
Abstract. This review is a collection of various methods and
observations relevant to structures in three-dimensional sys-
tems similar to those responsible for the integrability of two-
dimensional systems. Particular focus is on Nambu structures
and loop variables naturally appearing in membrane dynamics.
While reviewing each topic in more detail, we emphasize con-
nections among them and speculate on possible relations to
membrane integrability.

Keywords: integrability, Nambu structure, loop algebra, mem-
branes, M-theory

1. Introduction

Most generally speaking, a dynamical system is said to be
integrable when the number of degrees of freedom required to
describe its dynamics is twice smaller than the dimension of
the phase space. In other words, the system has a set of
conserved charges allowing dynamical equations to be
integrated along the corresponding directions. While this
understanding of integrability applies most directly to
mechanical systems with finite phase space, for field

theories, the above becomes too vague and stricter criteria
have to be introduced. In particular, we are talking about
classical integrability in the Liouville sense, when an infinite
set of conserved charges can be generated by making use of
the Lax pair approach. The Green±Schwarz superstring on
the AdS5� S5 background, that is, a two-dimensional super-
symmetric sigma model, is definitely not the simplest one,
however relevant it is to the present discussion on examples of
a classically integrable field theory system. The notion of
integrability naturally extends to quantum systems, where it
means the existence of an infinite set of commuting operators,
one of which can be set as the Hamiltonian. This set can be
generated by quantum Lax operators constructed using the
algebraic Bethe ansatz and Yang±Baxter relations, or the
thermodynamic Bethe ansatz, or by constructing a quantum
spectral curve. There are plenty of introductory lectures and
reviews explaining the notion of quantum integrability and
these approaches (see, e.g., [1±5]); here, we will be mainly
focused on the structures responsible for classical integr-
ability.

The narrative of the present review develops from the
integrability of the Green±Schwarz superstring on AdS5�S5,
its deformations preserving integrability and the algebraic
structures that emerge in this procedure. The first integr-
ability of this system was observed in [6] by explicit
construction of a flat Lax connection that generates an
infinite set of conserved currents. In particular, interest in
the integrability of the string on specific backgrounds stated
in this work was an extension of the AdS/CFT duality beyond
the correspondence between weakly coupled strings and
strongly coupled gauge theories. A strong indication of the
integrability of the string is the conjectured integrability of its
holographic partner, the N � 4 d � 4 SU�N� super Yang±
Mills theory. This, in turn, was initially based on the
observation that the large N dilatation operator of the gauge
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theory, when restricted to the sector of operators built out of
scalars, can be regarded as the Hamiltonian of an integrable
quantum spin chain [7]. The string on AdS5�SS5 is known to
belong to a family of integrable sigma models that can be
obtained via its deformation. In particular, one finds the so-
called Lunin±Maldacena (LM) b-deformed background [8],
dual to a certain Leigh±Strassler deformation of the N � 4
d � 4 supersymmetric Yang±Mills theory [9]. The integrabil-
ity of the string on the LM background was shown in [10, 11]
(nonintegrability for complex deformations was shown in
[12]). For a review of the interplay between AdS/CFT
correspondence and integrability, see [13]. When speaking
about the open Green±Schwarz superstring, we are able to
find boundary conditions that preserve integrability [14],
allowing us to speak about integrable configurations of D-
branes. Notably, one finds a D3±D5-brane system dual to a
defect CFT known to be integrable [15] and a D2±D4-brane
system dual to ABJM theory in the presence of a half-BPS
domain wall also known to be integrable [16]. When uplifted
to M-theory, the latter gives an M2±M5-system, strongly
arguing in favor of the possibility of defining membrane
integrability. Note, however, [17, 18], where nonintegrability
of string motion on certain D-brane backgrounds were
shown. These results could either restrict the possibility of
defining integrable structures for D-branes or indicate that a
better choice of variables must be made.

Amore systematic approach to generating integrable two-
dimensional sigmamodels is based onYang±Baxter deforma-
tions of sigma models developed in [19] for principal chiral
models and in [20] for sigma models on symmetric spaces. In
[21], an integrable Yang±Baxter deformation of the AdS5�SS5

superstring was presented, which significantly spurred devel-
opment of the methods described in the present review. The
deformation is parametrized by amatrix r that is a solution to
the classical Yang±Baxter equation (CYBE) [22, 23]

