# УСПЕХИ ФИЗИЧЕСКИХ НАУК

### МАССЫ ЛЁГКИХ ЯДЕР

### Б. С. Джелепов и Л. Н. Зырянова

#### I. ВВЕДЕНИЕ

В настоящее время для определения масс ядер применяются четыре основных способа: масс-спектрометрические измерения, метод ядерных реакций, изучение схем распада радиоактивных изотопов и микроволновой метод. За последние три года точность каждого из этих методов возросла в несколько раз; поэтому существующие таблицы масс Бете<sup>1</sup> (1947) и Маттауха и Фламмерсфельда<sup>3</sup> (1948) в значительной степени устарели. Определение масс из новых экспериментальных данных требует пересмотра всей таблицы масс, так как любой метод доставляет сведения не об отдельных массах, а о тех или иных их комбинациях.

Появившиеся в 1951 г. таблицы масс лёгких ядер не являются полными, и, кроме того, существенным их недостатком следует считать то, что при построении их авторы использовали данные только одного метода: таблицы Нира<sup>3</sup> и Эвальда<sup>4</sup> основаны на масс-спектрометрических дублетах; Ли, Валинг и др.<sup>5</sup> исходят лишь из энергий ядерных превращений.

Эти обстоятельства заставили нас для определения масс лёгких ядер предпринять заново обработку всех имеющихся материалов. В статье приведены экспериментальные данные, опубликованные до 1 марта 1952 г., описаны принципы их обработки и дана полная таблица масс ядер для  $Z \ll 20$ .

#### II. УСПЕХИ, ДОСТИГНУТЫЕ В ОПРЕДЕЛЕНИИ МАСС ЯДЕР

За последние годы в развитии всех методов, дающих сведения о массах ядер, достигнуты значительные успехи. Мы вкратце охарактеризуем их в этом параграфе.

1. Измерения энергий ядерных реакций

В течение многих лет энергия, выделяющаяся или поглощаемая при ядерной реакции, определялась по пробегу продуктов реакции. Такие определения всегда сопряжены со значительными погрешностями; во-первых, неизбежен разброс пробегов; во-вторых, связь между пробегом и энергией выражается только эмпирическими формулами или графиками, которые устанавливаются с некоторой погрешностью. Существенным успехом является переход к магнитному анализу продуктов реакции, начатому, повидимому, в 1948 г.6. Точность измерения энергии методом магнитного анализа может быть доведена до долей процента; однако для того чтобы эта точность была реализована, необходимо выполнение ряда добавочных условий.

Первичный пучок протонов, дейтеронов или а-частиц должен быть монохроматизирован по крайней мере с той же точностью. Это достигается применением в качестве ускорителей частиц электростатических генераторов со сжатым газом и автоматической стабилизацией пучка; после выделения пучок обычно ещё раз анализируется магнитным или электростатическим отклоняющим устройством. Таким путём, например, в опытах Фаулера и др.<sup>7,8</sup> была достигнута энергетическая ширина протонного пучка меньше 0,03%.

Мишени должны быть достаточно тонкими для того, чтобы проходящие через них частицы не претерпевали заметного торможения (например, 6 толщина мишени Ве 5 кэв). Применение тонких мишеней повышает требования к интенсивности пучка. Необходимость повышенной интенсивности вытекает также из того факта, что продукты реакции должны выделяться в виде очень узкого пучка, ибо энергия вторичных частиц зависит от направления их вылета. Обычно в таких работах ширина пучка<sup>6</sup> меньше 0,5°.

Все эти обстоятельства затрудняют работу и суживают круг реакций, доступных для изучения. Практически только три лаборатории довели точность магнитного анализа до 10 кэв 9, 10, 11. Общий вес результатов, полученных ими за 1949-1951 гг., составляет 20% общего веса по ядерным реакциям. Можно ожидать, что удельный вес этих исследований в дальнейшем возрастёт, так как возможности метода далеко не исчерпаны, а количество реакций, к которым его можно применить, очень велико.

Устройства, выделяющие хорошо монохроматизированный пучок протонов, позволили значительно повысить точность определения порога реакций типа (р, п). К настоящему времени уже в 8 реакциях порог определён с погрешностью, меньшей 4 кэв. Общий вес этих измерений, ввиду большой точности, составляет 54% веса всех результатов, полученных по методу ядерных реакций. Большие успехи достигнуты также в определении энергии реакций типа (п, ү), идущих при прилипании тепловых нейтронов. Возможность применения очень интенсивных пучков медленных нейтронов позволила применить к появляющимся ү-лучам наиболее точные методы ү-спектроскопии. В работах Кинсея и сотр.<sup>13</sup> энерү-лучей прилипания определяется при помощи магнитного сия спектрометра, в котором измеряется энергия электронно-позитронных пар, созданных у-квантами. В ряде случаев энергию жёстких · у-квантов удаётся измерить с точностью 0,1-0,2%. Несомненно, этот метод имеет большое будущее.

### 2. Измерення ширины масс-спектрометрических дублетов

Ниру удалось в последние годы<sup>13</sup> значительно усовершенствовать старый метод дублетов, бесспорно самый точный из всех масс-спектрометрических методов. Эти усовершенствования коснулись главным образом стабилизации магнитного поля и ускоряющего напряжения. Параллельно с основным в том же магнитном поле был установлен второй спектрограф, на выходе которого находились две пластипки. При нормальном режиме ионный пучок должен был одинаково заряжать обе пластинки; если же сила тока в магните или ускоряющее напряжение изменялись, то пластинки заряжались неодинаково, и разностный ток через специальный усилитель возвращал ток и напряжение к прежним значениям. Это приспособление и некоторые другие улучшения позволили повысить точность измерения дублетов в несколько раз (в отдельных случаях — до 20 раз). В результате этого масс-спектрометрические измерения онять почти «догнали» по точности метод ядерных реакций: ширина дублетов  $D_2 - He^4$ ,  $CH_2 - N^{14}$ ,  $CH_1 - O^{16}$  и других измерена с погрешностью около  $10^{-5}$  м. ед., т. е.  $\approx 10$  кэв в энергетических единицах. Однако число дублетов, определённых с такой точностью, пока ещё невелико, и поэтому общий вес масс-спектрометрических измерений составляет около 11%, в то время как на ядерные реакции приходится 54%.

### 3. Измерение энергии распада

Измерения верхней границы  $\beta$ -спектра и энергии  $\gamma$ -лучей, следующих за  $\beta$ -частицами, могут дать весьма точные сведения о разностй масс исходного и конечного ядра. Наблюдающееся в последнее время повышение точности определения границ  $\beta$ -спектров связано с двумя обстоятельствами: во-первых, стали доступными препараты с большей удельной активностью. Это позволяет применять более топкие источники и таким образом устранить искажения спектра, связанные с рассеянием и поглощением электронов в источнике. Во-вторых, создание магнитных спектрометров с улучшенной фокусировкой позволило устранить искажения спектра вблизи границы, возникавшие из-за большой энергетической ширины фокуса. Определение границы  $\beta$ -спектра путём экстраполирования прямолинейного участка графика Кюри в ряде случаев произведено с ногрениностью, меньшей 5 *кэв*.

В тех случаях, когда  $\beta$ -распад происходит не на основной уровень ядра-продукта, необходимо знать положение этого уровня. Иногда это делается путём измерения энергии  $\gamma$ -лучей, сопровождающих  $\beta$ -распад (например,  $A1^{28} \rightarrow S1^{28}$ ) или реакцию, иногда более точные сведения о положении уровня даёт магнитный анализ про-

• .•

дуктов реакции. Техника ү-спектрометрии за последние годы сильно шагнула вперёд, и теперь уже не представляется чрезмерно трудным измерение энергии ү-лучей с погрешностью 3—5 кэв. В результате данные, получаемые из схем распада, по точности иногда даже превосходят данные измерений при помощи первых двух методов, однако следует помнить, что эти данные связывают попарно только рядом стоящие ядра, в то время как



Суммарный вес результатов определения масс методами: (a) ядерных реакций, (б) радиоактивных превращений, (в) массспектрометрических измерений. В кривую (б) не включены реакции  $H^{9}(\beta^{-})$  Не<sup>8</sup> (погрешность 0,2 кза, 1949 г.) и  $S^{35}$  (—) СГ<sup>35</sup> (погрешность 0,5 кза, 1950 г.). Вес результатов микроволновых определений ничтожно мал и на графике изображён быть не может.

## в первых двух методах выбор объектов более широк.

#### Микроволновой метод

Начиная с 1948 г., для определения масс применяется новый, микроволновой метод, который позволяет находить некоторые комбинации масс по частотам радноволн, резонансно поглощаемым тем или иным газом 14-23. Рассмотрим линейную молекулу, например OCS. Эта молекула, помимо других движений, может совершать квантованные вращательные колебания вокруг оси, перпендикулярной к оси молекулы и проходящей через её центр тяжести. Разность энергий в состояниях с полным орбитальным моментом  $I \frac{h}{2\pi}$ и  $(I+1) \frac{h}{2\pi}$  невелика порядка 10-4 эв. При облу-

чении молекулы электромагнитными волнами подходящей частоты могут осуществляться переходы между состояниями / и / – 1. Частота, соответствующая этим переходам, с хорошей точностью выражается простой формулой

$$y = \frac{h(I+1)}{4\pi^2 I_0} , \qquad (*)$$

где I<sub>0</sub> — момент инерции молекулы относительно указанной оси:

$$I_{0} = \frac{m_{1}m_{2}m_{3}}{m_{1} + m_{2} + m_{3}} \left\{ \frac{l_{1}^{2}}{m_{0}} + \frac{l_{2}^{2}}{m_{1}} + \frac{(l_{1} + l_{2})^{3}}{m_{2}} \right\}; \qquad (**)$$

 $m_1, m_2, m_3$  — массы O, C и S,  $l_1$  — расстояние между ядрами O — C,  $l_2$  — расстояние между ядрами C — S.

Допустим теперь, что на месте атома серы по очереди находятся изотопы S<sup>32</sup>, S<sup>34</sup> и S<sup>35</sup>, с массами  $m_8'$ ,  $m_3''$  и  $m_3'''$ . Тогда резонансное поглощение будет происходить при трёх близких частотах v', v'' и v''', которые возбудят аналогичные переходы.

Если исключить из написанных выше уравнений  $I_0$ ,  $l_1$  и  $l_2$ , то иолучается соотношение <sup>23</sup>

$$\frac{m_3' - m_3'}{m_3' - m_3'''} = \frac{\gamma'' - \gamma'}{\gamma'' - \gamma'} \cdot \frac{\gamma''}{\gamma''} \frac{m_1 + m_2 + m_3'}{m_1 + m_2 + m_3'}.$$
 (\*\*\*)

Таким образом, точность, с которой может быть найдена указанная комбинация масс, определяется точностью измерения малых разностей частот. Для перехода  $I = 1 \rightarrow 2$  в молекуле OCS эти частоты лежат в области ~ 2,4.10<sup>10</sup> сек-1. Измерение частот в этой области производится с исключительно большой точностью - до 0.00001%. Разности частот определяются с точностью до 0.0001%. и примерно с такой же точностью становятся известными разности масс. Если  $\Delta m_a \approx 1$  м. ед., то по формуле (\*\*\*\*) разность определяется с погрешностью 1 кэв. Однако эта точность в действительности нереальна. Сами исходные формулы (») и (»») не являются в такой мере точными. В формуле (\*) для и не содержатся малые члены, которые должны учитывать колебательно-вращательные движения. Кроме того, при выводе формулы (\*\*\*\*) нельзя считать l<sub>1</sub> и l<sub>2</sub> точно одинаковыми при разных m<sub>3</sub>. Различие в механических и квадрупольных моментах атомов m'a, m'a и m'' также должно отразиться на применяемых формулах.

Исследования показывают, что эти не совсем ясные методические вопросы заставляют увеличить погрешность приблизительно в 100 раз <sup>23</sup>. Результаты, полученные этим методом, до сих пор носят, по существу, предварительный характер; их реальный вес невелик, и мы не включили их в список исходных материалов для определения масс. Сравнение результатов микроволновых определений с данными других методов приведено в разделе VI. Успехи, достигнутые за последние годы в четырёх перечисленных методах, иллюстрируются рисунком. По осн абсцисс отложены годы, а по осн ординат суммарный вес результатов, полученных по каждому из методов.

### III. ИСХОДНЫЙ МАТЕРИАЛ

В нервых четырёх столбцах таблицы І приведены экспериментальные данные, которые были использованы для вычисления масс: а) Q — энергии ядерных реакций; б) E — энергии  $\beta$ - и  $\gamma$ -переходов ядер на основные состояния; в)  $\Delta M$  — величины массовых дублетов. В таблицу включены все данные, опубликованные до 1 марта 1952 г., за исключением пяти реакций, см. таблицу VI, NeNe 1 — 5. Значения остальных столбцов таблицы указаны ниже.

Таблица I

| а) Ядерные реакции –) |                                           |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |                                        |     |                                                       | - 2                           |  |
|-----------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----|-------------------------------------------------------|-------------------------------|--|
| №<br>п/п              | Реакция                                   | Литера-<br>турные<br>ссылки                                                                                                                                    | Экспериментальное<br>значение Q<br>в Мэв                                                                                                                                                                                                                                                                                                                                      | Bec 1)                                                                                                                                             | Принятое<br>значение Q<br>в Мэв        | Bec | Значение Q,<br>вычисленное<br>из масс<br>(таблица II) |                               |  |
| 1                     | 2                                         | 3                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                  | 6                                      | 7   | 8                                                     |                               |  |
| 1                     | $H(n, \gamma) D$ To ke $To ke$            | $\left \begin{array}{c} 148\\ 231\\ 38\\ 295, 296\\ 42\\ 91\\ 92\\ 437\\ 380\\ 327\\ 337\\ 233\\ 283\\ 412\\ 380\\ 403\\ 284\\ 275\\ 289\\ \end{array}\right $ | $\begin{array}{c} 2,225\\ 2,2\\ 2,232\pm 0,005\\ 2,24\\ 2,230\pm 0,007\\ \hline \\ -2,14\pm 0,08\\ -2,25\pm 0,05\\ -2,16\pm 0,04\\ -2,189\pm 0,022\\ -2,18\pm 0,07\\ -2,174\pm 0,050\\ -2,183\pm 0,012\\ -2,183\pm 0,007^4)\\ -2,183\pm 0,006^4)\\ -2,185\pm 0,006^4)\\ -2,185\pm 0,005\\ -2,186\pm 0,005^4)\\ -2,24\pm 0,05\\ -2,24\pm 0,05\\ -2,226\pm 0,003\\ \end{array}$ | $\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 2000 \\ 2 \\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 200\\ 0\\ 280\\ 11\\ 0\\ 400\\ 0\\ 1100 \\ \end{array}$ | см. № 2<br>—2,211±0,005 <sup>3</sup> ) | 400 | 2,225±0,003                                           | С. ДИСТЛЕНОВ И Л. Н. ЗЫРУНОВА |  |
|                       | —) Примечания 1), 2) и т. д. на стр. 507. |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |                                        |     |                                                       |                               |  |

`Продолжение табл. I

| №<br>n/n                                        | -Реакция                                                                                                                                                                                                                                                                                 | Литера-<br>турные<br>ссылки                                                                                                                                  | Экспериментальное<br>значение Q<br>в Мэв                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bec                                                                                                                                        | Принятое<br>значение Q<br>в Мэв                                                                                               | Bec                                | Значение Q,<br>вычисленное<br>из масс<br>(таблица II)                                           |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------|
| 1                                               | 2                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                          | 6                                                                                                                             | 7                                  | 8                                                                                               |
| 1<br>3<br>4<br>5<br>6<br>7<br>7<br>8<br>9<br>10 | D (p, n) 2p<br>D (n, $\gamma$ ) H <sup>3</sup><br>D (d, p) H <sup>3</sup><br>To we<br>"<br>D (p, $\gamma$ ) He <sup>3</sup><br>D (d, n) He <sup>3</sup><br>To we<br>"<br>"<br>"<br>T (d, a) n<br>H <sup>3</sup> (p, n) He <sup>3</sup><br>To we<br>He <sup>3</sup> (p, n) H <sup>3</sup> | $\begin{array}{c} 371\\ 236\\ 305\\ 391\\ 392\\ 212\\ 385\\ 152\\ 26\\ 61\\ 63\\ 258\\ 14\\ 19\\ 258\\ 391\\ 392\\ 377\\ 418\\ 389\\ 65\\ 207\\ \end{array}$ | $\begin{array}{c} -2,227\pm0,010\\ 6,251\pm0,008\\ 3,98\pm0,02\\ 4,030\pm0,022\\ 4,039\pm0,012\\ 3,96\\ 4,030\pm0,006\\ 6,3\pm0,3\\ 3,1\\ 3,29\pm0,08\\ 3,31\pm0,02\\ 3,35\pm0,02\\ 3,35\pm0,05\\ 3,30\pm0,025\\ 3,30\pm0,025\\ 3,30\pm0,025\\ 3,256\pm0,008\\ 3,2$ | $\begin{array}{c} 100\\ 160\\ 25\\ 0\\ 69\\ 0\\ 280\\ 0,11\\ 0\\ 0\\ 25\\ 4\\ 25\\ 11\\ 0\\ 120\\ 6\\ 0\\ 10000\\ 6900\\ 0\\ 0\end{array}$ | C <sub>M</sub> . № 2<br>6,251±0,008<br>4,028±0,006 <sup>3</sup> )<br>6,3 ±0,3<br>3,270±0,010 <sup>3</sup> )<br>-0,7641±0,0008 | 160<br>280<br>0,11<br>100<br>17000 | $\begin{array}{c} -2,225\pm0,003\\ 6,260\pm0,005\\ 4,035\pm0,006\\ 5,498\pm0,005\\ \end{array}$ |

массы лёгких ядер

Продолжение табл. І

| Значение Q,<br>вычисленное<br>из масс<br>(таблица II) | 8   | 0, 763土0, 007<br>19, 807土0, 005<br>18, 344土0, 006                                                                                                                                                                                                                            | ₫,779±0,008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bec                                                   | 7   | 0,11<br>0,44                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Принятое<br>значение Q<br>в <i>Мэ</i> в               | 6   | См. № 9<br>19,7 ±0,3<br>18,48 ±0,15                                                                                                                                                                                                                                          | 4,822土0,022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bec                                                   | 5   | 100<br>100<br>0,11<br>0,44<br>0<br>0,44                                                                                                                                                                                                                                      | 000%00, <del>44</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Экспериментальное<br>значение Q<br>в <i>Мэв</i>       | 4   | $\begin{array}{c} 0,764\pm0,025\\ 0,764\pm0,010\\ 0,764\pm0,010\\ 0,766\pm0,010\\ 119,2\pm0,6\\ 119,2\pm0,6\\ 118,48\pm0,15\\ 4,57\pm0,05\\ 4,97\pm0,05\\ 10,04\\ 0,04\\ 0,04\end{array}$                                                                                    | $\begin{array}{c} 4,4,6,600\pm0,000\\ 6,00\pm0,000\pm0,000\pm0,000\\ 4,9,9,2,7,2,4,0,000\\ 2,12,4,0,000\\ 2,12,4,0,000\\ 2,12,4,0,000\\ 2,12,1,0,00\\ 0,15,1,0,00\\ 0,100\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,000\\ 0,00\\$ |
| Литера-<br>турные<br>ссыдки                           | 3   | 218<br>154<br>3354<br>450<br>3354<br>450<br>257<br>255<br>257<br>255<br>257                                                                                                                                                                                                  | $\begin{array}{c} 296\\ 255\\ 296\\ 255\\ 232\\ 232\\ 232\\ 233\\ 233\\ 233\\ 233$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Реакция                                               | . 2 | He <sup>8</sup> (n, p)H <sup>8</sup><br>T ( $p$ , $\frac{s}{T}$ ) He <sup>4</sup><br>T ( $p$ , $\frac{s}{T}$ ) He <sup>4</sup><br>He <sup>3</sup> (d, p) He <sup>5</sup><br>He <sup>4</sup> (d, p) He <sup>5</sup><br>Ll <sup>6</sup> (n, $\alpha$ ) H <sup>3</sup><br>To we | Li <sup>6</sup> (p, <sup>z</sup> ) He <sup>8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| N<br>N<br>N<br>N<br>N                                 |     | 17 113<br>133<br>13<br>14<br>13                                                                                                                                                                                                                                              | . 15<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Пролоджение | табт     | T |
|-------------|----------|---|
| продояжение | 1 1 0 1. |   |

| №<br>п/п                         | Реакция                                             | Литера-<br>турные<br>ссылки                                                                                                                                        | Экспериментальное<br>значение Q<br>в Мэв                                                                                                                                                                                                                                                                                                                                                                              | Bec                                                                                                                | Принятое<br>значение Q<br>в Мэв                                                                                | Bec                          | Значение Q,<br>вычисленное<br>из масс<br>(таблица II)                         |
|----------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------|
| 1                                | 2                                                   | 3                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                  | 6                                                                                                              | 7                            | 8                                                                             |
| 16<br>17<br>18<br>19<br>20<br>21 | Li <sup>6</sup> (p, a) He <sup>3</sup><br>To жe<br> | $\begin{array}{c} 85\\ 385\\ 253\\ 101\\ 418\\ 368\\ 104\\ 381\\ 76\\ 385\\ 264\\ 419\\ 164\\ 368\\ 101\\ 420\\ 384\\ 385\\ 411\\ 415\\ 248\\ 37\\ 275\end{array}$ | $\begin{array}{c} 3,97 \pm 0,03 \\ 4,021\pm 0,006 \\ 4,017\pm 0,012 \\ 4,015\pm 0,006 \\ 4,024\pm 0,005 \\ 22,20 \pm 0,04 \\ 5,02\pm 0,014 \\ 5,006\pm 0,014 \\ 5,019\pm 0,007 \\ 3,30 \\ 3,27 \\ 3,40 \pm 0,05 \\ 17,325\pm 0,013 \\ 17,325\pm 0,013 \\ 17,338\pm 0,011 \\ 17,340\pm 0,014 \\ 17,340\pm 0,014 \\ 17,340\pm 0,014 \\ 17,340\pm 0,014 \\ 14,3 \\ 13,43 \\ -9,5 \pm 0,3 \\ -9,8 \pm 0,5 \\ \end{array}$ | $ \begin{array}{c} 11\\ 280\\ 69\\ 280\\ 400\\ 6\\ 0\\ 0\\ 200\\ 0\\ 0\\ 4\\ 0\\ 59\\ 83\\ 51\\ 0\\ 6\end{array} $ | $\begin{array}{c} 4,020\pm 0,003\\ 22,20\pm 0,04\\ 5,019\pm 0,007\\ 3,40\pm 0,05\\ 17,336\pm 0,007\end{array}$ | 1100<br>6<br>200<br>4<br>190 | $4,016\pm0,008$<br>22,361±0,007<br>5,026±0,009<br>3,381±0,009<br>17,335±0,007 |

2 УФН, т. XLVIII, вып. 4

МАССЫ ЛЁГКИХ ЯДЕР

|                            |                                                                                                                                                                                                                                                                   |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                          | Π                                                                         | родоля                         | сенче табл. I                                                                |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------|
| №<br>п/п                   | Реакция                                                                                                                                                                                                                                                           | Литера-<br>турные<br>ссылки                                                                                                                                    | Экспериментальное<br>значение Q<br>в Мэв                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bec                                                                                                                                                                      | Принятое<br>значение Q<br>в Мэв                                           | Bec                            | Значение Q,<br>вычисленное<br>из масс<br>(таблица II)                        |
| 1                          | 2                                                                                                                                                                                                                                                                 | 3                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                        | 6                                                                         | 7                              | 8                                                                            |
| 22<br>23<br>24<br>25<br>26 | Li <sup>7</sup> (d, p) Li <sup>8</sup><br>To же<br>"<br>"<br>Li <sup>7</sup> (p, n) Be <sup>7</sup><br>To же<br>"<br>Li <sup>7</sup> (p, γ) Be <sup>8</sup><br>Li <sup>7</sup> (d, n) Be <sup>8</sup><br>To же<br>Be <sup>9</sup> (p, α) Li <sup>7</sup><br>To же | $\begin{array}{c} 345\\ 445\\ 381\\ 308\\ 77\\ 216\\ 76\\ 385\\ 418\\ 178\\ 187\\ 361\\ 362\\ 93\\ 441\\ 253\\ 404\\ 58\\ 171\\ 216\\ 10\\ 11\\ 11\end{array}$ | $\begin{array}{c} -0,200 \pm 0,030 \\ -0,18 \\ -0,193 \pm 0,008 \\ -0,187 \pm 0,010 \\ -0,187 \pm 0,007 \\ -0,188 \pm 0,007 \\ -0,193 \pm 0,008 \\ -0,193 \pm 0,008 \\ -0,193 \pm 0,007 \\ -0,192 \pm 0,001 \\ -1,6476 \pm 0,0049 \\ -1,6476 \pm 0,0016 \\ -1,6461 \pm 0,0019 \\ -1,6461 \pm 0,002 \\ -1,6457 \pm 0,04 \\ -1,6457 \pm 0,02 \\ 17,2 \pm 0,2 \\ 14,55 \\ 15,0 \pm 0,15 \\ 15,0 \pm 0,15 \\ 15,0 \pm 0,15 \\ 15,0 \\ 2,115 \pm 0,040 \\ 2,078 \pm 0,040 \end{array}$ | $\begin{array}{c} 0\\ 0\\ 0\\ 100\\ 200\\ 0\\ 0\\ 10000\\ 420\\ 3900\\ 2500\\ 0\\ 3900\\ 2500\\ 0\\ 0\\ 0\\ 0\\ 2500\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 6\end{array}$ | $-0,1919\pm0,0010$<br>$-1,6455\pm0,0010$<br>$17,2\pm0,2$<br>$15,0\pm0,15$ | 10000<br>11000<br>0,25<br>0,44 | $-0,192\pm0,010$<br>$-1,645\pm0,009$<br>$17,247\pm0,008$<br>$15,022\pm0,009$ |

474

с. джеленов и н н. зырянова

ы

Продолжение табл. 1

| №<br>п/г       | . Реакция                                                                                                                                      | Литера-<br>турные<br>ссылки                                                                                                                                        | Экспериментальное<br>значение Q<br>в Мэв                                                                                                                                                                                                                                                                                                                                                                                                | Bec                                                                                                                                            | Принятое<br>значение Q<br>в Мэв                                | Bec                 | Значение Q,<br>вычисленное<br>из масс<br>(таблица II)        |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------|--------------------------------------------------------------|
| 1              | 2                                                                                                                                              | 3                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                              | 6                                                              | 7                   | 8                                                            |
| 27<br>28<br>29 | Be <sup>9</sup> (p, α) Li <sup>7</sup><br>To жe<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>" | $\begin{array}{c} 12\\ 12\\ 270\\ 120\\ 393\\ 385\\ 253\\ 418\\ 89\\ 306\\ 168\\ 75\\ 76\\ 212\\ 421\\ 385\\ 418\\ 302\\ 99\\ 283\\ 412\\ 403\\ 179\\ \end{array}$ | $\begin{array}{c} 2,114\pm0,040\\ 2,074\pm0,03\\ 2,078\pm0,040\\ 2,074\pm0,030\\ 2,074\pm0,030\\ 2,074\pm0,030\\ 2,121\pm0,012\\ 2,142\pm0,006\\ 2,121\pm0,007\\ 2,123\pm0,004\\ 2,130\pm0,010\\ 7,19\pm0,12\\ 7,093\pm0,022\\ 7,145\pm0,024\\ 7,145\pm0,024\\ 7,145\pm0,024\\ 7,16\\ 7,151\pm0,010\\ 7,150\pm0,008\\ 7,159\pm0,009\\ -18\pm1\\ -1,63\pm0,05\\ -1,627\pm0,010\\ -1,630\pm0,006\\ -1,667\\ -1,681\pm0,013\\ \end{array}$ | $\begin{array}{c} 0\\ 11\\ 0\\ 0\\ 280\\ 200\\ 620\\ 100\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 100\\ 160\\ 120\\ 0,01\\ 0\\ 100\\ 280\\ 0\\ 59\end{array}$ | 2,127 <u>+</u> 0,003<br>7,153 <u>+</u> 0,005<br>—18 <u>+</u> 1 | 1200<br>400<br>0,01 | 2,126 <u>+</u> 0,008<br>7,152 <u>+</u> 0,009<br>16,882+0,010 |

