1956 г. Октябрь

T. LX, вып. 2

УСПЕХИ ФИЗИЧЕСКИХ НАУК

новые приборы и методы измерений

ПРИМЕНЕНИЕ ЭЛЕКТРОННООПТИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ ДЛЯ ИЗУЧЕНИЯ БЫСТРОПРОТЕКАЮЩИХ ЯВЛЕНИЙ

М. П. Ванюков

ВВЕДЕНИЕ

При исследовании различных явлений, связанных с быстрым перемещением деталей в машинах и механизмах, процессом разрушения материала при ударных нагрузках, горением, детонацией, электрическим разрядом в газах, полётом пуль, снарядов и т. д. приходится сталкиваться с необходимостью фотографической регистрации быстропротекающих процессов. Это осуществляется либо путём непосредственной съёмки всего исследуемого явления с достаточно короткой выдержкой, либо путём фотографирования пространственно-временной развёртки некоторой его части.

В случае фотографирования всего явления короткие экспозиции могут быть получены двумя методами. Один из них основан на применении при фотографировании импульсного освещения, другой осуществляется с помощью различного рода быстродействующих затворов.

Применяя для освещения короткие световые вспышки, получающиеся при электрическом разряде в газе, можно довести выдержку при съёмке до 10^{-7} сек. Дальнейшее уменьшение выдержки в этом случае, повидимому, невозможно вследствие инерционности процессов, обусловливающих излучение света при электрическом разряде в газах¹. Выдержки короче 10^{-7} сек могут быть получены с помощью скоростных затворов. До недавнего времени наиболее короткие выдержки осуществлялись с помощью электрооптического затвора Керра и магнитооптического затвора Фарадея. Однако эти затворы обладают рядом существенных недостатков. Так, например, затвор Керра хотя и позволяет получать выдержки до 10^{-8} сек, однако вследствие большой потери света в поляроидах, невозможности использования световых пучков со значительной апертурой, сильной поглощательной способности нитробензола в области длин волн, короче $\lambda = 3800 - 4000$ Å, с помощью этого затвора можно фотографировать только ярко светящиеся объекты.

За последние годы при фотографировании быстропротекающих явлений нашли себе применение электроннооптические преобразователи, которые позволяют осуществить как быстродействующий затвор, так и высокоскоростную пространственно-временную развёртку.

Электроннооптические преобразователи, как известно, дают возможность трансформировать оптическое изображение, получаемое на фотокатоде, в электронное, а затем, с помощью электроннооптической системы и флуоресцирующего экрана, вновь в видимое, обладающее другим спектральным составом излучения. При этом имеется также возможность превращать изображение в невидимых, инфракрасных лучах в видимое изображение, а также увеличивать в значительной степени яркость изображения, что, как известно, невозможно осуществить с помощью обычной световой оптики. Эти свойства электроннооптических преобразователей явились главной причиной, стимулировавшей их разработку^{3, 4, 5}.

Применение электроннооптических преобразователей для регистрации быстропротекающих явлений основано на использовании возможности практически безинерционного управления электронным изображением с помощью электрических и магнитных полей.

Управление электронным изображением может быть осуществлено двумя способами. Один из них заключается в том, что с помощью импульсного напряжения, прикладываемого к электродам преобразователя, создаётся электронное изображение, существующее в течение заданного короткого промежутка времени. В этом случае электроннооптический преобразователь служит в качестве скоростного безинерционного затвора. Такой затвор имеет ряд существенных преимуществ по сравнению, например, с затвором Керра, так как в этом случае отсутствуют потери света в поляризаторах, применяемых при осуществлении магнито- и электроннооптических затворов, имеется возможность употребления светосильной оптики при проектировании исследуемого явления на фотокатод преобразователя, возможно усиление яркости изображения, регистрируется излучение в более широком спектральном диапазоне. В настоящее время построены электроннооптические затворы, позволяющие получать выдержки порядка 10⁻⁹ сек⁶. Есть основания ожидать, что с этим типом затвора выдержка может быть доведена до 10⁻¹⁰ секунды⁶.

Другой способ управления электронным изображением заключается в том, что с помощью изменяющегося во времени магнитного или электрического полей производится отклонение электронного пучка в преобразователе, в результате чего на его экране получается пространственно-временная развёртка исследуемого быстропротекающего явления. В этом случае из всего явления с помощью узкой

щели обычно выделяют только некоторую его часть, которая и проектируется на фотокатод преобразователя.

Скорость электроннооптической развёртки может намного превосходить скорость оптической развёртки. Так, например, если съёмочные камеры с движущейся плёнкой позволяют получать развёртку со скоростью до 200 *м/сек*⁷, камеры с вращающимся зеркалом — до 4000—5000 *м/сек*^{7,8}, то электроннооптический пресбразователь с магнитным отклонением сбеспечивает скорость развёртки до 300 000 *м/сек*⁷, а с высокочастотным электрическим — примерно до 20 000 000 *м/сек*⁹.

В настоящем сбзоре рассматриваются опубликованные за последние 5—6 лет работы по применению электроннооптического преобразователя в качестве скоростного затвора и для получения электроннсоптической развёртки и в качестве иллюстрации приводятся результаты некоторых исследований, выполненных с применением этих новых и весьма эффективных методов скоростного фотографирования.

1. ЭЛЕКТРОННООПТИЧЕСКИЙ ЗАТВОР И ЕГО ПРИМЕНЕНИЯ

§ 1. Методы осуществления электроннооптического затвора

Первые опыты по осуществлению скоростного электроннооптического затвора были проведены со стандартными электроннооптическими преобразователями с электростатической фокусировкой.

В Советском Союзе работы по применению электроннсоптическото преобразователя в динамическом режиме были начаты по предложению академика А. А. Лебедева ещё в 1949 г., и, как указывают

М. П. Ванюков и Е. В. Нилов¹⁰, уже в 1950 г. были получены положительные результаты по применению трёхэлектродных преобразователей с электростатической фокусировкой типа AEG для осуществления быстродействующего затвора.

В этих работах электроннооптический преобразователь включался

Рис. 1. Схема импульсного включения электроннооптического преобразователя типа AEG.

импульсами напряжения длительностью 1 *мксек* с амплитудой 20 кв, получаемыми с помощью генератора локационного типа. Принципиальная схема включения представлена на рис. 1. При подаче на сетку лампы Λ (ГМИ-83) положительного прямоугольного импульса

небольшой амплитуды, сформированного в подмодуляторе, через лампу А происходит частичный разряд конденсатора С и на нагрузочном сопротивлении $r_1 + r_2$ возникает прямоугольный импульс высокого напряжения. Величина нагрузочного сопротивления в описываемом опыте не превышала 1000 ом. С помощью потенциометра на электродах преобразователя достигалось необходимое для хорошей фокусировки распределение потенциала. Величина сопротивлений г, и r₂ не должна быть слишком большой с тем, чтобы не увеличивать значительно постоянную времени контуров, составленных из этих сопротивлений и соответствующих междуэлектродных ёмкостей преобразователя, что существенно для получения хорошего заднего фронта у импульса, подаваемого на электроды преобразователя. Действительно, в момент запирания лампы А междуэлектродные ёмкости преобразователя, будучи ранее заряженными, начнут разряжаться через сопротивления r_1 и r_2 , вызывая экспоненциальный спад напряжения на электродах преобразователя. Для получения же хорошего качества изображения на электроды преобразователя необходимо подавать импульсы напряжения прямоугольной формы с тем, чтобы в течение всей выдержки напряжённость поля у фотокатода оставалась одинаковой, что необходимо для обеспечения минимального кружка рассеяния электроннооптического изображения, зависящего от напряжённости поля у фотокатода, как это следует из формулы Рекнагеля 11:

$$A = 4 \frac{\varepsilon}{E}$$
,

Рис. 2. Делитель напряжения импульсного включения для преобразователя типа 1Р25.