r b1�a1r a2jb2jfb1b2
a3� � 0 ; �1:1�

where fab
c denote structure constants of the (super)algebra.1

The natural question of whether the deformed sigma model
can be interpreted as a superstring on a supergravity back-
ground has found its answer in [25], where the corresponding
background has been presented and shown to violate
equations of D=10 supergravity. The proper set of equa-
tions satisfied by the background, currently referred to as
ABF (Arutyunov, Borsato, Frolov), was found in [26] and is
now referred to as generalized supergravity [27]. We will not
cover such generalizations of supergravity equations here; the
interested reader can find more details in review [28] and
references therein. Important for us here is the result of [29,
30], where a rule for performing Yang±Baxter deformations
for a general background beyond coset spaces was formu-
lated. The rule is based on the open-closed string map and
more conveniently can be formulated as a local O(10, 10)
transformation generated by a bi-vector b � r a1a2ka1 ^ ka2 ,
where ka � ka

mqm is a set of Killing vectors of the initial
background. The bi-vector bmn plays the role of noncommu-
tative parameter of the corresponding open-closed string
map. In [31, 32], it was shown that, for the deformed

background to satisfy equations of supergravity, it is
sufficient to impose a classical Yang±Baxter equation on
r a1a2 and the so-called unimodularity condition
r a1a2 fa1a2

b � 0, discovered in [33]. Breaking the latter gives
solutions to equations of generalized supergravity. An
important side comment here is that precisely the classical
Yang±Baxter matrix r can be used to generate Poisson
brackets of an integrable system, given a pair of Lax
operators (see Section 1.2).

Written in the form of linear O(10, 10) transformations,
Yang±Baxter deformations of 10D backgrounds (2D s-
model) can be naturally generalized to deformations of 11D
backgrounds (3D s-model), which was done in [34±36]. The
corresponding generalization of the classical Yang±Baxter
equation (gCYBE) was presented in [37, 38] following an
algebraic approach based on the so-called exceptional
Drinfeld algebra, the generalizing classical Drinfeld double.2

Verification that gCYBE (together with the unimodularity
constraint) is enough for a deformation to generate a solution
was performed in [36] for general backgrounds. In the case of
11D backgrounds, a deformation is parametrized by a tri-
vector O � r a1a2a3ka1 ^ ka2 ^ ka3 , which now requires an
object r a1a2a3 with three indices rather than a matrix r a1a2 .
At the moment, no interpretation of gCYBE as a classical
limit of an equation similar to the quantum Yang±Baxter
equation is known, although certain attempts were made in
[39] to construct the quantum equation by hands and in [35] to
link it to the Zamolodchikov tetrahedron equation. Despite
that, a side comment similar to the one above can be made: a
Nambu bracket of a dynamical system can be generated using
r a1a2a3 and a triple of Lax operators.

Naturally, a set of questions arises here. To what extent is
this system integrable? Can Liouville integrability be for-
mulated for three-dimensional field-theoretical systems?
Does tri-vector deformation preserve the integrability of the
2D s-model in the usual sense? This review aims at collecting
and describing in a uniform language several attempts to
make sense of three-dimensional integrability and of the
integrability of Nambu±Poisson systems, as these seem to
have a close relation to the algebraic structures arising in tri-
vector deformations ofM-theory backgrounds.We will try to
emphasize these relations in each case and speculate on
possible further developments. The text is structured as
follows. In this section, the standard approach to Liouville
integrability using Lax pairs and the Lax connection is briefly
reviewed mainly to introduce notations and to make the text
self-contained. In Section 2, Nambu systems and approaches
to their integrability are discussed. As a particular example
relevant for 3D integrability, we focus on the Kadomtsev±
Petviashvili (KP) hierarchy. In Section 3, we briefly review the
integrability of the superstring, mainly focusing on integrable
deformations and their interpretation as a Poisson±Lie T-
duality. Section 4 describes tri-vector deformations and
related algebraic structures and contains a description of
several approaches to the integrability of the 3D membrane.
We describe approaches to membrane dynamics based on
loop algebra variables which seemnatural and emphasize that
the deformation tensor O a1a2a3 can be interpreted as a loop
noncommutativity parameter for membranes, while the

1 Note that the deformation of [21] does not uniquely define the deformed

theory, and freedom in defining the r-matrix remains. In [24], a unim-

odular Z-deformation of AdS5�SS5 satisfying the inhomogeneous (mod-

ified) Yang±Baxter equation was constructed and shown to generate a

solution to supergravity equations.

2 Earlier, this condition was found in [34] in the form of a condition

sufficient for R-flux to vanish. However, since the condition derived was

sufficient rather than necessary, certain terms could have been added, and

the final form of the gCYBE equation still had to be determined.
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deformation map has the same form as the open-closed
membrane map. At the end of Section 4, we discuss possible
relations to the tetrahedron equation of Zamolodchikov and
a particular way to define a Wilson surface in terms of loops.
Finally, Section 5 presents the results and observations
discussed in the main text in the form of lists to present the
picture in a clearer way, as far as that is possible.