2\*

475

массы лёгких ядер

Продолжение табл. І

| №<br>п/п             | Реакция                                                                                                                                                                                                                                             | Литера-<br>турные<br>ссылки                                                                                                                                                        | Экспериментальное<br>значение Q<br>в Мэв                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bec                                                                                                                                                                                      | Принятое<br>значение Q<br>в Мэв                                                                                             | Bec                      | Значение Q,<br>вычисленное<br>из масс<br>(таблица II)                     |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------|
| 1                    | 2                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                        | 6                                                                                                                           | 7                        | 8                                                                         |
| 30<br>31<br>32<br>33 | Be <sup>9</sup> (γ, n) Be <sup>8</sup><br>Be <sup>9</sup> (p, d) Be <sup>8</sup><br>To жe<br>Be <sup>9</sup> (d, t) Be <sup>3</sup><br>To жe<br>Be <sup>9</sup> (d, t) Be <sup>3</sup><br>To жe<br>Be <sup>9</sup> (d, p) Be <sup>10</sup><br>To жe | $\begin{array}{c} 289\\ 111\\ 270\\ 12\\ 120\\ 393\\ 289\\ 350\\ 385\\ 418\\ 89\\ 416\\ 129\\ 385\\ 326\\ 234\\ 235\\ 326\\ 234\\ 235\\ 306\\ 318\\ 5\\ 248\\ 6\\ 439 \end{array}$ | $\begin{array}{c} -1,666\pm0,002\\ 0,556\pm0,006\\ 0,556\pm0,006\\ 0,554\pm0,006\\ 0,541\pm0,003\\ 0,558\pm0,003\\ 0,560\pm0,013\\ 0,560\pm0,013\\ 0,562\pm0,004\\ 0,562\pm0,002\\ 0,558\pm0,005\\ 4,32\\ 4,67\pm0,003\\ 4,597\pm0,013\\ 4,61\pm0,04\\ 6,80\pm0,010\\ 6,797\pm0,008\\ 4,59\pm0,11\\ 4,59\\ 4,59\pm0,05\\ 4,59\pm0,05\\ 4,59\pm0,05\\ 4,59\pm0,05\\ 4,58\\ \pm,58\\ \pm,0,05\\ 4,58\\ \pm,58\\ \pm,5$ | $\begin{array}{c} 2500\\ 0\\ 280\\ 280\\ 1100\\ 1100\\ 620\\ 59\\ 620\\ 2500\\ 400\\ 0\\ 111\\ 59\\ 6\\ 0\\ 160\\ 0\\ 160\\ 0\\ 4\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$ | $-1,662\pm0,005$ <sup>3</sup> )<br>0,5545 $\pm0,0018$ <sup>3</sup> )<br>4,609 $\pm0,012$ <sup>3</sup> )<br>6,797 $\pm0,008$ | 400<br>3000<br>69<br>160 | $-1,668\pm0,008$<br>$0,557\pm0,008$<br>$4,592\pm0,009$<br>$6,806\pm0,010$ |

476

С. ДЖЕЛЕПОВ И Л. Н. ЗЫРЯНОВА

ы

## Продолжение табл. І

| №<br>п/п                         | Реакция                                                                                                 | Литера-<br>турные<br>ссылки                                                                                                                                                              | Экспериментальное<br>значение Q<br>в Мэв                                                                                                                                                                                                                                                                                                                             | Bec                                                                                                                                              | Принятое<br>значение Q<br>в Мэв                                                                                                            | Bec                               | Значение Q,<br>вычисленное<br>из масс<br>(таблица II)                             |                       |
|----------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------|-----------------------|
| 1                                | 2                                                                                                       | 3                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                | 6                                                                                                                                          | 7                                 | 8                                                                                 |                       |
| 34<br>35<br>36<br>37<br>38<br>39 | $\begin{array}{c} Be^{9}(d, p) Be^{10} \\ To we \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ | $\left \begin{array}{c} 75\\ 212\\ 76\\ 350\\ 385\\ 238\\ 184\\ 178\\ 196\\ 329\\ 330\\ 60\\ 424\\ 425\\ 279\\ 278\\ 279\\ 278\\ 279\\ 68\\ 271, 147\\ 257\\ 413\\ 54\end{array}\right $ | $\begin{array}{c} 4,576\pm0,012\\ 4,68\\ 4,576\pm0,012\\ 4,55\pm0,008\\ 4,591\pm0,008\\ -2,03\\ -1,851\pm0,006\\ -1,852\pm0,002\\ -1,852\pm0,002\\ -1,852\pm0,002\\ -1,852\pm0,002\\ -1,852\pm0,002\\ 4,39\\ 4,39\\ 4,39\\ 4,39\\ 4,39\\ 4,39\\ 4,39\\ -2,05\\ -7,02\\ -6,92\pm0,05\\ 5,65\pm0,11\\ 5,78\pm0,11\\ 2,90\\ 2,75\\ \pm0,08\\ 2,99\\ 2,82\\ \end{array}$ | $\begin{array}{c} 0\\ 0\\ 0\\ 11\\ 160\\ 160\\ 0\\ 280\\ 0\\ 0\\ 2500\\ 0\\ 0\\ 0\\ 1\\ 4\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$ | $\begin{array}{c} 4,587 \pm 0,006 \\ -1,8520 \pm 0,0019 \\ 4,39 \pm 0,10 \\ -8,01 \pm 0,05 \\ -6,92 \pm 0,05 \\ 5,72 \pm 0,08 \end{array}$ | 320<br>2800<br>1<br>4<br>4<br>1,6 | $4,581\pm0,010$<br>1,852\pm0,009<br>$4,357\pm0,009$<br>6,890±0,012<br>5,696±0,008 | массы лёгких ядер 477 |

.

Продолжение табл. І

| №<br>п/п             | Реакция                                                                                                                                                                                         | • Литера-<br>турные<br>ссылки                                                                                                                                   | Экспериментальное<br>значение Q<br>в Мэв                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bec                                                                                                                                                 | Принятое<br>значение Q<br>в Мэв                                                         | Bec                              | Значение Q,<br>вычисленное<br>из масс<br>(таблица II)                                         |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------|
| 1                    | 2                                                                                                                                                                                               | 3                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                   | 6                                                                                       | 7                                | 8                                                                                             |
| 40<br>41<br>42<br>43 | B <sup>10</sup> (n, ?) Li <sup>7</sup><br>To жe<br>B <sup>10</sup> (p, a) Be <sup>7</sup><br>To жe<br>B <sup>10</sup> (d, a) Be <sup>3</sup><br>B <sup>10</sup> (d, p) B <sup>11</sup><br>To жe | $\begin{array}{c} 215\\ 218\\ 447\\ 84\\ 396\\ 177\\ 143\\ 82\\ 83\\ 83\\ 83\\ 71\\ 79\\ 84\\ 97\\ 358\\ 97\\ 161\\ 175\\ 317\\ 34\\ 78\\ 34\\ 385 \end{array}$ | $\begin{array}{c} 2,785\pm0,025\\ 2,788\pm0,010\\ 2,85\pm0,10\\ 2,80\pm0,05\\ 2,795\pm0,004\\ 2,793\pm0,027\\ 2,83\pm0,15\\ 1,11\pm0,06\\ 1,04\pm0,06\\ 1,05\pm0,07\\ 1,146\pm0,005\\ 1,152\pm0,004\\ 1,152\pm0,005\\ 9,279\pm0,020\\ 9,18\pm0,05\\ 9,235\pm0,011\\ \end{array}$ | $ \begin{array}{c} 16\\ 100\\ 0\\ 620\\ 13\\ 0\\ 0\\ 0\\ 280\\ 620\\ 100\\ 1,6\\ 0,11\\ -2,8\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$ | $2,794\pm0,004$<br>$1,150\pm0,003$<br>$17,76\pm0,08$<br>$-7,6\pm0,3$<br>$9,230\pm0,011$ | 740<br>1000<br>1,6<br>0,11<br>90 | $2,794\pm0,010$<br>$1,149\pm0,010$<br>$17,816\pm0,009$<br>$-8,435\pm0,010$<br>$9,234\pm0,010$ |

•

-

478

Б. С.

**ДЖЕЛЕПОВ И Л. Н. ЗЫРЯНОВА** 

\_

| №<br>п/п       | Реакция                                                                                                                                      | Литера-<br>турные<br>ссылки                                                                                 | Экспериментальное<br>значение Q<br>в Мэв                                              | Bec                             | Принятое<br>значение Q<br>в Мэв             | Bec          | Значение Q,<br>вычисленное<br>из масс<br>(таблица II) |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------|--------------|-------------------------------------------------------|
| 1              | 2                                                                                                                                            | 3                                                                                                           | 4                                                                                     | 5                               | 6                                           | 7            | 8                                                     |
| 44<br>45<br>46 | B <sup>10</sup> (p, n) C <sup>10</sup><br>B <sup>10</sup> (d, n) C <sup>11</sup><br>To же<br>B <sup>10</sup> (a, p) C <sup>13</sup><br>To же | $ \begin{array}{r}     30 \\     60 \\     163 \\     271 \\     432 \\     220 \\     280 \\ \end{array} $ | $\begin{array}{c} -5,1\\ 6,08\\ 6,59 \pm 0,10\\ 3,7\\ 4,16\\ 3,86\\ 3,85\end{array}$  | 0<br>0<br>1<br>0<br>0<br>0<br>0 | 6,59 <u>+</u> 0,10                          | 1            | $-4,71 \pm 0,10$<br>6,465 $\pm 0,010$                 |
| 47             | B <sup>11</sup> (p, α) Be <sup>8</sup><br>Το же                                                                                              | 106<br>313<br>306<br>385                                                                                    | $4,07 \pm 0,20$<br>$4,08 \pm 0,12$<br>$8,60 \pm 0,10$<br>$8,567 \pm 0,011$            | 0,25<br>0,69<br>0<br>83         | 4,08 ±0,10                                  | 0,94         | 4,061 <u>+</u> 0,009                                  |
| 18             | B11 (d <sup>°</sup> a) Ba9                                                                                                                   | 252, 253                                                                                                    | $8,574\pm0,014$<br>8,13 ±0,12                                                         | 51                              | 8,570 <u>+</u> 0,009                        | 130          | 8,582 <u>+</u> 0,008                                  |
| 49<br>50       | To $me$<br>B <sup>11</sup> ( $\gamma$ , n) B <sup>10</sup><br>B <sup>11</sup> (d, p) B <sup>12</sup><br>To $me$                              | 397, 399<br>358<br>202<br>383                                                                               | $8,018\pm0,007$<br>-11,1 $\pm0,3$<br>1,25<br>1 136 $\pm0,004$                         | 200<br>0,11<br>0                | 8,018 <u>+</u> 0,007<br>-11,1 <u>+</u> 0,3  | 200<br>0,11  | $8,025\pm0,009\-11,460\pm0,009$                       |
| 51             | В <sup>11</sup> (р, n) С <sup>11</sup><br>То же                                                                                              | 79<br>183<br>184                                                                                            | $\begin{array}{r}1,136\pm0,005\\-2,76\pm0,01\\-2,72\pm0,03\\-2,72\pm0,002\end{array}$ | 400<br>0<br>0                   | 1,136 <u>+</u> 0,005                        | 400          | 1,135 <u>+</u> 0,012                                  |
| 52             | "<br>B <sup>11</sup> (d, "n) C <sup>12</sup><br>"                                                                                            | 329<br>330<br>60<br>163                                                                                     | $\begin{array}{c} -2,702\pm0,003\\ -2,762\pm0,003\\ 13,4\\ 13,92\pm0,15\end{array}$   | 1100<br>0<br>0,44               | 2,762 <u>+</u> 0,003<br>13,92 <u>+</u> 0,15 | 1100<br>0,44 | - 2,769 <u>+</u> 0,009<br>13,721 <u>+</u> 0,008       |

## Продолжение табл. 1

массы лёгких ядер

| Продолжение | табл. I |
|-------------|---------|
|-------------|---------|

| №<br>п/п | Реакция                                                                                        | Литера-<br>турные<br>ссылки          | Экспериментальное<br>значение Q<br>в Мэв                                                                           | Bec                          | Принятое<br>значение Q<br>в <i>Мэв</i> | Bec  | Значение Q,<br>вычисленное<br>из масс<br>(таблица II) |
|----------|------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------|------|-------------------------------------------------------|
| 1        | 2 .                                                                                            | 3                                    | 4                                                                                                                  | 5                            | 6                                      | 7    | 8                                                     |
| 53       | B <sup>11</sup> (a, p) C <sup>14</sup><br>To me                                                | 316<br>106<br>367                    | $\begin{array}{c} 0,66 \pm 0,30 \\ 0,85 \pm 0,20 \\ 0,63 \\ 0,75 \pm 0,01 \end{array}$                             | 0<br>0<br>100                | 0.75 1.0.01                            | 100  | 0.779.1.0.008                                         |
| 54       | C <sup>12</sup> (γ, n) C <sup>11</sup>                                                         | 274                                  | $-18,7$ $\pm 0,11$                                                                                                 | 100                          | $-18,7 \pm 0,11$                       | 100  | $-18,715\pm0,008$                                     |
| 55       | $C^{12}(n, \gamma) C^{13}$                                                                     | 234, 235<br>414                      | $4,947\pm0,010$<br>4 95 +0 05                                                                                      | 100                          | 4.947+0.010                            | 104  | 4 948-1-0 007                                         |
| 56       | C12 (d, p) C18<br>To жe                                                                        | 98<br>211<br>174<br>192<br>74<br>385 | $\begin{array}{c} 2,71 \pm 0,05 \\ 2,38 \pm 0,15 \\ 2,6 \\ 2,72 \\ 2,729 \pm 0,009 \\ 2,716 \pm 0,005 \end{array}$ | 0<br>0<br>0<br>0<br>400      | 1,011_0,010                            | 101  | +,940 <u>-</u> 0,001                                  |
| 57<br>58 | ,<br>C <sup>12</sup> (p, n) N <sup>12</sup><br>C <sup>12</sup> (d, n) N <sup>13</sup><br>To жe | 238<br>15<br>98<br>45<br>64          | $\begin{array}{c} 2,732\pm0,006\\18,5\pm0,1\\ -&0,28\\ -&0,27\pm0,02\\ -&0,281\pm0,003 \end{array}$                | 280<br>6)<br>0<br>25<br>1100 | 2,723 <u>+</u> 0,005 ³)                | 380  | 2,723 <u>+</u> 0,007                                  |
| 59       | ,<br>C <sup>13</sup> (d, α) B <sup>11</sup>                                                    | 172<br>98                            | $ \begin{array}{c} -0,29 \pm 0,09 \\ -0,29 \pm 0,19 \\ 5,24 \pm 0,11 \\ 160 \pm 0,010 \end{array} $                |                              | — 0,281 <u>+</u> 0,003                 | 1100 | — 0,283 <u>+</u> 0,008                                |
| 60       |                                                                                                | 384, 385<br>252<br>385               | $5,100\pm0,010$<br>$5,164\pm0,006$<br>$1,310\pm0,006$                                                              | 280<br>280                   | 5,163 <u>+</u> 0,005                   | 380  | 5,173 <u>+</u> 0,008                                  |
|          | То же                                                                                          | 252                                  | 1,310±0,003                                                                                                        | 1100                         | 1,310 <u>+</u> 0,003                   | 1380 | 1,312 <u>+</u> 0,008                                  |

•

4

## Продолжение табл. І

| №<br>п/п | Реакция                                                 | Литера-<br>турные<br>ссылки               | Экспериментальное<br>значение Q<br>в Мэв                                                                                 | Bec                      | Принятое<br>значение Q<br>в <i>Мэв</i> | Bec  | Значение Q,<br>вычисленное<br>из масс<br>(таблица II) |
|----------|---------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------|------|-------------------------------------------------------|
| 1        | 2                                                       | 3                                         | 4                                                                                                                        | 5                        | 6                                      | 7    | 8                                                     |
| 61       | С <sup>13</sup> (d, p) С <sup>14</sup><br>То же<br>", . | 67<br>44<br>210<br>110<br>375<br>385      | $\begin{array}{c} 6,1\\ 6,09 \pm 0,20\\ 5,82 \pm 0,12\\ 5,91 \pm 0,03\\ 5,948 \pm 0,014\\ 5,948 \pm 0,008\\ \end{array}$ | 0<br>0<br>11<br>0<br>160 |                                        |      |                                                       |
| 62       | С <sup>13</sup> (р, n) N <sup>13</sup><br>То же         | 252<br>183<br>329<br>330                  | $5,940\pm0,004$<br>-2,97 ±0,03<br>-3,003 ±0,003<br>-3,003 ±0,003                                                         | 620<br>0<br>0<br>1100    | 5,941 <u>+</u> 0,004                   | 780  | 5,945 <u>+</u> 0,007                                  |
| 63       | C <sup>18</sup> (d, n) N <sup>14</sup><br>To жe         | $1 \\ 60 \\ 44 \\ 386$                    | $\begin{array}{c} -3,01 \pm 0,01 \\ 5,2 \pm 0,4 \\ 5,5 \pm 0,2 \\ 5,24 \end{array}$                                      | 100<br>0<br>0,25<br>0    | —3,004 <u>+</u> 0,003                  | 1200 |                                                       |
| GA       | $C^{14}(r^{2}r)$ N <sup>14</sup>                        | 265<br>250                                | $5,17 \pm 0,05$                                                                                                          | 4                        | 5,19 <u>+</u> 0,05 ³)                  | 3,7  | 5,320 <u>+</u> 0,007                                  |
| 04       | То же                                                   | 360                                       | $-0,620\pm0,002$                                                                                                         | 120                      | -0,620 <u>+</u> 0,009                  | 120  | $-0,626\pm0,006$                                      |
| 65       | С <sup>14</sup> (d, n) N <sup>15</sup><br>То же         | $\begin{array}{c} 204 \\ 205 \end{array}$ | 8,0<br>8,15                                                                                                              | 0                        |                                        |      |                                                       |
| 66       | N <sup>14</sup> (п, а) В <sup>11</sup><br>То же<br>"    | 205<br>59<br>27<br>53                     |                                                                                                                          | 0<br>0<br>0<br>0         |                                        |      | 7,987 <u>+</u> 0,008                                  |

•

481

массы лёгких ядер

Продолжение табл. І

| №<br>п/п | Реакция                                                                                                                                                    | Литера-<br>турные<br>ссылки                                                                                                                                        | Эксперимептальное<br>значение Q<br>в Мэв                                                                                                                                                                                                                                                                                                                                                                                                                  | Bec                                                                                                                                                                         | Принятое<br>значение Q<br>в Мэв                              | Bec       | Значение Q,<br>вычисленное<br>из масс<br>(таблица II) |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------|-------------------------------------------------------|
| 1        | 2                                                                                                                                                          | 3                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                           | 6                                                            | 7         | 8                                                     |
| 67<br>68 | N <sup>14</sup> (n, a) B <sup>11</sup><br>To me<br>"<br>N <sup>14</sup> (d, a) C <sup>12</sup><br>To me<br>N <sup>14</sup> (n, p) C <sup>14</sup><br>To me | $\begin{array}{c} 32\\ 376\\ 221\\ 56\\ 56\\ 97\\ 193\\ 262\\ 198\\ 199\\ 54\\ 322\\ 440\\ 59\\ 376\\ 200\\ 207\\ 360\\ 153\\ 218\\ 154\\ 285\\ 221\\ \end{array}$ | $\begin{array}{c} - 0,260 \\ - 0,24 \pm 0,08 \\ - 0,26 \pm 0,08 \\ - 0,30 \pm 0,06 \\ - 0,28 \pm 0,08 \\ 13,40 \pm 0,15 \\ 13,39 \pm 0,08 \\ 13,575 \pm 0,012 \\ 0,60 \pm 0,03 \\ 0,57 \pm 0,04 \\ 0,60 \\ 0,710 \\ 0,60 \pm 0,03 \\ 0,57 \pm 0,04 \\ 0,60 \\ 0,710 \\ 0,60 \pm 0,03 \\ 0,70 \pm 0,04 \\ 0,610 \pm 0,01 \\ 0,632 \pm 0,010 \\ 0,632 \pm 0,010 \\ 0,632 \pm 0,004 \\ 0,610 \pm 0,010 \\ 0,630 \pm 0,010 \\ 0,630 \pm 0,050 \\ \end{array}$ | $\begin{array}{c} 0\\ 1,6\\ 2,8\\ 1,6\\ 0\\ 1,6\\ 0\\ 0\\ 0\\ 0\\ 0\\ 11\\ 0\\ 0\\ 100\\ 16\\ 120\\ 0\\ 100\\ 280\\ 100\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $ | — 0,27 <u>+</u> 0,04<br>13,571 <u>+</u> 0,018 <sup>8</sup> ) | 7,6<br>30 | 0,147 <u>+</u> 0,008<br>13,574 <u>+</u> 0,007         |

.

Продолжение табл. І

| №<br>п/п | Реакция                                                                                                   | Литера-<br>турные<br>ссылки                | Экспериментальное<br>значение Q<br>в Мэв                                                                                | Bec                              | Принятое<br>значение Q<br>в Мэв         | Bec       | Значение Q,<br>вычисленное<br>из масс<br>(таблица II) |
|----------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------|-----------|-------------------------------------------------------|
| 1        | 2                                                                                                         | 3                                          | 4                                                                                                                       | 5                                | 6                                       | 7         | 8                                                     |
| 69       | N <sup>14</sup> (n, p) C <sup>14</sup><br>To же<br>N <sup>14</sup> (γ, n) N <sup>13</sup><br>To же        | 143<br>338<br>28<br>29<br>274              | $\begin{array}{c} 0,62 \pm 0,05 \\ 0,626 \\ -11,0 \pm 0,5 \\ -11,1 \pm 0,5 \\ 10,6 \pm 0,2 \end{array}$                 | 0<br>0<br>0,04                   | 0,622 <u>+</u> 0,004                    | 720       | 0,626 <u>+</u> 0,006                                  |
| 70<br>71 | N <sup>14</sup> (n, γ) N <sup>15</sup><br>N <sup>14</sup> (d, p) N <sup>15</sup><br>To жe                 | 275<br>234, 235<br>97<br>194<br>115<br>174 | $\begin{array}{c} -10,65 \pm 0,20\\ -10,65 \pm 0,012\\ 8,55 \pm 0,08\\ 8,51 \pm 0,10\\ 8,65 \pm 0,07\\ 8,55\end{array}$ | 0,25<br>69<br>1,6<br>0<br>2<br>0 | $-10,71 \pm 0,19$<br>10,823 $\pm 0,012$ | 0,3<br>69 | $-10,551\pm0,007$<br>10,838 $\pm0,008$                |
|          | 27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>2                           | 429<br>260<br>261<br>385                   | $\begin{array}{r} 8,61 \\ 8,615 \\ - 0,008 \\ 8,615 \\ - 0,009 \\ 8,615 \\ - 0,009 \\ 8,615 \\ - 0,009 \end{array}$     | 0<br>0<br>0<br>120               | 8,615 <u>+</u> 0,009                    | 120       | 8,613 <u>+</u> 0,008                                  |
| 72<br>73 | N <sup>14</sup> (d, f) O <sup>15</sup><br>To $\approx$<br>N <sup>14</sup> ( $\alpha$ , p) O <sup>17</sup> | 378<br>162<br>181<br>320                   | $5,1 \pm 0,2$<br>$5,15 \pm 0,10$<br>-1,26<br>-1,26                                                                      | °)<br>0                          |                                         |           | •                                                     |
| 74       | 10 же<br>N <sup>15</sup> (р, а) С <sup>12</sup><br>То же                                                  | 339<br>81<br>156<br>101                    | $ \begin{array}{c} - 1,37 \\ - 1,17 \\ 5,00 \\ \pm 0,15 \\ 4,96 \\ \pm 0,05 \\ 4,960 \\ \pm 0,006 \end{array} $         | 6<br>0<br>4<br>280               | - 1,17 <u>+</u> 0,04                    | 6         | — 1,186 <u>+</u> 0,008                                |

| Продолжение | табл. I |
|-------------|---------|
|-------------|---------|

| №<br>п/п                                     | Реакция                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Литера-<br>турные<br>ссылки                                                                                                                                             | Экспериментальное<br>значение Q<br>в Мэв                                                                                                                                                                                                                                                                                                                                   | Bec                                                                                                                       | Принятое<br>значение Q<br>в <i>Мэв</i>                                                  | Bec                              | Значение Q,<br>вычисленное<br>из масс<br>(таблица II)                                             |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------|
| 1                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                         | 6                                                                                       | 7                                | 8                                                                                                 |
| 75<br>76<br>77<br>78<br>79<br>80<br>81<br>82 | $ \begin{array}{c} N^{15} (p, \alpha) C^{12} \\ To & \text{me} \\ N^{15} (d, \alpha) C^{18} \\ To & \text{me} \\ \end{array} \\ \begin{array}{c} N^{15} (d, \alpha) N^{16} \\ To & \text{me} \\ \end{array} \\ \begin{array}{c} N^{15} (d, \alpha) N^{16} \\ O^{16} (n, \alpha) C^{13} \\ O^{16} (d, \alpha) N^{14} \\ To & \text{me} \\ \end{array} \\ \begin{array}{c} O^{16} (n, p) N^{16} \\ O^{16} (\eta, n) O^{15} \\ To & \text{me} \\ \end{array} \\ \begin{array}{c} O^{16} (d, p) O^{17} \\ To & \text{me} \\ \end{array} \\ \begin{array}{c} n \\ n $ | 385<br>252, 253<br>194<br>262<br>385<br>428<br>429<br>426<br>201<br>97<br>384, 385<br>253<br>28<br>29<br>373<br>98<br>174<br>320<br>190<br>191, 192<br>395<br>74<br>297 | $\begin{array}{c} 4,960\pm0,007\\ 4,961\pm0,006\\ 7,54\pm0,007\\ 7,681\pm0,009\\ 7,681\pm0,009\\ 0,23\pm0,15\\ 0,21\pm0,15\\ 0,21\pm0,15\\ 10,9\pm0,15\\ -2,38\pm0,16\\ 3,13\pm0,13\\ 3,112\pm0,006\\ 3,119\pm0,005\\ -11,9\\ -16,3\pm0,4\\ 1,95\pm0,06\\ 1,8\\ 1,75\\ 2,05\pm0,2\\ 1,90\pm0,2\\ 1,90\pm0,008\\ 1,925\pm0,008\\ 1,925\pm0,008\\ 1,89\pm0,10\\ \end{array}$ | $200 \\ 280 \\ 2 \\ 280 \\ 0 \\ 6 \\ 0 \\ 6 \\ 0 \\ 400 \\ 0 \\ 6 \\ 6 \\ - 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ | $4,960\pm0,004$<br>7,680 $\pm0,008$ <sup>3</sup> )<br>$-2,38\pm0,16$<br>$3,116\pm0,004$ | 760<br>160<br>0,04<br>0,4<br>680 | $4,961\pm0,008$ $7,684\pm0,009$ $-9,901\pm0,007$ $-2,217\pm0,006$ $-3,103\pm0,006$ $-9,69\pm0,15$ |

