) =
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= i if 8 —arcsin(-^- --, K=-0 if 9—arcsin (-^-) > i .

(54)
(We have written formula (54) with allowance for the
change of the longitudinal velocity of the ions in accord-
ance with (42).)

IX. FLOW AROUND A DISC

We now consider the problem of flow of a plasma
flux around a round disc of radius Ro. The plasma
moves perpendicular to the plane of the disc. As is
clear from the results of Ch. II, this problem is ac-
tually of very general significance. Such a disc can be
approximately replaced by any body of revolution, if its
length Rz is not too large, RzV2Te/Mvg < Ro. The
results obtained for the disc will be valid also for such
a body of a sufficiently large distance from it. In par-
ticular, the flow around a body of revolution with a flat
rear wall reduces to the disc problem.

In view of the axial symmetry of the problem, we
shall have to rewrite Eq. (13) in cylindrical coordi-
nates p, (p, up, and u<p (up—projection of the velocity
u on the direction of p, and u^ is a projection of u on
the direction perpendicular to p).

The distribution function is then practically independ-
ent of <p, and in place of \iq> it is necessary to intro-
duce the variable

which has the meaning of a dimensionless projection of
the angnlar momentum of the ion on the z axis, m is
then an integral of the motion and enters in the equa-
tion only as a parameter.

To transform Eq. (13) to the new variables, we note
that its form is

and the derivatives of u and p with respect to t are
determined by the Hamilton equations with the Hamil-
tonian function

The corresponding equations for p and up are
dp dole dtip gffp m2 \ tJxp

Differentiating g and taking (55) into account, we ob-
tain finally the equation in terms of the new variables

We note that (55) are the characteristic equations for
(56). The potential tji is determined by the relation

i|) = lnn, n (p, () = -2- \g du9 dm. (57)

The boundary conditions for (56), according to (23),
are

°. il —Pi < l. g-»exp(— - ^ , —up) , (58)

where ga(T, u) is the solution of the self-similar equa-
tion obtained in Ch. III. When t and p —•—, we get

The solution of (56) for arbitrary values of p and t
has not yet been obtained. We present here the results
for sufficiently small values of t:

We note that for a rapidly moving body the region (59)
turned out to be sufficiently large, and (as seen from
the results of Ch. VI), it is precisely in this region that
the influence of the electric field on the motion of the
ions is appreciable. Under condition (59), the solution
can be obtained for all values of p . It is necessary,
however, to consider separately three regions:

1) li—p| « l,
2) 1 —p» t, p » 1,
3) p « VI-

These three regions overlap under condition (59)
(regions 1 and 2 when 1 > 1 - p 3> t, and regions 2
and 3 when v T » p 3> t). Therefore, by obtaining the
solution in each region, we solve the problem com-
pletely.

In region 1, the solution is expressed, in accord-
ance with (58), in terms of the solution ga of the self-
similar equation. At sufficiently large T = (1 - p)/t,
the ion velocity distribution function up becomes
monochromatic in accordance with (40). Therefore

y= y j - exp (— pm2) n& (up — u),

- l f ) ; (60)

Here the constant C(/3) is determined by the asump-
totic form of the function ga (see (39)).

In regions 2 and 3, the cylindrical character of the
problem comes into play. This becomes manifest in
the presence in the kinetic equation (56) of the "centri-
fugal force" m2/p3 and of the factor 1/p in the inte-
gral (57) for n. These terms cannot change the 6-like
character of the distribution function, but change its
dependence on p, t, and m. Accordingly, we shall seek
in these regions g in the form

= h(t, p, m)6(up — u(p, t, TO)) (61)

(more accurately speaking, in region 3, owing to the
appearance of ions reflected from the "centrifugal
potential," the distribution function is the sum of two
terms of the type (61)).

Substituting (61) in (56) and integrating with respect
to dup, we obtain the "continuity equation" for h

£ + • 2 ^ — 0 . (62)

Further, we multiply (56) by up and also integrate. As
a result we obtain the second equation

or, transforming it with allowance for (62),

dt ' U lifT""" T ~dp p5"^ "

The potential cp is connected with h by the formula

(63)

ib = In re, n = -5- \ h dm.
up j

(64)
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We now consider the region 2. It is easy to under-
stand that in this region the centrifugal force m2/p3 is
insignificant. This is connected with the fact that the
velocity u has an order of magnitude (1 - p)/t (this
will be shown later; see (67)). Therefore the kinetic
energy {P"/2 of the ions is much larger than the
centrifugal potential m2/p2 when p > t , If we neglect
the centrifugal energy in (63), then the equations cease
to depend on m. Therefore the dependence of g on m
will be the same as for the function (60), into which (61)
should go over as p — 1. In other words,

-u) (65)

(according to (57) n is the ion concentration). For n
we obtain a system of equations which coincides, as it
should, with the equation of isothermal hydrodynamics
in polar coordinates:

dn 1 d . —. A

du — du _ 1 dn
IT ' " ~Sp = 2n ~dp~ ' (66)

Representing In n in the form of a series in powers of
t

\an = —

and analogously for u, we can readily verify that, ac-
curate to terms of order t, the solution takes the form

- exp — ( (67)

and differs from (60) only in the factor l/p in n. (The
constants in the solution are chosen such as to make
(67) go over into (60) as p — 1.)

We note also that by multiplying the function (58) by
l/p we obtain a solution that is automatically suitable
in both region 1 and region 3. This is perfectly natural,
since formula (67) takes into account simply the geo-
metric contraction of the contour of the initial circle
when the particles move towards the cylinder axis. On
the other hand, by estimating the different terms in
Eqs. (66), with allowance for the concrete form of
formulas (67), we can verify that the electric field does
not influence the motion of the ions in the entire region
2. Therefore the same formulas can be obtained by
considering the free motion of the ions and stipulating
that the solution go over into the self-similar one on
the boundary. In this sense, we can consider regions
2 and 1 jointly.

The solution in region 3, at small values of p and t,
can be obtained by expanding the sought functions In h
and u in series. Leaving out the calculations we pre-
sent here only the final result

= ,—-

= -— - exp [ - J £ - 4

if m2i2<p2,

if m't'<p1

(hi = h2 = 0 when m 2 t 2 > p2); here Ui, hi and u2, h2
describe respectively two streams, one of which flows
to the center of the disc and the other away from the
center. The second stream is produced by the parti-
cles moving from the opposite edge of the disc; when
p » t , as is clear from formulas (68) directly, the ion
concentration in the second stream is exponentially
small compared with the concentration in the first
stream. Therefore the second stream can be disre-
garded far from the center of the disc (in regions 1 and
2). The distribution function g is thus the sum of two
terms determined by formulas (61) and (68). By inte-
grating it in accordance with (64), we obtain the ion
concentration

J-exp(—V2lt)I(p/t),

(69)

A plot of the function 2 VTF/31(£) for different values of
/3 is shown in Fig. 11. At large values of £ =p/ t
3> 1///3 we have

exp(/2£)

and formula (69) for n coincides with (67). The thermal
scatter with respect to m is insignificant when
p ^> t. When £ <S 1/VJ3 we have

We see therefore that on the axis behind the disc
(p — 0) the ion concentration assumes a finite value
that depends on t and )3 and is determined by the
thermal motion of the ions.

The constant ion concentration surfaces in the near
region behind the disc, determined by formulas (60),
(67), and (69) are shown in Fig. 12.

From Figs. 11 and 12 and from formulas (69) and
(70) we see that when j3 < 1 the concentration of the
ions n increases monotonically with increasing p .
When 0 > 1, condensation occurs near the axis p = 0;
its magnitude increases in proportion to -f^ (when
/3 ̂ > 1). The minimum value of n(p) at /3 3> 1 is de-
termined by formula (69) (see Fig. 11); in this case
Pmin = t/Vtf. Changing over with the aid of (12) to the
ordinary variables, we see that the point of minimum
concentration moves off the axis p = 0 at an angle
9min = VTe/Mvg. In other words, when /3 3> 1, the
concentration perturbations are maximal on a cone with
aperture 9 = 6 min = VTe/Mvg. This cone is analogous

FIG. 11. Flow around a disc: plot
of 2 v/ifjn against?.