1.1 Liouville integrability
Let us start with a brief reminder of the standard Lax pair
approach to classical Liouville integrability of mechanical
systems. The presentation below mainly follows [40]; how-
ever, the same can be found in any review or textbook on
integrable systems. We start with a dynamical system defined
by a set of equations of motion _x i � f i�x�. Given the
Hamiltonian H of the system, the equations of motion can
be written as

_q i � qH
qpi

; _pi � ÿ qH
qq i

: �1:2�

Equivalently, _pi � fH; pig, _q i � fH; q ig, where the Poisson
bracket for a pair of arbitrary functions f �p; q� and g�p; q� of
dynamical variables is defined as usual as

f f; gg � qf
qq

qg
qp
ÿ qg
qq

qf
qp

: �1:3�

Suppose the system has nontrivial integrals of motion defined
as _Ii � 0, or equivalently

fH; Iig � 0 : �1:4�

Each integral of motion I allows turning to the so-called
action±angle variables and completely integrating the dyna-
mical equations for a pair of coordinates �p; q�. Hence, if the
number of integrals of motion is equal to the total number of
degrees of freedom, the system is completely integrable. To
summarize, a system with 2n-dimensional phase space is said
to be Liouville integrable if it possesses n integrals of motion
Ii, all of which are in involution, i.e., fIi; Ijg � 0.

Let us consider action±angle variables in more detail, for
which we take a single integral of motion given by a function
F�p; q� � f � const. We solve this equation for p and define a
1-form

a � p dq ; �1:5�
where p is understood as a function p � p�q; f � of the
coordinate q and the integral of motion f. Then, the 2-form
o � da � dp ^ dq defines a symplectic form in the phase
space. Let us now define the action S as

S�q; f � �
� q

q0

a �
� q

q0

p�q; f � dq : �1:6�

By construction, the action is a function of two variables q
and f, and onemay define new dynamical variables by writing

p � qS
qq

; c � qS
q f

; �1:7�

where the first equality is straightforward and the second
simply defines the angle variable c. Such a defined transfor-
mation from the variables �p; q� to the action±angle variables
� f;c� is canonical, i.e., preserves the symplectic form. Indeed,

considering

0 � d2S � dp ^ dqÿ df ^ dc ; �1:8�

one finds that o does not change.
The dynamics of the system becomes particularly simple

in terms of such defined action±angle variables, allowing the
equations of motion for the integral I � F�p; q� to be
explicitly solved. Indeed, we write

_f � fH; f g � 0 ; �1:9�
_c � fH;cg � qH

qf
� o� f � � const :

These can be easily solved to give

f � const ; �1:10�
c � o� f � t� c0 ;

i.e., the angle variable c corresponding to the action given by
the integral of motion f evolves linearly with time. Given n
integrals of motion, the above procedure can be repeated for
all n pairs of variables �pi; q i�, allowing the equations of
motion to be solved completely in terms of the corresponding
action±angle variables � fi;c i�. This is basically the explicit
manifestation of integrability of the system: linear evolution
and no chaos.

As the simplest example illustrating the above general
principle, consider one-dimensional harmonic oscillatorH �
�1=2��p 2 � o2q 2�. Hamiltonian equations of motion read

_p � ÿo2q ; _q � p : �1:11�

This system has only one integral of motion, which is the
energy H�p; q� � E. Solving this equation, we get for p the
following:

p �
����������������������
2Eÿ o2q 2

p
: �1:12�

The action is then S � � q0 ����������������������
2Eÿ o2z 2
p

dz and the angle
variable then reads

c � qS
qE
�
� q

0

dz

2
����������������������
2Eÿ o2z 2
p � 1

2o
arctan

�
oq
p

�
: �1:13�

Hence, we have

1

2o
arctan

�
oq
p

�
� 1

2
t ;

�1:14�
p 2 � o2q 2 � 2E ;

which gives the standard solution q� sin �ot�, p� o cos �ot�.

1.2 Lax pair
Evidently, the above procedure is not algorithmic, as it deals
with solving differential equations at various steps, for which
reason it would be desirable to formulate an approach that
allows generating integrals of motion from a single expression
and thus guarantee integrability in the considered sense. Such
an approach is known as the Lax±Zakharov±Shabat formal-
ism and starts with an assumption that we have managed to
write equations of motion for a dynamical system in the form

_L � �L;M� ; �1:15�
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where L, M are some matrices which might additionally
depend on some (spectral) parameter(s) u. Then, integrals of
motion can be generated by simply taking a trace of various
matrix powers of L, i.e.,

Fk :� TrLk �) _Fk � 0 : �1:16�

The pair of matrices L, M is referred to as the Lax pair.
Altogether, the above equations imply that dependence on
time for these matrices is given by