| Продо | л | ж | е | н | и | е | Τź | ιб | л. | I |
|-------|---|---|---|---|---|---|----|----|----|---|
|-------|---|---|---|---|---|---|----|----|----|---|

| №<br>п/п       | Реакция                                                                                                                    | Литера-<br>турные<br>ссылки | Экспериментальное<br>значение Q<br>в Мэв                                                                        | Bec                          | Принятое<br>значение Q<br>в Мэв | Bec  | Значение Q,<br>вычисленное<br>из масс<br>(таблица II)                 |
|----------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------|------|-----------------------------------------------------------------------|
| 1              | 2                                                                                                                          | 3                           | 4                                                                                                               | 5                            | 6                               | 7    | 8                                                                     |
| 83             | О <sup>16</sup> (d, p) О <sup>17</sup><br>То же<br>О <sup>16</sup> (d, p) F <sup>17</sup><br>То же                         | 385<br>238<br>191<br>128    | $\begin{array}{c} 1,917\pm 0,005\\ 1,918\pm 0,008\\ -1,614\pm 0,010\\ -1,51\pm 0,05\\ -1,51\pm 0,01\end{array}$ | 400<br>160<br><sup>6</sup> ) | 1,917 <u>+</u> 0,004            | 560  | 1,918 <u>+</u> 0,007                                                  |
| 84<br>85<br>86 | O <sup>16</sup> (a, p) F <sup>19</sup><br>O <sup>17</sup> (n, a) C <sup>14</sup><br>O <sup>18</sup> (p, a) N <sup>15</sup> | 05<br>73<br>197<br>81       | $ \begin{array}{r} -1,03 \pm 0,01 \\ -8,08 \pm 0,1 \\ 1,4 \\ 3,96 + 0,15 \end{array} $                          | 0<br>0<br>0,44               |                                 |      | $\begin{array}{r} & 8,123 \pm 0,006 \\ & 1,812 \pm 0,008 \end{array}$ |
| 87             | То же<br>О <sup>18</sup> (р, п) F <sup>18</sup>                                                                            | 156<br>122                  | $3,97 \pm 0,05$<br>- 2,42 \pm 0,04<br>2,455 \pm 0,002                                                           | 4<br>0<br>0                  | 3,97 <u>+</u> 0,05              | 4,4  | 3,985 <u>+</u> 0,008                                                  |
| 88             | F <sup>19</sup> (n, a) N <sup>16</sup>                                                                                     | 329<br>330<br>53            | $\begin{array}{r} -2,453\pm0,002\\ -2,453\pm0,002\\ -0,73\pm0,26\end{array}$                                    | 2500<br>0                    | - 2,453 <u>+</u> 0,002          | 2500 | 2,452 <u>+</u> 0,008                                                  |
| 89             | То же<br>F <sup>19</sup> (р, <sup>7</sup> α) О <sup>16</sup>                                                               | 213<br>214<br>189           | $\begin{array}{r} - 0,67 \pm 0,11 \\ - 1,2 \pm 0,9 \\ 8,15 \pm 0,12 \end{array}$                                | 0<br>0                       |                                 |      | $-$ 1,57 $\pm$ 0,15                                                   |
|                | То же<br>"                                                                                                                 | 8<br>35,36<br>156           | 7,95<br>$7,94 \pm 0,08$<br>$8,06 \pm 0.04$                                                                      | 0<br>0<br>6                  |                                 | •    |                                                                       |
|                | 27<br>27                                                                                                                   | 382                         | $8,101\pm0,030$                                                                                                 | Ŭ<br>11                      |                                 |      |                                                                       |
| 90             | "<br>10 (م <sup>°</sup> م) 11                                                                                              | 94, 95<br>385<br>80         | $8,113\pm0,030$<br>$8,118\pm0,009$<br>9,84                                                                      | 120<br>0                     | 8,115 <u>+</u> 0,008            | 140  | 8,123 <u>+</u> 0,006                                                  |
|                | То же                                                                                                                      | 385                         | 10,050 <u>+</u> 0,010                                                                                           | 10Ŏ                          | 10,050 <u>+</u> 0,010           | 100  | $10,040 \pm 0,008$                                                    |

.

массы лёгких ядер

| Προ    | πο:   | лже     | ние | табл.      | T |
|--------|-------|---------|-----|------------|---|
| 11 P V | ~ ~ • | 1 1 L Q |     | 1 11 0 *** | • |

| 4 |  |
|---|--|
| Ô |  |
| 6 |  |

Б. C.

ДЖЕЛЕПОВ И Л. Н. ЗЫРЯНОВА

| №<br>п/п       | Реакция                                                                                                                                     | Литера-<br>турные<br>ссылки      | Экспериментальное<br>значение Q<br>в Мэв                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Вес               | Принятое<br>значение Q<br>в Мэв   | Bec     | Значение Q,<br>вычисленное<br>из масс<br>(таблица II) |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------|---------|-------------------------------------------------------|
| 1              | 2                                                                                                                                           | 3                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                 | 6                                 | 7       | 8                                                     |
| 91             | F <sup>19</sup> (n, p) O <sup>19</sup><br>To жe                                                                                             | 351<br>213<br>214                | $\begin{array}{r} 0,48 \pm 0,25 \\ - 3,56 \pm 0,07 \\ - 3,9 \pm 0,7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6)                | -                                 |         |                                                       |
| 92<br>93<br>94 | F <sup>19</sup> (d, t) F <sup>18</sup><br>F <sup>19</sup> (n, $\gamma$ ) F <sup>20</sup><br>F <sup>19</sup> (d, p) F <sup>20</sup><br>To жe | 66<br>235, 237<br>67<br>8<br>307 | $\begin{array}{c} -4,1 \\ 6,63 \\ 4,3 \\ 4,29 \\ 4,36 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -$ | 1<br>11<br>0<br>0 | $-4,1 \pm 0,1$<br>6,63 $\pm 0,03$ | 1<br>11 | $-4,180\pm0,009\6,600\pm0,021$                        |
| 95             | F <sup>19</sup> (p, n) Ne <sup>19</sup>                                                                                                     | 9<br>385<br>422<br>408           | $\begin{array}{c} 4,06 \pm 0,08 \\ 4,373 \pm 0,007 \\ -3,97 \pm 0,25 \\ 3,97 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>200<br>0     | 4,373 <u>+</u> 0,007              | 200     | 4,375 <u>+</u> 0,021                                  |
| 96<br>97<br>98 | $F^{19}(d, n) Ne^{20}$<br>$F^{19}(\alpha, p) Ne^{22}$<br>$Ne^{20}(n, \alpha) O^{17}$                                                        | 62<br>90<br>169                  | $10,80 \pm 0,20$<br>1,58 - 0,6<br>- 0,6<br>- 0,80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,25<br>0<br>0    | 10,80 <u>+</u> 0,20               | 0,25    | $10,628\pm0,007\\1,722\pm0,007$                       |
| 99<br>100      | Ne <sup>20</sup> (d, α) F <sup>18</sup><br>Ne <sup>20</sup> (d, p) Ne <sup>21</sup><br>To жe                                                | 222<br>286<br>130<br>133<br>16   | $\begin{array}{c} - 0,75 \pm 0,05 \\ 2,78 \pm 0,02 \\ 4,48 \pm 0,10 \\ 4,54 \pm 0,10 \\ 4,54 \pm 0,07 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4<br>25<br>0<br>0 | $-0,75\pm0,05$<br>2,78 $\pm0,02$  | 4<br>25 | $^{-0,588\pm0,008}_{2,774\pm0,008}$                   |
|                | 7)<br>29<br>39                                                                                                                              | 286<br>402                       | $4,51 \pm 0,07$<br>$4,54 \pm 0,04$<br>$4,529 \pm 0,007$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6<br>200          | 4,529 <u>+</u> 0,007              | 200     | 4,532 <u>+</u> 0,007                                  |

| №<br>п/п                                             | Реакция                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Литера-<br>турные<br>ссылки                                                                                                                                                                  | Экспериментальное<br>значение Q<br>в Мэв                                                                                                                                                                                                                                                                                                                                                                             | Bec                                                                                   | Принятое<br>значение Q<br>в <i>Мэв</i>                                                                    | Bec                          | Значение Q,<br>вычисленное<br>из масс<br>(таблица II)                                                                                                                                                                                  |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                     | 6                                                                                                         | 7                            | 8                                                                                                                                                                                                                                      |
| 101<br>102<br>103<br>104<br>105<br>106<br>107<br>108 | Ne <sup>20</sup> ( $\alpha$ , p) Na <sup>23</sup><br>To же<br>Ne <sup>21</sup> (d, p) Ne <sup>22</sup><br>To же<br>Ne <sup>22</sup> (d, $\alpha$ ) F <sup>20</sup><br>Ne <sup>22</sup> (d, $\alpha$ ) Ne <sup>23</sup><br>To же<br>Ne <sup>22</sup> ( $\alpha$ , $n$ ) Mg <sup>25</sup><br>Na <sup>23</sup> ( $n$ , $\alpha$ ) F <sup>20</sup><br>To же<br>Na <sup>23</sup> ( $p$ , $\alpha$ ) Ne <sup>20</sup><br>To же<br>Na <sup>23</sup> ( $d$ , $\alpha$ ) Ne <sup>21</sup><br>To же | $\begin{array}{c} 3\\ 315\\ 315\\ 16\\ 433\\ 286\\ 130\\ 133\\ 16\\ 402\\ 307\\ 213\\ 214\\ 155\\ 156\\ 402\\ 249\\ 294\\ 155\\ 156\\ 402\\ 249\\ 294\\ 154\\ 196\\ 385\\ 213\\ \end{array}$ | $\begin{array}{c} & \\ - & 2,54 \\ - & 2,64 \pm 0,20 \\ & 8,34 \\ \hline 7,00 \pm 0,10 \\ 2,62 \pm 0,10 \\ 2,89 \pm 0,11 \\ 2,96 \pm 0,07 \\ - & 0,916 \pm 0,07 \\ - & 0,916 \pm 0,07 \\ - & 4,00 \pm 0,50 \\ - & 5,4 \pm 0,3 \\ 2,14 \pm 0,07 \\ 2,35 \pm 0,04 \\ 2,372 \pm 0,04 \\ 2,372 \pm 0,008 \\ 6,85 \pm 0,20 \\ 6,75 \pm 0,10 \\ 6,84 \pm 0,05 \\ 6,86 \\ 6,902 \pm 0,010 \\ - & 4,22 \pm 0,27 \end{array}$ | 0<br>0,25<br>0<br>1<br>0<br>0<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 | $-2,64 \pm 0,20$ $2,62 \pm 0,10$ $-2,964 \pm 0,007$ $-0,916 \pm 0,07$ $2,371 \pm 0,008$ $6,900 \pm 0,010$ | 0,25<br>I<br>200<br>2<br>160 | $\begin{array}{c} & & & & \\ & - & 2,389 \pm 0,008 \\ & & 8,179 \pm 0,007 \\ & & 2,653 \pm 0,020 \\ & - & 2,989 \pm 0,008 \\ & - & 0,502 \pm 0,020 \\ & - & 3,864 \pm 0,007 \\ & & 2,389 \pm 0,008 \\ & & 6,921 \pm 0,008 \end{array}$ |
| 110                                                  | Το же<br>Na <sup>23</sup> (γ, n) Na <sup>23</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                         | 214<br>358                                                                                                                                                                                   | $\begin{array}{c} -3,6 \\ \pm 0,8 \\ -12,6 \\ \pm 0,3 \end{array}$                                                                                                                                                                                                                                                                                                                                                   | 0<br>6)                                                                               |                                                                                                           |                              | — 3,528 <u>+</u> 0,009                                                                                                                                                                                                                 |

Продолжение табл. І

МАССЫ ЛЁГКИХ ЯДЕР

-

Продолжение табл. І

| №<br>п/п          | Реакция                                                                                                                                                                         | Литера-<br>турные<br>ссылки            | Экспериментальное<br>значение Q<br>в Мэв                                                                                       | Bec                      | Принятое<br>значение Q<br>в Мэв                       | Bec               | Значение Q,<br>вычисленное<br>из масс<br>(таблица 11)                 |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------|-------------------|-----------------------------------------------------------------------|
| 1                 | 2                                                                                                                                                                               | 3                                      | 4                                                                                                                              | 5                        | 6                                                     | 7                 | 8                                                                     |
| 111               | Na <sup>23</sup> (d, p) Na <sup>24</sup><br>То же<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                                | 249<br>294<br>396<br>297<br>385<br>422 | $\begin{array}{r} 4,92 \pm 0,30 \\ 4,76 \\ 4,77 \pm 0,04^8) \\ 4,92 \pm 0,35 \\ 4,731 \pm 0,009 \\ -4,58 \pm 0,30 \end{array}$ | 6)<br>6)                 |                                                       |                   |                                                                       |
| 113<br>114<br>115 | To we<br>Na <sup>23</sup> (d, n) Mg <sup>24</sup><br>Na <sup>23</sup> ( $\alpha$ , p) Mg <sup>26</sup><br>To we<br>Mg <sup>24</sup> ( $\alpha$ <sup>2</sup> n) Mg <sup>23</sup> | 408<br>263<br>241<br>280<br>290<br>37  | $\begin{array}{r} -4,58 \pm 0,30 \\ 9,23 \pm 0,208 \\ 1,91 \\ 1,64 \\ 1,44 \\ -164 \pm 0.3 \end{array}$                        | 0,25<br>0<br>0<br>0<br>0 | 9,23 <u>+</u> 0,20                                    | 0,25              | 9,502 <u>+</u> 0,023<br>1,88 <u>+</u> 0,03                            |
| 116<br>117        | Mg <sup>24</sup> (1, 1) Mg <sup>25</sup><br>Mg <sup>24</sup> (1, 1) Mg <sup>25</sup><br>Mg <sup>24</sup> (d, p) Mg <sup>25</sup><br>To жe                                       | 275<br>237<br>5<br>7<br>297            | $ \begin{array}{c} -16,2 \pm 0,3 \\ 7,37 \pm 0,08 \\ 5,03 \pm 0,05 \\ 5,03 \\ 4,65 \pm 0,30 \end{array} $                      | 1,6<br>4<br>0<br>0       | 7,37 <u>+</u> 0,08                                    | 1,6               | 7,32 <u>+</u> 0,03                                                    |
| 118<br>119<br>120 | Mg <sup>24</sup> (α, p) A1 <sup>47</sup><br>To же<br>Mg <sup>25</sup> (d, α) Na <sup>23</sup><br>Mg <sup>25</sup> (γ, n) Mg <sup>24</sup>                                       | 385<br>402<br>123<br>227<br>402<br>358 | $5,094\pm0,010$ $5,097\pm0,007$ $-1,82$ $-1,62$ $7,019\pm0,013$ $-7,1 \pm 0,3$                                                 | 200<br>0<br>59<br>0,11   | $5,095 \pm 0,007$<br>7,019 \pm 0,013<br>- 7,1 \pm 0,3 | 200<br>59<br>0,11 | $5,10 \pm 0,03 \\ -1,59 \pm 0,03 \\ 7,019\pm 0,021 \\ -7,32 \pm 0,03$ |

488

----

| Прод | олж ( | ение | таб́л. | ł |
|------|-------|------|--------|---|
|------|-------|------|--------|---|

| №<br>п/п                        | Реакция                                                                                                                                                                                          | Литера-<br>турные<br>ссылки           | Экспериментальное<br>значение Q<br>в Мэв                                                                                              | Вес                                                                                                         | Принятое<br>значение Q<br>в Мэв | Bec      | Значение Q,<br>вычисленное<br>из масс<br>(таблица II) |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------|----------|-------------------------------------------------------|
| 1                               | 2                                                                                                                                                                                                | 3                                     | 4                                                                                                                                     | 5                                                                                                           | 6                               | 7        | 8                                                     |
| 121<br>122<br>123<br>124<br>125 | $\begin{array}{c} Mg^{25} (d, p) Mg^{26} \\ Mg^{25} (d, n) Al^{26} \\ Mg^{25} (x, p) Al^{28} \\ Mg^{26} (x, n) Mg^{25} \\ Mg^{26} (r, n) Mg^{27} \\ Mg^{26} (d, p) Mg^{27} \\ To we \end{array}$ | 402<br>387<br>123<br>358<br>5, 6<br>7 | $\begin{array}{c} & 8,880\pm0,012\\ & 5,58\pm0,10\\ -1,05\\ -10,1\\ +1,0\\ 4,21\\ \pm0,10\\ 4\\ 21\\ \pm0\\ 1\end{array}$             | 69<br><sup>6</sup> )<br>0<br>0<br>0                                                                         | 8,880 <u>+</u> 0,012            | 69       |                                                       |
| 126<br>127                      | Mg <sup>26</sup> (d, n) A1 <sup>37</sup><br>A1 <sup>27</sup> (p, α) Mg <sup>24</sup><br>To жe                                                                                                    | 402<br>386, 387<br>155<br>158         | $\begin{array}{c}4,207\pm0,006\\5,68\pm0,054\\1,32\pm0,07\\1,59\pm0,07\end{array}$                                                    | 280<br>4<br>0<br>0                                                                                          | $4,207\pm0,006$<br>5,68 ±0,05   | 280<br>4 | $4,21 \pm 0,04 \\ 6,03 \pm 0,04$                      |
| 128                             | A1 <sup>27</sup> (d, <sup>2</sup> ) Mg <sup>25</sup><br>To жe                                                                                                                                    | 402<br>276<br>322<br>323              | $1,585\pm0,007 \\ 1,595\pm0,007 \\ 6,46\pm0,14 \\ 7,05 \\ 6,52\pm0,06 \\ 6,52\pm0,02 $                                                | $     \begin{array}{r}       44 \\       200 \\       0 \\       0 \\       3 \\       11     \end{array} $ | 1,593 <u>+</u> 0,006            | 240      | 1,59 <u>+</u> 0,03                                    |
| 129                             | ,<br>Α127 (γ, n) Α126<br>Το же                                                                                                                                                                   | 352<br>158<br>385<br>136<br>37<br>275 | $\begin{array}{c} 6,58 \pm 0,03 \\ 6,62 \pm 0,05 \\ 6,694 \pm 0,010 \\ 6,694 \pm 0,010 \\ -14,4 \pm 0,3 \\ -14,0 \pm 0,4 \end{array}$ | 0<br>0<br>100<br>6)                                                                                         | 6,67 ±0,023)                    | 24       | 6,69 ±0,03                                            |
| 130                             | А <u>127</u> (п, ү) А <u>1</u> 23<br>То же                                                                                                                                                       | 235<br>237                            | 7,72 ±0,02<br>7,724±0,010                                                                                                             | 0<br>100                                                                                                    | 7,724 <u>+</u> 0,010            | 100      | 7,72 ±0,03                                            |

З УФН т, XLVIII, вып. 4.

массы лёгких ядер

Ξ.

## Продолжение табл. І

Б. С.

джелепов и

л. н.

зырянова

| №<br>п/п   | Реакция                                                                                                | Литера-<br>турн ле<br>ссылки                            | Экспериментальное<br>значение Q<br>в Мэв                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bec                                  | Принятое<br>значение Q<br>в <i>Мэв</i> | Bec  | Значение Q,<br>вычисленное<br>из масс<br>(таблица II) |
|------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|------|-------------------------------------------------------|
| 1          | 2                                                                                                      | 3                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                    | 6                                      | 7    | 8                                                     |
| 131        | A127 (d, p) A128<br>To жe                                                                              | 276<br>5<br>322<br>323<br>446<br>297<br>385, 398<br>136 | $5,79 \pm 0,30 \\ 5,46 \pm 0,06 \\ 5,64 \\ 5,45 \pm 0,05 \\ 5,72 \pm 0,058 \\ 5,47 \pm 0,15 \\ 5,494 \pm 0,010 \\ 5,494 \pm 0,000 $ | 0<br>3<br>0<br>4<br>0<br>0<br>0<br>0 |                                        |      |                                                       |
| 132<br>133 | ,<br>A1 <sup>27</sup> (p, n) Si <sup>27</sup><br>To же<br>A1-7 (p, γ) Si <sup>28</sup>                 | 137<br>230<br>243<br>273<br>346                         | $5,494\pm0,010$ 5,53 - 6,1 - 5,8 $\pm0,1$ 11,51 $\pm0,2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100<br>0<br>6)<br>0,25               | 5,492 <u>+</u> 0,010                   | 110  | 5,49 <u>+</u> 0,03                                    |
| 134<br>135 | То же<br>Al <sup>27</sup> (d, n) Si <sup>23</sup><br>Al <sup>27</sup> (α, p) Si <sup>30</sup><br>То же | 346<br>346<br>310<br>181<br>123                         | $11,70 \pm 0,1 \\ 11,31 \pm 0,2 \\ 9,08 \pm 0,2 \\ 2,3 \\ 2,26 \\ 2,26 \\ 2,95 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ 10,10 \\ $                                                                                                                             | 0<br>0<br>1<br>1                     | 11,51 ±0,2                             | 0,25 | $11,58\pm0,03$<br>9,35 $\pm0,03$                      |
| 136        | ,<br>A1 <sup>27</sup> (α, n) P30                                                                       | 280<br>46<br>367<br>309                                 | 2,22<br>2,22<br>2,30<br>$-2,93 \pm 0,17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>1<br>6)                         | 2,27 <u>+</u> 0,04                     | 5    | 2,36 <u>+</u> 0,3                                     |

## Продолжение табл. І

| №<br>п/п                               | Реакция                                                                                                                                                                                                                                                                                                                                                                                                                                 | Литера-<br>турные<br>ссылки                                                                                     | Экспериментальное<br>значение Q<br>в Мэв                                                                                                                                                                                                                                           | Bec                                                                               | Принятое<br>значение Q<br>в Мэв                         | Bec                  | Значение Q,<br>вычисленное<br>из масс<br>(таблица II)                                                   |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------|
| 1                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                               | 4                                                                                                                                                                                                                                                                                  | 5                                                                                 | 6                                                       | 7                    | 8                                                                                                       |
| 137<br>138<br>139<br>140               | Si <sup>28</sup> (γ, n) Si <sup>27</sup><br>To же<br>Si <sup>28</sup> (n, γ) Si <sup>29</sup><br>To же<br>Si <sup>28</sup> (d, p) Si <sup>29</sup><br>To же<br>"<br>"<br>Si <sup>28</sup> (d, n) P <sup>29</sup><br>To же                                                                                                                                                                                                               | $\begin{array}{c} 37\\ 275\\ 235\\ 237\\ 5, 6\\ 291\\ 297\\ 134\\ 385\\ 135\\ 309\\ 388\end{array}$             | $\begin{array}{c} -16,9 \\ \pm 0,3 \\ -16,8 \\ \pm 0,4 \\ 8,38 \\ \pm 0,10 \\ 8,51 \\ \pm 0,04 \\ 6,16 \\ \pm 0,06 \\ 6,18 \\ \pm 0,09 \\ 6,06 \\ \pm 0,15 \\ 6,246 \\ \pm 0,010 \\ 6,246 \\ \pm 0,008 \\ 6,246 \\ \pm 0,010 \\ -0,80 \\ \pm 0,10 \\ 0,36 \\ \pm 0,05 \end{array}$ | 6)<br>0<br>6<br>3<br>1<br>0<br>0<br>0<br>100<br>6)                                | 8,51 ±0,04<br>6,243±0,010                               | 6                    | $8,48 \pm 0,03$<br>$6,25 \pm 0,03$                                                                      |
| 141<br>142<br>143<br>144<br>145<br>146 | $\begin{array}{c} {\rm Si}^{23}\left(a, \ p\right) {\rm P31} \\ {\rm Si}^{29}\left(d, \ a\right) {\rm A1}^{27} - \\ {\rm To} \ {\rm we} \\ {\rm Si}^{29}\left(\gamma, \ n\right) {\rm Si}^{23} \\ {\rm Si}^{29}\left(n, \ \gamma\right) {\rm Si}^{30} \\ {\rm To} \ {\rm we} \\ {\rm Si}^{29}\left(d, \ p\right) {\rm Si}^{29} \\ {\rm To} \ {\rm we} \\ {\rm Si}^{29}\left(d, \ n\right) {\rm P30} \\ {\rm To} \ {\rm we} \end{array}$ | $\begin{array}{c} 402 \\ 181 \\ 401 \\ 402 \\ 358 \\ 235 \\ 237 \\ 291 \\ 401 \\ 402 \\ 309 \\ 266 \end{array}$ | $\begin{array}{c} 0,29 \pm 0,040 \\ -2,23 \\ 5,99 \pm 0,02 \\ 5,994 \pm 0,011 \\ -8,4 \pm 0,3 \\ 11,00 \pm 0,30 \\ 10,55 \pm 0,05 \\ 8,36 \pm 0,10 \\ 8,39 \pm 0,02 \\ 8,388 \pm 0,013 \\ 3,38 \pm 0,17 \\ 3,27 \pm 0,040 \end{array}$                                             | $\begin{array}{c} 0 \\ 0 \\ 83 \\ 0,1 \\ 0 \\ 4 \\ 1 \\ 0 \\ 59 \\ 6 \end{array}$ | $5,994\pm0,011- 8,4 \pm 0,310,55 \pm 0,058,388\pm0,013$ | 83<br>0,1<br>4<br>60 | $ \begin{array}{r} -1,92\pm0,03\\ 6,01\pm0,03\\ -8,48\pm0,03\\ 10,60\pm0,04\\ 8,38\pm0,04 \end{array} $ |