где A — диаметр кружка рассеяния в *мм*, ε — начальная энергия фотоэлектронов в вольтах, Е – напряжённость поля у фотокатода в в/мм.

> В 1951 г. была опубликована работа Хогана 12, 13, осуществившего импульсное включение стандартного пятиэлектродного электроннооптического преобразователя типа 1Р25. Для включения этого преобразователя необходимо напряжение около 5 кв, распределённое соответствующим обмежду электродами. Такое разом распределение производилось С ПОмощью цепочки (рис. 2), составленной из сопротивлений $R_1 \dots R_4$ и

конденсаторов $C_{E_1} \dots C_{E_3}^{12}$. Ёмкости конденсаторов подбирались таким образом, что в сочетании с междуэлектродными ёмкостями преобразователя они позволяли при подаче на делитель импульсного напряжения получать необходимое распределение потенциала Еа электродах преобразователя независимо от длительности импульса.

Описанные выше затворы были осуществлены на основе использования стандартных преобразователей с электростатической фокусировкой, разработанных для применения в стационарном режиме. На электроды этих преобразователей подавалось импульсное напряжение, равное по величине напряжению, необходимому для формирования изображения в стационарном режиме. Более короткие выдержки и лучшее разрешение по полю удалось получить с помощью описанного Тарноком¹⁴, а также Дженкинсом и Чипендэйлом^{15–19, 33} преобразователя с комбинированной электростатической и магнитной фокусировкой, специально предназначенного для работы в импульсном режиме. Для включения этих трубок требуется сравнительно невысокое импульсное напряжение, величиной около 3 кв. Была предложена также схема для импульсно-

го включения таких преобразователей¹⁵.

На рис. З представлено схематичное изображение электроннооптического пpeобразователя типа МЕ-1201 18, разработанного специально для фотографирования с короткими выдержками. Фотокатод F и флуоресцирующий экран Р наносятся на внутренние стороны плоских торцевых стенок трубки. В преобразователь вводится специальный электрод G, играю-

Рис. 3. Трёхэлектродный электроннооптический преобразователь типа ME-1201 с комбинированной электростати ческой и магнитной фокусировкой.

щий роль сетки в электронной лампе и позволяющий контролировать поток фотоэлектронов. Диаметр экрана преобразователя МЕ-1201 составляет 115 мм, диаметр рабочей части фотокатода — 30 мм; в преобразователе можно получать увеличение изображения вплоть до 4-кратного.

Обычно электроннооптический преобгазователь работает при следующих напряжениях на электродах: $V_{каm} = 0$, $V_{сетка} = +3 \kappa s$, $V_{s\kappa pon} = +6 \kappa s$. Около катодной части трубки располагается фокусирующая катушка. Изменяя величину тока в катушке, можно получить различную степень увеличения изображения в преобразователе. Наилучшее качество изображения получается при увеличении от двух до четырёх раз. Ток в фокусирующей катушке должен быть стабилизирован в пределах 1% для получения разрешающей способности в 20 линий/мм на экране. Электроннооптическая система, состоящая из комбинации электрического и магнитного полей, обладает тем преимуществом, что позволяет получать изображение, имеющее практически равномерное разрешение по всему экрану при плоском фотокатоде и плоском экране. Такие трубки позволяют применять обычные фотографические объективы для проектирования оптического изображения на фотокатод преобразователя.

Наиболее существенными искажениями в электроннооптических преобразователях с комбинированной электростатической и магнитной фокусировкой являются подушкообразная и анизотропная дисторсия¹⁸. Большое влияние градиента поля у фотокатода на качество изображения видно из серии снимков (рис. 4), полученных на преобразователе типа ME-1201 при одном и том же анодном напряжении, но при различных величинах напряжения на электроде-сетке. Искажения становятся малыми, если разность потенциалов между фотокатодом и сеткой превышает 2,5 кв. При изменении потенциала электродасетки G для получения качественного изображения на экране преобразователя необходимо подбирать каждый раз силу тока в фокусирующей катушке. Для запирания потока фотоэлектронов в преобразователе на промежуточный электрод необходимо подать отрицательный по отношению к фотокатоду потенциал, величиною в 60 в.

Для высокоскоростного фотографирования целесообразно изготовлять электроннооптические преобразователи с сурьмяно-цезиевыми фотокатодами, так как спектральное распределение их чувствительности, имеющее максимум около 4000 Å, хорошо согласуется с распределением по спектру излучения импульсных ламп, которое обычно применяется для создания высокого уровня мгновенной освещённости.

Флуоресцирующие экраны преобразователя МЕ-1201 изготовляются из виллемита или сернистого цинка, дающих соответственно зелёное и синее свечение. Спектральная кривая излучения экрана с сернистым цинком хорошо согласуется со спектральной чувствительностью высокочувствительных панхроматических фотоплёнок. По фотографическому действию ZnS в 5 раз более эффективен, чем виллемит. Экраны покрываются слоем алюминия, который защищает их от отравления цезием и не пропускает свет, проходящий через полупрозрачный фотскатод. Оба типа экрана могут быть изготовлены с разрешающей способностью не менее 50 штрихов/мм.

Схема включения электроннооптического преобразователя МЕ-1201, применявшаяся при фотографировании последовательных стадий развития свечения в импульсной лампе, представлена на рис. 5¹⁸. На экран преобразователя подаётся постоянное напряжение -6 кв. Средний электрод (сетка) и фотокатод присоединяются к анодам двух водородных тиратронов S_2 и S_1 соответственно. Потенциал на фотокатоде подбирается примерно на 100 вольт более положительным, чем на сетке. В этих условиях преобразователь заперт и на экране изображение отсутствует. Преобразователь включается в тот момент, когда на сетку водородного тиратрона S_1 подаётся положительный импульс, в результате чего тиратрон открывается, и напряжение на фотокатоде падает с 3 кв до -60 в за промежуток времени порядка 10⁻⁸ сек (время открывания водородного тиратрона). Преобразователь вновь закрывается в тот момент, когда положительный

импульс подаётся на сетку тиратрона S2, открывает его, и промежуточный электрод преобразователя оказывается под потенциалом земли. Интервал времени между моментом открывания тиратронов S₁ играющих в данном случае роль безинерционных клюи S₂, чей, определяет выдержку, осуществляемую электроннооптическим затвором. Этот интервал времени, а также задержка в открывании затвора относительно момента включения импульсной лампы Е, осуществляется остальной частью схемы, которая работает следующим образом. При замыкании ключа S₀ открывается тиратрон Ta и через него и первичную обмотку повышающего трансформатора Тр разряжается конденсатор, давая во вторичной обмотке трансформатора Тр высоковольтный импульс, необходимый для включения импульсной лампы. Сигнал с катодного сопротивления тиратрона Тb интегрируется и может дать задержку в открывании тиратрона Тс вплоть до 100 мксек. Сигнал, снимаемый с катодного сопротивления тиратрона Tc, разделяется по двум каналам. Тиратрон T_1 открывается через фиксированную задержку во времени, определяемую интегрирующей цепочкой с постоянными параметрами. Т₂ открывается с регулируемой задержкой во времени и может запаздывать относительно открыеания T₁ на промежуток времени до 2 мксек. Одновременно с тиратронами T_1 и T_2 открываются тиратроны S_1 и S_2 . Из схемы видно, что переменное сопротивление R_1 управляет моментом съёмки, а R_2 определяет выдержку электроннооптического затвога. Описываемая схема позволяет получать выдержки вплоть до 3 - 4.10-8 сек. При дальнейшем сокращении интервала времени между моментами открывания тиратронов S₁ и S₂ наблюдается тенденция к изменению формы импульса напряжения, прикладываемого к электродам пресбразователя, а именно, прямоугольный импульс постепенно переходит в треугольный, что приводит к ухудшению качества изображения. Синхронизация в этой схеме может поддерживаться с точностью до долей микросекунды. Недостатком тиратронной схемы является невозможность осуществления её работы при высокой частоте повторения, поэтому она не может быть применена, например, для целей стробоскопирования.

