О СВЯЗИ КОЭФФИЦИЕНТА РАСШИРЕНИЯ С ТЕМПЕРАТУРОЙ ПЛАВЛЕНИЯ

В 1950 и 1951 гг. появились в печати сообщения об обнаружении зависимости между температурой плавления и коэффициентом расширения твёрдого тела. Авторы этих работ приписали себе честь нахождения довольно любопытного соотношения, найденного более чем 20 лет тому назад. Соотношение, о котором идёт речь, было забыто незаслуженно. В свете новых данных, полученных в последних работах, стоит напом-

нить старые результаты и обсудить всю совокупность опытных фактов с новой точки зрения.

Интеграл

$$\int_{0}^{T_{\Pi\Pi}} \alpha \, dT = \overline{\alpha} T_{\Pi\Pi}$$

(где α — коэффициент расширения), взятый по температуре от абсолютного нуля до температуры плавления, характеризует максимально возможное расширение данного твёрдого тела. Величина $\alpha T_{\rm пл}$ измерялась для малого числа тел; в особенности плохо то, что интервал температуры брался обычно далеко не полным.

Несмотря на это, бросаются в глаза малые колебания этой величины. На это обстоятельство первый обратил внимание, вероятно, Грюнейзен, который указал, что среднее процентное увеличение объёма равно 7,5% (следовательно, среднее линейное около — 2,5%).

В 1928 г. появилась работа 2 , где было показано, что это произведение равно 9% для галогенидов с молекулярной решёткой, 8% для щелочных металлов, 7% для двух- и трёхвалентных металлов и 1-2% для четырёхвалентных металлов.

Интересные данные о рядах изоморфных веществ, кристаллы которых обладают молекулярной решёткой, были даны 8 в 1930 г. (цифра $-\overline{\alpha}$ T в процентах).

Таблица І

Углеводороды Бензол 10 Антрацен 11 С ₆₃ Н ₁₆₂ 10 Спирты Октиловый 5 Додециловый 9 Гексадециловый 7 Бензиловый 7	$\begin{array}{c ccccc} C_4 H_8 O_2 & & 11 \\ C_5 H_{10} O_2 & & 8 \\ C_8 H_{16} O_2 & & 14 \\ C_9 H_{18} O_2 & & 8 \\ C_{10} H_{20} O_2 & & 13 \\ C_{12} H_{24} O_2 & & 13 \\ C_{16} H_{32} O_2 & & 9 \\ C_{18} H_{36} O_2 & & 10 \\ \end{array}$
Zensiwezza.	Тетрагалогениды
Дикарбоновые кислоть Малоновая 7 Сабациновая 10 Гексилмалоновая 10 Додецилмалоновая 9 Монокарбоновые кислот СН ₂ О ₂ 7 С ₂ H ₄ О ₂ 8 С ₃ H ₆ О ₂ 9	CBr ₄ 12 SiCl ₄ 10 SiBr ₄ 12 TiCl ₄ 11 GeCl ₄ 12 SnCL 10

Весьма вероятным является предположение, что различия в величинах \overline{aT} обусловлены различиями в типах решётки, т. е. различиями во взаимном расположении молекул. В частности, в группе монокарбоновых кислот подобным образом расположены молекулы у соединений C_4 , C_8 , C_{10} и C_{12} , а также у соединений C_3 , C_5 и C_9 .

Таблица II, заимствованная из последней работы 1951 г., показывает

весьма отчётливо зависимость произведения \overline{aT} от типа решётки.

Таблица II

Металл	Тил решётки	Тпл	$\frac{1}{3}\bar{\alpha}T_{\Pi\Pi}$	$\frac{1}{3} \overline{\alpha} T_{\text{пл}}$	Среднее отклоне- ние
Cs Rb K Na Li Feð Tiß Mo	Объёмноцентриро- ванная кубическая	301,5 311,5 335 370,5 459 1808 2073 2893	2,90 2,98 2,86 2,75 2,80 2,15 1,89 1,50	2,43%	0,44%
T1β Pb A1 Ca Ag Au Cu Niβ Coβ Pd Pt Pr	Гранецентрированная кубическая	576,5 600,5 933 1083 1233,5 1334 1356 1728 1753 1826 2046,5 2623	1,66 1,71 2,06 2,51 2,32 1,90 2,17 2,36 2,17 2,08 1,81 1,70	2,08%	0,22%
Cd Zn Mg Be Os	Гексагональная	594 693 924 1623 2973	1,87 2,10 2,18 2,16 1,87	2,05%	0,10%
In Snβ	Тетрагональная	428 505	1,38 1,22	1,30%	0,05%
Bi Sb As	Тригональная	544,5 903,5 1087	0,75 1,18 0,87	0,93%	0,12%

Приведённые данные указывают на несомненную целесообразность поисков связи между величиной максимального расширения $\overline{\alpha}T$ и симметрией решётки и характером связи атомов. Возможно, что более характерной величиной в случае анизотропных кристаллов является величина $\overline{\beta}_{\max} T$, где $\overline{\beta}_{\max}$ есть среднее по температуре значение максимального линейного коэффициента расширения.

A. K.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1. G. Bonfiglioli a. G. Montalenti, J. Appl. Phys. 22, 1089 (1951).
2. W. Klemm, Zeits. Elektrochem. **34,** 526 (1928).
3. W. Biltz, Phys. Chem. **A 151,** 27 (1930).