ç

массы лёгких ядер

Продолжение табл. I

| №<br>п/п     | Реакция                                                                                                    | Литера-<br>турные<br>ссылки                                      | Экспериментальное<br>значение Q<br>в Мэв                                                                                   | Bec             | Принятое<br>значение Q<br>в Мэв   | Bec       | Значение Q,<br>вычислешное<br>из масс<br>(таблица II) |
|--------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------|-----------|-------------------------------------------------------|
| 1            | 2                                                                                                          | 3                                                                | 4                                                                                                                          | 5               | 6                                 | 7         | 8                                                     |
| 147<br>148   | Si <sup>°0</sup> (d, a) Al <sup>28</sup><br>Si <sup>30</sup> (d, p) Si <sup>31</sup><br>То же<br>"         | 385<br>5, 6<br>291<br>385<br>400                                 | $\begin{array}{r} 3,120\pm0,010\\ 4,16\pm0,06\\ 4,33\pm0,15\\ 4,364\pm0,010\\ 4,367\pm0,010\\ \end{array}$                 | 100<br>0<br>0   | 3,120 <u>+</u> 0,010              | 100       | 3,13 <u>+</u> 0,04                                    |
|              | "                                                                                                          | 400                                                              | $4,361\pm0,007$<br>$4,361\pm0,007$                                                                                         | 200             | 4,364 <u>+</u> 0,007              | 200       | 4,38 <u>+</u> 0,04                                    |
| 149<br>150   | Si <sup>so</sup> (d, n) P <sup>31</sup><br>Тоже<br>P <sup>31</sup> (р, а) Si <sup>23</sup>                 | 309<br>266<br>157                                                | $\begin{array}{c} 4,56 \pm 0,13 \\ 4,92 \pm 0,040 \\ 1,85 \pm 0,02 \\ 1,92 \pm 0,02 \end{array}$                           |                 | 4,92 ±0,04                        | 6         | 5,08 <u>+</u> 0,04                                    |
| 151          | P <sup>31</sup> (d, α) Si <sup>2.</sup><br>Το же                                                           | 157<br>402<br>134<br>385                                         | $1,824\pm0,022$<br>$1,909\pm0,010$<br>$8,170\pm0,020$<br>$8,170\pm0,020$<br>$8,170\pm0,020$                                |                 | 1,897 <u>+</u> 0,016 ³)           | 40        | 1,92 ±0,04                                            |
| 152<br>. 153 | <sup>,</sup><br>Р <sup>31</sup> (п, р) Si <sup>31</sup><br>Р <sup>31</sup> (γ, п) Р <sup>30</sup><br>То же | 135<br>402<br>282<br>274<br>275                                  | $\begin{array}{c} 8,170\pm0,020\\ 8,158\pm0,011\\ -0,94\pm0,13\\ -12,4\pm0,2\\ -12,35\pm0,20\\ 12,45\pm0,20\\ \end{array}$ | 83<br>0,6<br>%) | $^{8,158\pm0,011}_{-0,94\pm0,13}$ | 83<br>0,6 | $^{8,16}_{-0,69}$ $^{\pm0,04}_{\pm0,04}$              |
| 154          | Р <sup>31</sup> (d, <sup>°</sup> р) Р <sup>32</sup><br>То же                                               | 220<br>319<br>9                                                  | $-12,40 \pm 0,2$<br>$5,9 \pm 0,3$<br>$5,52 \pm 0,10$<br>$5,701 \pm 0,000$                                                  | 0<br>0          |                                   |           |                                                       |
| 155          | <sup>"</sup><br>Р <sup>31</sup> (, р) S <sup>34</sup><br>То же                                             | $ \begin{array}{c c} 305 \\ 402 \\ 272 \\ 280, 315 \end{array} $ | $5,704\pm0,009$<br>$5,704\pm0,008$<br>0,31<br>1,3                                                                          | 160<br>0<br>0   | 5,704 <u>+</u> 0,008              | 160       | 5,704 <u>+</u> 0,028<br>0,61 <u>+</u> 0,04            |

-

-

492

ы

Продолжение табл. 1

| №<br>п/п          | Реакция                                                                                                                                 | Литера-<br>турные<br>ссылки                                       | Экспериментальное<br>значение Q<br>в Мэв                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bec                       | Принятое<br>значение Q<br>в Мэв                                               | Bec                  | Значение Q,<br>вычисленное<br>из масс<br>(таблица II)                                                |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------|
| 1                 | 2                                                                                                                                       | 3                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                         | 6                                                                             | 7                    | 8                                                                                                    |
| 156<br>157        | S <sup>32</sup> (п, а) Si <sup>29</sup><br>То же<br>S <sup>32</sup> (ү, d) Р <sup>30</sup>                                              | 173, 199<br>376<br>311                                            | $1,2 \pm 0,1$<br>$1,16 \pm 0,15$<br>-19,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0,44<br>0            | $1,16 \pm 0,15$                                                               | 0,44                 | 1,535 <u>+</u> 0,026                                                                                 |
| 158<br>159        | То же<br>S <sup>32</sup> (n, p) P <sup>32</sup><br>S <sup>32</sup> (ү, n) S <sup>31</sup><br>То же                                      | 229<br>199<br>37<br>275                                           | $-19,15 \pm 0,20$<br>$-0,93 \pm 0,10$<br>$-15,0 \pm 0,3$<br>$-14,8 \pm 0,4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,25<br>1<br>6)           | $ \begin{array}{c} -19,15 \pm 0,20 \\ -0,93 \pm 0,10 \end{array} $            | 0,25<br>1            | $-19,04 \pm 0,04$<br>- 0,926 $\pm 0,015$                                                             |
| 160<br>161        | S <sup>32</sup> (n, γ) S <sup>33</sup><br>S <sup>32</sup> (d, p) S <sup>33</sup><br>To жe                                               | 235<br>370<br>116, 117                                            | $ \begin{array}{c}  & 8,66 \\  & 6,62 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 \\  & 6,50 $ | 25<br>0<br>0              | 8,66 <u>+</u> 0,02                                                            | 25                   | 8,648 <u>+</u> 0,019                                                                                 |
| 162<br>163        | $S^{32}(\alpha, p) Cl^{35}$<br>$S^{33}(d, p) S^{34}$                                                                                    | $     110 \\     385 \\     182 \\     116 117 $                  | $6,43 \pm 0,11$<br>$6,422 \pm 0,011$<br>-2,10<br>$8,8 \pm 0,1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83<br>0                   | 6,422 <u>+</u> 0,011                                                          | 83                   | $6,423\pm0,019$<br>- 1,92 $\pm0,03$                                                                  |
| 164<br>165<br>166 | To we<br>$S^{34}$ ( $\gamma$ , n) $S^{33}$<br>$-G^{135}$ (n, $\alpha$ ) $P^{32}$<br>$C^{135}$ (d, $\alpha$ ) $S^{33}$                   | $ \begin{array}{c} 110, 111\\ 118\\ 358\\ 281\\ 364 \end{array} $ | $\begin{array}{c} 8,67 \pm 0,25 \\ -10,8 \pm 0,3 \\ 0,44 \pm 0,20 \\ 9,1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,16<br>0,11<br>0,25<br>0 | $\begin{array}{r} 8,67 \pm 0,25 \\ -10,8\pm 0,3 \\ 0,44 \pm 0,20 \end{array}$ | 0,16<br>0,11<br>0,25 | $\begin{array}{r}9,17 \ \pm 0,03 \\-11,40 \ \pm 0,03 \\0,99 \ \pm 0,03 \\8,34 \ \pm 0,04\end{array}$ |
| 167<br>168<br>169 | C1 <sup>35</sup> (n, p) S <sup>35</sup><br>C1 <sup>35</sup> (n, $\gamma$ ) C1 <sup>36</sup><br>C1 <sup>35</sup> (d, p) C1 <sup>36</sup> | 165<br>235<br>319, 363                                            | $0,52 \pm 0,04 \\ 8,56 \pm 0,03 \\ (6,9 \pm 0,3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6,2<br>11<br>0            | $0,52 \pm 0,04 \\ 8,56 \pm 0,03$                                              | 6,2<br>11            | $\begin{array}{c} 0,61 \pm 0,04 \\ 8,63 \pm 0,06 \end{array}$                                        |
| -170<br>171       | To же<br>Cl <sup>35</sup> (z, p) A <sup>38</sup><br>Cl <sup>37</sup> (n, γ) Cl <sup>38</sup>                                            | 364<br>315, 364<br>235                                            | $6,31 - 0,16 - 0,16 - 0,11 \pm 0,03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>11              | 6,11 <u>+</u> 0,03                                                            | 11                   | $\begin{array}{r} 6,40 \ \pm 0,05 \\ 0,89 \ \pm 0,07 \\ 6,07 \ \pm 0,08 \end{array}$                 |

. . .

массы лёгких ядер

Продолжение табл. І 🖧

1

| №<br>п/п          | Реакция                                                                                             | Литера-<br>турные<br>ссылки | Экспериментальное<br>значение Q<br>в Мэв                                                   | Bec                    | Принятое<br>значение Q<br>в Мэв | Bec | Значение Q,<br>вычисленное<br>из масс<br>(таблица II) |
|-------------------|-----------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------|------------------------|---------------------------------|-----|-------------------------------------------------------|
| 1                 | 2                                                                                                   | 3                           | 4                                                                                          | 5                      | 6                               | 7   | 8                                                     |
| 172               | C1 <sup>37</sup> (d, p) C1 <sup>38</sup>                                                            | 319, 354                    | $4,0 \pm 0,3$                                                                              | 0                      |                                 |     |                                                       |
| 173<br>174        | To же<br>Cl <sup>37</sup> (p, n) A <sup>37</sup><br>A <sup>36</sup> (d, p) A <sup>37</sup><br>To же | 364<br>330<br>119<br>434    | $\begin{array}{r} 4,02 \\ -1,598 \pm 0,004 \\ 6,59 \pm 0,03 \\ 6,49 \end{array}$           | 0<br>620<br>11<br>0    | — 1;598 <u>+</u> 0,004          | 620 | $3,84\pm0,08$<br>- 1,60 $\pm0,06$                     |
| 175<br>176<br>177 | $A^{40}(\gamma, \alpha) S^{36}$<br>$A^{40}(n, \alpha) S^{37}$<br>$A^{40}(d, p) A^{41}$              | 435<br>417<br>169<br>114    | $\begin{array}{c} 6,49 \pm 0,08 \\ 6,8 \pm 0,1 \\ -1,8 \\ 4,37 \\ 3 \approx 2 \end{array}$ | • 1,6<br>6)<br>6)<br>0 | 6,578 <u>+</u> 0,028            | 1,3 | 6,58 <u>+</u> 0,05                                    |
|                   | 10 же                                                                                               | 119                         | $3,84 \pm 0,03$                                                                            | 11                     | 3,84 <u>+</u> 0,03              | 11  | 3,89 <u>+</u> 0,05                                    |
| 178               | $A^{40}(p, n) K^{40}$                                                                               | 328                         | $2,3$ $-2,3$ $+0.10^{8}$                                                                   | 0                      | $-23 \pm 01$                    | 1   | - 2 310 05                                            |
| 179               | K <sup>39</sup> (γ, n) K <sup>38</sup>                                                              | 274                         | $-13,6$ $\pm 0,2$                                                                          | <sup>6</sup> )         | 2,0 <u></u> 0,1                 | •   | 2,01_0,00                                             |
| 180               | Το же<br>K <sup>39</sup> (n, γ) K <sup>40</sup><br>K <sup>39</sup> (d, p) K <sup>40</sup>           | 275<br>235<br>319           | $-13,2 \pm 0,2$<br>7,76 $\pm 0,03$<br>5 6 $\pm 0,3$                                        | 11                     | 7,76 <u>+</u> 0,03              | 11  | 7,71 <u>+</u> 0,06                                    |
|                   | То же                                                                                               | 349                         | 5,48 ±0,08                                                                                 | 1,6                    | 5,49 <u>+</u> 0,08              | 1,7 | 5,48 <u>+</u> 0,06                                    |
| 182               | $K^{39}(\alpha, p) Ca^{42}$                                                                         | 315                         | -0,89<br>7 39 $+0.03$                                                                      | 6)<br>11               | 7 39 +0 03                      | 11  | 7.39+0.09                                             |
| 184               | $K^{41}$ (p, n) Ca <sup>41</sup>                                                                    | 328                         | $-1,22\pm0,06$                                                                             | Õ                      | ·,                              |     | .,                                                    |
| 185               | То же<br>Ca <sup>40</sup> (у. n) Ca <sup>39</sup>                                                   | 330<br>37                   | $-1,22\pm0,02$<br>$-1,60\pm0.30$                                                           | 25<br>6)               | $-1,22\pm0,02$                  | 25  | $-1,24\pm0,08^{\circ}$                                |
| 186               | То же<br>Ca <sup>40</sup> (d, p) Ca <sup>41</sup>                                                   | 275<br>348                  | $\begin{array}{r} -15,9 \\ 6,17 \\ \pm 0,05 \end{array}$                                   | 4                      | 6,17 <u>+</u> 0,05              | 4   | 6,27 <u>+</u> 0,08                                    |

.

ц. с. джеленов и л. н. зырянова

Продолжение табл. 1

| №<br>п/п | Распад                                                                                      | Литера-<br>турные<br>ссылки                                                     | Экспериментальное<br>значение Е<br>в Мэв                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bec                                | Принятое<br>значение Е'<br>в Мэв <sup>9</sup> ) | Bec    | Значение Е,<br>вычисленное<br>из масс<br>(таблица II) |
|----------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------|--------|-------------------------------------------------------|
| 1        | 2                                                                                           | 3                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.                                 | 6                                               | 7      | 8                                                     |
| 1<br>2   | n(β <sup></sup> )Η'<br>H <sup>3</sup> (β <sup></sup> )He <sup>3</sup><br>To жe              | 336<br>254<br>443<br>48                                                         | $\begin{array}{c} 0,782 \pm 0,013 \\ 0,012 \pm 0,005 \\ 0,015 \pm 0,003 \\ 0.016 \pm 0.003 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 59<br>0<br>0                       | 0,782 <u>+</u> 0,013                            | 59     | 0,7811 <u>+</u> 0,0018                                |
|          | 7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 410<br>86, 87<br>111, 112<br>215<br>176<br>170                                  | $\begin{array}{c} 0,011 \pm 0,002 \\ 0,017 \\ 0,0179 \pm 0,0003 \\ 0,0186 \pm 0,0002 \\ 0,01895 \pm 0,0005 \\ 0,0180 \pm 0,0005 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>0<br>250000<br>40000<br>40000 |                                                 |        | 1                                                     |
| 3        | He <sup>6</sup> (β <sup></sup> ) Li <sup>6</sup><br>То же                                   | $ \begin{array}{c c} 113 \\ 48, 49 \\ 373 \\ 240 \\ 347 \\ 312 \\ \end{array} $ | $ \begin{array}{c} 0,0183 \pm 0,0003 \\ 3,7 \pm 0,5 \\ 3,5 \pm 0,6 \\ 3,7 \pm 0,2 \\ 3,2 \pm 0,2 \\ 3,2 \pm 0,2 \\ 3,2 \pm 0,015 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110000<br><sup>6</sup> )           | 0,01851 <u>+</u> 0,00015                        | 440000 | 0,0185 <u>+</u> 0,006                                 |
| 4<br>5   | Be <sup>7</sup> ( $\tilde{K}$ ) Li <sup>7</sup><br>Be <sup>3</sup> → 2 $\alpha$<br>To же    | 369<br>185<br>393<br>108<br>107<br>88                                           | $ \begin{array}{c} 0,860 \\ 0,103 \\ 0,089 \\ 0,089 \\ 0,085 \\ 0,009 \\ 0,085 \\ 0,010 \\ 0,085 \\ 0,010 \\ 0,072 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 \\ 0,005 $ | 160<br>100<br>620<br>120<br>0      | 0,860 <u>+</u> 0,008                            | 160    | 0,864 <u>+</u> 0,009                                  |
|          | 77<br>77                                                                                    | 89                                                                              | 0,0775 ±0,004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 620                                | 0,0847 <u>+</u> 0,0026                          | 1500   | 0,088 ±0,006                                          |

б) Энергии распада

.

Продолжение табл. I

| № Pac                                                                                                                                     | пад Литера<br>ссылки                                  | - Экспериментальное<br>значение Е<br>в Мэв                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bec                                                                                      | Принятое<br>значение Е'<br>в Мэв          | Bec                | Значение <i>Е</i> ,<br>вычисленное<br>из масс<br>(таблица II)              |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------|--------------------|----------------------------------------------------------------------------|
| 1                                                                                                                                         | 2 3                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                        | 6                                         | 7                  | 8                                                                          |
| 6 Be <sup>*0</sup> (<br>To<br>7 B <sup>12</sup> (f<br>8 C <sup>10</sup> (f<br>7 To<br>9 C <sup>11</sup> (f<br>10 C <sup>14</sup> (f<br>To | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c} 0,58 \ \pm 0,03 \\ 0,56 \ \pm 0,01 \\ 0,57 \ \pm 0,01 \\ 0,566 \ \pm 0,01 \\ 0,553 \ \pm 0,015 \\ 0,545 \ \pm 0,015 \\ 0,545 \ \pm 0,005 \\ 0,555 \ \pm 0,005 \\ 13,3 \ \pm 0,5 \\ 13,43 \ \pm 0,06 \\ (\beta) 2,2 \ \pm 0,1 \\ (\gamma) 0,96 \ \pm 0,2 \\ (\gamma) 0,7166 \ \pm 0,0010 \\ (\gamma) 0,713 \ \pm 0,0015 \\ 0,981 \ \pm 0,005 \\ 0,993 \ \pm 0,010 \\ 0,993 \ \pm 0,015 \\ 0,151 \ \pm 0,003 \\ 0,151 \ \pm 0,002 \\ 0,154 \ \pm 0,001 \\ 0,155 \ \pm 0,002 \\ \end{array} $ | $\begin{array}{c} 0\\ 100\\ 0\\ 100\\ 44\\ 0\\ 400\\ 400\\ 400\\ 2,8\\ 6)\\ \end{array}$ | 0,558±0,003<br>13,43 ±0,06<br>2,005±0,004 | 1000<br>2,8<br>500 | ,<br>0,558 <u>+</u> 0,011<br>13,366 <u>+</u> 0,011<br>0,966 <u>+</u> 0,009 |

---- ---

---

-

.

496

С. ДЖЕЛЕПОВ И Л. Н. ЗЫРЯНОВА

Ċ)

## Продолжение табл. 1

| №<br>п/п                                           | Распад                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Литера-<br>турные<br>ссылки                                                                                                                                                 | Экспериментальное<br>значение Е<br>в Мэв                                                                                                                                                                                                                                                                                                                              | Bec                                                                                                                      | Принятое<br>значение Е'<br>в Мэв                              | Bec          | Значение <i>Е</i> ,<br>вычисленное<br>из масс<br>(таблица II)               |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------|-----------------------------------------------------------------------------|
| 1                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                        | 6                                                             | 7            | 8                                                                           |
| 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 | $\begin{array}{c} C^{14} \left(\beta^{-}\right) N^{14} \\ \text{To xe} \\ \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ C^{15} \left(3^{-}\right) N^{15} \\ N^{12} \left(\beta^{+}\right) C^{12} \\ N^{12} \left(\beta^{+}\right) C^{13} \\ \text{To xe} \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ N^{16} \left(3^{-}\right) O^{16} \\ N^{17} \left(3^{-}\right) O^{17} \\ \text{To xe} \\ O^{14} \left(\beta^{+}\right) N^{14} \\ \text{To xe} \\ O^{16} \left(\beta^{-}\right) N^{15} \\ \text{To xe} \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ O^{19} \left(\beta^{-}\right) F^{19} \\ F^{17} \left(\beta^{+}\right) O^{17} \end{array}$ | $\begin{array}{c} 251\\ 144\\ 18\\ 406\\ 203\\ 15\\ 259, 405\\ 394\\ 366\\ 102\\ 195\\ 196\\ 196\\ 196\\ 196\\ 357\\ 390\\ 277\\ 150\\ 357\\ 438\\ 196\\ 244\\ \end{array}$ | $\begin{array}{c} 0,152 \pm 0,005\\ 0,155 \pm 0,001\\ 0,1575 \pm 0,005\\ 0,155 \pm 0,001\\ 8,8 \pm 0,5\\ 16,6 \pm 0,2\\ 1,198 \pm 0,006\\ 1,218 \pm 0,004\\ 1,24 \pm 0,02\\ 1,25 \pm 0,03\\ 1,202 \pm 0,005\\ 10,2\\ (\beta)3,7 \pm 0,2\\ (\gamma)5,07\\ (\beta)1,8 \pm 0,1\\ (\gamma)2,318 \pm 0,008\\ 1,2\\ 1,7\\ 1,68\\ 1,683 \pm 0,005\\ 4,3\\ 2,1\\ \end{array}$ | $ \begin{array}{c} 400\\ 10000\\ 400\\ 10000\\ 6\\ 6\\ 280\\ 620\\ 25\\ 11\\ 400\\ 0\\ 6\\ 6\\ 6\\ 6\\ 0\\ \end{array} $ | 0,1553 <u>+</u> 0,0005<br>2,231 <u>+</u> 0,003 <sup>3</sup> ) | 35000<br>820 | $0,156\pm 0,006$<br>$1,203\pm 0,007$<br>$10,47\pm 0,15$<br>$1,734\pm 0,010$ |

массы лёгких ядер

| Продолжени | ет | абл. | 1 |
|------------|----|------|---|
|            | •  |      |   |

| №<br>п/п                                                | Распад                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Литера-<br>турные<br>ссылки                           | Экспериментальное<br>значение Е<br>в Мэв                                                                                                                                                                                                                                                                                                                                                                         | Bec                                                                                               | Принятое<br>значение Е'<br>в Мэв                                     | Bec             | Значение Е,<br>вычисленное<br>из масс<br>(таблица II)           |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------|-----------------------------------------------------------------|
| 1                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                 | 6                                                                    | 7               | 8                                                               |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>- | F <sup>18</sup> (3 <sup>+</sup> ) O <sup>18</sup><br>To жe<br>,<br>,<br>F <sup>20</sup> (3 <sup>-</sup> ) Ne <sup>20</sup><br>Ne <sup>19</sup> (3 <sup>+</sup> ) F <sup>19</sup><br>To жe<br>Ne <sup>23</sup> (3 <sup>-</sup> ) Na <sup>23</sup><br>Na <sup>21</sup> (3 <sup>+</sup> ) Ne <sup>21</sup><br>Na <sup>23</sup> (3 <sup>+</sup> ) Ne <sup>22</sup><br>To жe<br>Mg <sup>23</sup> (3 <sup>+</sup> ) Na <sup>23</sup><br>To жe<br>Mg <sup>27</sup> (3 <sup>-</sup> ) Al <sup>27</sup><br>To жe<br>Al <sup>28</sup> (β <sup>-</sup> ) Sl <sup>23</sup><br>To жe | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} 0,70 \pm 0,05 \\ 0,74 \\ 0,72 \pm 0,02 \\ 0,7 \\ 0,635 \pm 0,015 \\ 6,96 \pm 0,06 \\ 2,20 \\ 2,3 \\ 2,2 \pm 0,1 \\ 4,21 \pm 0,015 \\ 4,21 \pm 0,015 \\ 4,253 \pm 0,02 \\ (3) 0,575 \pm 0,015 \\ (7) 1,277 \pm 0,004 \\ 2,82 \pm 0,08 \\ 2,99 \pm 0,03 \\ 2,99 \pm 0,03 \\ 2,99 \pm 0,03 \\ 2,64 \pm 0,10 \\ 2,63 \pm 0,06 \\ 4,685 \pm 0,12 \\ 4,615 \pm 0,035 \\ 4,617 \pm 0,014 \end{array}$ | $ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 44\\ 0\\ 0\\ 44\\ 6\\ )\\ 6\\ 1\\ 2,8\\ 0\\ 51\\ \end{array} $ | $1,657 \pm 0,015$ $4,21 \pm 0,015$ $2,63 \pm 0,05$ $4,617 \pm 0,014$ | 44<br>44<br>3,8 | $0,649\pm0,0087,034\pm0,0204,309\pm0,0082,60\pm0,044,64\pm0,03$ |
| 29                                                      | A1 <sup>29</sup> (β <sup></sup> ) Si <sup>29</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 355                                                   | $3,75 \pm 0,30$                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>6</sup> )                                                                                    | 4,041 <u>-</u> 0,014                                                 | JI              | 4,04 <u>+</u> 0,00                                              |

498

ů. С. ДЖЕЛЕНОВ И.Л. Н. ЗЫРЯНОВА

\*\*\*

| №<br>п/п | Распад                                                                                                        | Литера-<br>турные<br>ссылки                    | Экспериментальное<br>значение Е<br>в Мэв                                           | Bec               | Принятое<br>значение Е'<br>в Мэв | Bec   | Значение <i>Е</i> ,<br>вычисленное<br>из масс<br>(таблица II) |
|----------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------|-------------------|----------------------------------|-------|---------------------------------------------------------------|
| 1        | 2                                                                                                             | 3                                              | 4                                                                                  | 5                 | 6                                | 7     | 8                                                             |
| 30       | Si <sup>27</sup> (3 <sup>+-</sup> ) A1 <sup>27</sup><br>То же                                                 | 31<br>57                                       | $3,51 \pm 0,10 \\ 3,48 \pm 0,10$                                                   | 6)                |                                  |       |                                                               |
| 31<br>32 | Si <sup>31</sup> (β <sup></sup> ) Р <sup>31</sup><br>Тоже<br>Р <sup>32</sup> (σ <sup></sup> ) S <sup>32</sup> | $\begin{array}{c} 244 \\ 293 \\ 2 \end{array}$ | $1,8 \pm 0,2$<br>$1,471\pm 0,008$<br>$1.718\pm 0.010$                              | 0<br>160<br>100   | 1,471 <u>+</u> 0,008             | 160   | 1,47 <u>+</u> 0,04                                            |
| 00       | То же                                                                                                         | 407<br>356<br>217                              | $1,708\pm0,008$<br>1,697\pm0,010<br>1,704\pm0,008<br>0,010                         | 160<br>100<br>160 | 1,707 <u>+</u> 0,004             | 520   | 1,707 <u>+</u> 0,015                                          |
| 00       | ры (р.)555<br>Тоже                                                                                            | 217                                            | $0,26 \pm 0,01$<br>$0,26 \pm 0,02$                                                 | 9                 |                                  |       |                                                               |
| 34       | S <sup>31</sup> (β <sup>+</sup> ) Р <sup>31</sup><br>То же                                                    | 423<br>131, 132<br>57                          | $3,85 \pm 0,07$<br>$3,87 \pm 0,15$<br>$4,06 \pm 0,12$                              | 6)                |                                  |       |                                                               |
| 35       | S <sup>35</sup> (β <sup>−</sup> ) С1 <sup>35</sup><br>То же                                                   | 166     47     246                             | $0,167 \pm 0,004$<br>$0,169 \pm 0,003$<br>$0,169 \pm 0,003$<br>$0,1670 \pm 0,0005$ | 0<br>0<br>40000   | 0 1670+0 0005                    | 40000 | 0.17 +0.04                                                    |
| 36       | S <sup>37</sup> ( <sup>3<sup></sup></sup> ) Cl <sup>37</sup>                                                  | 51                                             | $4,3 \pm 0,3$                                                                      | 6)                | 0,10/0_0,0000                    |       | ,,,, <u>,</u> ,,,,,                                           |
| 37       | $C1^{33}(3^+)S^{33}$                                                                                          | 423                                            | $4,13 \pm 0,07$                                                                    | 6)                |                                  |       |                                                               |
| 38       | C1 <sup>34</sup> (β <sup>+</sup> ) S <sup>34</sup><br>To же                                                   | 342<br>343<br>343                              | $4,43 \pm 0,13$<br>$4,55 \pm 0,11$<br>$4,60 \pm 0,11$<br>$4,71 \pm 0.38$           | 6)                |                                  |       |                                                               |
|          | ,,<br>,,                                                                                                      | 343                                            | 4,60 ±0,30                                                                         |                   |                                  |       |                                                               |