Выдержки длительностью до 10^{-7} сек были получены с преобразователем типа ME-1201 при включении его прямоугольным импульсом напряжения, получаемым путём разряда через нагрузочное сопротивление и водородный тиратрон отрезка коаксиального кабеля (RG-8/u) длиной 66 футов ²⁰. Такой затвор был применён для фотографирования взрывов.

Более короткие выдержки, не превышающие 4.10⁻⁹ сек, были получены с двухэлектродными электроннооптическими преобразователями, конструкция которых обеспечивает минимальную индуктивность вводов ⁶. Импульс прямоугольного напряжения, необходимый для включения преобразователя, получается в этом случае путём разряда на нагрузочное сопротивление отрезка коаксиального кабеля,

ПРИМЕНЕНИЕ ЭЛЕКТРОННООПТИЧЕСКОГО ПРЕ ЭБРАЗЭВ \ТЕ 19

в качестве диэлектрика, в котором применяется полиэтилен. Волновое сопротивление кабеля составляет 13 ом. Схематичное изображение преобразователя и его подключение к коаксиальной линии представлено на рис. 9. Преобразователь имеет низкоомный сурьмяноцезиевый фотокатод диаметром 25 мм и флуоресцирующий экран диаметром 112 мм. Введённая внутрь преобразователя стеклянная трубка Д обеспечивает изоляцию между фотокатодом и анодом, который представляет собой проводящий слой алюминия, нанесённый на внутреннюю стенку преобразователя, начиная от места впая трубки Д и до

Рис. 5. Схема для получения однократных снамков с выдержкой от 3.10⁻⁸ до 2.10⁻⁶ сек с преобразователем ME-1201.

экрана F, имеющего алюминиевую подложку. Выводы анода осуществляются с помощью четырёх вольфрамовых впаев, соединяемых кольцом из серебра, нанесённого на стекло. С помощью пружин обеспечивается контакт между выводами электродов преобразователя и коаксиальным кабелем. Нагрузочные сопротивления r располагаются вокруг преобразователя. Трубка выдерживает 8 кв при постоянном анодном напряжении и 15 кв при импульсном, если длительность импульсов не превышает 10^{-8} сек.

Ещё более короткие выдержки, вплоть до 10⁻¹⁰ сек, можно, вероятно, получить с электроннооптическим преобразователем типа стакана Холста, включаемого прямоугольным импульсом напряжения, формируемым при разряде коаксиального кабеля с малым (порядка 1,5 ома) волновым сопротивлением.

М. П. ВАНЮКОВ

§ 2. Получение однократных снимков

При исследовании легко воспроизводимых явлений целесообразно применять метод однократного фотографирования. Повторяя явление и производя его съёмку в различные стадии, можно получить серию снимксв, достаточно хорошо показь взющих развитие явления во времени. Выбор выдержки определяется в первую очередь яркостью фотографируемого объекта. Так, например, снимки вращающегося диска, освешаемого импульсной лампой, были получены на преобрасователе 1Р25 с выдержкой в 2 *мксек*¹². Различные стадии свечения самой импульсной лампы фотографировались с выдержкой в 0,1 *мксек*¹⁸. Хорошие снимки взрывных явлений были получены с выдержкой в 0,03 *мксек*¹³, а развитие стримера искрового разряда с выдержкой порядка 0,001 *мксек* в случае применения электроннооптических пресбразователей с повышенным анодным напряжением⁶.

Приведём в качестве примера некоторые снимки, полученные с помощью электроннооптического пресбразователя, используемого в качестве скоростного затвора. На рис. 6 представлена серия сним-

Рис. 6. Различные стадии свечения разряда в импульсной лампе LSD2, снятые через электроннооптический преобразователь ME-1201 с выдержкой 0,1 *мксек. а* — расположение электродов в лампе; б, в, г, д, е — свечение лампы в различные моменты времени от начала разряда.

ков, показывающая различные стадии развития свечения в импульсной лампе типа LSD2¹⁸. Последовательные стадии развития канала искрового разряда в аргоне представлены на рис. 7, a, δ , s^{10} . В стадии послесвечения (рис. 7, z) наблюдается отрыв светящегося облака от электродов искрового промежутка, что, повидимому, вызвано значительным охлаждением газа, соприкасающегося с металлическими электродами.

Интересные явления происходят при расширении светящегося канала искрового разряда в атмосфере водорода, как показывают

Рис. 7. Снимки свечения искрового разряда в атмосфере аргона. *а*, *б*, *в* — свечение разряда при давлении 15 *атм*, снятое с выдержкой 0,4 *мксек* в различные моменты времени от начала разряда; *г* — свечение разряда при давлении 8 *атм*, снятое с выдержкой в 2 *мксек* через 25 *мксек* после начала разряда (стадия послесвечения).

фотографии, снятые через электроннооптический преобразователь ME-1201 с выдержкой в 0,5 *мксек*²¹. На рис. 8 показано распределение интенсивности излучения поперёк канала в различные моменты времени. Примерно через 1 *мксек* после начала разряда интенсивность излучения на краях канала становится больше, чем в его центральной части, а через 3 *мксек* появляется дополнительное яркое свечение в центре канала. Авторы работы предполагают, что последнее явление обусловлено металлическими парами, поступающими из электродов. В стадии послесвечения (через 5 *мксек* после начала разряда), когда ток в разрядном контуре прекращается, наблюдается ослабление яркости свечения на краях канала.

Электроннооптический преобразователь с импульсным включением был применён Е. К. Завойским, Г. Е. Смолкиным, А. Г. Плаховым и М. М. Бутсловым²² для фотографирования треков ионизирующих частиц в люминесцирующих веществах. След ионизирующей частицы проектировался на фотокатод преобразователя, который включался импульсом напряжения в момент появления светящегося трека. Син-

Рис. 8. Распределение интенсивности излучения в канале искрового разряда в водороде. Давление p = 760 мм; I = 1500 а,выдержка t = 0,5 мксек.

хронизация ссуществлялась с помощью фотоэлектронного умножителя. В работе приводятся фотографии звёзд, образующихся при бомбардировке быстрыми нейтронами кристалла иодистого цезия, активированного таллием (π —µ-распад), и др.

Развитие стримера искрового разряда было сфотографировано с помощью электроннооптического затвора Саксом и Чипендайлом⁶, применившими описанную в предыдущем параграфе двухэлектродную трубку. Схема их установки изображена на рис. 9. Электрическая искра и импульс напряжения, включающий электроннооптический преобразователь, по-

лучаются за счёт разряда коаксиальной линии, центральная часть которой состоит из двух секций A и B.

Через сопротивление *R* секция *A* заряжается до напряжения 30 кв. Расстояние между секциями *A* и *B* подбигается таким образом, что

Рис. 9. Схема установки для изучения стримерного разряда.