(68)
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o.i 0.2 0.3 0,5
b)

FIG. 12. Constant ion concentration surfaces in flow around a disc,
a) 0 = TeTj = 1; b) (3 = 4. The values of n = N/No are indicated on the
figures.

therefore to the Mach cone in ordinary gas dynamics.
An effect of similar type, as shown i n w takes place at
large distances behind a moving body.

It is important, as shown by the calculation, that at
small values of t Ĉ 1 the electric field dip/dp exerts
a strong influence on the motion of the ions only in
region 1, which is close to the boundary of the disc:
11 - p | <̂C 1. This is perfectly understandable. Indeed,
a finite force cannot influence noticeably the velocity
within a short time t — 0, and consequently also the
ion concentration. Therefore as t —• 0 the electric
field can be appreciable only in that region where
dip/dp is large, i.e., in the region of the singularity
near the boundary of the body. But the action of the
field in this region has already been taken into account
in the self-similar solution on going over from the
boundary conditions (18) to the conditions (23). Thus,
in calculating the ion distribution function and concen-
tration in the near region behind the body ( t C l ) w e
can regard the ions as freely moving particles satisfy-
ing the condition (23) at t — +0. This makes it possi-
ble to find quite easily the ion distribution function
when t <C 1 behind a body of arbitrary cross section.
Indeed, for freely moving particles is as well known
(see[2], Sec. 5),

f(t, p, u) = /0(0, p—u(, u), (71)

where fo(O, p0, u) is the initial distribution function. It
is determined in our case by the boundary condition
(23). Using this condition, we obtain from (71)

where po(s) is a point on the contour of the body, ni is
the normal to the contour at the point po(s), and u£ and
u,j are the velocity components in the direction normal
and tangent to the contour at the point p0. Integrating
the distribution function with respect to the velocity u,
we can determine the ion concentration. Taking into
account the monochromatization of the function ga(65),
we can readily integrate with respect to du£. Changing
over, furthermore, from integration with respect to
du^ to integration with respect to the length of the
contour ds, we obtain in the region behind the body

A )

(72)

p0 - p along the normal ni and the tangent to the con-
tour of the cross section of the body at the point Po(s),
and ds is the element of contour length. In particular,
if the section of the body is a circle of radius 1, then
P£ = 1 - p cos 9, pt] = P sin 6, ds = dd, and formula
(72) goes over into (69).

We did not take into account above the variation of
the longitudinal component of the ion velocity vz under
the influence of the electric field. As shown in Ch. III,
it is significant in the region close to the body. Using
formula (42) and repeating the foregoing arguments,
we obtain for the concentration behind the disc

1 — p cos 8

2 + (l_pcose)2]1/a

{b+

"1/2(1 — p cos 6)

) — -2 i~ n _ p— ^

1 — p COS 8 \ "1 ~1 (nn \
y2(l-pcos6) V2 & \ z Ui

This expression coincides with (69) under the condition
I 1 —p cos E

On the axis behind the disc (p =0) we obtain

where p^ and pjj are the components of the vector

(73a)

Near the surface of the disc, formula (73) leads, un-
like (69), to finite values of the ion concentration.

X. INFLUENCE OF ELECTRIC FIELD ON THE
MOTION OF THE IONS

We have presented above the results of the calcula-
tion of the ion distribution in the vicinity of various
bodies placed in a supersonic stream of rarefied
plasma (half-plane, wedge, plate, cylinder, disc). To
understand the influence exerted on the motion of the
ions by the electric field, it is necessary to compare
these results with a calculation of the concentration of
neutral particles, on which the electric field does not
act. The expressions describing the distribution of the
neutral particles can be readily obtained at an arbi-
trary form of the surface and velocity of motion of the
body (see[2] Ch. II). In[1>2] they were used as approxi-
mate expressions for the ion concentration.

Let us consider first the case of a single-tempera-
ture plasma (3 = 1 (T e = Ti). The concentration of the
neutral particles with T = Tj = T e behind a half-plane
is given by expression (29). It is shown by a dashed
line in Fig. 2b. It is seen from the figure that at nega-
tive or small positive values of T = p/t < 0.5, the
distributions of the ions and neutrals are close to each
other, and the concentrations differ by not more than
10%. On the other hand, in the region of strong rare-
faction, at T > 1 , the difference between them is very
large. This is clearly seen from Fig. 2b and from a
comparison of the asymptotic formulas (30) and (39).
Thus, in the case of flow around a half plane, the elec-
tric field exerts a decisive influence on the ion distri-
bution in the region of strong rarefaction N <C No. On
the other hand, in the region where the concentration
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of the plasma is appreciable, N > 0.2N0, the influence
of the electric field is in general insignificant. A simi-
lar conclusion is reached also from a comparison of
the distributions of the ions and the neutrals behind a
plate or a cylinder; this is also seen from Fig. 7 and
10, in which the dashed curves represent the distribu-
tion of the neutral particles. In the region of strong
rarefaction behind an axially-symmetrical body (for
example behind a sphere or a disc), the difference be-
tween the ions and the neutrals is just as large. How-
ever, in this case in the zone of not too strong a ra re -
faction (N > 0.2N0) the deviations of the ion distribu-
tion from the neutral-particle distribution are more
appreciable (see Fig. 12).

The role of the electric field increases strongly with
increasing ratio T e / T i . When T e » Ti, to obtain
similar results, it is actually necessary to consider
neutrals with temperature Te, and this already is a
manifestation of a strong influence of the electric field.
In addition, when T e / T j » 1, new singularities appear
in the ion distribution under the influence of the field;
this is seen from Figs. 11 and 12b, namely, the in-
crease of the ion concentration near the axis and the
intensification of the perturbation on the Mach cone are
due exclusively to the influence of the electric field.

XI. FLOW AROUND STRONGLY ELONGATED BODIES

We consider now the flow around bodies that are
strongly elongated in the direction of their motion, i.e.,
bodies whose longitudinal dimension exceeds the trans-
verse dimension by more than b times.

An example of such a body is a thin plate of width
z0, oriented parallel to the incoming stream. We direct
the z axis parallel to the stream, and the x axis per-
pendicular to the plane of the plate. The dimension of
the plate in the y direction is assumed to be infinite.
The distribution of the neutral molecules when b > l
is given by the formulas

here

- = £ = i - H i + o t - f - ) ] . °<*<l>

(75)

Fignre 13 shows the constant-concentration contours
in the (p, t) plane, as determined by formula (74).
Fignre 14 shows the change of the concentration as a
function of p for different values of t. It is seen from
the figures that the minimum of the concentration is
now reached not in the region behind the body, p = 0,
but at an angle p/ t ~ 1. This is seen also from the
asymptotic formulas. Indeed, at large distances from
the body, t > l , the concentration perturbation, ac-
cording to (55), can be represented in the form

™_"-"o____L__?_ e x p [_ ( p / i ) 2 | . (76)

It follows therefore that the maximum of the perturba-
tion is reached on the straight line

(p/*)m = 1/K2, i.e., x =

The influence of the electric field on the motion of
the ions in the case of flow around the body when Ti

FIG. 13. Constant concentration
surfaces in the flow around a plate
whose plane is parallel to the in-
coming stream. The values of n =
N/No are indicated on the figure.

FIG. 14. Flow around a plate whose plane is parallel to the incoming
stream: dependence of n = N/No on p for different values of t indicated
in the figure.

~ T e is never decisive, since there is no region of
high rarefaction here. Therefore the structure of the
perturbed region in the vicinity of the body is well de-
scribed qualitatively by the formulas of the neutral
approximation, particularly by formulas (74) for flow
around a plate. It is only necessary to replace T by
the electron temperature T e . The dashed lines in
Fig. 14 show the results of a calculation of the depend-
ence of n on p at t = 0.5 and t = 1 (when T e = Ti),
with account taken of the influence of the electric field.
We see that the difference from the neutral curves is
not large. The position of the maximum of the pertur-
bation at large distances behind the body, with allow-
ance for the electric field at Te = Ti, is determined
by the formula (p / t ) m = 1.4[13]. When T e / T » 1 we
have (p / t ) m = 1/vT, as for a neutral gas.