## Продолжение табл. 1

-

499

массы лёгких ядер

Продолжение табл. I

| №<br>п/п   | Распад                                             | Литера-<br>турные<br>ссылки | Экспериментальное<br>значение Е<br>в Мэв | Bec   | Принятое<br>значение Е'<br>в Мэв | Bec | Значение <i>Е</i> ,<br>вычисленное<br>из масс<br>(таблица II) |
|------------|----------------------------------------------------|-----------------------------|------------------------------------------|-------|----------------------------------|-----|---------------------------------------------------------------|
| 1          | 2                                                  | 3                           | 4                                        | 5     | 6                                | 7   | 8                                                             |
|            |                                                    |                             |                                          |       |                                  |     |                                                               |
| <b>3</b> 9 | C1 <sup>36</sup> (β <sup></sup> ) A <sup>36</sup>  | 427                         | 0,713 <u>+</u> 0,030                     | 11    | 0,713 <u>+</u> 0,030             | 11  | 0,76 <u>+</u> 0,05                                            |
| 40         | C1 <sup>38</sup> (β <sup></sup> ) A <sup>38</sup>  | 245                         | 4,93 <u>+</u> 0,05                       | 4     | $4,93\pm0,05$                    | 4   | 4,88 <u>+</u> 0,09                                            |
| 41         | C1 <sup>39</sup> (β <sup></sup> ) A <sup>39</sup>  | 180                         | 3,31 <u>+</u> 0,058)                     | 6)    |                                  |     |                                                               |
| 42         | A <sup>85</sup> (3 <sup>+</sup> ) C1 <sup>85</sup> | 423                         | 4,38 <u>+</u> 0,09                       | 6)    |                                  |     |                                                               |
|            | То же                                              | 131, 232                    | 4,41 <u>+</u> 0,09                       |       |                                  |     |                                                               |
| 43         | A <sup>39</sup> (β <sup></sup> ) K <sup>39</sup>   | 69                          | 0,565 <u>+</u> 0,005                     | 0 10) | Υ.                               |     |                                                               |
| 44         | A <sup>41</sup> (β <sup>-</sup> ) Ϗ <sup>41</sup>  | 444                         | (γ)1,37 <u>+</u> 0,06                    | 2,8   |                                  |     |                                                               |
|            | То же                                              | 444                         | (\$) 1,245 <u>+</u> 0,005                | 0     | $2,62 \pm 0,06$                  | 2,8 | 2,63 <u>+</u> 0,07                                            |
| 45         | K <sup>37</sup> (β <sup>+</sup> ) A <sup>37</sup>  | 57                          | 4,57 <u>+</u> 0,13                       | 6)    |                                  |     |                                                               |
| 46         | K <sup>40</sup> (β <sup></sup> ) Ca <sup>40</sup>  | 41                          | 1,36 <u>+</u> 0,05                       | 4     |                                  |     |                                                               |
|            | То же                                              | 4                           | 1,36 <u>+</u> 0,03                       | 11    |                                  |     |                                                               |
| ;          | 8                                                  | 146                         | 1,325 <u>+</u> 0,020                     | 25    | 1,338 <u>+</u> 0,016             | 40  | 1,32 <u>+</u> 0,07                                            |
| 47         | Ca <sup>39</sup> (β <sup>+</sup> ) K <sup>39</sup> | 57                          | 5,13 <u>+</u> 0,15                       | . 6)  |                                  |     |                                                               |
|            |                                                    |                             |                                          |       |                                  |     |                                                               |

Продолжение табл. 1

| Массов. чис-<br>ло дублета                                      | Дублет                                                                                                                                                                                                                                                                                                                                                          | Литера-<br>турные<br>ссылки                                                                                                                                    | Экспериментальное значение $\Delta M$ в единицах $O^{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bec                                                                                                                                                  | Принятое<br>значение ∆М<br>в Мэв                                                                                                                                                                                                                                                                          | Bec                                                                  | Значение Δ <i>М</i> ,<br>вычисленное<br>из масс<br>(таблица II)<br>в единицах О <sup>16</sup>                                                                                           |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                               | 2                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                         | 7                                                                    | 8                                                                                                                                                                                       |
| 2<br>4<br>6<br>7<br>8<br>10<br>10<br>10<br>10<br>11<br>11<br>11 | $\begin{array}{c} H_2 - D \\ To \ \mbox{ we } \\ & \\ & \\ & \\ & \\ D_2 - He^4 \\ To \ \mbox{ we } \\ \\ & \\ D_3 - C^{12} \\ To \ \mbox{ we } \\ \\ & \\ & \\ & \\ I^7 - N^{14} \\ He_2^4 - O^{16} \\ Be^9 H - B^{10} \\ Be^9 H - Ne^{20} \\ B^{10} - Ne^{20} \\ To \ \mbox{ we } \\ B^{10} H - B^{11} \\ B^{10} H - Ne^{22} \\ B^{11} - Ne^{22} \end{array}$ | $\begin{array}{c} 23\\ 22\\ 269\\ 331\\ 333\\ 140\\ 21\\ 24\\ 139\\ 299\\ 22\\ 24, 256\\ 269\\ 140\\ 24\\ 25\\ 224\\ 224\\ 21\\ 224\\ 224\\ 224\\ 224\\ 224\\$ | $\begin{array}{c} 1,53 \\ \pm 0,04 \\ 1,52 \\ \pm 0,04 \\ 1,539 \\ \pm 0,0021 \\ 1,549 \\ \pm 0,001 \\ 1,5519 \\ \pm 0,001 \\ 1,5519 \\ \pm 0,001 \\ 25,51 \\ \pm 0,08 \\ 25,614 \\ \pm 0,008 \\ 25,614 \\ \pm 0,008 \\ 25,612 \\ \pm 0,009 \\ 42,36 \\ \pm 0,12 \\ 42,19 \\ \pm 0,009 \\ 42,36 \\ \pm 0,12 \\ 42,292 \\ \pm 0,012 \\ 42,292 \\ \pm 0,012 \\ 14,43 \\ \pm 0,10 \\ 7,72 \\ \pm 0,12 \\ 6,96 \\ \pm 0,20 \\ 23,91 \\ \pm 0,20 \\ 16,84 \\ \pm 0,15 \\ 16,75 \\ \pm 0,15 \\ 11,60 \\ \pm 0,015 \\ 13,60 \\ \pm 0,015 \\ \end{array}$ | $\begin{array}{c} 0\\ 0\\ 0\\ 3300\\ 5100\\ 1,8\\ 7,3\\ 200\\ 160\\ 0,9\\ 4,9\\ 25\\ 82\\ 1,1\\ 0,9\\ 0,28\\ 0,5\\ 0,5\\ 1,2\\ 0,05\\ 51\end{array}$ | $\begin{array}{c}1,4442\pm0,0010\\(1,5510\pm0,0011)^{11})\\23,845\pm0,005\\(25,608\pm0,006)\\39,366\pm0,006)\\39,366\pm0,006)\\39,366\pm0,001\\(42,277\pm0,011)\\13,44\pm0,09\\7,19\pm0,11\\6,48\pm0,19\\22,26\pm0,19\\15,64\pm0,10\\(16,80\pm0,11)\\10,80\pm0,09\\23,4\pm0,5\\12,664\pm0,014\end{array}$ | 9000<br>370<br>92<br>1,1<br>0,9<br>0,28<br>0,28<br>1,2<br>0,05<br>51 | $1,551\pm0,003$ $25,605\pm0,004$ $42,314\pm0,005$ $14,460\pm0,008$ $7,755\pm0,004$ $7,070\pm0,010$ $23,789\pm0,008$ $16,719\pm0,009$ $11,469\pm0,010$ $25,096\pm0,008$ $13,627\pm0,008$ |

в) Массовые дублеты

2

Продолжение табл. І

| Массов. чис-<br>ло дублета          | Дублет                                                                                                     | Литера-<br>турные<br>ссылки   | Экспериментальное<br>значение $\Delta M$<br>в едицицах O <sup>16</sup>                                                                          | Bec                      | Принятое<br>значение $\Delta M$<br>в <i>Мэв</i> | Bec         | Значение Δ <i>М</i> ,<br>вычисленное<br>из масс<br>(таблица II)<br>в единицах О <sup>16</sup> |
|-------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------|
| 1                                   | 2                                                                                                          | 3                             | 4                                                                                                                                               | 5                        | 6                                               | 7           | 8                                                                                             |
|                                     | -                                                                                                          | 1                             |                                                                                                                                                 |                          |                                                 |             | `                                                                                             |
| 12<br>12<br>13                      | $\begin{array}{c} B^{10} H_2 - C^{12} \\ B^{11} H - C^{12} \\ C^{12} H - C^{13} \\ T_0 \\ W_2 \end{array}$ | 224<br>224<br>23<br>268       | $\begin{array}{r} 28,75 \ \pm 0,20 \\ 17,14 \ \pm 0,10 \\ 4,5 \ \pm 0,1 \\ 4,47 \end{array}$                                                    | 0,28<br>1,2<br>0         | $26,77 \pm 0,19$<br>15,96 $\pm 0,09$            | 0,28<br>1,2 | $28,592\pm0,010$<br>17,125 $\pm0,008$                                                         |
| 14                                  | 10 же<br>С!2 Н2 <sup>2</sup> — N!4<br>То же                                                                | 138<br>22<br>256<br>269<br>20 | $\begin{array}{c}4,410\pm0,0084\\12,45\pm0,07\\12,74\pm0,08\\12,581\pm0,023\\12,581\pm0,023\\12,57\pm0,06\end{array}$                           | 180<br>2<br>0<br>23<br>0 | 4,106 <u>+</u> 0,007                            | 180         | 4,475 <u>+</u> 0,008                                                                          |
| ann a mu a mu ann an dùr a sha a mu | تو<br>دی<br>ت<br>ت                                                                                         | 225, 226<br>138<br>331<br>299 | $\begin{array}{c} 12,51 \pm 0,00 \\ 12,560 \pm 0,015 \\ 12,522 \pm 0,012 \\ 12,61 \pm 0,01 \\ 12,586 \pm 0,013 \\ 12,586 \pm 0,013 \end{array}$ | 51<br>0<br>69            | 11 705 1 0 001                                  | 550         |                                                                                               |
| 15                                  | "<br>C'2H "N'4H                                                                                            | 140<br>260                    | $12,594\pm0,01$ 2)<br>$12,564\pm0,010$<br>$12,563\pm0,027$                                                                                      | 120<br>120<br>16         | $(12,572\pm0,005)$                              | 990         | 12,578 <u>+</u> 0,008                                                                         |
| 10                                  | То же                                                                                                      | 205                           | $12,563\pm0,013$                                                                                                                                | 69                       | См. дублет 14                                   |             | 12,578 <u>+</u> 0,008                                                                         |
| 15                                  | С <sup>12</sup> Н <sub>3</sub> — N <sup>15</sup><br>То же                                                  | 267<br>138                    | $23,82 \pm 0,074$ )<br>$23,308 \pm 0,020$                                                                                                       | 2,3<br>28                | $21,76 \pm 0,04^{3}$                            | 5           |                                                                                               |
| 15                                  | N <sup>4</sup> H <sup>-</sup> N <sup>15</sup>                                                              | 301<br>223                    | $23,395\pm0,02$ <sup>12</sup> )<br>10,74 ±0,20                                                                                                  | 28<br>0,2                | $(23,37 \pm 0,04)$<br>10,030 $\pm 0,019$        |             | 23,378 <u>+</u> 0,008                                                                         |
| 15                                  | То же<br>С <sup>12</sup> Н <sub>3</sub> — Si <sup>20</sup>                                                 | 138<br>125                    | $10,772\pm0,020$<br>$36,79\pm0,075$                                                                                                             | 29<br>2                  | $(10,772\pm0,020)$<br>$34,26\pm0,08$            | 29<br>2     | $10,801\pm0,008$<br>$36,616\pm0,020$                                                          |

502

с. джелепов и л. н. зырянова

ù.

## Продолжение табл. 1

| Массов.чис-<br>ло дублета        | Дублет                                                                                                                                                                                                                                                                                                                     | Литера-<br>турные<br>ссылки                                                                                                                                                    | Экспериментальное<br>значение \M<br>в единицах О <sup>16</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bec                                                                                                                                      | Принятое<br>значение $\Delta M$<br>в <i>Мэв</i>                                                             | Bec           | Значение ∆М,<br>вычисленное<br>из масс<br>(таблица II)<br>в единицах О <sup>:6</sup>                       |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------|
| 1                                | 2                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                        | 6                                                                                                           | 7             | 8                                                                                                          |
| 16<br>16<br>16<br>17<br>18<br>18 | $\begin{array}{c} C^{12} H_4 - N^{14} H_2 \\ C^{12} H_4 - O^{16} \\ \text{To } \text{ we} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                        | $\begin{array}{c} 226\\ 22\\ 256\\ 269\\ 20\\ 226\\ 331\\ 299\\ 301\\ 100\\ 140\\ 223\\ 269\\ 269\\ 21\\ 269\\ 21\\ 269\\ 21\\ 269\\ 21\\ 209\\ 331\\ 209\\ 200\\ \end{array}$ | $\begin{array}{c} 12,550\pm0,013\\ 36,01\pm0,16\\ 36,49\pm0,08\\ 36,406\pm0,040\\ 36,42\pm0,09\\ 36,32\pm0,035\\ 36,45\pm0,01\\ 36,478\pm0,022\\ 36,443\pm0,008 \ ^{12})\\ 36,427\pm0,008\\ 36,371\pm0,012\\ 23,69\pm0,032\\ 23,661\pm0,039\ ^{4})\\ 10,44\pm0,18\\ 12,57\pm0,18\\ 27,1\pm0,36\\ 26,77\pm0,01\\ 26,75\pm0,01\\ 26,75\pm0,01\\ 26,75\pm0,01\\ 26,75\pm0,01\\ 26,75\pm0,01\\ 26,7$ | $ \begin{array}{r} 69\\ 0\\ 0\\ 6,8\\ 0\\ 9,2\\ 0\\ 200\\ 200\\ 82\\ 0,5\\ 11\\ 8\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$ | См. дублет 14<br>33,916±0,007 з)<br>(36,424±0,008)<br>22,096±0,026 з)<br>(23,730±0,027)<br>См. пред. дублет | 200<br>15     | $12,578 \pm 0,008$<br>$36,401 \pm 0,005$<br>$23,823 \pm 0,004$<br>$23,823 \pm 0,004$<br>$11,404 \pm 0,006$ |
| 19<br>20<br>20                   | $ \begin{array}{c} \overset{7}{\text{O}^{16}} \overset{7}{\text{DH}} \overset{-}{-} \overset{7}{\text{F}^{19}} \\ \overset{7}{\text{D}_2} \overset{7}{\text{O}^{6}} \overset{-}{-} \overset{+}{\text{H}_2} \overset{7}{\text{O}^{18}} \\ \overset{7}{\text{CD}_4} \overset{-}{-} \overset{8}{\text{Ne}^{20}} \end{array} $ | 299<br>100<br>22<br>140<br>269                                                                                                                                                 | $\begin{array}{c} 20,102\pm0,044\\ 26,819\pm0,028\\ 18,33\pm0,29\\ 8,312\pm0,012\\ 63,816\pm0,050\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15<br>0<br>83<br>5                                                                                                                       | $\begin{array}{r} 24,972 \pm 0,026 \\ 7,740 \pm 0,011 \\ 59,42 \ \pm 0,05 \end{array}$                      | 15<br>83<br>5 | $\begin{array}{c} 26,833 \pm 0,027 \\ 20,660 \pm 0,005 \\ 8,303 \pm 0,006 \\ 63,985 \pm 0,008 \end{array}$ |

\_ .. .

.

-

массы лёгких ядер

÷

Продолжение табл. 1

| Мас<br>ло д                                            |                                                                                                                                                                                                                                                                                                                                                       | турные<br>ссылки                                                                                                                                                                              | Экспериментальное<br>значение $\Delta M$<br>в единицах O <sup>16</sup>                                                                                                                                                                                                                                                                                                                                                                                                                   | Вес                                                                                                                           | Принятое<br>значение Δ <i>М</i><br>в <i>Мэв</i>                                                                                                                                                                                         | Bec                                                     | вычисленное<br>из масс<br>(таблица II)<br>в единицах О <sup>16</sup>                                                                                        |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                      | 2                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                             | 6                                                                                                                                                                                                                                       | 7                                                       | 8                                                                                                                                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $2^{-16} D_2 - Ne^{20}$<br>To we<br>$30^{18} - Ne^{20}$<br>$D_2 O^{16} - A^{40}$<br>To we<br>$Ne^{20} - A^{40}$<br>To we<br>$Ne^{20} - Ne^{21}$<br>$30^{16} - Ne^{21}$<br>$30^{16} - Ne^{21}$<br>$30^{16} - Ne^{21}$<br>$30^{16} - Ne^{21}$<br>$C_2 H_4 - C^{12} O^{16}$<br>To we<br>$D_2 - C^{12} O^{16}$<br>To we<br>$D_2 - C^{12} O^{16}$<br>To we | $\begin{array}{c} 21\\ 224\\ 299\\ 140\\ 140\\ 224\\ 299\\ 140\\ 223\\ 22\\ 269\\ 299\\ 140\\ 223\\ 140\\ 17\\ 149\\ 299\\ 301\\ 223\\ 269\\ 299\\ 301\\ 223\\ 269\\ 299\\ 126\\ \end{array}$ | $\begin{array}{c} & \\ 30,83 \pm 0,40 \\ 30,65 \pm 0,10 \\ 30,721 \pm 0,039 \\ 30,688 \pm 0,010 \\ 22,391 \pm 0,010 \\ 41,957 \pm 0,010 \\ 41,953 \pm 0,012 \\ 11,30 \pm 0,20 \\ 10,88 \pm 0,30 \\ 11,142 \pm 0,38 \\ 11,280 \pm 0,018 \\ 37,212 \pm 0,020 4 \\ 7,26 \pm 0,20 \\ 45,867 \pm 0,015 \\ 40,5 \\ 42,35 \pm 0,065 4 \\ 36,443 \pm 0,022 \\ 12,35 \pm 0,065 4 \\ 36,443 \pm 0,022 \\ 11,222 \pm 0,04 \\ 11,222 \pm 0,04 \\ 11,280 \pm 0,013 \\ 54,46 \pm 0,168 \\ \end{array}$ | 0<br>1,2<br>8<br>120<br>120<br>0<br>35<br>83<br>0<br>0<br>0<br>35<br>28<br>0<br>51<br>0<br>2,8<br>25<br>0<br>7,2<br>69<br>0,4 | 28,575±0,009<br>(30,688±0,010)<br>20,849±0,009<br>39,068±0,009<br>(41,957±0,010)<br>10,503±0,017<br>34,650±0,019<br>42,709±0,014<br>39,43±0,06<br>См. CH <sub>4</sub> — O <sup>16</sup><br>10,498±0,011<br>(11,274±0,012)<br>50,71±0,16 | 130<br>120<br>118<br>35<br>28<br>51<br>2,8<br>76<br>0,4 | $30,685\pm0,00522,382\pm0,00841,945\pm0,01611,260\pm0,01637,102\pm0,0066,419\pm0,00745,887\pm0,00541,986\pm0,02536,401\pm0,00511,245\pm0,00854,420\pm0,027$ |

504

~

С. ДЖЕЛЕПОВ И Л. Н. ЗЫРЯНОВА

'n

Продолжение табл. 1

| Массов. чис-<br>ло дублета                                         | Дублет                                                                                                                                                                                                          | Литера-<br>турные<br>ссылки                                                                                                                                            | Экспериментальное<br>значение ∆ <i>М</i><br>в единицах О <sup>16</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bec                                                                                                                                          | Принятое<br>значение ∆М<br>в Мэв                                                                                                                | Bec                                                                  | Значение Δ <i>М</i> ,<br>вычисленное<br>из масс<br>(таблица II)<br>в единицах О <sup>16</sup>                                                                   |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                  | 2                                                                                                                                                                                                               | 3                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                            | ő                                                                                                                                               | 7                                                                    | 8                                                                                                                                                               |
| 28<br>29<br>29<br>29<br>31<br>32<br>32<br>32<br>34<br>34<br>36<br> | $\begin{array}{c} C^{12} O^{16} - Si^{23} \\ \text{To we} \\ C_2 H_5 - Si^{29} \\ COH - Si^{29} \\ B^{10} F^{19} - Si^{19} \\ C^{12} F^{19} - P^{31} \\ O_2 - P^{31} H \\ O_2 - S^{32} \\ To we \\ \end{array}$ | $\begin{array}{c} 22\\ 126\\ 140\\ 126\\ 124, 126\\ 22\\ 22\\ 140\\ 22\\ 303\\ 372\\ 127\\ 300\\ 100\\ 140\\ 140\\ 140\\ 304\\ 22\\ 303\\ 100\\ 140\\ -22 \end{array}$ | $\begin{array}{c} 17,2 \pm 0,6\\ 18,06\pm 0,08\\ 18,015\pm 0,030\\ 62,81\pm 0,145\\ 26,16\pm 0,145\\ 34,2\pm 0,6\\ 24,4\pm 0,5\\ 8,249\pm 0,030\\ 17,7\pm 0,3\\ 19,15\pm 0,11\\ 17,7\pm 1,0\\ 17,63\pm 0,09\\ 17,782\pm 0,025\\ 17,764\pm 0,007\\ 17,716\pm 0,020\\ 29,275\pm 0,020\\ 29,275\pm 0,020\\ 29,275\pm 0,020\\ 20,04\pm 0,020\\ 29,275\pm 0,7\\ 24,67\pm 0,17\\ 23,341\pm 0,044\\ 6,740\pm 0,025\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ -32,6-70,7\\ $ | $\begin{array}{c} 0\\ 1,8\\ 13\\ 0,5\\ 0,5\\ \cdot 0,03\\ 0,05\\ 13\\ 0\\ 0\\ 0\\ 0\\ 237\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28$ | $\begin{array}{c} - \\ 16,780\pm0,026\\ (18,021\pm0,028)\\ 58,49\pm0,14\\ 24,36\pm0,14\\ 31,8\pm0,6\\ 22,7\pm0,5\\ 7,681\pm0,028\\ \end{array}$ | 15<br>0,5<br>0,03<br>0,05<br>13<br>97<br>28<br>28<br>0,11<br>6<br>19 | $18,020\pm0,02562,683\pm0,02726,281\pm0,02634,891\pm0,02724,686\pm0,0288,267\pm0,02717,777\pm0,0119,510\pm0,02929,36\pm0,0419,85\pm0,0323,29\pm0,036,80\pm0,04$ |
|                                                                    | То же                                                                                                                                                                                                           | 100 .                                                                                                                                                                  | 32,501 ± 0,033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                           | 30,26 <u>+</u> 0,03                                                                                                                             | 10                                                                   | 32,54 <u>+</u> 0,03                                                                                                                                             |

505

массы лёгких ядер

Продолжение табл. І

| Массов.чис-                                                                      | Дублет                                                                                                                                         | Литера-<br>турные<br>ссылки                                                                                                                                                             | Экспериментальное<br>значение Δ <i>М</i><br>в единицах О <sup>16</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bec                                                                                                                                                                                   | Принятое<br>значение ∆М<br>в Мэв                                                                                                                                                                                                                                                                                                        | Bec                                                               | Значение ∆ <i>М</i> ,<br>вычисленное<br>из масс<br>(таблица II)<br>в единицах О <sup>16</sup>                                                                                                                                                                          |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                | 2                                                                                                                                              | 3                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                                       | 7                                                                 | 8                                                                                                                                                                                                                                                                      |
| 37<br>38<br>39<br>39<br>40<br>40<br>41<br>41<br>41<br>42<br>43<br>44<br>44<br>44 | $\begin{array}{c} HC_{3}-C1^{37}\\ To \ \text{we}\\ H_{2}C_{3}-HC1^{37}\\ To \ \text{we}\\ H_{2}C_{3}-HC1^{37}\\ To \ \text{we}\\ \end{array}$ | $\begin{array}{c} 22\\ 303\\ 22\\ 303\\ 304\\ 100\\ 100\\ 100\\ 186\\ 22\\ 303\\ 331\\ 299\\ 332\\ 299\\ 332\\ 299\\ 303\\ 186\\ 100\\ 100\\ 300\\ 100\\ 299\\ 303\\ 303\\ \end{array}$ | $\begin{array}{c} 41,2 \\ \pm 0,7 \\ 42,17 \\ \pm 0,09 \\ 41,2 \\ \pm 0,7 \\ 41,98 \\ \pm 0,11 \\ 42,17 \\ \pm 0,09 \\ 42,014 \\ \pm 0,09 \\ 42,014 \\ \pm 0,046 \\ 52,910 \\ \pm 0,046 \\ 52,910 \\ \pm 0,06 \\ 67,93 \\ \pm 0,07 \\ 68,85 \\ \pm 0,01 \\ 68,877 \\ \pm 0,08 \\ - 0,32 \\ \pm 0,008 \\ 68,539 \\ \pm 0,046 \\ 69,30 \\ \pm 0,23 \\ 65,13 \\ \pm 0,05 \\ 88,247 \\ \pm 0,034 \\ 96,040 \\ \pm 0,05 \\ 88,247 \\ \pm 0,015 \\ 61,76 \\ \pm 0,09 \\ 18,94 \\ \pm 0,23 \\ \end{array}$ | $\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 1,4\\ 5,4\\ 7,3\\ 15\\ 1,8\\ 0\\ 2,4\\ 0\\ 9,2\\ 0\\ 1,8\\ 5,4\\ 0\\ 9,2\\ 0\\ 1,8\\ 5,4\\ 0\\ 5,4\\ 0\\ 5,4\\ 0\\ 5,4\\ 0\\ 1,4\\ 0\\ \end{array}$ | $\begin{array}{c} 39,15 \pm 0,04^{8}) \\ (42,05 \pm 0,04) \\ 49,27 \pm 0,04 \\ 55,781\pm 0,024 \\ 44,30 \pm 0,07 \\ \hline \\ 63,95 \pm 0,24^{8}) \\ (68,68 \pm 0,26) \\ -0,30 \pm 0,07 \\ 63,82 \pm 0,04 \\ \hline \\ 60,65 \pm 0,05 \\ 82,171\pm 0,032 \\ 89,428\pm 0,048 \\ \hline \\ 67,838\pm 0,014 \\ 57,51 \pm 0,08 \end{array}$ | 6,4<br>7,3<br>15<br>1,8<br>0,18<br>1,8<br>5,4<br>4,6<br>51<br>1,4 | $\begin{array}{c} 42,03 \pm 0,04\\ 52,94 \pm 0,06\\ 59,88 \pm 0,04\\ 47,31 \pm 0,04\\ \hline \\ 68,963 \pm 0,024\\ \hline \\ -0,22 \pm 0,05\\ 68,73 \pm 0,05\\ 68,963 \pm 0,024\\ 64,94 \pm 0,05\\ \hline \\ 72,803 \pm 0,008\\ 61,558 \pm 0,012\\ \hline \end{array}$ |

.

506

с. джелепов и л. н. зырянова

ы

#### Окончание табл. І

| Массов.чис-<br>ло дублета | Дублет                                                                                                             | Литера-<br>турные<br>ссылки | Экспериментальное<br>значение Δ <i>М</i><br>в единицах О <sup>16</sup>      | Bec                     | Принятое<br>значение ΔМ<br>в Мэв                      | Bec               | Значение ∆М,<br>вычисленное<br>из масс<br>(таблица II)<br>в единицах О <sup>16</sup> |
|---------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------|-------------------------|-------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------|
| 1                         | 2                                                                                                                  | 3                           | 4                                                                           | 5                       | 6                                                     | 7                 | 8                                                                                    |
| 44                        | $CO_2 - C^{12}S^{32}$<br>$CO_2 - Ca^{44}$                                                                          | 300<br>100<br>300           | $17,782\pm0,025$<br>$34,607\pm0,059$<br>$33,182\pm0,007$                    | 19<br>6)                | $16,558 \pm 0,023 \\ 32,224 \pm 0,055$                | 19                | 17,777 <u>+</u> 0,011                                                                |
| 40                        | То же                                                                                                              | 100                         | $33,132\pm0,013$<br>$33,132\pm0,013$                                        | 69                      | $30,851\pm0,012$                                      | 69                | 33,046 <u>+</u> 0,015                                                                |
| 48<br>49<br>50<br>76      | $\begin{array}{c} C_4 - Ca^{48} \\ C_4 H - S^{33} O^{16} \\ C_4 H_2 - S^{34} O^{16} \\ C_6 H_4 - CS_2 \end{array}$ | 100<br>100<br>100<br>300    | $47,590\pm0,10$<br>$41,385\pm0,046$<br>$52,900\pm0,040$<br>$87,326\pm0,058$ | 6)<br>4,4<br>5,6<br>2,8 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4,4<br>5,6<br>2,8 | $\begin{array}{r} 41,495\pm0,020\\ 52,90\pm0,03\\ 87,225\pm0,018\end{array}$         |

ПРИМЕЧАНИЯ К ТАБЛИЦЕ І

1) При вычислениях было принято, что вес, равный единице, имеют измерения, погрешность которых 0.1 Мэв. 2) В таблице приведены веса и погрешности, округлённые до одной-двух значащих цифр. Вычисления

проводились с неокруглёнными значениями.

