НЕКОТОРЫЕ СВЕДЕНИЯ О СВОЙСТВАХ

тяжёлых ядер.

За последнее время в литературе появился ряд работ, посвящённых в основном различным вопросам, связанным с делением ядер урана. Ниже коротко рассматривается основное содержание этих работ.

І. ЭНЕРГЕТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ ОСКОЛКОВ ПРИ ДЕЛЕНИИ НЕЙТРОНАМИ РАЗЛИЧНЫХ ЭНЕРГИЙ 1

Тонкий слой урана (0,14 *мг/см²*), обогащённого изотопом U²³⁵, был нанесён на высоковольтный электрод ионизационной камеры и облучался нейтронами с энергией 2,5 *Мэв* и 14 *Мэв*. Нейтроны указанных энергий получались при бомбардировке дейтеронами дейтериевых и тритиевых мишеней.

Импульсы ионизации в камере, вызванные осколками деления, вначале усиливались, а затем подавались на 10-канальный амплитудный анализатор и сосчитывались. Вид полученных спектров приводится на рис. 1.

Для контроля аппаратуры был также снят энергетический спектр осколков деления, вызванного тепловыми нейтронами. Вид этого спектра, приведённый на рис. 2, хорошо согласуется с данными других авторов.

Аналогичные работе 1 измерения проводились Юнгерманом и Райтом² при энергиях нейтронов 45 *Мэв* и 90 *Мэв*. Они нашли, что кривая энергетического спектра осколков деления от нейтронов с энергией 45 *Мэв*

Рис. 1. Энергетический спектр осколков деления.

a) От нейтронов с энергией 2,5 Мэв (ось абсцисс: энергия в Мэв, ось ординат: количество отсчётов (в относит. ед.)).

б) От нейтронов с энергией 14 Мэв (ось абсцисс: энергия в Мэв, ось ординат: количество отсчётов (в относит. ед.)).

имеет очень небольшую «впадину» между двумя максимумами, а кривая для нейтронов с энергией 90 Мэв имеет только один максимум.

Сопоставление всех этих данных вновь подтверждает возрастание вероятности симметричного деления с увеличением энергий, вызывающих деление частиц.

II. ЭНЕРГЕТИЧЕСКИЙ СПЕКТР ВТОРИЧНЫХ НЕЙТРОНОВ ПРИ ДЕЛЕНИИ 10235 ТЕПЛОВЫМИ НЕЙТРОНАМИ 3

Алюминиевая пластинка, на которую был нанесён слой U^{235} в виде окисла U_3O_8 толщиной 250 микронов, помещалась в пучок тепловых нейтронов, выходящих из ядерного реактора.

Нейтроны, испущенные при делении ядер урана, регистрировались с помощью толстослойной фотоэмульсии по протонам отдачи.

Экспериментальный фон по возможности уменьшённый выбором геометрии опыта и применением различных экранов, контролировался экспозицией, проведённой в тех же условиях, но с заменой пластинки с ураном алюминиевой пластинкой без урана.

При просмотре эмульсии анализировались только те треки, которые образовывали угол со средним направлением движения нейтронов, не превышающий 10°. В результаты вносились исправления на выход из эмульсии некоторых треков и на «усадку» эмульсии. Экспериментальный фон не учитывался, так как был менее 5%.

Рис. 2. Энергетический спектр осколков U²³⁵ при делении тепловыми нейтронами. (Ось абсцисс: энергия в *Мэв*, ось ординат: количество отсчётов (в относит. ед.).) Всего было обработано 4700 треков. Из распределения протонов отдачи и известных величин поперечных сечений столкновения водорода с нейтронами было получено энергетическое распределение вторичных нейтронов, представленное на рис. 3.

Эти данные, охватывающие интервал энергии нейтронов от 0,4 *Мэв* до 7 *Мэв*, находятся в хорошем согласии с полуэмпирической формулой, приводимой в ⁴:

$$V(E) = e^{-E} \cdot sh\sqrt{2E}$$

и представленной пунктирной кривой на рис. 3.

Рис. 3. Спектр вторичных нейтронов при делении U²³⁵. (Ось абсцисс: *Е* (*Мэв*), ось ординат: *N*(*E*).)