при достижении полного напряжения происходит искровой пробой. Через интервал времени t, равный времени прохождения электрической волны вдоль секции B коаксиальной линии, на нагрузочном сопротивлении, включённом параллельно электродам преобразователя,

появится прямоугельный импульс напряжения амплитудой окело 15 кв, и пресбразователь включится. Свет от искрового промежутка проходит оптический путь STUVE и с помощью линз L и зеркал M фокусируется на фотокатод E преобразователя. Передвигая зер-

Рис. 10. Рост стримера искрового разряда. Электроннооптический преобразователь открывается на промежуток времени порядка $4,5 \cdot 10^{-9}$ сек. Относительная задержка во времени (а)—0; (б)—1,3 · 10⁻⁹ сек; (в)—3,4 · 10⁻⁹ сек.

кало M, Ξ можно изменять длину оптического пути, проходимого пучком света, и вводить тем самым необходимое запаздывание момента прихода света на фотокатод. Этим методом были получены снимки (рис. 10) различных стадий развития стримера, сбщая длительность которого составляет около $4 \cdot 10^{-9}$ сек.

§ 3. Получение серии последовательных снимков

В ряде случаев встречается необходимость получать серию последовательных снимков одного и того же явления (в отличие от приведённых в предыдущем пагаграфе серий снимков, полученных путём фотографирования повторно воспроизводимых явлений в различные

стадии их развития). Такую серию можно получить с помощью электроннооптического преобразователя двумя способами. Можно включать преобразователь через определённые интервалы времени и фотографировать экран на движущуюся фотоплёнку. Трудность осуществления такой съёмки при высокой частоте повторения заключается в том, что высвечивание флуоресцирующего экгана преобразователя сбладает значительной инерционностью. Так, например, экран из сернистого цинка обладает послесвечением, длительность которого, определяемая по спаду яркости до 75% от максимального значения, составляет ~10 *мксек*¹⁸. Наиболее безинерционные люминофоры, доступные в настоящее время для изготовления экранов электроннооптических преобразователей, характеризуются послесвечением в 4 *мксек*¹⁸ (определяемым по спаду яркости от максимального значения до половинной его величины). Возможности рассматриваемого метода съёмки могут быть значительно расширены, если будут разработаны безинерционные люминофоры, обладающие достаточной светоотлачей.

Другой способ получения серии снимков заключается в том, что изображение отклоняется на различные участки экрана и при этом преобразователь открывается в различные моменты времени²³. Этот метод не лимитируется длительностью послесвечения экрана, но не даёт возможности получения большого количества снимков. Для перемещения изсбражения по экрану преобразователя может быть применено магнитное поле, получаемое с помощью двух пар отклоняющих катушек. Электронное изображение при этом смещается в двух взаимно перпендикулярных направлениях. С помощью такого устройства был заснят вращающийся с частотой 3600 об/мин пропеллер²³. Переключение тока в катушках производилось в данном случае механическим путём. Осуществлялись, кроме того, системы с чисто электронной коммутацией. Одна из них позволяла получать 8 снимков с выдержкой 0,5 мксек²¹, другая — 9 снимков с выдержкой 0,1 мксек при интервале времени между снимками 0,5 *мксек*²⁴. В последнем устройстве применялись трубки типа МЕ-1201 АА.

§ 4. Высокочастотный стробоскоп

С помощью электроннооптического преобразователя может быть осуществлён стробоскоп, позволяющий наблюдать периодически повторяющиеся явления со значительно большей частотой, чем это можно достигнуть с обычными стробоскопами. Исследуемый объект освещается в данном случае постоянным источником света и рассматривается через электроннооптический преобразователь, включаемый короткими импульсами напряжения.

Электрические схемы, предназначенные для включения электроннооптических преобразователей импульсами напряжения, следующими с большой частотсй повторения, существенно отличаются от схем, применяемых для однократного импульсного включения преобразователей. При высокочастотном. включении пресбразователей приходится учитывать потребляемую схемой мощность, а также исключается возможность использования в схеме тиратронов.

На рис. 11 приведены схемы импульсного включения на высокой частоте преобразователя типа 1Р25А ¹³. Через лампу 6ВG6G нормально протскает ток величиной 100 ма. При подаче на её сетку отрицательного импульса анодный ток прерывается и энергия, запасённая в магнитном поле тока, протекающего через катушку L, выделяется в сопротивлении R_L , величина которого составляет 50 000 ом.

Индуктивность катушки L выбирается достаточно большой с тем, чтобы через сопротивление протекал ток, примерно равный 100 ма в течение всего времени приложения к сетке лампы

Рис. 11. Схема импульсного включения преобразователя 1Р25А в стробоскопе.

отрицательного импульса. Этот ток даёт на сопротивлении R_L импульс напряжения амплитудой около 5000 в, что вполне достаточно для хорошей работы преобразователя 1Р25А. В этой схеме, однако, трудно получить импульсы напряжения строго прямоугольной формы вследствие наличия в катушке индуктивности значительной распределённой ёмкости.

На рис. 12 приводится схема для включения электроннооптического преобразователя ME-1201 как стробоскопа¹⁷.

Электроннооптические стробоскопы находят себе применение для изучения распространения ультразвуковых волн, пламён, упругих волн в прозрачных средах и т. д. Один из таких стробоскопов быль осуществлён для работы с частотами до 20 000 ги при выдержках в 1 мксек¹⁵, другой с частотами от 50 до 300 000 ги¹³. Возможно

Рис. 12. Схема включения преобразователя МЕ 1201 в стробо копе.

дальнейшее повышение частоты электроннооптического стробсскопа вплоть до 1 *мец*¹².

§ 5. Возможность осуществления цветного телевидения

С помощью импульсного включения электроннооптического преобразователя может быть осуществлена чисто электронная схема цветного телєвидения¹³. Принцип действия такого устройства состоит в следующем. Если на экране обычной телевизионной трубки возникают поочерёдно изображения, соответствующие изображениям в трёх основных цветах, то расщепляя их оптическим путём на три изображения с помощью системы плоских зеркал и рассматривая через три электроннооптических преобразователя, которые могут включаться поочерёдно импульсами напряжения, можно получить трёхцветное изображение. Экран телевизионной трубки должен иметь свечение белого цвета. Экраны электроннооптических преобразователей должны давать свечения, соответствующие основным передаваемым цветам, что может быть осуществлено путём установки перед ними соответствующих цветных светофильтрсв. Изображения

экранов всех трёх преобразователей совмещаются далее оптическим путём на проекционном экране. Преобразователи включаются импульсами напряжения поочерэдно на промежутки времени, в течение которых на телевизионной трубке возникает изображение, соответствующее одному из одноцветных изображений. Такое включение осуществляется посредством импульсов синхронизации кадровой разгёр ки, которые с помощью специального разделителя распределяются по трём каналам. При достаточно быстром повторении наложения одноцветных изображений зритель будет видеть на проекционном экране многоцветное изображение передаваемого объекта.

§ 6. Ошибки изображения, возникающие при импульсном включении электроннооптического преобразователя

При включении преобразователя короткими импульсами напряжения на его экране возникает изображение с искажениями, не встречающимися при работе трубок в стационарном режиме. Такие искажения в преобразователях с комбинированной электростатической и магнитной фокусировкой описаны в работе Тарнока¹⁴. Ссответствующие искажения в преобразователях с электростатической фокусировкой наблюдались М. П. Ванюковым и Е. В. Нидовым¹⁰.

На рис. 13 представлена серия снимков, показывающая искажения в передаче изображения на преобразователе типа ME-1201,

Рис. 13. Искажения изображения, возникающие на экране преобразователя ME-1201 при сильном местном освещении фотокатода. (а) — изображение миры, проектируемой на фотокатод, (б), (в), (г) — изображение миры на экране преобразователя при импульсном его включении и различных уровнях освещённости фотокатода. Освещённость в (в) и (г) соответственно в 2 и 4 раза больше, чем в (б).