3) Случай, когда погрешность «разброса» ог оказалась больше погрешности о1.

4) Разность между данным экспериментальным значением и наиболее вероятным значением, вычисленным по массам таблицы II, выходит за пределы учетверённой вероятной погрешности.
 5) Мы увеличили авторскую погрешность ± 0,01 до значения 0,02.

) Данное уравнение было вынесено в дополнительную систему. Принципы вычисления см. раздел IV.

7) Погрешность оценена нами из погрешностей пробегов продуктов реакции.

8) Погрешность оценена нами.

9) Е' - разность масс исходного и конечного ядра.

16) Реакция использована не была, так как находится в противоречии с другими сведениями о массе А<sup>89</sup>.
 11) В столбце 6-м в скобках приведено принятое значение ΔM в массовых единицах.

12) Погрешность увеличена нами, так как известна тенденция авторов завышать точность своих измерений.

### IV. СХЕМА ВЫЧИСЛЕНИЙ

При математической обработке экспериментальных данных требуется получить систему наиболее вероятных значений масс. В нашей работе эта задача была решена применением метода наименьших квадратов. Вычисления проводились следующим образом.

1. На основе материала таблицы I, прежде всего было найдено наиболее вероятное значение энергии каждой реакции и величины дублета, т. е. составлено среднее взвешенное из существующих измерений данной величины. При этом, кроме отдельных измерений одной и той же величины, объединялись значения для прямых и обратных реакций, реакций с одинаковым Q и равнозначных дублетов.

Для нахождения среднего необходимо иметь веса всех значений. Почти везде, кроме случаев, где это специалыю оговорено, мы определяли веса, основываясь на авторской оценке погрешностей. Следует отметить, что авторы по-разному подходят к определению вероятной погрешности своих измерений. Унификация этих определений была бы желательна, но является весьма трудоёмкой, и в данной работе проведена не была.

Обсуждённые ниже результаты вычислений оправдывают такое «доверие» к авторам.

Для определения веса каждого значения была использована формула

$$p_i = \frac{\sigma_0^2}{\sigma_i^2},$$

где  $\sigma_0$  — погрешность определения, вес которого принят равным единице;

о, — погрешность *i*-го значения.

Измерениям, погрешности которых превышают наименьшую из погрешностей больше, чем в десять раз, везде приписан нулевой вес, так как при взвешивании они практически не меняют результата.

Если одни и те же авторы последовательно сообщали различные значения данной величины, то мы использовали только их последнее значение, остальным же приписывали вес, равный нулю.

Веса, которые были окончательно приняты при усреднении, помещены в пятом столбце таблицы  $I_{(\sigma_0}$  положено равным 0,1).

2. При определении погрешности средних вначений мы поступали следующим образом. Для каждого среднего вычислялись; а) «статистическая» погрешность

$$\sigma_1 = \frac{\sigma_0}{\sqrt{\sum_{i} p_i}}$$

и б) погрешность «разброса»



где  $p_i$  — вес *i*-го значения, n — число взвешиваемых членов,  $\delta_i$  — уклонение *i*-го числа от среднего взвешенного.

Усреднённому значению приписывалась наибольшая из этих погрешностей. Если погрешности отдельных измерений имеют случайный характер, то  $\sigma_1$  должна быть больше или порядка  $\sigma_2$ . В случаях, когда  $\sigma_2$  значительно превосходит  $\sigma_1$ , можно предполагать наличие не исключённых методических погрешностей, которые «разбрасывают» отдельные значения за пределы вероятных погрешностей. Приписывая в этом случае результату погрешность  $\sigma_2$ , мы учитываем этот разброс и уменьшаем вес противоречивых измерений.

В наших вычислениях в 19 случаях из 81  $\sigma_2$  оказалась больше статистической погрешности. В таблице эти случаи отмечены сноской<sup>8</sup>). Не было ни одного случая, когда  $\sigma_2$  превышала бы  $\sigma_1$  в 3 раза.

В шестом столбце приведены полученные таким путём средние значения. В последующих вычислениях они рассматривались как экспериментальные значения энергий реакций или величин дублетов. В следующем столбце даны веса, которые были выведены для средних значений по указанному выше правилу.

3. Дальнейшая работа заключалась в отыскании наилучших значений масс путём применения метода наименьших квадратов.

Экспериментальный материал представляет собой систему 258 уравнений с 97 неизвестными типа

X+Y-Z-T=Q (условные уравнения),

где X и т. д. — массы ядер, Q — энергия ядерного превращения. Так как Q определяются на опыте с какими-то погрешностями,

то все эти уравнения не могут быть вполне совместными, и поэтому точного решения всей системы не существует. Требуется найти систему неизвестных, которая возможно лучше удовлетворяла бы всем уравнениям. По принципу метода наименьших квадратов <sup>24</sup> наилучшей системой неизвестных является та, для которой сумма квадратов остающихся погрешностей уравнений имеет минимальное значение. Математически отыскание такой системы неизвестных сводится к приведению условных уравнений к эквивалентной системе нормальных уравнений, число которых равняется числу неизвестных, и её решению. Неизвестные, найденные из нормальной системы, имеют наибольщий вес и наименьшую среднюю ошибку среди всех других возможных систем неизвестных. 4. Решение системы 258 уравнений с 97 неизвестными практически неосуществимо. Поэтому задача должна быть разделена на несколько этапов.

Прежде всего, рассматривая таблицу I, нетрудно убедиться, что некоторые ядра входят только в одно-два уравнения, имеющих большие погрешности (например, ядро N<sup>16</sup>). Включение таких уравнений в общую систему не увеличило бы точности определения масс других ядер ввиду малости веса этих уравнений, но значительно затруднило бы вычисления. Поэтому уравнения для ядер, масса которых всё равно не может быть определена с погрешностью меньше 30 кэв, были выделены в дополнительную систему, которая решалась после основной. Оставшиеся 208 уравнений с 66 неизвестными были разбиты на пять систем.

5. Первая, главная система включала в себя нейтрон и 24 следующих ядра:  $H^1$ ,  $H^2$ ,  $H^3$ ,  $He^3$ ,  $He^4$ ,  $Li^6$ ,  $Li^7$ ,  $Li^8$ ,  $Be^7$ ,  $Be^8$ ,  $Be^9$ ,  $Be^{10}$ ,  $B^9$ ,  $B^{10}$ ,  $B^{11}$ ,  $B^{12}$ ,  $C^{11}$ ,  $C^{12}$ ,  $C^{18}$ ,  $C^{14}$ ,  $N^{13}$ ,  $N^{14}$ ,  $N^{15}$ . Выделение такой большой системы диктовалось, прежде всего, необходимостью включить в одну систему и лёгкие частицы, участвующие в большинстве ядерных реакций, и ядро  $O^{16}$ , относительно которого ведутся все расчёты. Эта система охватывала также основные дублеты  $H_2 - D$ ,  $D_8 - C^{12}$ ,  $C^{12}H_4 - O^{16}$ ,  $C^{12}H_2 - N^{14}$ , применяющиеся при масс-спектрометрических определениях. Такое разделение отражает также и общую точность сведений о массах ядер: суммарный вес всех данных, вошедших в первую систему, составляет 94 000, а для следующих 25 ядер всего 10 000.

Система содержала 95 уравнений с 25 неизвестными. Соответствующая ей система нормальных уравнений была решена способом последовательного исключения неизвестных. Одновременно решались системы, которые служат для определения весов неизвестных.

Для определения вероятных ошибок неизвестных использовалась формула

$$\sigma_{\text{Rep}}(x) = \frac{0,674}{\sqrt{p(x)}} \sqrt{\frac{\Sigma \varepsilon_i^2}{n-m}},$$

где  $\varepsilon_l$  — погрешность *l*-го условного уравнения, т. е. величина  $Q_{\text{эксп.}} - Q_{\text{выч.}}$ , где  $Q_{\text{выч.}}$  найдено путём подстановки масс, полученных из системы; n — число условных уравнений; m — число не-известных; p(x) — вес неизвестного x, найденный из нормальной системы. Как видно из формулы, ошибки определяются тем, как согласуются между собой результаты разных экспериментов.

6. Четыре другие системы содержали следующие ядра:

вторая — O<sup>18</sup>, F<sup>18</sup>, F<sup>19</sup>, F<sup>20</sup>, Ne<sup>20</sup>, Ne<sup>31</sup>, Ne<sup>22</sup>, Ne<sup>23</sup>, Na<sup>23</sup>; третья — Mg<sup>24</sup>, Mg<sup>25</sup>, Mg<sup>26</sup>, Mg<sup>27</sup>, Al<sup>27</sup>, Al<sup>28</sup>, Si<sup>28</sup>, Si<sup>29</sup>, Si<sup>80</sup>, Si<sup>31</sup>, P<sup>81</sup>; четвёртая — Р<sup>32</sup>, S<sup>33</sup>, S<sup>33</sup>, S<sup>34</sup>, S<sup>35</sup>, Cl<sup>35</sup>, Cl<sup>36</sup>, Cl<sup>37</sup>, A<sup>36</sup>, A<sup>37</sup>, A<sup>40</sup>; лятая — Cl<sup>38</sup>, A<sup>38</sup>, A<sup>41</sup>, K<sup>89</sup>, K<sup>40</sup>, K<sup>41</sup>, K<sup>42</sup>, Ca<sup>40</sup> и Ca<sup>41</sup>.

Они были решены аналогично главной системе. Массы, определённые в предыдущих системах, подставлялись в последующие уравнения, как известные. Это не вносит особых неточностей, поскольку вероятные ошибки экспериментальных значений растут с Z. Таким путём были определены массы до Ca<sup>41</sup>.

7. После решения пяти основных систем были найдены массы ядер He<sup>5</sup>, He<sup>6</sup>, C<sup>10</sup>, C<sup>12</sup>, N<sup>12</sup>, N<sup>16</sup>, O<sup>14</sup>, O<sup>15</sup>, O<sup>19</sup>, F<sup>17</sup>, Ne<sup>19</sup>, Na<sup>32</sup>, Na<sup>34</sup>, Mg<sup>28</sup>, Al<sup>34</sup>, Al<sup>26</sup>, Al<sup>39</sup>, P<sup>29</sup>, P<sup>80</sup>, P<sup>83</sup>, S<sup>31</sup>, S<sup>86</sup>, S<sup>87</sup>, Cl<sup>38</sup>, Cl<sup>84</sup>, A<sup>35</sup>, A<sup>89</sup>, K<sup>87</sup>, K<sup>88</sup>, Ca<sup>39</sup>, Ca<sup>42</sup>, Ca<sup>48</sup>, Ca<sup>44</sup> и Ca<sup>48</sup>, которые входили в дополнительные уравнения. Погрешности этих масс определяются, в основном, погрешностями экспериментальных значений.

8. Для перевода массовых единиц в энергетические использовалась известная формула: 1 масс. ед. =  $10^{-7} \frac{c^3}{F} M_{38}$ , где c — скорость света в  $c_M/c_{ee}$ , F — постоянная Фарадея в кулонах.

Значения констант были взяты из работы Дю Монда<sup>25</sup>, при этом 1 масс. ед. = 931,152 *Мэв*.

### V. ТАБЛИЦА МАСС ЛЁГКИХ ЯДЕР

В таблице II (см. стр. 512) приведены массы атомов для  $Z \ll 20$ . В третьем столбце дана величина масс-дефекта ядра M - A в Mэв; в следующем столбце приведены массы атомов в единицах  $O^{16}$ . В скобках указаны вероятные погрешности в шестом знаке после запятой.

#### VI. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

### 1. Обсуждение исходных значений с точки зрения результатов

После того как были определены массы всех ядер, мы вычислили значения Q и  $\Delta M$ , которые соответствуют найденным массам. Эти значения приведены в восьмом столбце таблицы I. Сравнивая экспериментальные результаты и найденные нами наиболее вероятные значения, мы можем убедиться, что разность между ними выходит за пределы вероятной погрешности в 38% случаев. Согласно определению вероятной погрешности при достаточно большом числе измерений 50% результатов должно отклоняться от среднего значения на величину, большую, чем вероятная погрешность. Приведённое выше число свидетельствует о том, что большинство экспериментаторов правильно оценивает свои погрешности.

Из 460 экспериментальных определений, на которых основана наша таблица масс, 59 выходят за пределы удвоенной, 24 за

# Таблица II

| Массы | лёгких | ядер |
|-------|--------|------|
|-------|--------|------|

| Элемент                                                                                          | Массовое<br>число<br>А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Масс-дефект <i>М</i> — А<br>в <i>Мэв</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Масса атома <i>М</i><br>в атомн. масс. ед.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n<br>H<br>H<br>H<br>H<br>e<br>H<br>e<br>H<br>e<br>H<br>e<br>H<br>e<br>H<br>e<br>H<br>e<br>H<br>e | $\begin{array}{c}1\\1\\2\\3\\3\\4\\5\\6\\6\\7\\8\\9\\10\\9\\10\\11\\12\\10\\11\\12\\13\\14\\15\\12\\13\\14\\15\\16\\14\\15\\16\\17\\18\\9\\20\\20\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\21\\22\\23\\22\\23\\21\\22\\23\\23\\21\\22\\23\\22\\23\\21\\22\\23\\23\\22\\23\\21\\22\\23\\23\\22\\23\\23\\22\\23\\23\\22\\23\\23\\22\\23\\23$ | $\begin{array}{c} 8,3663\pm 0,0015\\7,5852\pm 0,0012\\13,7262\pm 0,0023\\15,832\pm 0,005\\15,832\pm 0,005\\15,814\pm 0,005\\3,6104\pm 0,0025\\12,72\pm 0,10\\19,39\pm 0,03\\15,855\pm 0,005\\16,970\pm 0,006\\23,303\pm 0,007\\17,834\pm 0,007\\17,834\pm 0,007\\17,834\pm 0,007\\17,806\pm 0,006\\15,566\pm 0,008\\15,077\pm 0,007\\15,009\pm 0,007\\15,009\pm 0,007\\15,009\pm 0,007\\15,909\pm 0,007\\15,909\pm 0,007\\15,909\pm 0,007\\15,921\pm 0,008\\16,921\pm 0,006\\16,921\pm 0,006\\16,921\pm 0,005\\7,168\pm 0,004\\13,3\pm 0,05\\21,23\pm 0,08\\9,197\pm 0,005\\7,168\pm 0,004\\13,3\pm 0,005\\7,013\pm 0,008\\9,197\pm 0,008\\9,197\pm 0,005\\7,013\pm 0,008\\9,197\pm 0,005\\7,013\pm 0,008\\9,197\pm 0,008\\9,197\pm 0,008\\10,47\pm 0,006\\10,47\pm 0,008\\4,551\pm 0,008\\4,551\pm 0,008\\4,224\pm 0,008\\6,222\pm 0,006\\4,148\pm 0,005\\5,914\pm 0,002\\7,404\pm 0,007\\-1,120\pm 0,004\\1,603\pm 0,006\\4,039\pm 0,005\\-1,549\pm 0,006\\4,039\pm 0,005\\-1,549\pm 0,006\\4,039\pm 0,006\\4,039\pm 0,006\\-2,706\pm 0,006\\4,039\pm 0,006\\-2,706\pm 0,006$ | $\begin{array}{c} 1,0089849 & (\pm 1,6) \\ 1,0081460 & (\pm 1,3) \\ 2,0147411 & (\pm 2,4) \\ 3,017003 & (\pm 5) \\ 4,0038773 & (\pm 2,7) \\ 5,01366 & (\pm 110) \\ 6,02082 & (\pm 30) \\ 6,017028 & (\pm 6) \\ 7,018225 & (\pm 7) \\ 8,025026 & (\pm 8) \\ 7,019153 & (\pm 7) \\ 8,007849 & (\pm 6) \\ 9,015042 & (\pm 6) \\ 10,016717 & (\pm 9) \\ 9,016192 & (\pm 7) \\ 10,016118 & (\pm 8) \\ 11,012796 & (\pm 6) \\ 12,018172 & (\pm 10) \\ 10,02034 & (\pm 110) \\ 11,014931 & (\pm 5) \\ 13,007488 & (\pm 5) \\ 14,007698 & (\pm 4) \\ 15,0143 & (\pm 500) \\ 12,02280 & (\pm 90) \\ 13,009877 & (\pm 6) \\ 14,007531 & (\pm 5) \\ 15,004877 & (\pm 7) \\ 16,01124 & (\pm 160) \\ 14,007531 & (\pm 5) \\ 15,004877 & (\pm 7) \\ 16,00000 & (\pm 9) \\ 16,00000 & (\pm 9) \\ 17,004536 & (\pm 7) \\ 18,004888 & (\pm 6) \\ 19,0092 & (\pm 300) \\ 17,007496 & (\pm 9) \\ 18,006683 & (\pm 6) \\ 19,00454 & (\pm 5) \\ 20,006352 & (\pm 22) \\ 19,00725 & (\pm 6) \\ 21,998366 & (\pm 4) \\ 23,001722 & (\pm 6) \\ 21,004338 & (\pm 22) \\ 22,001423 & (\pm 17) \\ 22,997094 & (\pm 6) \\ \end{array}$ |

Продолжение табл. II

•

| Элемент Массово<br>число<br>А                                 |                                                                                                                                                                                                                      | Масс-дефект М— А<br>в Мэв                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Масса атома М<br>в атомн. масс. ед.                  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Na gggggg<br>MMMAAAAASISISISPPPPPPSSSSSSSSCICICIAAAAAAKKKKKKK | $\begin{array}{c} 24\\ 23\\ 24\\ 25\\ 26\\ 27\\ 24\\ 26\\ 27\\ 28\\ 29\\ 27\\ 28\\ 29\\ 30\\ 31\\ 29\\ 30\\ 31\\ 29\\ 30\\ 31\\ 32\\ 33\\ 44\\ 35\\ 36\\ 37\\ 38\\ 40\\ 41\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\end{array}$ | $\begin{array}{c} -1,296\pm0,011\\ 1,20\pm0,06\\ -6,848\pm0,022\\ -5,803\pm0,020\\ -8,561\pm0,028\\ -6,63\pm0,03\\ -7,2\pm0,3\\ -5,8\pm0,3\\ -9,230\pm0,022\\ -8,580\pm0,024\\ -9,6\pm0,3\\ -4,62\pm0,07\\ -13,223\pm0,024\\ -15,568\pm0,025\\ -13,811\pm0,029\\ -13,811\pm0,029\\ -14,84\pm0,025\\ -11,24\pm0,06\\ -15,283\pm0,025\\ -14,846\pm0,012\\ -16,553\pm0,010\\ -16,553\pm0,010\\ -16,835\pm0,016\\ -19,867\pm0,028\\ -18,44\pm0,03\\ -20,00\pm0,03\\ -18,61\pm0,03\\ -14,26\pm0,06\\ -14,26\pm0,06\\ -14,26\pm0,06\\ -14,26\pm0,00\\ -18,59\pm0,07\\ -13,99\pm0,04\\ -20,99\pm0,04\\ -20,99\pm0,04\\ -23,210\pm0,09\\ -18,61\pm0,03\\ -20,07\pm0,04\\ -23,210\pm0,06\\ -23,210\pm0,06\\ -23,210\pm0,06\\ -23,210\pm0,06\\ -23,210\pm0,06\\ -23,59\pm0,06\\ -22,34\pm0,04\\ -21,68\pm0,05\\ -22,61\pm0,07\\ -22,$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

•

| Элемент                                      | Массовое<br>число<br>А                 | Масс-дефект <i>М</i> — А<br>в <i>Мәв</i>                                                                                                    | Масса атома <i>М</i><br>в атомн. масс. ед.           |
|----------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca | 39<br>40<br>41<br>42<br>43<br>44<br>48 | $\begin{array}{c} -16,10\pm0,14\\ -23,00\pm0,05\\ -23,13\pm0,06\\ -26,00\pm0,03\\ -25,67\pm0,05\\ -28,67\pm0,06\\ -30,09\pm0,09\end{array}$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ |

Окончание табл. II

пределы утроенной и 13 за пределы учетверённой вероятной погрешности. В то время как число случаев, когда погрешность превышает однократную, двукратную и трёхкратную погрешности, приблизительно соответствует гауссовскому распределению, число случаев, выходящих за учетверённую погрешность, в пять раз превышает его.

Естественно опасаться, что в этих случаях имеются невыясненные методические погрешности. К таким случаям относятся работы <sup>233</sup>, 412, 284, 55, 138, 72, 140, 307, 386, 149, 267 и <sup>269</sup> (см. литературу к табл. I).

### 2. Сопоставление полученных масс

#### с результатами предыдущих анализов

В таблице III приведены массы основных изотопов по нашим данным (табл. II) и предыдущим анализам. Сопоставление этих данных показывает, что по сравнению с 1947 г. погрешности уменьшились в среднем в 10—20 раз. Можно видеть, что системы масс согласуются между собой внутри своих вероятных погрешностей. Различия, выходящие за пределы утроенной погрешности, встречаются относительно редко.

3. Сравнение систем масс, основанных на ядерных реакциях и на масс-спектрометрических дублетах

Представляется интересным сравнить результаты, которые получаются, если использовать порознь данные измерения дублетов и величин Q. Для этой цели из приведённых в таблице I дублетов была создана самостоятельная система из 19 уравнений с 10 неизвестными и снова решена по методу наименьших квадратов.

Таблица III

Массы основных изотопов

| Изотоп          | Данные Бете <sup>1</sup> |                | Данные Маттауха<br>и Фламмерсфельда <sup>2</sup> |                       | Данные:<br>а) Лн, Валинга <sup>5</sup> ,<br>б) Эвальда <sup>4</sup> ,<br>в) Коллинса, Нира <sup>3</sup> |                       | Данные настоящей<br>работы |                 |
|-----------------|--------------------------|----------------|--------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|-----------------|
| n               | 1 00893                  | (+ 30)*)       | 1 008939                                         | (+ 5)                 | 1.008982                                                                                                | (+3)a)                | 1 0089849                  | (+1.6)          |
| H1              | 1.008123                 | $(\pm 6)$      | 1.008130                                         | $(\pm 3)$             | 1.008142                                                                                                | $(\pm 3)(-)$          | 1.0081460                  | $(\pm 1,3)$     |
| H <sup>2</sup>  | 2,014708                 | (+ 11)         | 2,014721                                         | (+ 6)                 | 2,014735                                                                                                | (+ 6)                 | 2,0147411                  | (+2,4)          |
| H <sup>3</sup>  | 3,01700                  | ( <u>+</u> 34) | 3,017033                                         | ( <u>+</u> 17)        | 3,016997                                                                                                | (±11)                 | 3,017003                   | (± 5)           |
| He <sup>4</sup> | 4,00390                  | ( <u>+</u> 30) | 4,003887                                         | ( <u>+</u> 21)        | 4,003873                                                                                                | ( <u>+</u> 15)        | 4,0038773                  | ( <u>+</u> 2,7) |
| Li <sup>6</sup> | 6,01697                  | ( <u>+</u> 50) | 6,016952                                         | ( <u>+</u> 50)        | 6,017021                                                                                                | (±22)                 | 6,017028                   | ( <u>+</u> 6)   |
| Li <sup>7</sup> | 7,01822                  | ( <u>+</u> 60) | 7,018203                                         | ( <u>+</u> 40)        | 7,018223                                                                                                | ( <u>+</u> 26)        | 7,018225                   | (± 7)           |
| Be <sup>9</sup> | 9,01503                  | ( <u>+</u> 60) | 9,01499                                          | ( <u>+</u> 60)        | 9,015043                                                                                                | ( <u>+</u> 30)        | 9,015042                   | ( <u>±</u> 6)   |
| B10             | 10,01618                 | ( <u>+</u> 90) | 10,01606                                         | (土60)                 | 10,016114                                                                                               | ( <u>+</u> 28)        | 10,016118                  | (± 8)           |
| B11             | 11,01284                 | ( <u>+</u> 80) | 11,01283                                         | <b>(</b> <u>+</u> 60) | 11,012789                                                                                               | ( <u>+</u> 23)        | 11,012796                  | ( <u>+</u> 6)   |
| C12             | 12,00382                 | (土 40)         | 12,003855                                        | ( <u>+</u> 23)        | 12,003804                                                                                               | ( <u>+</u> 17)        | 12,003817                  | (土 5)           |
| C <sup>18</sup> | 13,00751                 | (±100)         | 13,007576                                        | ( <u>+</u> 23)        | 13,007473                                                                                               | <b>(</b> ±14 <b>)</b> | 13,007488                  | (土 5)           |

\*) Погрешности в шестом знаке после запятой.

.

массы лёгких ядер

Окончание табл. III от бо

| Изотоп                                                                                                                                                                                                                               | Данные Бете <sup>1</sup>                                                                                                                                                                                                                                                                                                                           | Данные Маттауха<br>и Фламмерсфельда <sup>2</sup>                                                                                                                                                                                                                                                                                    | Данные:<br>а) Ли, Валинга <sup>5</sup> ,<br>б) Эвальда <sup>4</sup> ,<br>в) Коллинса, Нира <sup>8</sup>                                                                                                                                                                                                                                                   | Данные настоящей работы                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N14<br>N15<br>O17<br>F19<br>Ne <sup>20</sup><br>Na <sup>23</sup><br>Mg <sup>24</sup><br>A127<br>Si <sup>28</sup><br>P <sup>81</sup><br>S <sup>32</sup><br>C1 <sup>85</sup><br>C1 <sup>87</sup><br>A <sup>40</sup><br>K <sup>89</sup> | $14,00751$ $(\pm 40)$ $15,00489$ $(\pm 210)$ $17,00450$ $(\pm 60)$ $19,00450$ $(\pm 260)$ $19,09877$ $(\pm 100)$ $22,99618$ $(\pm 300)$ $23,9924$ $(\pm 600)$ $26,9899$ $(\pm 800)$ $27,9866$ $(\pm 600)$ $30,9843$ $(\pm 500)$ $31,98089$ $(\pm 70)$ $34,97867$ $(\pm 210)$ $36,97750$ $(\pm 140)$ $-39,9756$ $(\pm 600)$ $(38,9747)$ $(\pm 602)$ | 14,007540 (± 24)         15,004900 (± 25)         17,00453 (± 60)         19,00435 (± 70)         19,998898 (± 50)         22,99697 (± 70)         23,99254 (± 80)         26,98974 (± 60)         27,98545 (±110)         30,98348 (±130)         31,98167 (±170)         34,97893 (±280)         36,97755         39,97551 (±120) | $\begin{array}{ccccccc} 14,007515 & (\pm 11) \\ 15,004863 & (\pm 12) \\ 17,004533 & (\pm 7) \\ 19,004456 & (\pm 15) \\ 19,998771 & (\pm 12) 6 \end{array}$ $\begin{array}{c} 27,985792 & (\pm 32) \\ 30,983622 & (\pm 23) \\ 31,982236 & (\pm 7) \\ 34,98004 & (\pm 50) \\ 36,97766 & (\pm 50) \\ 39,97513 & (\pm 30) \\ 38,97606 & (\pm 30) \end{array}$ | $14,007531$ $(\pm 5)$ $15,004877$ $(\pm 7)$ $17,004536$ $(\pm 7)$ $19,004454$ $(\pm 5)$ $19,998798$ $(\pm 5)$ $22,997094$ $(\pm 6)$ $23,992646$ $(\pm 24)$ $26,990088$ $(\pm 24)$ $27,985800$ $(\pm 26)$ $30,983588$ $(\pm 27)$ $31,982223$ $(\pm 11)$ $34,98002$ $(\pm 30)$ $36,97756$ $(\pm 40)$ $39,975073$ $(\pm 22)$ $38,97600$ $(\pm 40)$ |
| Ca <sup>40</sup>                                                                                                                                                                                                                     | 39,9753 ( <u>+</u> 1500)                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                     | 39,97545 ( <u>+</u> 90)                                                                                                                                                                                                                                                                                                                                   | 39,97530 ( <u>+</u> 50)                                                                                                                                                                                                                                                                                                                         |

à с. джелепов и л. н. зырянова Таблица IV

,

| Изотоп                                                                 | Масс-спектрометрическая система                      | Общая система                                                                                                                                                                                                                                                                  |  |  |
|------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| H1<br>H2<br>B10<br>B11<br>C12<br>C18<br>N14<br>N15<br>Ne <sup>20</sup> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccc} 1,0081460 & (\pm 1,3) \\ 2,0147411 & (\pm 2,4) \\ 4,0038773 & (\pm 2,7) \\ 10,016118 & (\pm 8) \\ 11,012796 & (\pm 6) \\ 12,003817 & (\pm 5) \\ 13,007488 & (\pm 5) \\ 14,007531 & (\pm 5) \\ 15,004877 & (\pm 7) \\ 19,998798 & (\pm 5) \end{array}$ |  |  |

Сопоставление двух систем масс

Результаты приведены во второй колонке таблицы IV. Строго говоря, для сравнения нужно было бы отдельно решить систему; основанную на значениях Q и E. Однако вес данных по ядерным реакциям и распадам, как уже указывалось, составляет 89% от общего веса данных таблицы I; вследствие этого система, основанная только на Q и E, должна быть очень близка к общей системе. Поэтому в третьей колонке таблицы IV повторены числа из таблицы I. Заметим, кстати, что они близки к числам Ли и Валинга, основанным только на величинах Q.