L�t� � g�t�L�0�g�t�ÿ1 ; �1:17�
M�t� � _g�t�g�t� :

Roughly speaking, if we have managed to find a Lax pair
for a dynamical system, i.e., to rewrite its equations of
motion as above, the system is integrable. Certainly, this
step is no more algorithmic as the standard action±
variables method. However, once the Lax pair is found,
integrals of motion are generated automatically. For
example, for a one-dimensional harmonic oscillator, the
Lax pair can be chosen as follows:

L � ps3 � oqs1 � p oq
oq ÿp
� �

;
�1:18�

M � ÿ i

2
os2 �

0 ÿ 1

2
o

1

2
o 0

264
375 ;

where s1, s2, s3 are the standard Pauli matrices. The only
integral of motion is thenH � �1=4� TrL2.

To check whether the integrals fFig are in involution, one
has to ensure fFi;Fjg � 0. For further discussion, it is
convenient to consider the Lax pair as the starting point and
to generate a Poisson bracket for the system using a classical
Yang±Baxter r-matrix. To do so, we start with a matrix
L 2 gl�d� and define the Poisson bracket as

fL1;L2g � �r12;L1� ÿ �r21;L2� ; �1:19�

where � ; � is the usual commutator in the algebra gl�d�, and the
matrices L1;2 are defined as

L1 � L
 11 ; �1:20�
L2 � 11
L :

In other words, bothL1 andL2 belong to gl�d� 
 gl�d�. Such a
defined bracket is antisymmetric by construction and must
additionally satisfy the Jacobi equation that is ensured by the
(modified) classical Yang±Baxter equation for the matrix r.
To see this, we have to consider three copies of the algebra
gl�d� for which we define

L1 � L
 11
 11 ;

L2 � 11
L
 11 ; �1:21�
L3 � 11
 11
L ;

and similarly for the r-matrix, i.e., r12 � r
 11 and so on. The
Jacobi identity for the Poisson bracket requires�

L1; fL2;L3g
	� �L3; fL1;L2g

	� �L2; fL3;L1g
	 � 0 :

�1:22�

Using definition (1.19) from the above Jacobi identity, we
obtain the following equation [41]:�
L1; fL2; r13g ÿ fL3; r12g � �r12; r13 � r23� � �r32; r13�

�
� �L2; fL3; r21g ÿ fL1; r23g � �r23; r21 � r31� � �r13; r21�

�
� �L3; fL1; r32g ÿ fL2; r31g � �r31; r32 � r12� � �r21; r32�

� � 0 :

�1:23�
For the case of a constant and antisymmetric matrix
ri j � ÿrji, the above is satisfied in the classical Yang±Baxter
equation (cYBE)

�r23; r12� � �r23; r13� � �r13; r12� � 0 : �1:24�

To see that, let us start with the first term, which gives�
L1; fL2;L3g

	 � �r23; fL1;L2g
���r23; fL1;L3g

�
� �r23; �r12;L1�

�� �r23; �r12;L2�
�� �r23; �r13;L1�

�
� �r23; �r13;L3�

�
: �1:25�

Writing the other two cyclic permutations contributing the
identity, we find three types of terms: those acting on L1, L2,
and L3, all of which have the same form. Taking for
concreteness the first one, we have�

r23; �r12;L1�
�� �r23; �r13;L1�

�� ��r13; r12�;L1

� � 0 ; �1:26�

where we used the Jacobi identity for the commutator. Now,
we notice that the following holds true:�

r23; �r12;L1�
� � ��r23; r12�;L1

�
; �1:27�

since r23 acts only on the second and third copies of gl�d�, r12
acts only on the first and second copies, while L1 belongs to
the first copy. Hence, loosely speaking, the commutators are
independent. This allows us to finally write��r23; r12�;L1

�� ��r23; r13�;L1

�� ��r13; r12�;L1

�
� ÿc 2��L2;L3�;L1

�
; �1:28�

which is the (modified) classical Yang±Baxter equation
((m)CYBE). The right-hand side together with the remaining
two cyclic permutations is rendered as zero due to the Jacobi
identity for the commutator. When c � 0, the modified
CYBE becomes the usual CYBE and can be written in the
nice form

�r23; r12� � �r23; r13� � �r13; r12� � 0 ; �1:29�

which will be useful later.
It is straightforward to check that the integrals Fi are

indeed in involution with respect to such a defined Poisson
bracket. Certainly, this bracket defines the same evolution as
(1.15):

dL

dt
� fFk;Lg � �Mk;L� ; Mk � ÿkTr1 �L1

kÿ1r21� ; �1:30�

where the subscript indicates that the trace is taken with
regard to the first factor. A theorem states that eigenvalues of
the Lax matrix L (the conserved quantities Fk) are in
involution if and only if there exists a function r21 that
satisfies CYBE and defines the Poisson bracket as above.
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For details of the theorem, see lectures [40]; here, we only
mention that the r-matrix is a natural attribute of a classical
integrable system.