Как эксперимент, так и полуэмпирическая формула указывают на то, что максимум спектра вторичных нейтронов расположен при энергии 0,7—0,8 Мэв.

III. ДАННЫЕ ОБ ЭФФЕКТИВНЫХ НЕЙТРОННЫХ СЕЧЕНИЯХ ЯДЕР УРАНА

1. Для тепловых нейтронов, имеющих максвелловское распределение скоростей при наиболее вероятной скорости 2200 *м/сек*, в ⁵ приводятся следующие значения эффективных сечений ядер урана (в единицах $10^{-24-} с m^2$):

	U235	U238	Естествен- ная смесь изотопов
Деление	549	0	3,92
Захват	101	2,80	3,5
Рассеяние	8,2	8,2	8,2

2. Зависимость поперечного сечения деления естественной смеси изотопов урана от энергии делящих нейтронов согласно 4 приводится на рис. 4.

Кривая соответствует наиболее надёжным данным, охватывающим энергетический интервал нейгронов от 0,7 до 5 *Мэв.* Кроме того, в 4 и 5 приводится ряд данных, относящихся к делению U²³⁸ в естественной смеси изотопов. Сечение такого деления нейтронами со спектром вторичных нейтронов деления составляет 0,29·10⁻²⁴ см². Усреднённое по спектру вторичных нейтронов сечение радиационного захвата составляет 0,04·10⁻²⁴ см².

Число нейтронов, испущенных при делении U²³⁸ надпороговыми нейтронами, составляет 2,55, т. е. практически равно числу вторичных нейтронов при делении U²³⁵ тепловыми нейтронами (2,5 ± 0,1).

Полное эффективное сечение ядер U²⁸⁸ относительно вторичных нейтронов деления составляет 4,3·10⁻²⁴ см², причём сечение упругого рассеяния равно 1,5·10⁻²⁴ см², а сечение неупругих столкновений (исключая деление и радиационный захват) 2,47·10⁻²⁴ см². В 5 приводится приближённая экспериментальная формула для интегрального сечения резонансного поглощения:

$$\int \sigma_c(E) \frac{dE}{E} = A \left[1 + \alpha T + \mu \frac{S}{M} \right],$$

где S (cM^2) — поверхность уранового блока; M (z) — его масса; $\alpha \cong 10^{-4}$ 1/градус, а температура T выражена в градусах C.

Константы A и μ различны для случаев металлического урана или окиси урана. Так, для металлического урана $A = 9,25 \cdot 10^{-24}$ см³, а $\mu = 2,67$ г/см². Для U_3O_8 $\mu = 1,67$ г/см². Предельное значение интегрального сечения при наибольшем «разбавлении» урана составляет 240 · 10⁻²⁴ см².

Рис. 4. Зависимость поперечного сечения деления естественной смеси изотопов урана от энергии нейтронов. (Ось абсцисс: энергия нейтронов (*Мэв*), ось ординат: поперечное сечение деления (в ед. 10⁻²⁴ см²).)

Логарифмическая ширина резонансной полосы поглощения $\ln \frac{E_0}{E}$ равна около 5,6 для металла и около 7,3 для окислов. Обратная диффузионная длина K_0 для резонансных нейтронов есть $K_0 = 0,022 \rho \ cm^{-1}$, где $\rho \ (c/cm^3)$ — плотность урана.

IV. ПОПЕРЕЧНОЕ СЕЧЕНИЕ ПЛУТОНИЯ И КСЕНОНА ДЛЯ ТЕПЛОВЫХ НЕЙТРОНОВ 5

11 УФН, т. XLIX, вып. 1

ИЗ ТЕКУЩЕЙ ЛИТЕРАТУРЫ

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1. Stephen S. Friedland, Phys. Rev. 84, 75 (1951).

2. J. Jungerman, S. C. Wright, Phys. Rev. 76, 1112 (1949).

3. Norris Nereson, Phys. Rev. 85, 600 (1952).

1

4. Nucleonics, 8, 78 (1951).

5. Nature, 169, 871 (1952).

Ю. И.