XII. INSTABILITY OF A PLASMA IN THE WEIGHT OF
A BODY

It was shown above that two secondary plasma
streams are produced at large distances behind a body
in a supersonic plasma stream, and move opposite to
each other. The effective temperature of the ions in
these streams Tieff, is exponentially small (see (40)
and Figs. 3 and 8); the electron temperature is the
same as in an unperturbed plasma. Consequently, Te
S> Tieff.

 W e c a n therefore expect instability in this
region, analogous to two-stream instability in a non-
equal-temperature plasma^18-'.

To investigate the stability it is necessary to con-
sider arbitrarily small perturbations of the main solu-
tion and to see how they change with time. In the gen-
eral case such a problem is very complicated. We
consider only the most interesting class of perturba-
tions of the fundamental solution. Namely, we take into
account the fact that behind the body, in a coordinate
system connected with the main plasma stream, two
secondary streams moving in the direction of the x
axis, which is perpendicular to the velocity of the main
stream, collide. It is therefore natural to seek the in-
stability of the plasma against longitudinal waves,
which also propagate in the x direction. Since the
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perturbed region has a dimension Ro in the x direc-
tion, perturbations with wavelengths larger than Ro are
stable. Let us consider therefore only waves whose
length is much smaller than Ro:

kR0>l. (77)

Further, owing to the motion of the main stream, the
perturbations produced near the body, i.e., at small
values of z, drift with increasing time into the region
of large values of z. In other words, the conditions
under which the plasma oscillations develop change
with time. We consider here only the oscillations
whose frequency is sufficiently high, namely u>t0 3> 1,
where t 0 is the time characterizing the variation of
the plasma parameters. Recognizing that the particle
concentration changes most rapidly

we find that
JV
dN
dz

Consequently, the indicated condition takes the form

(78)

If conditions (77) and (78) are satisfied, the plasma can
be regarded in the stability analysis as locally homo-
geneous and quasistationary. In other words, the sta-
bility criteria at a given point of the perturbed region
and at a given instant of time are the same as in a
homogeneous stationary plasma having the same values
of the characteristic parameters. It is therefore neces-
sary to investigate first the stability of the homogene-
ous stationary plasma. To solve this problem, it suf-
fices to consider the dispersion equation and to deter-
mine the wave damping coefficient y. If y > 0, then
the waves attenuate and the plasma is stable. But if
y < 0, then small deviations from the equilibrium
state increase and the system is unstable. The dis-
persion equation for ion-acoustic waves in a collision-
less plasma, as is well known, are of the form

(79)
№Te ' k.M J du 0) — iy + ku " '

G

w h e r e fj i s t h e i o n d i s t r i b u t i o n f u n c t i o n i n t h e d i r e c -

t i o n of t h e v e l o c i t y u ; k , a>, a n d y me t h e w a v e v e c t o r ,

f r e q u e n c y , a n d d a m p i n g c o e f f i c i e n t o f t h e c o n s i d e r e d

w a v e s , w h i l e C i s t h e i n t e g r a t i o n c o n t o u r i n t h e c o m -

p l e x p l a n e of t h e v a r i a b l e u , i n d i c a t e d b y L a n d a u ^ 1 7 1 .

I n t h e c a s e of i n t e r e s t t o u s , t h e i o n s c o n s t i t u t e t w o

s t r e a m s w i t h d i f f e r e n t d e n s i t i e s a n d d i f f e r e n t e f f e c t i v e

t e m p e r a t u r e s . A s s u m i n g f o r s i m p l i c i t y t h e i o n d i s t r i -

b u t i o n t o b e M a x w e l l i a n i n e a c h s t r e a m , w e g e t i n l i e u

of ( 7 9 ) t h e f o l l o w i n g d i s p e r s i o n e q u a t i o n :

(KL)Z) + - = - h r

-^ w t 1 - 7 ( — ^ r l T ) ] = 0 : ( 8 0 )

Here D 2 = ( T 2 / 4 7 r e 2 N 2 ) 1 / 2 i s t h e D e b y e r a d i u s f o r t h e

s e c o n d s t r e a m ; N i , v l t VTi, a n d T i a r e t h e c o n c e n t r a -

t i o n , t r a n s l a t i o n a l a n d t h e r m a l v e l o c i t i e s ( z T j

= V T i / M ) , a n d t h e t e m p e r a t u r e i n o n e s t r e a m of i o n s ,

a n d A 2 , v 2 , VT2, a n d T 2 a r e t h e s a m e q u a n t i t i e s i n t h e

second stream; finally, J(z) is a function of the com-
plex variable z, defined by the relation

/(z) = zoxp( — zV2) § exp(T2/2)dT=— i-,/.i zO>(z/V2),

where * ( z ) is the probability integral, tables of which
are given in [ 1 8 ] .

The boundary of the instability region is determined,
naturally, by the condition

T = 0. (81)

When condition (81) is satisfied, the functions J enter
in (80) only as functions of a real argument. In this
case

J {a) = ae-a2'2\esp (T2/2) dx — i ]/-?}-a exp ( — a2l2) = Fi (a)— lF2(a).
0 (82)

Substituting the expression (82) in Eq. (80) at y =0,
we have

* = 0, (83)

Since all the parameters which enter here depend only
on p and t, one of the equations (83) and (84) deter-
mines the phase velocity of the wave oj/k = Vph(p, t),
and the second establishes the connection between the
values of p and t, at which y = 0, i.e., it determines
the boundary of the instability region.

Let us consider the region behind the plate; near
the plate we have p < 1 and t ^ 1; for concreteness
we assume that p > 0 and that the quantities N1 ; v1 ;

and Ti characterize the stream flowing from the
boundary p = 1, while N2, v2, and T 2 characterize
the stream from the opposite boundary p = - 1 . We
consider first Eq. (84). We take into account the fact
that the ion temperatures Ti and T 2 are exponentially
small (compared with Te) when t <SC 1, and the veloc-
ities vi and v2 are larger than VT e/M. Consequently,
the ratios v2/vT2 and Vi/vTx are exponentially large
quantities, and v2/vT2 3> vi/vTi everywhere except
at the point p = 0, since T 2 <C T x . It is then natural
to seek the solution of (84) in the form

where A <S 1. Substituting (85) in (84), we get

(85)

(86)

w h e r e u i = V ! / V 2 T e / M a n d u 2 = v 2 V 2 T e / M a r e t h e

d i m e n s i o n l e s s v e l o c i t i e s ( t h e y a r e d e f i n e d b y f o r m u l a s

( 3 4 ) ) . S u b s t i t u t i n g n o w e x p r e s s i o n s ( 8 5 ) a n d ( 8 6 ) i n ( 8 3 ) ,

a n d p u t t i n g k D — 0 i n ( 8 3 ) , w e a r r i v e a t t h e r e l a t i o n

2 ( I + _ ^ - ) ( U 1 + U 2 ) 2 = Z L . ( 8 7 )

F o r t h e v a l u e s of p a n d t s a t i s f y i n g r e l a t i o n ( 8 7 ) , t h e

d a m p i n g c o e f f i c i e n t of t h e i o n - a c o u s t i c w a v e s i s

y = 0 . R e l a t i o n ( 8 7 ) t h u s d e t e r m i n e s t h e b o u n d a r y of

t h e s t a b i l i t y r e g i o n of t h e p l a s m a b e h i n d t h e p l a t e ; i t i s

s h o w n i n F i g . 1 5 ; t h e p l a s m a r e g i o n a b o v e t h e c u r v e of
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FIG. 15. Boundary of the sta-
bility region in the case of flow
around a plate (/? = 1).