As a final note in this subsection, let us provide some
expressions in an explicitly chosen basis fT i

jg � bas gl�d�.
For the r-matrix r 2 gl�d� ^ gl�d�, we then have the following
component form:

r � r i1 j1
i2
j2T

j1
i1 ^ T j2

i2 : �1:31�

Equation (1.19) then becomes

fLi1
j1 ;L

i2
j2g � r i1k1

i2
j2L

k1
j1 ÿ Li1

k1r
k1

j1
i2
j2

ÿ r i1 j1
i2
k2L

k2
j2 � Li2

k2r
i1
j1
k2

j2 : �1:32�
We observe that the classical r-matrix naturally has two pairs
of indices, each acting on some linear space. Let us illustrate
the above by the usual example of a harmonic oscillator
whose matrices L and M have been presented previously.
The classical r-matrix can be written in the following form:

r � 1

q

ÿ
F
 Eÿ E
 F

�
� 1

q

0 0
1 0

� �

 0 1

0 0

� �
ÿ 1

q

0 1
0 0

� �

 0 0

1 0

� �
; �1:33�

where F and E are generators of sl�2�. To derive the
corresponding Poisson bracket, we calculate on the one hand

�r;L
 11� 11
L� � ÿo�s3 
 s1 ÿ s1 
 s3� ; �1:34�
and on the other hand,

fL
 11;11
Lg � ofp; qgs3 
 s1 � ofq; pgs1 
 s3 : �1:35�

Comparing the two, we have fq; pg � 1. Note that, since
the r-matrix (1.33) does not solve the CYBE (1.24), the above
example illustrates the most general picture, when fulfillment
of Jacobi identity (1.22) is guaranteed by (1.23).

1.3 Quantum Yang±Baxter equation
For a quantum system, integrability basically means the same
as above: the existence of an infinite set of conserved charges
Qs commuting with each other. When speaking about a
quantum system, one is mainly interested in deriving its full
spectrum, which is usually simple for free theories and
becomes an incredibly complicated problem for interacting
systems. For integrable quantum models, powerful methods
have been developed to compute the spectrum: the algebraic
and coordinate Bethe ansatz, the thermodynamic Bethe
ansatz, and the spectral curve. Of particular relevance to the
present discussion is the approach of thermodynamic Bethe
ansatz, which allows computing the spectrum of an integrable
quantum system using scattering data and the Yang±Baxter
equation. Let us focus on this one, referring the reader to
reviews [1±5] for more detailed descriptions of other methods
in application to AdS/CFT integrability and spin-chain
models.

For scattering processes, the integrability of a quantum
system means that there is no particle production. For
theories in dimension d > 2, the Coleman±Mandula theorem
states that the S-matrix is trivial S � 1 if there is even a single
charge that is a second or higher order tensor. In contrast,
in dimension d � 1� 1, the S-matrix remains nontrivial
although pretty much restricted:

� no particle production;
� the initial set of momenta fpigin � fpigout is the same as

the final set;
� the scattering factorizes.
Factorized S-matrices as exact solutions to 1� 1-dimen-

sional quantum field theories were first considered in [42] and
then used to develop the method of the thermodynamic Bethe
ansatz in [43]. The factorization property of the S-matrix
means that the S-matrix of n particles decomposes into a
product of S-matrices for all pairs of particles. In general,
such decomposition can be performed in multiple ways, all of
which must be equivalent, leading to consistency constraints.
For 3-to-3 particle scatter, this can be illustrated by Fig. 1,
where the scattering of red, blue, and black particles labeled 1,
2, and 3, respectively, can be factorized into pair interactions
in twoways. Setting the time direction to run from left to right
in Fig. 1 and denoting the S-matrix Ri j�u� for particles with
labels i and j and mutual rapidity u, we obtain the following
equation:

R12�uÿ v�R13�u�R23�v� � R23�v�R13�u�R12�uÿ v� : �1:36�

This is the quantum Yang±Baxter equation (qYBE), intro-
duced in [44] to solve an eigenvalue problem for anN-particle
system using the algebraic Bethe ansatz and independently in
[45] to compute the partition function for a certain lattice
matrix model. For more details, see, e.g., [46, 47].