имсющем комбинированную электростатичсскую и магнитную фокусировку, при включении его импульсами напряжения, длительностью 0,1 *мксек* и при высокой ссвещённости фотокатода¹⁸.

Для объяснения наблюдаемого явления делается предположение, что в течение выдержки происходит сильная эмиссия с наиболее

освещённых мест фотокатода, в результате чего эти места заряжаются до потенциала, примерно равного потенциалу среднего электрода. Такого рода местные кратковременные заряды могут создавать тангенциальное поле на поверхности фотокатода, которое оказывает сильное влияние на электроны, вылетающие с малыми начальными скорестями. Можно установить предельную освещённость фотокатода, допустимую для неискажённой передачи изображения. В случае однокгатного включения пресбразователя с заданной выдержкой эта освещённость в конечном счёте определяет плотность почернения негатива, получаемого при фотографировании изображения с экрана преобгазователя. Так, например, при применении стандартных трубок ME-1201 и выдержки в 0,1 *мксек* практически не удаётся получить негативы с плотностями почернения больше 0,5 при неискажённой передаче изображения.

Обследование стандартных электроннооптических преобразователей с электростатической фокусировкой типа AEG при включении их короткими импульсами напряжения, длительностью 0,4—10 мксек, показало¹⁰, что некоторые из них давали при этом качество изображения такое же как и при постоянном питании. Наряду с этим у других экземпляров разрешающая способность падала почти вдвое при питании их импульсами длительностью порядка 8—10 мксек.

В случае дальнейшего сокращения длительности включающих импульсов разрешающая способность этих трубок падала ещё больше, а у некоторых образцов изображение полностью отсутствовало при длительностях импульсов порядка 1 *мисек*.

Описанные выше явления сбусловлены, повидимому, неодинаковой скоростью протекания переходных процессов у преобразователей, имеющих различные величины сопротивлений слоя фотокатодов на единицу его поверхности.

Действительно, вследствие наличия у фотокатода сопротивления, при подаче на электроды преобразователя прямоугольного импульса напряжения потенциал на фотокатоде выравнивается не мгновенно, а в течении некоторого интервала времени, зависящего от величин сопротивления слоя и соответствующей междуэлектродной ёмкости. В результате этого происходит заметное искажение поля в преобразователе. Эквипотенциальные линии поля в момент включения импульса, когда между центром фотокатода и его периферийной частьювозникает разность потенциалов, равная напряжению приложенного импульса + Е кв, представлены на рис. 14, а. У фотокатода образуется дополнительное поле (E1 – E5), препятствующее вылету фотоэлектронов. С течением времени это поле уменьшается и в преобразователе устанавливается нормальное поле электроннооптической линзы. Интервал времени, который необходим для исчезновения дополнительного поля, зависит от величины поверхностного сопротивления фотокатода. Этим объясняется то обстоятельство, что у некоторых преобразователей габлюдается отсутствие изображения

при коротких (порядка долей мксек) импульсах. На рис. 14, б показано поле у фотокатода, обгазующееся в момент выключения импульса. В этом случае изображение будет также отсутствовать, так как почти все электроны попадут на стенки колбы и лишь небольшая часть их достигнет экрана. Описанные выше недостатки в работе

a)

Рис. 14. Эквипотенциальные линии поля в электроннооптическом преобразсвателе в момент включения (а) и в момент выключения (б) импульса.

Рис. 15. Зависимость диаметра изображения канала искрового разряда на экране преобразователя от уровня освещённости на фотокатоде.

электроннооптических преобразователей могут быть в значительной мере устранены путём применения фотокатодов с малым сопротивлением на квадрат его поверхности.

Было установлено, что при создании высокого уровня освещённости на фотокатоде качество изсбражения, возникающего на экгане пресбгазователя, значительно ухудшается. Большая освещённость (порядка 106 люкс) создавалась путём проектирования на фотокатод преобразователя канала искрового газряда. Уровень освещённости изменялся посредством различной степени диафрагмирования проектирующего объектива. Преобразователь включался импульсами напряжения длительностью 0,4 *мксек*.

Было обнаружено, что в зависимости от величины относительного отверстия объектива, проектирующего канал на фотокатод, размеры изображения канала на экгане преобгазователя изменяются. На рис. 15 представлен график, выражающий зависимость диаметга изображения канала d' на экране от относительной величины ссвещённости на фотокатоде, выражаемой через величину $\left(\frac{d}{f}\right)^2$, где d — действующий диаметр объектива, а f — его фокусное расстояние. При постепенном увеличении освещённости, начиная с некоторой её величины, отмеченной на графике буквой k, диаметр поперечного сечения канала сначала постепенно уменьшается, а затем, после достижения минимума, вновь возрастает. Продольный размер канала претерпевает аналогичные изменения. При перегрузке фотокатода наблюдается также перераспределение яркости в изображении, возникающем на экране преобразователя. Кгая изображения кажутся более яркими, чем середина.

На рис. 16 показана микрофотограмма снимка канала, полученного с экгана пресбразователя при значительной перегрузке фото-

Рис. 16. Микрофотограмма снимка канала искрового разряда, полученного при сильной перегрузке фотокатода.

центре. В это отверстие проектируется изображение разряда в капиллярной трубке. Тело свечения у такого искрового промежутка имеет форму кружка, диаметр которого равен диаметру внутреннего отверстия трубки²⁵. Остальная часть миры освещалась рассеянным светом. Если в центре миры создаётся большая освещённость, то по всему экрану наблюдается ярко выраженная подушкообразная дисторсия. Плавно изменяя освещённость на фотокатоде, можно легко установить тот уровень освещённости, котогый соответствует пере-

тельной перегрузке фотокатода. Фотометрирование производилось в направлении, перпендикулярном к оси канала. По оси абсцисс на графике отложены расстояния d'.

При местной перегрузке фотокатода наблюдается нарушение работы всей электроннооптической системы. что можно иллюследующим стрировать опытом. Непосредственно перед фотокатодом электронносптического преобразователя устанавливается мира, имеющая вид прямоугольной сетки С круглым отверстием B

даче неискажённого изображения. Для хорошо работающего в импульсном режиме преобразователя неискажённое изображение на экране было получено при плотностях фототока, не превосходящих 80 мка/см².

Описанные выше искажения изображения, возникающие при больших мгновенных освещённостях, можно объяснить с точки зрения наличия объёмного заряда у поверхности фотокатода и потенциального рельефа на нём. Объёмный заряд, возникающий у поверхности фотокатода, действует на вылетающие электроны следующим образом. Во-первых, он препятствует вылету электронов, причём этовлияние сказывается сильнее в центральной части изображения, чем у краёв. Ссответственно этому происходит перераспределение яркости изображения на экране (рис. 16). Аналогичные явления были обнаружены также при перегрузке фотокатода преобразователя типа ME-1201²¹. Во-вторых, образование объёмного заряда приводит к изменению траектории электронов. Электроны, пролетающие через центральную часть объёмного заряда, мало отклоняются от своего обычного направления движения, так как вследствие симметрии силы, действующие на электроны со стороны этого заряда, малы. Траектория электгона, пролетающего граничные участки объёмного заряда, будет значительно искажена вследствие отталкивающего действия всего заряда. Наличие у фотокатода поверхностного сопротивления значительной величины приводит к тому, что потенциал освещённой части катода не может выравняться с потенциалом неосвещённой его части. Освещённый участок приобретает положительный заряд, и у поверхности фотокатода создаётся «потенциальный рельеф», который искажает траектории фотоэлектронов. Образующаяся электронная линза, изсбражённая на рис. 14, а, действует на электроны как ссбирательная.