Fig. 15 is unstable*.
Figure 15 shows the results for a single-tempera-

ture plasma. With increasing ratio T e /T i , the insta-
bility region broadens and its increments increase.
We note also that we have considered here instability
behind the plate. The role of the instability weakens
with increasing effective length of the body (in terms
of the variables p and t).

XIII. POTENTIAL OF THE SURFACE OF THE BODY

Flow of plasma around the body was considered
above under the assumption that the surface of the
body has an appreciable negative potential. Such a
potential is actually established on a body in the ab-
sence of a magnetic field and in the absence of electron
emission. In fact, thermal electrons usually are ab-
sorbed upon collision with the surface of the body, and
the ions become neutralized t5]. The ion and electron
fluxes incident on the surface of the body should be
therefore equal. But if the body moves with velocity
v0 <C VTe/m, then the flux of ions to an uncharged body
is smaller than the flux of electrons. The surface of
the body therefore acquires an appreciable negative
charge, which reflects the greater part of the electrons.

In the presence of electron emission from the sur-
face of the body, the potential increases and can re -
verse sign. Under real conditions of the ionosphere
and magnetosphere, the emission can be produced by
the photoeffect[19"21], by surface heating[22], by the ac-
tion of corpuscular streams[21-231; artificial emission
of fast or thermal electrons is also possible.

When a conducting body moves in a magnetic field,
an important role can be played by polarization result-
ing from the action of the Lorentz force. In this case,
a certain inhomogeneous distribution of the potential
is established on the surface of the moving body. This
was first pointed out by D. Beard and F. Johnson[20].
It was subsequently investigated also theoretically and
experimentally under laboratory conditions1^24'251, and
in the ionosphere[34>52]. We shall consider this question
here in greater detail.

Let a spherical body of radius Ro move with
velocity v0 in a direction perpendicular to the mag-
netic field H. We assume, as usual, that Ro >̂ D and
b = (Mv!/2Tg)1/2 > 1 (D—Debye radius). We deter-
mine the distribution of the electric-fie Id potential <p
on the surface of the conducting body. In the coordinate
system moving with the body, we direct the z axis
along - v0 and the x axis along H. Then

. Vg T.r V° If ( \ fSft ̂

The constant y0 = -c<po/voR is determined from the
condition for the equality of the total fluxes of the elec-
trons and ions to the body. It is assumed, as usual,
that the electrons are absorbed by the surface and that
the ions recombine completely on the surface). At not
too large body dimensions Ro < vo/flHi> the ion flux
does not depend on the surface potential:

j , = NovonRl. (89)

Neglecting the action on the electrons by the electric
field that penetrates into the interior of the plasma, the
electron flux density is

o exp («p/7e) if
r if (p>0; (90)

Here j 0 = No VTe/27rm is the density of the electron
heat flux on the charged surface (see[2], p. 356). The
total electron flux is

(91)

In the last expression we took into account the fact that
the electron flux, according to (88) and (90), depends
only on y and that the electrons, as well as the ions,
fall only on the frontal surface of the body (by virtue
of the condition b » 1[1'2]). Substituting now expres-
sions (90) in (91), we get

P(a, !£-)= — ax)dx; (92)

here a is a characteristic dimensionless parameter:

a = 3 ^ . (93)

We determine y0 by equating the total fluxes of the
electrons (92) and of the ions (89). Naturally, a region
with a positive potential exists on the body only if y0
< Ro. The radius of the body ROc at which a positive
potential first appears is determined by the condition
yo = Roc- From (92) and (89) we obtain in this case

(94)

We take into account the fact that the quantity on the
left is small. The equality (94) can therefore hold only
if a > l . Then, changing over under the integral sign
to a new variable r = ax, we can replace the upper
limit of integration with respect to T by °°. Accurate
to small terms (of the order of % a), the integral is

1 / 2 1 / 2 3 / 2
(

equal to 7r1/2/21/2a3/2 Consequently
cT"JS

(95)

Under the conditions of the ionosphere we have Roc
~ 0.5—5 meters.

At large values of Ro » Roc, the term P(a , yo/Ro)
in expression (92) is insignificant. We then obtain for

D rA 32/3jl ln>"i\l/3l
yo=i?o[l —(-77) J-

*The ion distribution function was assumed in the calculation to be
equal to the sum of two self-similar solutions (formula (53) with gj = 0).

Thus, when Ro 3> Roc, a part of the body, with coordi-
nates y0 < y < Ro is at a positive potential relative to
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Front view Top view

FIG. 16. Potential on the surface of a sphere moving in a magnetic
field.

the plasma. This region is shown shaded in Fig. 16.
The double shading designates the region on which the
electrons are mainly absorbed. When Ro 2> vo/SiHi,
the ions fall on the entire frontal surface, and when
Ro "^ Vo/JiHi they fall only on the unshaded region.

A similar calculation for a cylinder with axis per-
pendicular to the magnetic field, moving with velocity
v0 in a direction perpendicular to the axis and to H,
yields

CTV-

Here Loc is the length of the cylinder at which posi-
tive potential appears on the edge of the body. When
L 2> Loc, the fraction of the cylinder length L on
which the potential is positive amounts to pL, where

We see therefore that polarization produces a region
of positive potentials on large bodies moving in a mag-
netic field. This results in interesting singularities
when plasma flows around such bodies. Indeed, in the
case when there is an appreciable negative potential
on the surface of the body, the body interacts mainly
with the plasma ions. This was precisely the case
considered above (see also'-1'2-'). The concentration of
the electrons in the vicinity of the body is altered only
to the extent that the ion concentration is perturbed.
The ions move more slowly than the body. A strongly
elongated wake is produced in the plasma and expands
slowly with increasing distance from the body.

One can expect the picture of the perturbation pro-
duced by the regions of positive potential to be essen-
tially different. Indeed, the plasma electrons move
along the force lines of the magnetic field much more
rapidly than the body. All are absorbed in the surface
regions that are at a positive potential. Therefore
perturbed zones, from which electrons are depleted,
should therefore extend from these regions along the
magnetic-field force lines. This produces an electric
field that creates an appropriate perturbation also
among the ions. The dimension of the perturbed zone
in the direction of the magnetic-field force lines is
larger by a factor vTe/vo than the dimension of the
body (vTe—thermal velocity of the electrons). Thus,
flow around a large body with Ro > Roc should produce,
besides the usual wake behind the main negatively-
charged part of the body, also thin "wings" extending
from the positively charged part of the body along H
and differing in structure from the main weight. The
effect becomes more intense for bodies that emit elec-
trons .

XIV. NUMERICAL CALCULATIONS WITH ALLOWANCE
FOR THE FINITE DEBYE RADIUS

We have previously started from the equation of
quasineutrality of the plasma (7), which replaced the
Poisson equation. Such an approximation corresponds
to the limit Ro /D — °°, i.e., it is valid under conditions
when the characteristic dimension of the perturbed
region is large compared with the Debye radius. In
many problems, however, this approximation is insuf-
ficient.

First of all, the quasineutrality approximation is not
valid if the dimension of the body is smaller than or of
the order of the Debye radius.

Further, a finite Debye radius is essential in the
analysis of the double-layer adjacent to the surface of
the body, where the quasineutrality is violated. The
dimension of this layer increases behind the body,
where the particle concentration is small. It increases
also when the potential of the body increases. Particu-
larly important are effects connected with the deviation
from quasineutrality in the case when the potential of
the body is very high:

k d > ^ ( ^ ) 4 / 3 .

In this case the double layer may become commensu-
rate in size with the body.

An investigation of all these cases requires in fact
a solution of the Poisson equation. A thin double layer
at the surface of the body can be calculated analytically.
The corresponding results are reported in1-2-1, Sec. 14,
and in[261. In the remaining cases it is necessary to
integrate Poisson's equation numerically. Recently,
much attention has been paid to such calculations. We
shall describe briefly some of the relevant papers,
confining ourselves mainly to the formulation of the
problem and to the results. The description of the
numerical procedure is beyond the scope of the present
review.