Suppose each particle, in addition to rapidities, is
described by a linear space V of its states, then R-matrices
Ri j 2 End �Vi 
 Vj� act on the vector space of states of two
particles, encoding their interaction. The most well-known
example would be to set V to a two-dimensional set of states
of a particle with spin �h=2. Then, R-matrix would take values
in the product of groups SL�2;CC�. Such R-matrices and their
generalization to SL�n;CC� and to quantum groups have found
awide variety of applications in knot theory and braid groups
[48±50]. For us, the quantum Yang±Baxter equation will be
relevant in two aspects:
� it describes scattering of the superstring states on

AdS5� SS5;
� its quasiclassical limit gives the classical Yang±Baxter

equation discussed above and relevant to integrable deforma-
tions.

Keeping the former outside of the scope of the review, let
us consider the latter in more detail.

First, one should be careful with the interpretation of
qYBE in terms of matrices, since each R-matrix acts only
in the product of two vector spaces and it is convenient
to define an operator R̂ 2 End �V
 V�. Hence, R̂12�u� 2
End �V �1� 
 V �2�� provides interaction between particles 1
and 2 with quantum states encoded by the spaces V �1� and
V �2� scattered atmutual rapidity u. Note that the linear spaces

=

1 1

2

2
3 3

Figure 1. Graphical representation of quantum Yang±Baxter equation

governing scattering of three particles. Equation states that the S-matrix

does not depend on the mutual position of the lines, in particular, on the

position of the black line (3) in the picture.
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are identical, V �1� � V �2�, and the numbers are there just to
explicitly distinguish the particles. The same can be done
just by keeping track of the place at which the operator
stands. In what follows, we adopt the former notation.
Hence, we write

R12�u� � R̂12�u�
 11 ; �1:37�
where 11 is the identity operator on V. For matrix notations,
we choose a basis in V as feag � basV and write

R12�u��ea 
 eb 
 eg� � R12�u�daEbfg ed 
 eE 
 ef ; �1:38�
R12�u�daEbfg � R�u�daEbdf

g :

In matrix notations, (1.36) is an equation for the matrix with
4 indices R�u�daEb depending on the spectral parameter u.

Usually, the full quantum Yang±Baxter equation is very
complicated to analyze and to solve, and one proceeds by
taking a quasi-classical limit. For this, what is first noticed is
that R�u� � 11
 11
 11 trivially solves the qYBE and hence it is
natural to expand around this point in the space of solutions

R12�u� � 11� �h r12�u� : �1:39�
Here, �h is the expansion parameter and r12�u� is constructed
from the algebra g of the group G � End �V�. Substituting
this expansion into the initial equation, it is found that, in the
orders �h 0 and �h 1, all terms cancel and the equation is satisfied
trivially. Hence, the first nontrivial equation one encounters
at level �h 2 reads�
r12�uÿ v�; r13�u�

���r13�u�; r23�v����r12�uÿ v�; r23�v�� � 0 :

�1:40�

Here, �x; y� is understood as �x; y� � x � yÿ y � x; hence, one
should be careful with the definition of r12�uÿ v�. Indeed,
since R12�u� 2 End �V
 V
 V� � G� G� 11, it is natural to
define the matrix r12�u� as r12�u� 2 f�g� 
 f�g� 
 1. Here,

f : g! A �1:41�

is a map to an associative algebra A with unit 1 defined such
that

f�a�f�b� ÿ f�b�f�a� � f
ÿ�a; b�� ; �1:42�

where �a; b� is the Lie bracket in the algebra g. Hence, equation
(1.40) is understood as an equation on A
 A
 A, which,
however, can be consistently restricted to g
 g
 g and hence
does not depend on the choice of A [51]. In what follows, for
definiteness we will choose the algebra A to be the universal
enveloping algebra A � U�g� and drop f for clarity of
notations.

Solutions of the classical Yang±Baxter equation for
the r-matrix with a nontrivial spectral parameter can be
propagated by a simple shift of a given solution r12�u� as
r 012�u� � r12�u� � r12 (and similarly for other spaces), where
r12 must satisfy the constant classical Yang±Baxter equation
[51]

�r12; r13� � �r13; r23� � �r12; r23� � 0 : �1:43�

In this paper, we always refer to this equation when
mentioning the CYBE. Each element r12; r23; r13 above can
be decomposed regarding the basis of the algebra

ftag � bas g,

r12 � r abta 
 tb 
 1 ;

r13 � r abta 
 1
 tb ; �1:44�
r23 � r ab1
 ta 
 tb :

In what follows, we assume r ab � ÿr ba. Substituting these
decompositions back into the CYBE (1.43), one obtains

r abr cd
�
�ta; tc� 
 tb 
 td � ta 
 tc 
 �tb; td� � ta 
 �tb; tc� 
 td

�
� 0 :

�1:45�

Replacing �ta; tb� � fab
ctc and properly relabelling the indices,

one obtains

e�a 
 eb 
 ec�r aer bffef c � 0 ; �1:46�

which boils down to the CYBE recovered in deformations of
the Type IIA/B supergravity

r e�ar bj f jfef c� � 0 : �1:47�

Asmentioned above, this equation indeed belongs only to the
g
 g
 g insideA
 A
 A and does not depend on the chosen
algebraA or the precise form of the map. Out of curiosity, the
same is not true for the tetrahedron equation, which is a direct
analogue of the qYBE for scattering straight strings. More-
over, a well-defined quasi-classical limit does not exist in this
case. We will discuss this more in Section 4.6.2.