Выводы, которые можно сделать из сопоставления соседних колонок таблицы IV, таковы. Некоторое систематическое разногласие между масс-спектрометрическими данными и данными, полученными из ядерных реакций, есть: массы самых лёгких частиц получаются по дублетам меньше, в районе В обе шкалы масс совпадают и затем, начиная с  $C^{12}$ , масс-спектрометрические массы выше. В четырёх случаях (Не<sup>4</sup>,  $C^{12}$ ,  $C^{13}$  и N<sup>14</sup>) разность масс выходит за пределы утроенной вероятной погрешности, что заставляет предполагать наличие методических погрешностей. В случае  $C^{18}$  расхождение в шесть раз превышает вероятную ошибку.

Отмеченное Ли и Валингом онень большое расхождение в величине дублета С<sup>12</sup> H<sub>4</sub> — О<sup>16</sup> (106 <u>—</u> 29) уменьшилось, но незначительно. Следует отметить, что в самих масс-спектрометрических измерениях встречаются большие расхождения.

Из восьмого столбца таблицы I можно видеть, что полученные нами значения масс в целом хорошо удовлетворяют экспериментальным значениям дублетов. За пределы однократной, двукратной и трёхкратной вероятной погрешности выходят 35%, 18% и 4% случаев, в то время как гауссовское распределение предсказывает — 50%, 18% и 4%.

### 4. Микроволновые определения масс

В таблице V приведены результаты микроволновых определений разностей масс и их отношений. Они не были включены в основную систему, поскольку точность их невелика, а они значительно

Таблица V

| Дублеты                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Литера-<br>турные<br>ссылки                                                                                                           | Экспериментальное<br>значение                                                                    |                                                                                                                                                                | Значение при массах<br>таблицы II                                                                |                                                                                                                                          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\begin{array}{c} S^{83} - S^{32} \\ S^{83} - S^{34} \\ S^{34} - S^{80} \\ C^{185} - C^{137} \\ C^{185} - C^{136} \\ S^{55} - S^{82} \\ \hline S^{34} - S^{33} \\ S^{85} - S^{32} \\ \hline S^{88} - S^{32} \\ S^{88} - S^{82} \\ \hline S^{34} - S^{82} \\ \hline S^{130} - S^{128} \\ \hline \\ \hline S^{130} - S^{128} \\ \hline \end{array}$ | $ \begin{array}{r}     16 \\     17 \\     18 \\     14, 19 \\     15 \\     21 \\     21 \\     22 \\     22 \\     22 \end{array} $ | 0,99977<br>0,93709<br>2,00054<br>1,99751<br>1,00017<br>1,50155<br>2,99881<br>0,500714<br>0,49341 | $\begin{array}{c} (\pm 300) *) \\ (\pm 150) \\ (\pm 300) \\ (\pm 140) \\ (\pm 400) \\ (\pm 150) \\ (\pm 300) \\ (\pm 300) \\ (\pm 30) \\ (\pm 50) \end{array}$ | 0,999698<br>0,93674<br>1,99384<br>1,99754<br>0,99972<br>1,50166<br>2,99887<br>0,50074<br>0,49943 | $\begin{array}{c} (\pm 20) \\ (\pm 30) \\ (\pm 100) \\ (\pm 50) \\ (\pm 50) \\ (\pm 50) \\ (\pm 40) \\ (\pm 40) \\ (\pm 50) \end{array}$ |  |
| *) Погрешности в шестом знаке после запятой.                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                  |                                                                                                                                                                |                                                                                                  |                                                                                                                                          |  |

Микроволновые определения масс

Таблица VI

Результаты, не вошедшие в таблицу I

| №<br>п/п                                                            | Реакция                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Литера-<br>турные<br>ссылки                                                                                  | Эксперименталь-<br>ное значение<br>Q или E                                                                                                                                                                                                                 | Значение, вычис-<br>ленное из масс<br>(таблица II)                                                                                                                                                                                                                        |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>23<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | Li <sup>9</sup> (t, d) Li <sup>7</sup><br>Li <sup>8</sup> (t, p) Li <sup>8</sup><br>Be <sup>9</sup> (a, n) C <sup>12</sup><br>D ( $\gamma$ , n) p<br>Be <sup>9</sup> ( $\gamma$ , n) Be <sup>8</sup><br>F <sup>19</sup> (p, n) Ne <sup>19</sup><br>Cl <sup>87</sup> (p, n) A <sup>87</sup><br>P <sup>31</sup> (n, $\gamma$ ) P <sup>32</sup><br>S <sup>82</sup> (n, $\gamma$ ) S <sup>88</sup><br>Cl <sup>85</sup> (n, $\gamma$ ) Cl <sup>86</sup><br>K <sup>89</sup> (n, $\gamma$ ) K <sup>40</sup><br>Ne <sup>-9</sup> ( $\beta$ +) F <sup>19</sup><br>Na <sup>21</sup> ( $\beta$ +) Ne <sup>21</sup><br>Na <sup>23</sup> (p, n) Mg <sup>28</sup> | 448<br>449<br>450<br>450<br>451<br>452<br>453<br>453<br>453<br>453<br>453<br>453<br>453<br>454<br>454<br>455 | $\begin{array}{c} 0,982\pm 0,007\\ 0,78\pm 0,015\\ 5,68\\ -2,231\pm 0,003\\ -1,664\pm 0,002\\ -4,040\pm 0,005\\ -1,598\pm 0,002\\ 7,94\pm 0,03\\ 8,64\pm 0,02\\ 8,56\pm 0,03\\ 7,77\pm 0,03\\ 2,18\pm 0,03\\ 2,50\pm 0,03\\ -4,879\pm 0,010\\ \end{array}$ | $\begin{array}{c} 0,991\pm 0,010\\ 0,739\pm 0,010\\ 5,636\pm 0,008\\ -2,225\pm 0,003\\ -1,668\pm 0,008\\ -4,037\pm 0,009\\ -1,60\pm 0,06\\ 7,939\pm 0,027\\ 8,648\pm 0,019\\ 8,63\pm 0,05\\ 7,71\pm 0,06\\ 2,234\pm 0,009\\ 2,528\pm 0,021\\ -4,69\pm 0,06\\ \end{array}$ |

ļ

усложнили бы обработку материала. В 4-м столбце даны значения тех же величин, определённые по массам таблицы II.

Можно видеть, что почти все разности лежат в пределах вероятной погрешности; только в двух случаях разность приблизительно равна удвоенной погрешности.

#### 5. Сопоставление с результатами, опубликованными в 1952 г. и не вошедшими в таблицу I

В таблице VI приведены результаты тех измерений, которые стали известны авторам статьи после того, как вычисления были начаты. Можно видеть, что новые экспериментальные значения хорошо согласуются с вычисленными по массам ядер таблицы II.

#### ЛИТЕРАТУРА. ШИТИРОВАННАЯ В ТЕКСТЕ

- 1. Гудмен К., Научные и технические основы ядерной энергетики, ИЛ, М., К книге приложена таблица масс Бете.
- Mattauch J., Flammersfeld A., Isotopenbericht, Tübingen, 1949.
   Nier A., Roberts T., Phys. Rev. 81, 557 (1951); Collins T., Nier A., Johnson W., Phys. Rev., 84, 717 (1951).
   Ewald H., Zeits. Naturforsch. 6a, 253 (1951).
- 5. Li C., Whaling W., Fowler W., Lauritsen C., Phys. Rev., 83, 512 (1951).
- Buechner W., Strait E., Stergiopoulos C., Sperdutto A., Phys. Rev., 74, 1569 (1948).
   Fowler W., Lauritsen C., Lauritsen T., Rev. Sci. Instr., 18,
- 818 (1947). 8. Toilerstrup A., Fowler W., Lauritsen C., Phys. Rev., 76,
- 428 (1949).
- Buechner W., Van Patter D., Strait E., Sperdutto A., Phys. Rev., 81, 747 (1951); Van Patter D., Sperdutto A., Endt P., Buechner W., Enge H., Phys. Rev., 85, 142 (1952) и др. работы, В ue chner W., Enge H., Phys. Rev., 85, 142 (1952) и др. работы, см. литературу к табл. I.
  10. Тоllestrup A., Jenkins F., Fowler W., Lauritsen C., Phys. Rev., 75, 1947 (1949) и др. работы, см. литературу к табл. I.
  11. Кіета Е., Phillips G., Phys. Rev., 83, 212 (1951).
  12. Кіпsey B., Bartholomew G., Walker W., Phys. Rev., 77, 723; 78, 481; 80, 918 (1950).
  13. Nier A., Roberts T., Phys. Rev., 81, 507 (1951).
  14. Townes C., Merritt, Wright, Phys. Rev., 73, 1334 (1948).
  15. Townes C., Geschwind S., Phys. Rev., 74, 626 (1948).
  17. Davison P., Phys. Rev., 74, 1233 (1948).
  18. Low W., Townes C., Phys. Rev., 75, 529 (1949).
  19. Gilbert, Roberts, Griswold, Phys. Rev., 81, 296 (1951).
  20. Wentink T., Koski W., Cohen V., Phys. Rev., 81, 948 (1951).
  22. Geschwind S., Gunther-Mohr R., Phys. Rev., 81, 882; 82, 346 (1951).

- (1951). 23. Low W., Townes C., Phys. Rev., 80, 608 (1950).
- 24. И дельсон Н., Способ наименьших квадратов, Ленинград, 1932. 25. Дю Монд, УФН 45, 458 (1951).

#### ЛИТЕРАТУРА К ТАБЛИЦЕ І

- Adamson R., Buechner W., Preston W., Goodman C., Van Patter D., Phys. Rev., 80, 985 (1950).
   Agnew H., Phys. Rev., 77, 655 (1950).
   Alburger D., Phys. Rev., 76, 435 (1949).
   Alburger D., Phys. Rev., 78, 629 (1950).
   Allan H., Clavier C., Nature, 158, 832 (1946).
   Allan H. Wilkinson C. Proc. Pox. Soc. A104, 121 (1949).

- Allan H., Wilkinson C., Proc. Roy. Soc., A194, 131 (1948).
   Allan H., Wilkinson C., Burcham W., Curling C., Nature, 163, 210 (1949).

- 105, 210 (1545).
  8. Allen R., Rall W., Phys. Rev., 78, 337 (1950).
  9. Allen R., Rall W., Phys. Rev., 81, 60 (1951).
  10. Allison S., Skaggs L., Smith N., Phys. Rev., 54, 171 (1938).
  11. Allison S., Graves E., Skaggs L., Phys. Rev., 57, 158 (1940).
  12. Allison S., Skaggs L., Smith N., Phys. Rev., 57, 550 (1940).
  13. Allison S., Miller L., Skaggs L., Smith N., Phys. Rev., 57, 550 (1940).
- 13. Allison S., Miller L., Skaggs L., Smith N., Phys. Rev., 59, 108 (1941).
- 14. Allison S., Argo H., Arnold W., Rosario L., Wilcox H., Yang C., Phys. Rev., 74, 1233 (1948).

- Alvarez L., Phys. Rev., 75, 1815 (1949).
   Ambrosen J., Marck K., Bisgaard, Nature, 165, 888 (1950).
   Anderson O., Phys. Rev., 45, 685 (1934).
   Angus J., Cockroft A., Curran S., Phil. Mag., 40, 522 (1949).
   Argo H., Phys. Rev., 74, 1293 (1948).
   Asada T., Ocuda T., Ogata K., Yoshimoto S., Nature, 143, 72 (1920). 797 (1939).
- 21. Aston F., Nature, 135, 541 (1935). 22. Aston F., Proc. Roy. Soc., A. 163, 391 (1937).
- 23. Bainbridge K., Jordan E., Phys. Rev., 49, 883 (1936).

- 24. Bainbridge K., Jordan E., Phys. Rev., 51, 384 (1937). 25. Bainbridge K., Jordan E., Phys. Rev., 53, 922 (1938). 26. Baldinger E., Huber P., Staub H., Helv. Phys. Acta, 11, 245 (1938).

- 27. Baidinger E., Huber P., Helv. Phys., Acta, 12, 281 (1939).
   28. Baidwin G., Koch H., Phys. Rev., 63, 59 (1943).
   29. Baidwin G., Koch H., Phys. Rev. 67, 1 (1945).
   30. Barkas W., Creutz E., Delsasso L., Fox J., White M., Phys.
- 30. Barkas W., Creutz E., Delsasso L., Fox J., white M., Phys. Rev., 57, 562 (1940).
  31. Barkas W., Creutz E., Delsasso L., Sulton R., White M., Phys. Rev., 58, 194 (1940).
  32. Barshall H., Battat M., Phys. Rev., 70, 245 (1946).
  33. Bateson W., Phys. Rev., 78, 337 (1950).
  34. Bateson W., Phys. Rev., 80, 982 (1950).
  35. Becker R., Fowler W., Lauritsen C., Phys. Rev., 59, 217 (1941).

- (1941).
- 36. Becker R., Fowler W., Lauritsen C., Phys. Rev., 62, 186 (1942).
- 37. Becker R., Hanson A., Diven B., Phys. Rev., 71, 466 (1947).

- 38. Beli R., Elliot L., Phys. Rev., 74, 1552 (1948).
  39. Beli R., Cassidy J., Phys. Rev., 76, 183 (1949).
  40. Beli R., Cassidy J., Phys. Rev., 77, 301 (1950).
  41. Beli R., Weaver A., Cassidy J., Phys. Rev., 77, 399 (1950).
  42. Beli R., Elliot L., Phys. Rev., 79, 282 (1950).
- 43. Benes J., Hedgran A., Hole N., Arc. Math. Ast. Fys. 35A, N: 12 (1948).

- 44. Bennet W., Bonner T., Hudspeth E., Richards H., WattB., 44. Berniet W., Bonner I., Hudspern E., Richards H., Wattb., Phys. Rev., 59, 781 (1941).
  45. Bennet W., Richards H., Phys. Rev., 70, 118 (1946); 71, 565 (1947).
  46. Benson B., Phys. Rev., 73, 7 (1948).
  47. Berggren J., Osborne R., Phys. Rev., 74, 1240 (1948).
  48. Bjerge T., Brostrøm K., Nature, 138, 400 (1936).
  49. Bjerge T., Brostrøm K., Kgl. Danske Vid. Selsk. Math.-Fys. Model 16 (2020).

- Medd., 16, 8 (1938). .50. Blasser J., Baehm F., Marmier P., Phys. Rev., 75, 1953 (1949). .51. Bleuler E., Zunti W., Helv. Phys. Acta, 18, 283 (1945); 19, 137
- (1946).
- .52. Bleuler E., Zunti W., Helv. Phys. Acta, 19, 375 (1946).

- 52. Bleuler E., Zunti W., Helv. Phys. Acta, 19, 375 (1946).
  53. Bleuler E., Rossel J., Helv. Phys. Acta, 20, 445 (1947).
  54. Boggild J., Kgl. Danske Vid. Selsk. Math.-Fys. Medd., 23, 4 (1945).
  55. Boggild J., Minnhagen L., Phys. Rev., 75, 782 (1949).
  56. Bollman W., Zünt W., Helv. Phys. Acta, 24, 517 (1951).
  57. Boley F., Zaffarano D., Phys. Rev., 84, 1059 (1951).
  58. Bonner T., Brubaker W., Phys. Rev., 49, 742 (1935).
  59. Bonner T., Brubaker W., Phys. Rev., 50, 308 (1936).
  60. Bonner T., Prubaker W., Phys. Rev., 50, 308 (1936).
  61. Bonner T., Proc. Roy. Soc. A174, 339 (1940).
  63. Bonner T., Becker R., Rubin S., Streib J., Phys. Rev., 59, 215 (1941). 215 (1941). 61...Bonner T., Evans J., Hill J., Phys. Rev., 75, 1398 (1949). 65...Bonner T., Butler J., Phys. Rev., 83, 1091 (1951).

- 66. Borst L., Phys. Rev., 61, 106 (1942).
  67. Bower J., Burcham W., Proc. Roy. Soc., A173, 379 (1939).
  68. Bradford C., Bennett W., Phys. Rev., 78, 302 (1050).
  69. Brosi A., Zeldes H., Ketelle B., Phys. Rev., 79, 902 (1950).
  70. Brown S., Phys. Rev., 59, 954 (1941).
  71. Brown A., Chao C., Fowler W., Lauritsen C., Phys. Rev., 78, 88 (1950). 72. Brown H., Perez-Mendez V., Phys. Rev. 78, 812 (1950). 73. Bullock M., Sampson M., Phys. Rev., 84, 967 (1951).
- 74. Buechner W., Strait E., Sperdutto A., MalmR., Phys. Rev.,

- 74. Buechner W., Strait E., Sperdutto A., Malink, Fays. Rev., 76, 1543 (1949).
  75. Buechner W., Strait E., Phys. Rev., 76, 1547 (1949).
  76. Buechner W., Helv. Phys. Acta, 23, 167 (1950).
  77. Buechner W., Helv. Progr. Rep., (1950).
  78. Buechner W., Van Patter D., Phys. Rev., 79, 240 (1950).
  73. Buechner W., Van Patter D., Strait E., Sperdutto A., Phys. Rev., 81, 747 (1951).
  80. Burcham W., Smith C., Proc. Roy. Soc. A168, 176 (1938).
  81. Burcham W., Smith C., Nature, 143, 795 (1939).
  82. Burcham W., Freeman J., Phil. Mag., 40, 807 (1949).

- 81. Burcham W., Smith C., Nature, 143, 795 (1939).
  82. Burcham W., Freeman J., Phil. Mag., 40, 807 (1949).
  83. Burcham W., Freeman J., Nature, 163, 167 (1949).
  84. Burcham W., Freeman J., Phil. Mag., 41, 337 (1950).
  85. Burcham W., Freeman J., Phil Mag., 41, 921 (1950).
  85. Burcham W., Freeman J., Phil Mag., 41, 921 (1950).
  85. Burcham W., Freeman J., Phil Mag., 41, 921 (1950).
  85. Burcham W., Freeman J., Phil Mag., 41, 921 (1950).
  85. Burcham W., Freeman J., Phil Mag., 41, 921 (1950).
  86. By att W., Rogers F., Waltner A., Phys. Rev., 74, 699 (1948).
  87. By att W., Rogers F., Waltner A., Phys. Rev., 75, 909 (1949).
  88. Carlson R., Phys. Rev., 83, 203 (1951).
  89. Carlson R., Phys. Rev., 84, 749 (1951).
  90. Chadwick J., Constable J., Proc. Roy. Soc., A135, 48<sup>3</sup> (1931).
  91. Chadwick J., Goldhaber M., Proc. Roy. Soc., A151; 479 (1935).
  92. Chadwick J., Feather N., Bretscheur E., Proc. Roy. Soc., A163, 366 (1937).

- A163, 366 (1937).

5 УФН, т. XLVIII, вып. 4

- 93. Chao C., Lauritsen C., Tollestrup A., Phys. Rev. 76, 586-(1949).
- Chao C., Tollestrup A., Fowler W., Lauritsen C., Phys-Rev., 78, 88 (1950).
   Chao C., Tollestrup A., Fowler W., Lauritsen C., Phys-
- Rev., 79, 108 (1950).

- Rev., 79, 106 (1350).
  96. Chastel R., Comptes Rendus, 228, 1725 (1949).
  97. Cockroft J., Lewis W., Proc. Roy. Soc., A154, 246 (1936).
  98. Cockroft J., Lewis W., Proc. Roy. Soc., A154, 261 (1936).
  99. Collins G., Waldman B., Guth E., Phys Rev., 56, 876 (1939).
  100. Collins T., Nier A., Johnson W., Phys. Pev., 84, 717 (1951).
  101. Collins E., McKenzie C., Ramm C., Nature, 167, 682 (1951).

- 102. Cook C., Langer L., Price H., Sampson M., Phys. Rev., 74., 502 (1948).
- 103. Cook C., Langer L., Price H., Phys. Rev., 74, 548 (1948).
- 104. Craig D., Browne C., Cockroft J., Walton E., Proc. Roy-Soc., A144, 704 (1934).

- 105. Greagan R., Rhys. Rev., 75, 1292 (1949). 106. Greagan R., Phys. Rev., 76, 176J (1949). 107. Crussard J., Nature, 166, 825 (1959). 108. Crussard J., Comptes Rendus 231, 141 (1950). 109. Cuer P., Combes J., Gorodetzky S., Comptes Rendus, 220,. 832 (1950).
- 110. Curling C., Newton J., Nature, 165, 609 (1950).
- 111. Curran S., Angus J., Cockroft A., Nature, 162, 302 (1948). 112. Curran S., Angus J., Cockroft A., Phil. Mag., 40, 53-(1949).
- 113. Curran S., Angus J., Cockroft A., Phys. Rev., 76, 853. (194.).
- 114. Davidson W., Pollard E., Phys Rev., 57, 214 (1940).
- 115. Davison P., Pollard E., Phys. Rev., 72, 162 (1947).

- 116. Davison P., Phys. Rev., 73, 1241 (1148). 117. Davison P., Phys. Rev., 73, 1241 (1148). 118. Davison P., Phys. Rev., 74, 1233 (1448). 118. Davison P., Phys. Rev., 75, 75/ (144). 119. Davison P., Buchanan J., Pollard E., Phys. Rev., 76, 890. (194.).
- 120. Del Rosario L., Phys. Rev., 74, 304 (1948).
- 121. Diven B., Phys. Rev., 75, 5+2 (1949).
- 122. Du Bridge L., Barnes S., Buck J., Strait C., Phys. Rev., 53, 447 (1938).
- 123. Duncanson W., Miller H., Proc. Roy. Soc., A 146, 396 (1934).
- 124. Duckworth H., Johnson L., Preston R., Woodcock K., Phys. Rev., 78, 386 (1950).
- 125. Duckworth H., Preston R., Woodcock K., Phys Rev., 79. 188 (1950).
- 126. Duckworth H., Preston R., Phys. Rev., 79, 402 (1950).
- 127. Duckworth H., Stanford G., Olson J., Kegley C., Phys. Rev., 81, 286 (1951).
- 128. El-Bedewi F., Middleton R., Tai C., Proc. Roy. Soc. A 64. 756 (1951).
- 129. E1-Bedewi F., Proc. Roy. Soc., A 64, 947 (1951). 130. E1der F., Motz H., Davison P., Phys. Rev., 71, 917 (1947). 131. E11iott D., King L., Phys. Rev., 59, 403 (1941). 132. E11iott D., King L., Phys. Rev., 60, 489 (1941). 133. E1mer, Phys. Rev., 71, 317 (1947).

- 134. Endt P., Van Patter D., Buechner W., Phys. Rev., 81, 317 (1951).

- 135. Endt P., Van Patter D., Buechner W., Sperdutto A., Phys. Rev., 83, 491 (1951).
- 136. Enge H., Buechner W., Sperdutto A., Van Patter D., Phys. Rev., 83, 31 (1951).
- 137. Enge H., Phys. Rev., 83, 212 (1951).

- 138. Ewald H., Zeits. Naturforsch., 1, 131 (1946).
  139. Ewald H., Zeits. Naturforsch., 5a, 1 (1950).
  140. Ewald H., Zeits. Naturforsch., 6a, 293 (1951).
  141. Facchini U., Gatti E., Germagnoli E., Phys. Rev., 81, 475 (1951).
- 142. Faraggi H., Comptes Rendus, 227, 527 (1948).

- 142. Fafaggi H., Complex Rendus, 221, 1321 (1345).
  143. Faraggi H., Ann. de Physique 6, 325 (1351).
  144. Feldman L., Wu C., Phys. Rev., 75, 1286 (1949).
  145. Feldman L., Wu C., Phys. Rev., 78, 318 (1950).
  146. Feldman L., Wu C., Phys. Rev., 81, 298 (1951).
  147. Fisk J., Phys. Rev., 55, 1117 (1939).
  148. Fleischmann R., Zs. f. Phys., 103, 113 (1936).
  149. Flügge S., Mattauch J., Phys. Zs., 42, 1 (1941).

- 150. Fowler W., Delsasso L., Lauritsen C., Phys. Rev., 49, 561 (1936).
- 151. Fowler W., Gaerttner E., Lauritsen C., Phys. Rev., 53, 628 (1938).
- 152. Fowler W., Lauritsen C., Tollestrup A., Phys. Rev., 76 1767 (1949).
- 153. Franzen W., Halpern J., Stephens W., Phys. Rev., 76, 317, 462 (1949).
- 154. French A., Thomson D., Proc. Phys. Soc., A 64, 203 (1950). 155. Freeman J., Baxter A., Nature, 162, 696 (1948).

- 156. Freeman J., Proc. Phys. Soc., A 63, 668 (1950).
  157. Freeman J., Seed J., Proc. Phys. Soc., A 64, 313 (1951).
  158. French A., Treacy P., Proc. Phys. Soc., A 63, 665 (1950).
  159. Frye G., Wiedenbeck M., Phys. Rev., 82, 960 (1951).
  160. Fulbright H., Milton J., Phys. Rev., 76, 1271 (1949).
  161. Gaeritner E., Fowler W., Lauritsen C., Phys. Rev., 55, 27 (1990) (1939).
- 162. Gibson W., Livesey D., Proc. Phys. Soc., A 60, 523 (1948).
- 163. Gibson W., Proc. Phys. Soc., A 62, 586 (1949).
  164. Gibson W., Green L., Proc. Phys. Soc., A 63, 494 (1950).
- 165. Gilbert A., Roggen F., Rossel J., Helv. Phys. Acta, 97 (1944). 166. Glendenin L., Solomon A., Phys. Rev., 74, 700 (1948).
- 167. Good W., Peaslee D., Deutsh M., Phys. Rev., 69, 313 (1946).
- 168. Graves E., Phys. Rev., 57, 855 (1940).