1. Flow of a Stream of Cold Ions Around a Body with
Dimensions on the Order of the Debye Radius

M. V. Maslennikov and Yu. S. Sigov[27] performed a
simultaneous numerical integration of the ion equations
of motion and the Poisson equation. The correct solu-
tion of such a problem entails great difficulties, con-
nected with the poor stability of the Poisson equation.
These difficulties were overcome in[27] with the aid of
a special calculation procedure, and reliable results
were obtained. The electrons were assumed to have a
Boltzmann distribution, and the thermal motion of the
ions was neglected (T^ = 0). The results of the calcu-
lations—the surfaces of constant values of the potential
ip = e<p/Te at Ro =D and of the surface potential <p0
= 0 are shown in Fig. 17. Attention is called to the
oscillating dependence of the potential on the distance.
It can be assumed that the presence of such oscillations
is due to the neglect of the thermal motion of the ions:
in the absence of thermal motion, the ion-acoustic
waves propagate without Landau damping, and this con-
tributes to the appearance of the oscillations. When
Ti ~ T e , the thermal motion should lead to a smearing
out of the oscillations.
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2 . Iteration Solution of the Problem of Flow Around a
Plate with Dimensions on the Order of the Debye
Radius

J. Taylor[28] developed an iteration procedure for a
simultaneous solution of the Poisson equation and the
kinetic equation. As the zeroth approximation he chose
the ion distribution function in the absence of an elec-
tric field. Therefore the iterations are carried out
with respect to the electric field. It should be empha-
sized that, by the same token, account is taken of the
thermal motion of the ions, and the model under con-
sideration is perfectly realistic. On the other hand, as
seen from the discussion presented at the end of Ch.
IX, the distribution of the neutral particles is a good
approximation for the distribution of the ions only in a
region of not too large a rarefaction. Consequently,
the iteration converges poorly near the body. Figure 18
shows a plot of n = N/No against p = x/R0 at fixed
4 = z/R0. The body is a plate of thickness 0.6D (in the
direction of the z axis) and of width 2R0 = 3D (in the
direction of the x axis). The Mach number is b = 6
and the potential of the body is e<pQ/Te = -2.75. The
figure shows the zeroth approximation (dashed lines)
and the first approximation (solid lines). In the case
of a high potential on the body (e<po/Tb = -14), the
plot of N/No against p becomes nonmonotonic, which
agrees qualitatively with the results of[27] for cold ions.

3. Flow Around a Strongly Charged Body

The problem of flow around a body charged to such
a degree that \ecpo\ ^> Mv2,, was solved by E.
Walker^29-1, who did not consider a body of any con-
crete shape. Instead, it was assumed in fact that all
the particles crossing a certain limiting equipotential
surface are drawn in by the field and are absorbed by
the body. The physical basis for such an approxima-
tion lies in the fact that at very high potentials the
dimension of the region in which the quasineutrality is
violated and strong fields exist becomes much larger
than the dimension of the body*. In this case the con-
crete shape of the body can be irrelevant.

The problem was solved numerically by simultane-
ously solving the Poisson equation and the equations of
motion of the ions. Among the shortcomings of the
calculation are the use by the author of a poorly justi-
fied condition for the potential on the unperturbed
plasma boundary, and the arbitrary choice of this
boundary itself. We shall not discuss this question
in detail.

Fignre 19 shows the surfaces of constant ion con-
centration n+ = Ni/N0 calculated in[29]. They were
plotted for b = 5.8. The figure shows also the equipo-
tential surface for

r/D
e
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FIG. 17. Constant-potential surface in flow around a sphere of radius
Ro = D. The values of i> = e^/Te are indicated on the figure.

1.2 20

FIG. 18. Dependence of the concentration n = N/No on p = x/R0
in flow around a plate.

-.» -is -io

FIG. 19. Surfaces of constant ion concentration n+ = Nj/N0 in the
vicinity of a strongly charged body, a) (3 = Te/Tj = —; b) 0 = 1.

On the boundary of the unperturbed plasma (hemis-

*The problem was solved by an analogous method for a strongly
charged body at rest by J. Langmuir and K. Blodgett [30] (see also [2],
Sec. 39). As follows from that paper, the dimension of a region strongly
perturbed by the field is much larger than the radius of the body Ro,
provided |^01 > (Te/e)(R0/D)4/3-

phere, p = 20), >p is assumed equal to -0.001. The unit
length in the figures is

Fignre 19 was plotted for cold ions, and Fig. 19b
for an equal-temperature plasma. It is seen from the
fignres that in this case of very strong potential on the
front and on the sides of the body, the thermal motion
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of the ions is of no importance. To the contrary, be-
hind the body, (near the z axis), the difference between
the curves of Figs. 19a and 19b is large even qualita-
tively.

4. Flow Around Bodies of Small Dimensions

A. M. Moskalenko and V. S. Knyazyuk[31)32] have
considered the flow around spherical bodies, the radius
of which is much smaller than the Debye radius in the
unperturbed plasma. In this case, the electric field in
the vicinity of the body is of the Coulomb type. If, in
addition, the surface potential (p0 is not too large:

19.1 <%-%;, D»a,, (96)
in the region r > D (where the Coulomb field is dis-
torted as a result of the Debye screening) the electric
field is weak (<p ~ ipo(Ro/r) < T/e) and has little in-
fluence on the motion of the particles. The exact form
of the field when r > D is therefore irrelevant. Thus,
when conditions (96) are satisfied, and perturbations are
considered in the vicinity of the body at r < D, a
Coulomb electric field can be assumed. This greatly
simplifies the calculation and makes it possible to ob-
tain an expression in terms of quadratures for the con-
centration and fluxes of the particles in the vicinity of
the body.

The result of a numerical tabulation of the distribu-
tion of the ions is shown in Fig. 20. In Fig. 20a (<p0
= - T / e , v0 = V2T/M) are shown the surfaces of con-
stant values of the ion density (the numbers on the
curves give the values n = Ni/N0). The dashed curve
shows the distribution of the ions in the vicinity of the
body at rest, for the same surface potential. We see
that the unperturbed part in front of the moving body
is closer to its surface. Behind the body, near the
surface, there is a small rarefaction zone, followed by
a region of increased concentration. The maximum of
the ion concentration is reached on the axis behind the
body at a certain distance (on the order of 2.5RO) from
its surface. The increase of the ion concentration in
this region is a consequence of the gathering action of
the electric field. Qualitatively these results are simi-
lar to those obtained by Walkert29].

Figure 20b shows the distribution of the ions behind
the body, obtained neglecting their thermal motion. The
surface potential is (p0 = -Mvo/2e. The solid curves
are surfaces of equal ion concentration. The dashed
curve separates the regions into which the ions fall
after moving around the body from the other side, from
the region in which they fall and are absorbed on the
surface of the body. In the region where such ions fall,
the concentration is higher. This results in a discon-
tinuity in the ion-concentration distribution. Near the
body there is a region with zero ion concentration (it is
delineated in the fignre by a thin solid line). When
thermal motion is taken into account, the discontinuity
line becomes smeared out.

In[31'32], they also found the distribution of the parti-
cle flux on the surface of the body. With increasing
surface potential, the distribution of the particle flux
over the surface becomes more and more symmetrical.
It is interesting that at large values of cp0 the total ion
flux on the surface of a moving body decreasing with
increasing body velocity.

z/R0
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FIG. 20. Surfaces of constant ion concentration n+ = Nj/N0 in the
vicinity of a small body with Ro < D.

5. Flux of Ions on the Surface of a Moving Plate

We have determined above the flux of ions on a
plate, when the width of the plate z0 is much larger
than the Debye radius, z0 3> D. In this case, at not too
high field potentials on the surface of the plate <p0, the
flux density does not depend on (p0 and is determined
by expression (47) given in Ch. V. It is important, how-
ever, that at large values of b 3> 1 the flux density
decreases strongly with increasing angle between the
normal to the plate end and the velocity direction v0.
At angles close to TT/2, the flux can be strongly influ-
enced by the presence of a charged double layer even
at not too high potentials q> 0.