1.4 Volume preserving flows and the action principle
An important property of a Hamiltonian system is preserva-
tion of its phase volume under evolution. For a given function
G, a HamiltonianH defines a flow, which in the infinitesimal
form can be written as

G! G� fH;Gg : �1:48�

Consider the phase space distribution of the system
dw � r�p; q� dnp dnq, where the distribution function r�p; q�
is the probability of having the system in the phase volume
dnp dnq at the point �p; q�. The Liouville equation states that
the distribution function is constant:

dr
dt
� qr

qt
� qr
qq i

_q i � q f
qpi

_pi � 0 : �1:49�

Equivalently, we can write this as the evolution equation for
the density function: _r � fH; rg. Let us now show that, for
Hamiltonian systems, the phase volume is preserved. To do
so, we define a phase vector at arbitrary time t:

xt �
ÿ
p1�t�; . . . ; pn�t�; q 1�t�; . . . ; qn�t�� : �1:50�

This vector is related to the vector x0 at t � 0 by a
coordinate transformation in the phase space, whose
Jacobian is given by

J � det
qxI

t

qxJ
0

� detMI
J ; �1:51�

where I � 1; . . . ; 2n. Hence, preservation of the phase volume
under evolution is equivalent to this defined Jacobian being
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independent of time. For that, we calculate

dJ

dt
� Tr

�
Mÿ1 dM

dt

�
J � J

qxI
0

qxJ
t

q _xJ
t

qxI
0

� J
q _xI

t

qxI
t

: �1:52�

For Hamiltonian systems,

q _xI
t

qxI
t

� ÿ q
qpi

qH
qq i
� q
qq i

qH
qpi
� 0 ; �1:53�

hence, the flow preserves the phase space volume. In what
follows, we show that the same is true for Nambu mechanical
systems, i.e., defined in terms of tri-brackets.

To define the action of the system, we start with a vector
field ~L that corresponds to the Hamiltonian evolution flow:

df

dt
� q f

qt
� fH; f g � ~L� f � : �1:54�

The vector field can be represented as ~L � qt � L, and
components of L read

Lp � ÿ qH
qq

; Lq � qH
qp

: �1:55�

This vector field is the line field do that is a derivative of the
so-called Poincar�e±Cartan 1-form o on the phase space that
defines the action. For a 1+1-dimensional system, the 1-form
o can be written as

o � p dqÿH dt : �1:56�

To show that ~L is indeed the line field, i.e., i ~L�do� � 0, we
simply write

do � dp ^ dqÿ qH
qp

dp ^ dtÿ qH
qq

dq ^ dt

� dp ^ dqÿ Lq dp ^ dt� Lp dq ^ dt : �1:57�

The 1-form o defines an integral invariant
�
g o that is usually

referred to as the action of the system. This expression is
invariant under different choices of 1-chains along the
evolution flow. Consider a 1-chain c in the phase space; its
image at t under Hamiltonian evolution is given by g t�c�. A
tube of phase trajectories is given by a 2-chain,

J tc � �g t�c�; 04t4 t
	
: �1:58�

Simply speaking, one takes a closed curve c in the phase space
and drags it along theHamiltonian flow from 0 to t. Given the
Stokes theorem and the fact that i ~L do � 0, we have�

c

oÿ
�
g t�c�

o �
�
J t�c�

do � 0 ; �1:59�

where we used the fact that q�J t�c�� � cÿ g t�c�. Then, the
extrema of the integral

A�g� �
�
g
o �

�
g
p ^ dqÿH dt �1:60�

give trajectories of the system (for more details see [52]).
Interestingly enough, a generalization exists of the above for
the Nambu mechanics attributed to Takhtajan [53], which
can be uplifted to an action of a membrane. We will return to
this later.