- 169. Graves E., Coon J., Phys. Rev., 76, 101 (1946).
  170. Graves E., Meyer R., Phys. Rev., 76, 182 (1949).
  171. Green L., Gibson W., Proc. Phys. Soc., A 62, 407 (1949).
  172. Grosskreutz J., Rhys. Rev., 76, 482 (1949).
  173. Gugelot P., Huber P., Scherrer P., Helv. Phys. Acta, 14, 138 (1949). (1941).
- 174. Guggenheimer K., Heitler H., Powell C., Proc. Roy., Soc., A 190, 196 (1947). 175. Halpern J., Crane H., Phys. Rev., 55, 415 (1939). 176. Hanna G., Pontecorvo B., Phys. Rev., 75, 983 (1949).

- 177. Hanna G., Phys. Rev., 80, 530 (1950).
- 178. Hanson A., Benedict D., Phys. Rev., 65, 33 (1944).
- 179. Hanson A., Phys. Rev., 75, 1794 (1949).

180. Haslam R., Katz L., Moody H., Skarsgaard, H., Phys. Rev., 80, 318 (1950).
181. Haxel O., Zeits. f. Phys., 83, 323 (1933).
182. Haxel O., Phys. Zeits., 36, 840 (1935).
183. Haxby R., Shoupp W., Stephens W., Wells W., Phys. Rev., 57, 348 (1940).
184. Haxby R., Shoupp W., Stephens W., Wells W., Phys. Rev., 58, 1035 (1940).
185. Hemmendinger A. Phys. Rev. 75, 1067 (1040).

- 185. Hemmendinger A., Phys. Rev., 75, 1267 (1949).
- 186. Henglein A., Zeits. Naturforsch., 6a, 745 (1951).
- 187. Herb R., Snowdon S., Sala O., Phys. Rev., 75, 246 (1949).
- 188. Hereford F., Phys. Rev., 74, 574 (1948). 189. Henderson M., Livingston M., Lawrence E., Phys. Rev., 45. 428 (1934).
- 190. Heydenburg N., Inglis D., Phys. Rev., 72, 186 (1947); 73, 241 (1948).
- 191. Heydenburg N., Inglis D., Phys. Rev., 73, 230 (1948). 192. Heydenburg N., Inglis D., Whitehead W., Hafner. E., Phys. Rev., 75, 1147 (1949).
- 193. Holloway M., Moore B., Phys. Rev., 57, 1086 (1940).

- 193. Поптоwау М., Мооге Б., Phys. Rev., 58, 1000 (1940).
  194. Нопоwау М., Мооге Б., Phys. Rev., 58, 847 (1940).
  195. Ногпуак W., Lauritsen T., Phys. Rev., 77, 160 (1950).
  196. Хорниак У., Лауритсен Т., Моррисон П., Фаулер У., Уровни энергии лёгких ядер, ИЛ, М., 1952.
  197. Ноитег mans F., Barts J., Naturwiss., 30, 758 (1942).
  198. Huber O., Huber P., Scherrer P., Helv. Phys. Acta, 13, 209, 20 (1940).
- 212 (1940).
- 199. Huber P., Helv. Phys. Acta, 14, 163 (1941). 200. Huber P., Stepter A., Phys. Rev., 73, 85 (1948). 201. Huber P., Baldinger E., Proctor W., Helv. Phys. Acta, 24,
- 302 (1951).
- 202. Hudspeth E., Swann C., Phys. Rev., 76, 1150 (1949). 203. Hudspeth E., Swann C., Heydenburg N., Phys. Rev., 77, 736
- ··(1950).
- 204. Hudspeth E., Phys. Rev., 78, 337 (1950). 205. Hudspeth E., Swann C., Heydenburg N., Phys. Rev., 80, 643 (1950).
- 206. Hughes D., Eggler C., Huddleston C., Phys. Rev., 71, 26) (1947).
- 207. Hughes D., Eggler C., Phys. Rev., 73, 809, 1242 (1948). 208. Hughes D., Eggler C., Huddleston C., Phys. Rev., 75, 515
- (1949),
- 209. Hughes D., Eggler C., Alburger D., Phys. Rev., 77, 726 (1950). and the set

  - (1950).
    210. Humphreys R., Polilard E., Phys. Rev., 59, 942 (1941).
    211. Humphreys R., Watson W., Phys. Rev., 60, 542 (1941).
    212. Inglis D., Phys. Rev., 78, 104 (1950).
    213. Jelley J., Paul E., Proc. Phys. Soc., A62, 208 (1949).
    214. Jelley J., Paul E., Proc. Phys. Soc., A63, 112 (1950).
    215. Jenks G., Cnormley J., Sweeton F., Phys. Rev., 75, 701 (1949).
    216. Jensen P., Arkiv £ fysik, I, № 6 (1950).
    217. Jensen E., Nichols R., Clement J., Pohm A., Phys. Rev., 85, 112 (192). **112 (1952).** (64)
  - 218. Jesse W., Sadauskis J., Phys. Rev., 75, 1110 (1949).
  - 219. Jesse W., Forstat H., Sadauskis J., Phys. Rev., 77, 782-(1950). 220. Jentschke W., Wieninger K., Phys. Zeits, 41, 524 (1940).

МАССЫ ЛЕГКИХ ЛЯДЕР

- 221. Johnson C., Barschall H., Phys., Rev., 80, 818 (1950). 222. Johnson C., Bockelman C., Barschall H., Phys. Rev., 82, 117 (1951).
- 223. Jordan E., Bainbridge K., Phys. Rev., 49, 883 (1936).

- 225. Jordan E., Bainbridge K., Phys. Rev., **51**, 385 (1930).
  224. Jordan E., Bainbridge K., Phys. Rev., **51**, 385 (1937).
  225. Jordan E., Bainbridge K., Phys. Rev., **58**, 1009 (1940).
  226. Jordan E., Bainbridge K., Phys. Rev., **60**, 710 (1941).
  227. Kaufman S., Mooring F., Koester L., Goldperg E., Phys. Rev., **81**, 317 (1951).
- 228. Katz L., Penfold A., Phys. Rev., 81, 747 (1951). 229: Katz L., Penfold A., Phys. Rev., 81, 815 (1951).

- 229. Katz L., Penfold A., Phys. Rev., 81, 815 (1951).
  230. Keiler K., Phys. Rev., 84, 884 (1951).
  231. Kikuchi S., Aoki H., Husmi K., Nature, 137, 186 (1936).
  232. King L., Elliott D., Phys. Rev., 58, 846 (1940); 59, 108 (1941).
  233. Kimura K., Met. Kyoto, A22, 237 (1939).
  234. Kinsey B., Bartholomew G., Walker W., Phys. Rev., 77, 723 (1950).
- 235. Kinsey B., Bartholomew G., Walker W., Phys. Rev., 78, 481 (1950).
- 236. Kinsey B., Bartholomew G., Phys. Rev., 80, 918 (1950). 237. Kinsey B., Bartholomew G., Walker W., Phys. Rev., 83, 519 (1951).
- 238. Klema E., Phillips G., Phys. Rev., 83, 212 (1951). 239. Knight, Novey, Cannon, Turkevich, Plut. Proj. Report CC, 239. Knight, 1945). 2605 (Febr. 1945). 240. Knox W., Phys. Rev., 74, 1192 (1948). 241. König A., Zeits. f. Phys., 90, 107 (1934).

- 243. Kuerti G., Van Vooris S., Phys. Rev., 56, 614 (1939). 244. Kurie F., Richardson J., Paxton H., Phys. Rev., 49, 368 (1936).
- 245. Langer L., Phys. Rev., 77, 50 (1950). 246. Langer L., Motz I., Price H., Phys. Rev., 77, 744; 798 (1950). 247. Laslett L., Phys. Rev., 52, 529 (1937). 248. Lattes C., Fowler P., Cuer P., Proc. Phys. Soc., A59, 883
- (1947).
- 249. Lawrence E., Phys. Rev., 47, 17 (1935).
- 250. Levy P., Phys. Rev., 72, 248 (1947).

- 250. Levy P., Phys. Rev., 72, 248 (1947).
  251. Lewis M., Paul M., Phys. Rev., 73, 1269 (1948).
  252. Li C., Whaling W., Phys. Rev., 82, 122 (1951).
  253. Li C., Whaling W., Fowler W., Lauritsen C., Phys. Rev., 83,

- biz (1991).
  254. Libby W., Lee D., Phys. Rev., 55, 245 (1939).
  255. Livingston M., Hoffman J., Phys. Rev., 50, 401 (1936).
  256. Livingston M., Bethe H., Rev. Mod. Phys., 9, 245 (1937).
  257. Livingston M., Hoffman J., Phys. Rev., 53, 227 (1938).
  258. Livisey C., Wilkinson R., Proc. Roy. Soc., A195, 123 (1948). (1948).
  259. Lyman E., Phys. Rev., 55, 234 (1939).
  260. Malm R., Buechner W., Phys. Rev., 78, 337 (1950).
  261. Malm R., Buechner W., Phys. Rev., 80, 771 (1950).
  262. Malm R., Buechner W., Phys. Rev., 81, 519 (1951).
  263. Mandeville C., Phys. Rev., 76, 436 (1949).
  264. Mandeville C., Swann G., Snowdon S., Phys. I

- 264. Mandeville C., Swann C., Snowdon S., Phys. Rev., 76, 980 (1949).
- 265. Mandeville C., Swann C., Phys. Rev., 79, 787 (1950).

- 266. Mandeville C., Swann C., Chatterjee S., Van Patter D., Phys. Rev., 85, 193 (1952).
- 267. Mattauch J., Phys. Rev., 50, 617 (1936).
- 268. Mattauch J., Herzog R., Naturwiss., 25, 747 (1937). 269. Mattauch J., Phys. Zeits., 39, 892 (1938).
- 270. Mattauch J., Phys. Rev., 57, 549 (1940).
- 271. Maurer W., Zeits. f. Phys., 107, 721 (1937). 272. May A., Vaidynathan R., Phys. Roy. Soc., A155, 519 (1936). 273. McCreary R., Kuerti G., Van Vooris S., Phys. Rev., 57, 351
- (1940).
- 274. McElhinney J., Hanson A., Duffield R., Phys. Rev., 74, 1257 (1948).
- 275. McElhinney J., Hanson A., Becker R., Duffield R., Diven B., Phys. Rev., 75, 542 (1949).
- 276. McMillan E., Phys. Rev., 46, 868 (1934).
- 277. McMillan E., Livingston M., Phys. Rev., 47, 452 (1935).
- 278. McMinn W., Sampson M., Bullock M., Phys. Rev., 78, 296 (1950).
- 279. McMinn W., Sampson M., Rusmussen V., Phys. Rev., 84, 963 (1951).
- 280. Meerhaut O., Phys. Zeits., 41, 528 (1940).
- 281. Metzger F., Huber P., Alder F., Helv. Phys. Acta, 20, 236 (1947).
- 282. Metzger F., Alder F., Huber P., Helv. Phys. Acta, 21, 278 (1948).

- 283. Meyers F., Van Atta L., Phys. Rev., 61, 19 (1942). 284. Meyers P., Zeits. f. Phys., 126, 336 (1949). 285. Meyers P., Zeits. f. Phys., 128, 451 (1950). 286. Middleton R., Tai C., Proc. Phys. Soc., A64, 801 (1951).

- 287. E. McMillan, Phys. Rev., 72, 591 (1947).
  288. Miller L., Phys. Rev., 58, 935 (1940).
  289. Mobley R., Laubenstein R., Phys. Rev., 80, 309 (1951).
  290. Motz H., Humphreys R., Phys. Rev., 74, 1232 (1948).
  291. Motz H., Humphreys R., Phys. Rev., 80, 595 (1950).
  292. Motz H., Phys. Rev., 83, 215 (1951).
  293. Motz H., Phys. Rev., 85, 501 (1952).
  294. Murrell E., Smith C., Proc. Roy. Soc., A173, 410 (1939).
  295. Nakagawa J. Sci. Tokyo 43, N, 1185 (1949).
- 295. Nakagawa, J. Sci. Tokyo, 43, N. 1185 (1949). 296. Nakagawa, J. Sci. Tokyo, 43, N. 1196 (1949).
- 297. Немилов Ю. А., Изв. АН, сер. физ., 14, 319 (1950). 298. Neuert H., Phys. Zeits., 36, 629 (1935).
- 239. Nier A., Roberts T., Phys. Rev., 81, 507 (1951).
- 300. Nier A., Phys. Rev., 81, 624 (1951).

- 301. Ogata K., Matsuda H., Phys. Rev., 83, 180 (1951). 302. Ogie W., Brown L., Conklin R., Phys. Rev., 71, 378 (1947). 303. Okuda T., Ogata K., Aoki K., Sugawara Y., Phys. Rev., 58, 578 (1940). 304. Okuda T., Oʻgata K., Phys. Rev., 60, 690 (1941). 305. Oliphant M., Kempton A., Rutherford E., Proc. Roy. Soc.,
- A149, 406 (1935).
- 306. Oliphant M., Kempton A., Rutherford E., Proc. Roy. Soc., A150, 241 (1935).
- 307. Ollano Z., Ray R., Nuovo Cimento, 8, 771 (1951).
- 308. Paul E., Phil. Mag., 41, 942 (1950).
  309. Peck R., Phys. Rev., 73, 947, 1264 (1948).
  310. Peck R., Phys. Rev., 76, 1279 (1949).
  311. Penfold A., Phys. Rev., 80, 116 (1950).

- :312. Perez-Mendez V., Brown H., Phys. Rev., 77, 404 (1950).
- .313. Perkin J., Phys. Rev., 79, 175 (1950).
- .314. Perlow G., Phys. Rev., 58, 218 (1940). .315. Pollard E., Brasefield C., Phys. Rev., 50, 890 (1936); 51, 8 (1937).
- 316. Pollard E., Phys. Rev., 56, 1168 (1939). 317. Pollard E., Davidson W., Schultz H., Phys. Rev., 57, 1117 (1939).

- 318. Pollard E., Phys. Rev., 57, 241 (1940). 319. Pollard E., Phys. Rev., 57, 1086 (1940). 320. Pollard E., Davidson P., Phys. Rev. 72, 736 (1947).
- 321. Pollard E., Davidson P., Phys. Rev., 73, 1241 (1948).

- 322. Pollard E., Sailor V., Wyly L., Phys. Rev., 74, 1233 (1948). 323. Pollard E., Sailor V., Wyly L., Phys. Rev., 75, 725 (1949). 324. Rutherglen, не опубл., см. Хорнияк, ссылка<sup>196</sup>. 325. Rusmussen V., Ногпуак W., Lauritsen T., Phys. Rev., 76, 581 (1949).
- . 326. Resnick I., Hanna S., Phys. Rev., 82, 463 (1951).

- 327. Richardson J., Emo L., Phys. Rev., 53, 234 (1938). 328. Richards H., Smith R., Phys. Rev., 74, 1257; 1870 (1948). 329. Richards H., Smith R., Phys. Rev., 77, 752 (1950). 330. Richards H., Smith R., Browne C., Phys. Rev., 80, 524 (1950).
- 331. Roberts T., Nier A., Phys. Rev., 77, 746 (1950). 332. Roberts T., Nier A., Phys. Rev., 79, 198 (1950).

- 332. Roberts T., Nier A., Phys. Rev., 79, 198 (1950).
  333. Roberts T., Phys. Rev., 81, 624 (1951).
  334. Rochlin R., McDaniel B., Phys. Rev., 82, 238 (1951).
  335. Rochlin R., Phys. Rev., 83, 165 (1951).
  336. Robson J., Phys. Rev., 78, 311 (1950) и 83, 349 (1951).
  337. Rogers F., Rogers M., Phys. Rev., 55, 283 (1939).
  338. Roseborough W., Phys. Rev., 83, 1135 (1951).
  39. Roy R., Phys. Rev., 82, 227 (1951).
  340. Ruben S., Kamen M., Phys. Rev., 57, 549 (1940).
  341. Ruben S., Kamen M., Phys. Rev., 59, 349 (1941).
  342. Ruby L., Richardson J., Phys. Rev., 81, 659 (1950).
  343. Ruby L., Richardson J., Phys. Rev., 81, 659 (1951).
  344. Rumbaugh L., Roberts R., Hafstad L., Phys. Rev., 51, 143 (1937). (1937).
- 345. Rumbaugh L., Roberts R., Hafstad L., Phys. Rev., 54, 657 (1938).
- 346. Rutherglen J., Rae E., Smith R., Proc. Phys. Soc., A64, 906 (1951).
- . 347. Rustad, не опубл., см. Хорниак, ссылка <sup>196</sup>. 348. Sailor V., Phys. Rev., 76, 169 (1949). 349. Sailor V., Phys. Rev., 77, 794 (1950). 350. Saimon A., Proc. Phys. Soc., A64, 848 (1951).

- 351. Scherrer P., Huber P., Possel J., Helv. Phys. Acta, 14, 618 (1941).
- 352. Schelberg A., Sampson M., Cochran R., Phys. Rev., 80, 574 (1950).
- 353. Schrank G., Richardson J., Phys. Rev., 81, 660 (1951). 354. Segre E., Seaborg G., Phys. Rev., 59, 212 (1941).
- .355. Seidlitz L., Bleuler E., Tendam D., Phys. Rév., 76, 453, 861 **(**1949).
- 356. Sheline R., Phys. Rev., 83, 919 (1951).
- 357. Sherr R., Muether H., White M., Phys. Rev., 75, 282 (1949). 358. Sherr R., Haipern J., Stephens W., Phys. Rev., 81, 154 (1951). 359. Shoupp W., Jennings B., Phys. Rev., 74, 1233 (1948).

- 360. Shoupp W., Jennings B., Sun K., Phys. Rev., 75, 1 (1949). 361. Shoupp W., Jennings B., Jones W., Garbuny M., Phys. Rev. 75. 336 (1949). 362. Shoupp W., Jennings B., Jones W., Phys. Rev., 76, 502 (1949). 363. Shrader E., Pollard E., Phys. Rev., 58, 199 (1949). 364. Shrader E., Pollard E., Phys. Rev., 59, 277 (1941). 365. Siegbahn K., Bohr A., Arc. Ast. Math. Fys., 30B, N. 3 (1944). 366. Siegbahn K., Slätis H., Ark. Ast. Math. Fys., 32A, No<sup>2</sup>9. (1945). 110 367. Slätis.H., Hjalmar.E., Carlsson R., Phys. Rev., 81, 641 (1951)... 368. Smith N., Phys. Rev., 56, 548 (1939). 369. Smith P., Allen J., Phys. Rev., 30, 549 (1959).
  370. Smith E., Pollatd E., Phys. Rev., 59, 942 (1941).
  371. Smith R., Martin D., Phys. Rev., 77, 752 (1950).
  372. Smith L., Phys. Rev., 81, 295 (1951).
  373. Sommers H., Sherr R., Phys. Rev., 69, 21 (1949).
  374. Solomon A., Gould R., Anfinsen C., Phys. Rev., 72, 1037 (1947). Sperdutto A., Holland S., Van Patter D., Buechner W., 375. Phys. Rev., 80, 769 (1950). 376. Stepler A., Huber P., Helv. Phys. Acta, 21, 59 (1948). 377. Stepler A., Bichsel H., Huber P., Helv. Phys. Acta, 23, 511 (1950). 378. Stephens W., Djanal K., Bonner T., Phys. Rev., 52, 1079 (1937). 379. Stephens W., Lewis M., Phys. Rev., 72, 526 (1947). 380. Stetter G., Jentschke W., Zeits. f. Phys., 110, 214 (1938). 381. Strait E., Buechner W., Phys. Rev., 76, 1766 (1949). 382. Strait E., Van Patter D., Buechner W., Phys. Rev., 78, 337 (1950). 383. Stráit E., Van Patter D., Buechner W., Phys. Rev., 79,. 240 (1950<u>).</u>• Strait E., Van Patter D., Buechner W., Sperdutto A., Phys. Rev., 81, 315 (1951).
   385. Strait E., Van Patter D., Buechner W., Sperdutto A., Phys. Rev., 81, 747 (1951). 386. Swann C., Mandeville C., Phys. Rev., 79, 240 (1950). 387. Swann' C., Mandeville C., Whitehead W., Phys. Rev.; 79,. 598 (1950). 388. Swann C., Mandeville C., Phys. Rev., 82, 772 (1951)..
  389. Taschek R., Argo H., Hemmendinger A., Jarvis G., Phys. Rev., 75, 1268; 76, 325 (1949).
  390. Thomas R., Lauritsen C., Phys. Rev., 78, 88 (1950). 391. Tollestrup A., Jenkins F., Fowler W., Lauritsen C., Phys. Rev., 75, 1947 (1949).
  392. Tollestrup A., Jenkins F., Fowler W., Lauritsen C., 392. Tollestrup A., Jenkins F., Fowler W., Lauritsen C., Phys. Rev., 76, 181 (1949).
  393. Tollestrup A., Fowler W., Lauritsen C., Phys. Rev., 76,. 428 (1949). 394. Townsend A., Proc. Roy. Soc., A137, 357 (1940). 395. Van Graff R., Buechner W., Prog. Rep., 1, VII, 1949. 396. Van Patter D., Sperdutto A., Strait E., Buechner W., Phys. Rev., 79, 900 (1950).
- 397. Van Patter D., Sperdutto A., Huang K., Stratt E., Buechner W., Phys. Rev., 81, 233 (1951).
- 398. Van Patter D., Sperdutto A., Strait E., Buechner W., Phys. Rev., 81, 747 (1951).

- 399. Van Patter D., Sperdutto A., Huang K., Strait E., Buechner W., Phys. Rev., 81, 758 (1951).
  400. Van Patter D., Enge H., Buechner W., Phys. Rev., 82, 304
- (1951).
- 401. Van Patter D., Sperdutto A., Enge H., Phys. Rev., 83, 212 (1951).
- 402. Van Patter D., Sperdutto A., Endt P., Buechner W., Enge H., Phys. Rev., 85, 142 (1952).
- 403. Waldman B., Miller W., Phys. Rev., 74, 1225 (1948). 404. Walker R., McDaniel B., Phys. Rev., 74, 315 (1948).
- 405. Ward A., Proc. Cambr. Phil. Soc., 35, 523 (1939).
- 406. Warshaw S., Phys. Rev., 80, 111 (1950). 407. Warshaw S., Chen J., Appleton G., Phys. Rev., 80, 288-(1950).
- 408. Watson W., Pollard E., Phys. Rev., 57, 1082 (1940). 409. Watt B., Phys. Rev., 59, 781 (1941). 410. Watts R., Williams D., Phys. Rev., 70, 640 (1946).

- 410. Watts R., Williams D., Fnys. Rev., 10, 050 (1950).
  411. Werlenstein L., Nature, 133, 564 (1934).
  412. Wiedenbeck M., Marhoefer C., Phys. Rev., 67, 54 (1945).
  413. Wilson R., Proc. Roy. Soc., A 177, 382 (1941).
  414. Wilson R., Phys. Rev., 80, 90 (1950).
  415. Williams J., Shepherd W., Haxby R., Phys. Rev., 51, 888 (1937). 416. Williams J., Haxby R., Shepherd W., Phys. Rev., 52, 1031
- (1937).
- 417. Wilkinson D., Carver J., Phys. Rev., 83, 446 (1951). 418. Williamson R., Browne C., Craig D., Donahue D., Phys. Rev., 84, 831 (1951). 419. Whaling W., Butler J., Phys. Rev., 78, 72 (1950). 420. Whaling W., Li C., Phys. Rev., 81, 150 (1951). 421. Whaling W., Li C., Phys. Rev., 81, 661 (1951).

- 422. White M., Delsasso L., Fox J., Creutz E., Phys. Rev. 56, 512 (1939).
- 423. White W., Creutz E., Delsasso L., Wilson R., Phys. Rev., **59,** 63 (1941). 424. Whitehead
- W., Mandeville C., Phys. Rev. 77. 732 (1950).
- 425. Whitehead W., Mandeville C., Phys. Rev., 78, 337 (1950).

- (1930).
  426. Worth D., Phys. Rev., 78, 378 (1950).
  427. Wu C., Feldman L., Phys. Rev., 76, 693 (1949).
  428. Wyly L., Phys. Rev., 76, 316 (1949).
  429. Wyly L., Phys. Rev., 76, 462 (1949).
  430. Wyly L., Sailor V., Ott D., Phys. Rev., 76, 1532 (1949).
  431. Yasaki T., Watanala S., Nature, 141, 787 (1938).

- 431. Yasaki I., Watanala S., Nature, 141, 167 (1956).
  432. Zlotowski J., Comptes Rendus, 207, 148 (1938).
  433. Zucker A., Watson W., Phys. Rev., 78 338 (1950).
  434. Zucker A., Watson W., Phys. Rev., 79, 241 (1950).
  435. Zucker A., Watson W., Phys. Rev., 79, 241 (1950).
  436. Baschwitz A., J. Phys. et rad, 9, 123 (1938).
  437. Bethe H., Phys. Rev., 53, 313 (1938).
  438. Brown H., Perez-Mendez V., Phys. Rev., 78, 649 (1950).
  439. Buechner W., Strait E., Phys. Rev., 76, 168 (1949).
  440. Cuer P. J. Phys. et rad. 8, 83 (1947).
- 440. Cuer P., J. Phys. et rad., 8, 83 (1947)
- 441. Grosskreutz J., Mather K., Phys. Rev., 77, 580; 747 (1950). 442. Motz H., Alburger D., Phys. Rev., 86, 165 (1952). 443. O'Neal, Goldhaber, Phys. Rev., 58, 574 (1940).

- 444. Richardson J., Kurie F., Phys. Rev., 50, 999 (1936). 445. Strait E., Buechner W., Phys. Rev., 74, 1257 (1948). 446. Whitehead, W., Heydenburg N., Phys. Rev., 79. 99 (1950). 447. Fränz H., Westmeyer H., Zeits. f. Phys., 128,
- 617, (1950).
- 448. Pepper T., Allen K., Almqwist E., Dewan J., Phys. Rev., 85, 155 (1952).
- 449. Guier W., Bertini H., Roberts J., Phys. Rev., 85, 426
- (1952).
  450. Noyes J., Heomissen J., Miller W., Waldman B., Phys. Rev., 85, 728 (1952).
  451. Willard H., Bair J., Kington J., Hahn T., Snyder C., Phys. Rev., 85, 849 (1952).
  452. Schoenfeld W., Duborg R., Preston W., Goodman C., Disco Para 25, 273 (1052).
- 452. Concerned W., Dubbig K., Preston W., Goodman C., Phys. Rev., 85, 873 (1952).
  453. Kinsey B., Bartholomew G., Walker W., Phys. Rev., 85, 1012 (1952).

- 454. Schrank G., Richardson J., Phys. Rev., 86, 148 (1952). 455. Willard H., Kington J., Bair J., Phys. Rev., 86, 253 (1952).

#### ПРИМЕЧАНИЕ ПРИ КОРРЕКТУРЕ

В следующем выпуске нами будет дано дополнительное сопоставление с результатами измерений, опубликованными в 1952 г. и не вошед. шими в таблицу.

. . .