A calculation of the flux (with allowance for the
double layer) for the case when the thickness of the
double layer is smaller than the width of the plate,
neglecting thermal motion of the ions, is presented
in[14]. It is shown there that the ion flux on the surface
of the plate, Ij, as a function of the angle 0 between n
and v0, is described by the formula

I, „ , 2sinG ONl'2,(x) r/ 2e \ <p01 N\ (T) I ' « n 3/2
AWT = C0S B + —3 - ^ p ^ L I + ~WT)— ) ~ i J '

(97)
The concentration Na(r) has been determined in Ch.
Ill, and the flux j ( r ) is given by formula (47) for ax
= 9. The second term in (97) gives that part of the
flux which is connected with the finite thickness of the
double layer. We see that at large values of 9, the
role of this term becomes appreciable and even de-
cisive. The result of the calculation of the dependence
of I/Io on 9 for b =2.5, zo /D =17.7, and -e<po/Te
= 35 is shown in Fig. 22. The dashed curve in the
figure gives the flux density without allowance for the
influence of the electric field of the double layer.

6. Flow of Single-temperature Plasma Around a Sphere

After the present review was completed, we learned
of an interesting paper[38] in which a simultaneous
numerical solution was obtained for the equations of
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FIG. 21. Surfaces of constant potential behind a sphere of radius
Ro = 50D.
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FIG. 22. Ion flux on a flat
probe as a function of the angle 6
between the normal to the sur-
face of the probe and the direc-
tion of probe motion.

60
9, (leg

motion of the ions and for the Poisson equation, for
the case T e = Ti. The solution was performed by
iteration, and the zeroth approximation was taken to
be the potential distribution obtained in[1], neglecting
the influence of the electric field on the motion of the
ions. The results of the calculation for a sphere (with,
apparently, Ro/D = 50) show that deviations from
quasineutrality have little effect on the ion distribution,
but lead, as they should, to a noticeable change in the
potential distribution at z ~ Ro. The obtained equipo-
tential surfaces are shown in Fig. 21. The numbers
near the corresponding curves show the values of
ecp/T ln(502). The dashed line shows the equipotential
surfaces obtained in the approximate solution of the
Poisson equation and neglecting the influence of the
electric field on the motion of the ions. It would be of
interest to carry out a more detailed comparison of
the results of1-38-' with the results obtained above (see
Fig. 12) for a disc. Such a comparison is made diffi-
cult, however, by the fact that the publication[38] is not
sufficiently detailed.

XV. EXPERIMENTAL INVESTIGATION OF THE
PERTURBED ZONE IN THE VICINITY OF ROCKETS
AND SATELLITES IN THE IONOSPHERE

Experimental investigations of the perturbations
produced in the ionosphere by a satellite or by a rocket
is of appreciable interest. The acquisition and reduc-
tion of the appropriate data is , however, a difficult task.
Indeed, the diagnostics of a rarefied plasma is a com-
plicated matter even under ordinary laboratory condi-
tions . Added to these difficulties is the fact that the
measurements are carried out on an object that moves
in the ionosphere. The information must be accumu-
lated and transmitted over a large distance. It is also
important that the body usually executes a complicated
motion in space. The position of the measuring instru-
ment relative to the direction of motion of the body
varies in time. It is therefore necessary to reduce the
observation results very carefully, taking into account

the exact position of the instrument relative to the
direction of motion of the body at the instant of time
when the measurement was performed. The number of
papers containing such a detailed reduction of the ob-
servation data is small[33"36'39>40].

In comparing the experimental results with the
theory, it should be borne in mind that the shape of the
surface of the body, with allowance for the apparatus
placed in it, is usually quite complicated. In addition,
the conditions in the ionosphere vary strongly with al-
titude, and also with the time of the day, with the geo-
graphic latitude, etc. The dim ens ion less parameters
characterizing the features of flow around the bodies
vary accordingly.

1. Measurements on Rockets

K. Norman and A. P. Willmore[33] measured the flux
of ions on the surface of a high altitude rocket. The
rocket was launched in South Australia (Woomera) in
the nighttime. The measurements were performed
while the rocket moves at altitudes between 280 and
500 km. The rocket velocity changed accordingly from
3.0 to 2.2 km/sec. Besides the general motion, the
rocket rotated about its axis with an angnlar velocity
of 0.218 rad/sec and executed gyroscopic motion with
a cone apex angle 89.8° and an angular velocity
Q = 0.144 rad/sec. Because of this, the velocity com-
ponent in the direction orthogonal to the rocket axis
changed continuously in magnitude.

Four probes uniformly spaced 90° apart in a plane
perpendicular to the cylinder axis were located on the
surface of the rocket in the region where it could prac-
tically be regarded as a cylinder. The probes were
flat discs of 5 cm radius. They were at a constant
potential of -3.2V relative to the surface of the rocket.
The total current of the ions to the probe was meas-
ured. The measured ion flux as a function of the angle
9 between the position of the probe and the direction of
the rocket velocity (more accurately, its component in
the plane perpendicular to the cylinder axis) is shown
in Fig. 22 (circles); here Io is the maximum flux,
which occurs when 0 = 0 .

Let us compare the results of the experiment and
the calculation. At altitudes from 300 to 500 km at
nighttime, one can assume that the ions are mainly O*
with M = 16 (in proton-mass units). The ion tempera-
ture is close to the electron temperature and ranges
from 900 to 1500°K (see[3]). Consequently, the quantity
b = (Mvo/2Te)

1/2 ranged from 3.2 at 280 km to 1.8 at
500 km. On the average, b »2 .5 . The ratio I/l0 for
the ion flux on the surface of the cylinder, calculated
in accordance with formula (47) at b = 2.5, is shown in
Fig. 22 by the dashed line. We see that at large angles
8 > 50—60° the experimentally measured I/Io is much
higher. It is natural to assume that the increase of the
ion flux at large angles 6, as observed in the experi-
ment, is connected with the influence exerted on the
ion motion by the electric field of the probes.

Actually, the probes used in the experiment were
not screened. Their potential relative to the surface of
the body was -3.2 V, and relative to the plasma cp0
was -(3.5—4) V. Consequently, under the experimental
conditions the ratio -e<po/Te

 a 30—40. The plasma
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concentration measured in the same experiments varied
in the range (1—2.4)x 105 cm"3. The average value was
N o » 2 x 10s cm"3. Consequently, the Debye radius was
D « 0.5 and the ratio for the probe was (Ro/D) s» 10.
We see that -e<po/Te ~ (R0/D)4/3. Under these condi-
tions, as follows from the statements made in Sec. 5
of Ch. XIV, the ion flux to the probe at large angles 8
should greatly increase as a result of the gathering
action of the electric field of the probe. The calculated
ratio I/l0 in accordance with formula (97), i.e., with
allowance for the gathering of the ions by the probe
field, is shown in Fig. 22 by the solid curve (for
-e<po/Te = 35, zo /D = V ffRg/D « 17.7, b =2.5). The
agreement between theory and experiment can be re -
garded as satisfactory.

In[33] they also measured the dependence of the ion
flux to a probe located behind the body ( 6 ~ 180°) on
the velocity of the body. A comparison of these results
for the theory, given in1-161, has shown better agree-
ment. However, in this calculation, as emphasized in[16],
a rather crude approximation was used, namely, the
cylindrical surface was replaced by its cross section,
a plate (which is valid only at sufficiently large dis-
tances from the surface; see Ch. VIII); in addition, the
gathering of the ions by the probe field was not taken
into account. The results obtained by us make it pos-
sible to refine the calculation. The distribution of the
ions behind the cylinder is described by formula (54).
Calculation by means of (54) for the same values of the
parameters as in1161 shows that the ion concentration
on the surface of the cylinder at 8 = 180° is smaller
by a factor 10—20. On the other hand, allowance for
the gathering of the ions by the probe field leads to an
increase of the flux by a factor 6—10. Thus, the r e -
fined theory leads to values of I( 8 = 180°)/l0 which are
smaller by a factor 1.5—3 than those obtained with the
approximate formula in[16]. In this case the result de-
pends on the radius of the rocket, which is not indi-
cated in[33]. In addition, the concentration of the flux
of the ions increase very rapidly when the probe devi-
ates from a position strictly on the axis behind the
body (for example, when the angle 8 changes by 10°,
the concentration increases by 2—3 times). In the
measurements, this position was not maintained with
sufficient accuracy. Therefore, a detailed comparison
of these measurements with the refined theory serves
no purpose.