Немонотонный ход кривсй, выражающий зависимость размера изображения от уровня освещённости (рис. 15), может быть приписан совместному действию потенциального рельефа и объёмного заряда на электронное изображение в преобразователе. Естественно предположить, что в первую очередь начинает сказываться потенциальный рельеф, так как объёмный заряд сильно рассасывается полем, имеюшим большой градиент около фотокатода. При достижении определённого уровня освещённости, отмеченного на рис. 15 точкой K, начинает сказываться собирательная линза, образующаяся за счёт потенциального рельефа на фотокатоде, и происходит уменьшение размера изображения. Дальнейшее увеличение освещённости приводит к тему, что около фотокатода скапливается объёмный заряд, приводящий, как уже указывалось, к увеличению размера изображения.

При осуществлении скоростных затворов с электроннооптическими пресбразователями в первую очередь обращают внимание на изготовление фотокатодов с малой величиной сопротивления

слоя. Так, например, при разработке трубок МЕ-1201 величина сопротивления слоя была снижена с миллионов ом на квадрат до сотен ом на квадрат¹⁵. При этом чувствительность применяемых в трубках сурьмянсцезиевых фотокатодов упала с 60 мка/лм до 20 мка/лм, Кроме того, при получении однократных снимков с малыми выдержками приходится ограничивать уровень освещённости на фотокатоде с тем, чтобы избежать образования значительного объёмного заряда.

§ 7. Возможность повышения разрешающей способности электронных линз при импульсном их включении

В предыдущем параграфе были рассмотрены ошибки изображения, возникающие при импульсном включении электроннооптических пресбразователей, и пути к их устранению. Теперь рассмотрим принципиальные возможности повышения разрешающей способности электронных линз при импульсном их включении.

Как уже указывалось¹¹, разрешающая способность электроннооптических иммерсионных объективов определяется начальной энергией фотоэлектронов и градиентом поля у фотокатода. Следовательно, для повышения разрешающей способности необходимо увеличивать напряжённость поля у фотокатода. Увеличению этого параметра обычно препятствует пробой, наступающий между катодом и остальными электродами.

Опыты, проведённые Г. В. Спиваком и Е. М. Дубининой 26 , 27 с импульсным включением иммерсионного электроннооптического объектива, показали, что при подаче на электроды объектива прямоугольного импульса напряжения, длительностью порядка 1-10 мксек, потенциал пробоя удаётся поднять в 5-7 раз по сравнению со случаєм стационарного питания той же системы. Такое повышение потенциала пробоя вызвано тем, что длительность импульса по порядку величины соответствует времени, необходимому для развития пробоя.

В опытах Г. В. Спивака и Е. М. Дубининой для получения изображения катода применялся трёхэлектродный объектив. При питании этого объектива импульсами напряжения амплитудой в 2 кв для создания необходимых градиентов поля у катода электроды объектива сближались на расстояние порядка 0,08 мм.

Объектив мог выдерживать без пробоя 2000 в импульсного напряжения при длительности прикладываемых импульсов 2 *мксек*, в то время как постоянно приложенное напряжение 300 в приводило к прсбою. Переход к импульсному напряжению позволяет повысить градиент поля у катода с 4,5 кв/см до 30 кв/см. При этом наблюдается значительное повышение разрешающей способности сбъектива, что было установлено путём фотографирования структуры оксидного катода.

Если форму импульса, подаваемого на электроннооптический преобразователь, представить в виде трапеции, то можно показать, что разрешаемое расстояние в будет определяться формулой ²⁶:

$$\hat{v} = \frac{8\varepsilon \left[(a - E_0) S + l \right]}{\left(a^2 - E_0^2 \right) S + 2al},$$

где є — средняя начальная энергия вылета электронов, равная в случае термоэмиссии kT, E_0 — начальное электрическое поле у катода, которое обеспечивает минимальный контраст на экране, a — амплитуда импульса, l — длительность максимального напряжения в импульсе 1

$$S = \frac{1}{\lg \alpha} + \frac{1}{\lg \beta},$$

где α и β — углы, образованные боковыми сторонами трапеции с основанием.

Приведённое выше соотношение показывает, что разрешение улучшается с увеличением амплитуды импульса и при приближении его формы к прямоугольной.

И. Н. Прилежаева, В. В. Лившиц и Г. В. Спивак²⁸ провели электроннооптическое изучение нестационарной эмиссии оксидного катода в вакууме и газе при импульсном питании иммерсионного объектива.

Описанные выше опыты показывают, что при осуществлении быстродействующего затвора с помощью электронной оптики, включаемой импульсом напряжения, имеется возможность получать изображение лучшего качества, чем даёт эта же оптика при питании постоянным напряжением.

II. ЭЛЕКТРОННООПТИЧЕСКАЯ РАЗВЁРТКА И ЕЁ ПРИМЕНЕНИЯ

§ 1. Методы осуществления развёртки

Электроннооптический преобразователь может быть применён также для осуществления высокоскоростной пространственно-временной развёртки световых явлений. В отличие от затвора, который позволяет получать изображение всего быстропротекающего явления в некоторые дискретные моменты времени, развёртка даёт возможность непрерывно проследить за пространственно-временными изменениями, происходящими, в общем случае, лишь в некоторой части исследуемого явления. Обычно оптическая развёртка применяется для изучения явлений, связанных с сильным собственным свечением. Перед исследуемым свечением устанавливается узкая щель, которая проектируется либо на вращающуюся фотоплёнку, либо с помощью вращающегося зеркала на неподвижную плёнку. Щель располагается параллельно оси вращения барабана, несущего фотоплёнку, или в случае зеркальной развёртки — параллельно оси вращения зеркала. Вследствие неодновременного высвечивания раз-

10 УФН, т. LX, вып. 2

личных участков щели на снимках развёртки наблюдается некоторая кривая линия, по наклону касательной к которой можно определить скорость развития световых явлений в различные моменты времени в направлении щели, зная масштаб съёмки и скорость развёртки. Преимущество электроннооптической развёртки перед обычной оптической развёрткой заключается в том, что она осуществляется без применения подвижных устройств и позволяет достигать значительно больших скоростей. Такая развёртка может быть получена путём отклонения электронного потока, участвующего в образовании электронного изображения с помощью линейно изменяющегося магнитного или электрического полей.

На рис. 17 изображена схема установки Коуртней-Пратта²⁶, предназначенной для развёртки на электроннооптическом преобразо-

Рис. 17. Схема расположения аппаратуры для получения пространственновременной развёртки свечения, возникающего при детонации взрывчатого вещества.

вателе свечения, возникающего при детонации плёнки взрывчатого вещества. Эта плёнка располагается между стеклянными и металлическими блоками и с ломощью электрической искры инициируетск её детонация, начинающаяся в средней части щели. Освещённая взрывом щель проектируется на фотокатод преобразователя в виде светящейся вертикальной линии AB. При отсутствии отклоняющих полей на флуоресцирующем экране будет наблюдаться тоже прямая вертикальная линия. Если же на электронный поток электроннооптического преобразователя воздействовать линейно изменяющимся во времени вертикальным магнитным полем, то на его экране будет наблюдаться временная развёртка выделяемого щелью свечения. В первых опытах развёртка осуществлялась на трёхэлектродных преобразователях типа AEG²³. Однако при отклонении изображения в этих преобразователях наблюдается появление значительной дисторсии. Лучшие результаты можно получить с двухэлектродными преобразователями типа ME-1201, специально разработанными для осуществления электроннооптической развёртки¹⁶ (рис. 18). В этом

преобразователе фотокатод A и покрытый тонким слоем алюминия флуоресцирующий экран наносятся на плоские торцевые стенки колбы. Металлизация, нанесённая на внутренней поверхности трубки G, соединяется с флуоресцирующим экраном, находящимся обычно под потенциалом —6 кв относительно фотокатода. В преобразователе ME-1200 применяется комбинированная электрическая и маг-

Рис. 18. Электроннооптический преобразователь типа МЕ-1200, предназначенный для получения развёртки изображения с помощью магнитного отклонения.