2. Measurements on the Satellite "Ar ie l -1"

The authors of134"361 measured the densities of the
ion and electron fluxes in the vicinity of the satellite
"Arie l -1" . The altitude of the moving satellite above
the earth ranged from 390 to 1210 km, and the inclina-
tion of the orbit was 54°. The period of revolution of
the satellite around the earth was 101 min. In addition,
the satellite rotated about one of its axes at a rate of
35 rpm. The direction of the rotation axis remained
almost constant in space, and the angle between this
axis and the satellite velocity varied during the orbital
motion. This resulted in a periodic variation of the
probe positions relative to the direction of motion of
the body.

Two probes measured the electron current. One of
them (probe 1) was located on the surface of the

05 -

FIG. 23. Electron and ion concentration n = N/No as a function of
the angle 6 between the direction of motion of the body and the radius
vector drawn to the point under consideration. Circles—measurements
°f Ji Ih '• a) near the surface; b) at a distance 5R0.

s a t e l l i t e . T h e s h a p e of t h e s a t e l l i t e w a s n e a r l y s p h e r i -
c a l , wi th a r a d i u s R o = 30 c m . P r o b e 2 w a s l o c a t e d on
a s p e c i a l r o d a n d w a s l o c a t e d a t a d i s t a n c e 5R0 f r o m
t h e c e n t e r . T h e r a t i o of t h e f lux j i t o p r o b e 1 to t he
f lux j 2 t o p r o b e 2 i s s h o w n in F i g . 2 3 a . T h e a b s c i s s a s
r e p r e s e n t t h e a n g l e 6 c h a r a c t e r i z i n g the p o s i t i o n of
t h e p r o b e 1 r e l a t i v e t o t h e d i r e c t i o n of m o t i o n of t h e
s a t e l l i t e (the r e s u l t s shown in F i g . 23a r e p r e s e n t t h e
t o t a l of f ive d a y s of m e a s u r e m e n t m a r k e d r e s p e c t i v e l y
by t h e s y m b o l s x , 0 , • , +).

In c o m p a r i n g the r e s u l t s of t he e x p e r i m e n t wi th t h e
t h e o r y , we s h a l l t a k e in to a c c o u n t t h e fact t h a t t h e
r a t i o of t he e l e c t r o n f luxes i s a p p r o x i m a t e l y e q u a l to
t h e c o n c e n t r a t i o n r a t i o ( j i / j 2 = N1/N2). Nx i s e q u a l to
t h e c o n c e n t r a t i o n of t h e i ons on the b o u n d a r y of t he
double l a y e r . It i s n a t u r a l t o a s s u m e t h a t t h e c o n c e n -
t r a t i o n N 2 i s u n p e r t u r b e d , i . e . , t h a t it i s e q u a l to N o .
T h e va lue of b = ( M v o / 2 T e ) 1 / 2 fo r the r e g i o n w h e r e
t h e s a t e l l i t e m o v e r a n g e d f r o m b « 6 (at night in t he
p e r i g e e ) to b « 1.5 (in t h e a p o g e e ) . A c c o r d i n g t o [ 3 6 ] ,
t h e a v e r a g e va lue i s b = 3 . 7 5 . T h e s o l i d c u r v e of F i g .
2 3 a r e p r e s e n t s t h e ion c o n c e n t r a t i o n a s c a l c u l a t e d by
f o r m u l a (54) ( s i n - 1 ( R 0 / z ) = i r / 2 ) , wh ich i s v a l i d n e a r
t h e s u r f a c e of a s p h e r e not too c l o s e t o i t s a x i s , a t
a p p r o x i m a t e l y 8 £> 120° (and of c o u r s e a l s o a t
6 ic 240°) . T h e a g r e e m e n t b e t w e e n t h e t h e o r y a n d e x -
p e r i m e n t in t h i s r e g i o n i s s a t i s f a c t o r y . At a n g l e s
8 > 120", t he d i m e n s i o n of t h e s c r e e n i n g l a y e r b e c o m e s
n o t i c e a b l e . T h i s i s t h e s t a r t of t h e r e g i o n of m a x i m u m
r a r e f a c t i o n . A d i s c u s s i o n of t h e m e a s u r e m e n t s in t h i s
r e g i o n i s b e s t c a r r i e d out in t h e next s e c t i o n , w h e r e we
p r e s e n t t h e r e s u l t s of e x p e r i m e n t s [ 3 9 ] i n wh ich m o r e
d e t a i l e d da t a w e r e o b t a i n e d .
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Fignre 23b shows the results of measurements of
the flux of electrons with the aid of probe 2, located at
a distance 5R0 from the center, as a function of the
angle 8 between the directions of the probe and the
direction of motion of the body. We see an appreciable
scatter of the experimental points. The thin curve is
the average result of the experiment. The thick curve
is the result of a calculation of the ion concentration
for b = 3.75 in accordance with the neutral-gas for-
mula (i.e., neglecting the influence of the electric field
on the ion motion) [ 2 > 3 7 ]. These formulas should be suf-
ficiently accurate in the case under consideration,
since t = z/Rob » 1.2, and at such large distances as
indicated in Ch. IX, allowance for the influence of the
electric field leads only to comparatively small change
of the ion concentration. It is seen from Fig. 23b that
a definite correspondence exists between the results of
the measurements in the calculation: the position and
the width of the principal minimum, and also the value
of the concentration at the minimum, agree with the
theory*. It should be noted that an appreciable contri-
bution to the perturbation is made at a distance 5R0

from the center of the satellite not only by the body of
the satellite, but also by several other elements located
near the satellite [ 3 6 ]. It is possible that this is the
cause of the complicated and strongly fluctuating pic-
ture of the experimental points shown in Fig. 23. It is
also important that consideration of only the average
Mach number is a very crude approximation. Actually,
the value of b changes strongly with altitude, owing to
the change of the ionic composition and of the tempera-
ture of the ionosphere. This strongly influences the
structure of the perturbed zone. For a more accurate
comparison of theory and experiment, it is therefore
necessary to perform the measurements at different
altitudes separately, and that these measurements be
accompanied where possible by complete data on the
structure of the unperturbed ionosphere, such as the
relative concentration of the different ions (O+, H+,
He+), the temperatures of the electrons and the ions,
and the electron concentration.

In [ 3 4 ] there were also observed oscillations of the
particle fluxes to the probes; they were interpreted as
the results of oscillations in the plasma. The oscilla-
tions were localized in the region of the boundary of
the wake (the experimental accuracy inside the wake is
insufficient to establish the presence or absence of
oscillations). Their frequency ranged from 2.7 to
3.7 kHz. The instability indicated in Ch. XI leads to
excitation in the plasma of oscillations with frequen-
cies f ~ Sio/27r = (eW/TrM)1/2 (in the coordinate sys-
tem of the satellite). At No = 10.5 and M = 16 we ob-
tain f w 5 kHz. We can thus assume that the aforemen-
tioned ion-acoustic instability of the plasma in the

*The statement made in [36] that there is an appreciable discrepancy
(by a factor of 5) between the results of the experiment in question and
the formulas of the neutral-approximation theory [37] is the conse-
quence of a misunderstanding. Apparently, the authors of [36] com-
pared the results of a calculation for b = 8 with the results of an experi-
ment for b = 3.75. When b = 3.75 and z = 5 Ro we obtain from Table 2
of ["] N/No = 0.53, in agreement with experiment, whereas at b = 8
the value of N/No is actually smaller by a factor of 5—6.

region of the weight of the body was observed in these
experiments.