нитная фокусировка. При изменении тока в фокусирующей катушке на экране трубки может быть получено отчётливое изображение с различным увеличением, вплоть до четырёхкратного.

При питании катушки *D* током, стабилизированным в пределах 1%, разрешение в 20 штрихов/мм может быть достигнуто.

Рис. 19. Электрическая схема для магнитного отклонения изображения на электроннооптическом преобразователе.

R = 470 KOM, C = 0.5 MKG,L=1,1 M2H, V₁=2D21, V₂=6 \times 5. по всему экрану, имеющему диаметр 115 мм.

Электрическая схема для получения импульса тока в отклоняющих катушках представлена на рис. 19¹⁴. Конденсатор С заряжается через сопротивление R от источника постоянного напряжения и разряжается через отклоняющие: катушки L при открывании тиратрона V₁. Хотя ток в катушке имеет синусоидальную форму, но в пределах первых 30° колебательного цикла его можно считать изприблизительно меняющимся по линейному закону. Диод V₂ служит для ограничения паразитных колебаний в отклоняющих катушках L.

С тиратроном типа 2D21, имеющим аргоновое наполнение, была получена скорость развёртки 1,1 км/сек. С водородным тиратроном ВТ83 была достигнута скорость отклонения изображения на экране преобразователя 22 км/сек. Для получения развёртки со скоростью 10*

м. п. ванюков

до 300 км/сек применяется генератор незатухающих синусоидальных колебаний⁷, в колебательный контур которого в качестве составной части входит индуктивность отклоняющих катушек.

§ 2. Применения электроннооптической развёртки

Электроннооптическая развёртка была применена для исследования свечения, возникающего при детонации азода свинца (рис. 20)¹⁶. Определённая из снимка скорость распространения

Рис. 20. Пространственно-временная развёртка свечения, возникающего при взрыве плёнки азида свинца.

фронта детонации составляет 2000 м/сек. Высвечивание отзёрен дельных азода свинпродолжается в течение ца 7.10-8 сек. Разгорание свечезёрен происходит ния за 10-8 сек. При скорости развёртки, превышающей 100 км/сек, и разрешающей способности преобразователя в 20 штр/мм флуоресцирующем экране i:a имеется возможность разделить события с интервалом времени между ними в 10⁻⁹ сек. Используя высокое разрешение во электроннооптической времени развёртки, Коуртней-Пратт экспериментально наблюдал запаздывание в прохождении световым сигналом пути всего в 2.6 *M*²⁹.

М. П. Ванюков, В. И. Исаенко и Л. Д. Хазов³⁰ применили

электроннооптический преобразователь с кислородно-серебряно-цезиевым фотокатодом для исследования пространственно-временного развития свечения канала искрового разряда в видимой и инфракрасной областях спектра и ударной волны, образующейся при разряде. Оптическая схема установки для фотографирования развёртки ударной волны представлена на рис. 21. Исследуемый искровой промежуток S_2 проектируется объективом O_2 с увеличением $3 \div 4$ раза на щель в диафрагме D_2 , установленной перед фотокатодом преобразователя. Подсвечивающая вспышка получалась в этой работе в щелевом искровом разрядном промежутке S_1 . Свечение этого промежутка проектируется объективом O_1 на щель в диафрагме D_1 , имеющей размер, соответствующий изображению щелевого источника S_1 . Цель D_2 устанавливается перпендикулярно осям искровых промежутков S_1 и S_2 и щели D_1 . Если в искровом промежутке S_2

возникает ударная волна, то она вызывает отклонение лучей в пучке света, излучаемого промежутком S_1 , и при этом лучи не попадают в щель D_1 в результате чего в плоскости фотокатода образуется теневое изображение ударной волны. Изображение на экране преобразователя фотографируется фотоаппаратом F.

В той же установке проводилось исследование пространственновременного развития свечения, возникающего при искровом разряде. В этом случае свечение фотографировалось через светофильтр $C\Phi$, пропускающий в одном случае сине-фиолетовое излучение, а в дру-

Рис. 21. Схема оптической установки для фотографирования с экрана электроннооптического преобразователя развёртки ударной волны и свечения, возникающих при искровом разряде.

гом — инфракрасное. На рис. 22 приведена фотография развертки сине-фиолетового (*a*) и инфракрасного (б) свечения искрового разряда в воздухе, осуществляемого при следующих параметрах разрядного контура: C = 0,05 мкф, V = 13 кв, L = 0,7 мкгн, расстояние между электродами l = 3 мм.

Как видно из рисунков 22, a, δ , границы сине-фиолетового и инфракрасного свечений распространяются с одинаковой скоростью только в течение первых 0,4—0,5 *мксек* после начала разряда до достижения каналом диаметра, равного примерно 2,5 *мм*. В далнейшем коротковолновое свечение практически дальше не распространяется, его фронт становится сильно размытым, интенсивность со временем быстро спадает. Совершенно иначе ведёт себя инфракрасное излучение. Его фронт перемещается с заметной скоростью вплоть до момента времени t = 2 - 3 *мксек*, и диаметр тела инфракрасного свечения достигает примерно удвоенной величины по сравнению с диаметром тела сине-фиолетового свечения. Фронт инфракрасного излучения остаётся всё время резко очерченным.

Кроме того, инфракрасное свечение обнаруживает примерно одинаковую яркость по всему каналу. Снимок развёртки ударной волны, полученный с помощью электроннооптического преобразователя, представлен на рис. 22, в.

Сравнение развёртки ударной волны и инфракрасного свечения показывает, что граница этого свечения примерно совпадает с границей заднего фронта ударной волны. Сине-фиолетовое свечение приписывается излучению плазмы разряда, а инфракрасное — излучению газа, находяшегося в слое между плазмой и ударной волной. С этой же методикой были получены данные относительно скорости расширения канала искрового разряда в инертных газах ³⁰.

Е. К. Завойский и С. Д. Фанченко⁹ осуществили очень быструю развёртку на электроннооптическом преобразователе, применив для отклонения высокочастотные поля от генератора ультракоротких

волн на длину волны 95—150 см. Применялись специальные и додостаточно чувствительные преобразователи. С помощью такой сверхскоростной развёртки изучались короткие световые вспышки, возникающие при разряде в атмосфере воздуха небольших конденсаторов ёмкостью от 1 до 6 пикофарад при длине искрового промежутка от 0,2 до 1 мм, а также при разряде в азоте (давление от 10 до 30 атмосфер) миниатюрных вибраторов Лебедева длиной 8—12 мм с искровым промежутком от 0,02 до 0,1 мм. На рис. 23 приводится фотография эллиптической развёртки свечения разряда

вибратора Лебедева общей длительностью $\sim 4,5 \cdot 10^{-10}$ сек. Искровой промежуток устанавливался примерно перпендикулярно к направлению развёртки. Направление развёртки показано стрелкой. При достаточно большом увеличении на фотографиях можно видеть,

Рис. 23. Эллиптическая развёртка свечения, возникающего при разряде вибратора Лебедева, длиной 12 *мм*, в азоте при давлении 30 *атм*. Одно деление шкалы соответствует 1 · 10⁻¹⁰ сек. Полная длительность свечения искры 4,5 · 10⁻¹⁰ сек.