3. Measurements on the Satellite "Explorer-31"

A preprint by U. Samir and G. L. Wrenn t3Bl contains
the results of measurements of the flux of electrons on
the satellite "Explorer-31" in December 1965—
January 1966. The inclination of the orbit was 80°, and
the altitude above the earth's surface ranged from 500
to 3000 km. The satellite had the form of an octagonal
parallelepiped; it can be approximately regarded as a
cylinder 1 m high and of radius Ro ~ 0.5 m. The satel-
lite rotated around the axis of the parallelepiped, which
was stabilized orthogonally to the orbit.

The electron disc probe of radius 1 cm was mounted
on one of the side faces at a distance of 20 cm from the
lower edge of the satellite. The electron flux measured
by the probe, as a function of the angle 8 between the
velocity of the body and the direction from the axis to
the probe, is shown in Figs. 24a—e. The ordinates
represent the ratio j(0)/jo, where j o is the maximum
flux, which is produced when the direction to the probe
coincides to the direction of the body velocity (8 =0).
The circles show the experimental results. The meas-
urements were made at different altitudes h and at
different local times t, as indicated in the fignres.
Simultaneously, an ion spectrometer was used to meas-
ure the average ion mass M. Assuming for simplicity
that the ionospheric plasma at the altitudes under con-
sideration contains only O__and H+ ions, we can de-
termine from the value of M the relative concentration
of these ions: nu+ = (16 - M)/15 and n o + = 1 - nn+.

№lh
—°~\

\
\
\ • 0,1

h-SW-720
t •H3t-7.es

ISO 140 300
e)

FIG. 24. Concentration of the electrons and ions n = N/No in the
quasineutral region at the surface of the body as a function of the angle
9. Circles—results of measurements of j/j0.
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The average value of nn+ is also indicated in the
figures.

At an altitude h S 600 km, the oxygen ions constitute
the overwhelming majority. In this case it is possible
to neglect the influence of the small admixture of hydro-
gen everywhere except in the region of strong rarefac-
tion. The solid curve in Fig. 24a shows the concentra-
tion of the oxygen ions N( 0)/No, calculated by means
of formula (54) (T e = 2000°, bo+ = 5.3, sin '^Ro/z)
= 7r/2). The agreement between the theoretical curves
and experiment outside the region of maximum rare-
faction ( 9 < 120°) is satisfactory (similar measure-
ments performed on the satellite "Ariel-1" are shown
in Fig. 23a).

An angles 8 > 120°, as already noted above, the
dimension of the screening layer becomes noticeable.
This is where the region of maximum rarefaction be-
gins. In comparing the results of the measurements
with the theory in the region of maximum rarefaction,
it is necessary to take into account the following cir-
cumstances. First, the concentration of the ions in the
region of maximum rarefaction is much smaller than
the concentration of the electrons'-37'2'38-1. They become
comparable only on the boundary of this region. Conse-
quently, the electron flux measured by the probe in the
region 8 > 120° corresponds to the plasma concentra-
tion on the boundary of the region of maximum rare-
faction, which is quite far from the surface of the body.
Let us consider, for example, the case when the probe
is situated exactly behind the satellite ( 8 = 180°). This
case is shown in Fig. 25 (side view). The boundary of
the region of maximum rarefaction in the vicinity of
the probe is shown dashed in the figure. It can be
characterized by the angle <p0. An approximate calcu-
lation shows that for the conditions considered here the
angle cp0 amounts to approximately 35—50°, On the
average, it can be assumed to equal 45°.

Further, in the region of maximum rarefaction, the
relative concentration of the hydrogen ions increases
strongly. Let us recognize that at T e ~ 1500—3000°K
and v0 = 7.6 x 105 cm/sec we have bo+ ~ 4.5—6 for
oxygen and bH+ ~ 1.1 — 1.5 for hydrogen. It then follows
from the results of Ch. IV that whereas njj* > (0.01-
0.05) in the unperturbed ionospheric plasma, in the
region of the maximum rarefaction the hydrogen ions
are in the majority. Therefore in all the cases con-
sidered in the present section the structure of the
region of maximum rarefaction is determined by the
hydrogen ions. This is confirmed by the data of Samir
and Wrenn. Indeed, the electron temperature and alti-
tude 600—900 km, changes on the average from 2000
to 3000°K. Accordingly, the Mach number for the hy-
drogen ions is bn+ = 1.3—1.1. We see that the parame-
ter bn+ changes insignificantly. A much stronger
change takes place in the relative condensation of the
hydrogen ions njj+, namely from 3—5% to 60%. Conse-
quently, in the indicated region of altitudes the experi-
mentally measured ratio j(6> = 180°)/j0 should increase
in proportion to the concentration of the hydrogen ions
njj+. This ratio, as seen from Fig. 26, actually holds
true.

It is important that the value of the Mach number
for the hydrogen ions is low, bH* ~ 1 — 1.5. In this
case it follows from the results obtained in Chs. Ill

Probe

FIG. 25. Location of probe behind the body.
Dashed line—limit of quasineutral region in the
vicinity of the probe.

FIG. 26. Electron and ion concentration
equals N/No on the boundary of the quasi-
neutral region vs. the hydrogen ion concen-
tration n = NJJ+/N0 (curves). Circle—results
of measurements of j(0 = 180°)/j0.

and X that the influence of the electric field on the
motion of the ions in a quasineutral plasma is not very
strong and can be neglected in the approximation. In
addition, at not too small values of nn+ ~ 20%, the
electric field has likewise an insignificant influence on
the heavy oxygen ions (see Ch. IV, formula (46)).
Therefore to calculate the concentration of the plasma
at nu* ^ 20% it is possible to use the formulas of the
neutral approximation1-21. Recognizing that in this ap-
proximation the different ion components of the plasma
are independent, we find that the plasma concentration
on the boundary of the region of maximum rarefaction
is equal to

.V(G)
1 (̂ n+ cos *Focos 0)
--(•V (b + cos cp0)

i + <D (&„. cos (p0cos6)
H

Here *(z) is the probability integral and cp0 is an
angle characterizing the position of the boundary of the
region of maximum rarefaction (see Fig. 25). Formula
(98) describes in the neutral approximation the distri-
bution of the ions on the surface of a body of revolution
with angle (p0 between the axis and the generatrix.
Strictly speaking, it would be necessary to take into
account the fact that the angle (p0 decreases with de-
creasing <p. Therefore, for example, on the frontal
surface of the body we have <p0 ~ 0. This change of
<po, however, leads only to an insignificant change in
the concentration N(#), lying within the limits of ac-
curacy of formula (96). We can therefore regard the
angle <p 0 as a constant, determined for the angle
8 = 180°. In our case, as indicated above, the average
value is <p0 ~ 45°.*

The result of the calculation of the ratio N(0)/No
for cp0 = 45° is shown by the solid curves in Figs. 24b—
e, where it was assumed that Te = 2000°K and v0 = 7.6
x 105 cm/sec; for Fig. 24e it was assumed that Te
= 3000°K and v0 = 7.5 x 105 cm/sec. The agreement
with experiment is seen to be satisfactory. The straight
line in Fig. 26 is plotted in accordance with formula
(98) for 8 = 180° ( Te = 2500°K and v0 = 7.6 x 106

cm/sec). The dashed curve takes into account the
change of the electron temperature and of the velocity

*Of course, the foregoing analysis is valid only for not too highly
charged a body. More accurately, it is necessary to satisfy the condition
I î o | < (Te/e)(R0/D)4/3, where <p0 is the potential of the surface of the
body, Ro is its characteristic dimension, are D = VTe/47re2N0 is the
Debye radius in the unperturbed plasma. At altitudes h ~ 2000—3000
km, this condition is no longer satisfied.
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vo(it was assumed that Te increases linearly from
2000°K at 600 km altitude to 3000°K at 1000 km).
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