Рис. 24. Развёртка осциллирующего между электродами свечения при разряде конденсатора, ёмкостью 3 *пф*. Стрелка указывает направление развёртки. Одно деление шкалы соответствует 1.10⁻¹⁰ сек.

что на фоне общего свечения канала искры выделяется яркое свечение, которое осциллирует между электродами искрового промежутка. Развёртка такого свечения, возникающего при разряде в воздухе конденсатора емкостью 3 *пф* показана на рис. 24, *а.* На рис. 24, *6* представлена развёртка начальной стадии того же

разряда. Полученные снимки показывают, что время высвечивания источников излучения осциллирующей зоны составляет 1.10⁻¹¹ сек. Столь короткое время высвечивания приписывается авторами работы взаимодействию возбуждённых атомов, ионов или молекул с невозбуждёнными.

Разрешение во времени, достигнутое в настоящей работе, составляет $3 \cdot 10^{-12}$ сек. Предел разрешению накладывается несовершенством электронной оптики преобразователя и конечным временем прохождения фотоэлектронов через толщу фотокатода. Последнее оценивается величиной порядка 10^{-14} сек *).

Электроннооптическая развёртка может быть применена также аля непосредственной фотоэлектрической регистрации изменяющихся во времени спектров ^{31, 32}.

Принцип действия спектрографа с электроннооптическим преобразователем³² можно проследить по рис. 25. Свет от исследуемого

Рис. 25. Схема спектрографа с электроннооптическим преобразователем.

источника разлагается спектрографом в спектр, который проектируется на фотокатод элетроннооптического преобразователя. Возникающее в преобразователе изображение этого спектра отклоняется магнитным полем в направлении оси длин волн, что приводит к соответствующему передвижению изображения спектра на флуоресцирующем экране. Если теперь спроектировать изображение экрана преобразователя на щель II, установленную перед входным окном

^{*)} Примечание при корректуре. Обоснование предельного временного разрешения электроннооптической развёртки в 10-14 сек приводится в работе Е. К. Завойского и С. Д. Фанченко (ДАН СССР 108, № 2, 218, 1956), вышедшей из печати после написания настоящего обзора. В этой работе выводится связь между предельным временным разрешением развертки на электроннооптическом преобразователе, электронной хроматической аберрацией и голщиной слоя фотокатода.

фотоумножителя, то на его фотокатод будет последовательно попадать излучение различных длин волн, и возникающий в фотоумножителе ток может быть зарегистрирован на осциллографе в форме спектра.

Запуск магнитной развёртки синхронизируется с началом развёртки на осциллографе. Изменяя момент запуска развёртки относительно начала исследуемого явления, можно исследовать развитие спектра в различные моменты времени.

Недостаток предлагаемого метода состоит в том, что в случае применения стандартных электроннооптических преобразователей, например трехэлектродных трубок типа АЕС, инерционность высвечивания экрана ограничивает возможную скорость развёртки. При скоростях развёртки, больших, чем 10 м/сек, наблюдается значитєльное размытие в записи спектра. Для повышения скорости записи необходимо применение экранов с менее инерционными люминофорами. Можно также осуществить устройство для электроннооптической развёртки спектра без применения флуоресцирующего экрана³¹. В этом случае вместо обычного экрана в преобразователе устанавливается щель, непосредственно за которой внутри трубки располагается электронный умножитель. При отклонении электронного изображения магнитным полем можно осуществить практически безинерционную запись спектра.

С помощью спектрографа с преобразователем типа AEG был обследован спектр горения порохов.

Спектрографы с электроннооптическими преобразователями позволяют также зарегистрировать излучение в инфракрасной области. спектра, вплоть до длин волн $\lambda = 1,2$ µ.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- G. Glaser, Optik 7, № 2, 61 (1950).
 W. M. Gady and A. M. Zarem, Nature 162, 528 (1948).
 Электроника. Под редакцией А. А. Жигарева, Госэнергоиздат, Москва, 1951.
- 4. F. Eckart, Ann. Phys. 14, №1-2, 1 (1954).
- 5. E. Fenner und O. Schott, Zeits, angew. Phys. 6, \mathbb{N} 2, 88, (1954). 6. R. F. Saxe and R. A. Chippendale, Brit. J. Appl. Phys. 6, \mathbb{N} 9,
- 336 (1955).
- 7. J. R. Courtney-Pratt, Photogr. J. 92 B, 137 (1952); 4th Sympos. (Internat). Combust. 1952, Baltimore, 1953, 508-526.
- 8. Camera, Beckman and Whitley, Inc. San Carlos, California. Rev. Sci. Instrum. 24, № 2, 185 (1953). 9. Е. К. Завойский и С. Д. Фанченко, ДАН СССР 100, № 4,
- 661 (1955).
- 10. М. П. Ванюкови Е. В. Нилов, ЖТФ 24, № 7, 1029 (1954). 11. Е. Brüche, Koll. Zeits. 100, 192 (1942).

- 12. A. W. Hogan, Proc. Inst. Radio Engrs. **39**, 268 (1951). 13. A. W. Hogan, J. Soc. Mot. Pict. Engrs. **56**, \mathbb{N} 6, 635 (1951). 14. R. C. Turnock, Proc. Inst. Elect. Engrs., P. II, **98**, 635 (1951).
- 15. I. A. Jenkins and R. A. Chippendale, J. Brit. Inst. Radio Engrs. 11, 505 (1951).

- 16. I. A. Jenkins and R. A. Chippendale, Electronic Engng. 24, № 293, 302 (1952).
- 17. R. A. Chippendale, Photogr. J. 92 B, 149 (1952).
- 18. I. A. Jenkins und R. A. Chippendale, Philips Tech. Rundschau 14, № 12, 382 (1953).
- 19. I. A. Jenkin's und R. A. Chippendale, Philips Tech. Rev. № 8, 213 (1953).
- 20. F. C. Gibson, M. L. Bowser, C. W. Ramaley and F. H. Scott, Rev. Sci. Instrum 25, № 2, 173 (1954).
 21. J. M. Meek and R. С. Тиглоск, Photogr. J. 92 В, 161 (1952).
 22. Е. К. Завойский, Г. Е. Смолкин, А. Г. Плахови М. М. Бут-ок. П. 1992 (1992).
- слов, ДАН 100, № 2, 241 (1955).
- 23. J. S. Courtney-Pratt, Research 2, 287 (1949).

- 24. Electronic Engng 27, № 326, 153 (1955). 25. М. П. Ванюков, ЖТФ 16, № 8, 889 (1946). 26. Г. В. Спиваки Е. М. Дубинина, Вестн. Моск. ун-та, № 2, 27 (1953).
- 27. Г. В. Спиваки Е. М. Дубинина, ДАН СССР 88, № 4, 673 (1953).
- 28. И. Н. Прилежаева, В. В. Лившиц и Г. В. Спивак, ЖТФ 25, № 1, 97 (1955).
- 29. J. S. Courtney-Pratt, Proc. Roy. Soc. A 204, 27 (1950).
- 30. М. П. Ванюков, В. И. Исаенко, Л. Д. Хазов, ЖТФ 25, № 7, 1258 (1955).
- 31. E. Fünfer, XV° Congrès du G. A. M. S. (1952).
- .32. E. Fünfer und F. Rössler, Zeits. angew. Phys. 7, № 3, 131 (1955).
- -33. F. K u b a s h, Elektronische Rundschau 1, № 1, 5-11 (1955).