1.5 Integrability in field theory
For field theories, i.e., when canonical variables depend on a
continuous variable, the concept of integrability is more
tricky. The phase space of such models is infinitely dimen-
sional and one would have to require a continuous set of
integrals of motion to be able to speak about Liouville
integrability. For a mechanical system, integrability means
the possibility of turning to action±angle variables, which
allows explicitly integrating equations of motion. For field
theory, we will similarly be talking about the exact solvability
of equations and methods, allowing us to construct such
solutions. For quantum systems, we are usually talking about
the exact spectrum of operators in the theory, the exact energy
spectrum of the system, and the exact S-matrix, which for
integrable systems are usually trivial. Let us list a few well-
known integrable field theories:
� Korteweg±de Vries (KdV) equation, a mathematical

model of waves on shallow water [54]:

_h � 6hh 0 ÿ h 000 : �1:61�

� Nonlinear Schr�odinger equation, used to describe
propagation of light in a nonlinear medium [55]:

i _c � ÿc 00 � 2kjcj2c : �1:62�

� Sine-Gordon equation, used in the theory of crystal
dislocation, Bloch-wall motion, and magnetic flux in the
Josephson effect [56]:

�fÿ f 00 �m 2 sinf � 0 : �1:63�

� Principal chiral model on a compact group manifold,
which for us is the simplest model of a string. The action is
given by

S �
�
Tr
��gÿ1 dg� ^ ��gÿ1 dg�� : �1:64�

Integrable field equations have in common the property that
the scattering of their solitonic solutions is factorizable, i.e.,
after scattering two or more solitons, their shape is restored.
This property is described by the Yang±Baxter equation, for
which reason the Lax±Zakharov±Shabat formalism can be
repeated for field theories with appropriate changes.

A 2-dimensional field theory is called integrable if its
equations can be written in the form of the flatness condition
on the so-called Lax connection A � Aa dsa:

dA� A ^ A � 0 : �1:65�

In general, the connection may depend on an additional
(spectral) parameter u 2CC. For example, components of the
Lax connection for the KdV equation take the form

At � ÿh 0 ÿ4uÿ1 ÿ 2h
4uÿ2 ÿ 2uÿ1h� h 00 ÿ 2h 2 h 0

� �
;

Ax � 0 ÿ1
uÿ1 ÿ h 0

� �
:

�1:66�

To construct the Lax pair and to derive an infinite set of
conserved currents, one has to construct variables that
depend only on time t, which is possible due to the flatness
condition. Indeed, it guarantees that a parallel transport
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operator

U�u; s1; s0� � Pexp

�� t1; x1

t0 ;x0

A�u�
�
; �1:67�

defined as a Wilson line, does not depend on continuous
variations in the integration path. Endpoints in the integral
may be identified with boundaries of the system, say, end-
points of a spin chain. A Lax pair constructed of such a
defined parallel transport operator in general depends on the
boundary conditions. The simplest case is the periodic
boundary conditions s 1 � s 1 � L, when the Lax pair is
defined as

T�u� � Pexp

� �
A�u�

�
;

�1:68�
M�u� � At�u�

���
s 1�0

:

It is easy to see that these satisfy precisely the desired
equations

_T�u� � �T�u�;M�u�� : �1:69�

Hence, the continuous family of conserved charges is defined
as before as

Fk�u� � Tr T�u�k : �1:70�

Note that, as before, the classical r-matrix can be used to
define canonical brackets.

In what follows, we will be interested in generalizing these
integrability structures to 3-dimensional theories, motivated
by certain similarities between the classical Yang±Baxter
equation and what we call the generalized Yang±Baxter
equation. It is straightforward to assume that, in this case,
the 1-form Lax connection A must be replaced by either a
2-form (gerbe) connection or a connection in a loop space,
which is actually equivalent, given the transgression map.
Both these possibilities can be justified to some extent from a
string/M-theory point of view; however, in any case, it is
pretty clear that the mechanics behind these structures must
be defined by Nambu brackets. Before proceeding with a
discussion of Nambu mechanics and the extent to which
integrable structures can be generalized, let us discuss another
representation of integrable field theories, that is, integrable
Lax hierarchies.

Note, however, that to have a higher dimensional
integrable system does not necessarily require turning to
higher Nambu mechanics. An example of a 1+2-dimen-
sional integrable system is the so-called Kadomtsev±Pet-
viashvili (KP) equationÿÿ4 _u� uxxx � 3uux

�
x
� 3uyy � 0 ; �1:71�

where the subscripts denote derivative. This is a two
dimensional generalization of the KdV model of waves on
shallow water. It appears that this theory belongs to a larger
(actually, infinite) family of integrable equations, each
defined by its own Hamiltonian flow. Such a system of
commuting integrable Hamiltonian flows is referred to as an
integrable hierarchy (see [57, 58] for a more detailed review).
In practice, integrable hierarchies are highly symmetric
infinite sets of nonlinear evolution equations of the Lax type

for infinitelymany functions ui of infinitely many variables tn,
n � 1; 2; . . . . The Lax equations have the following form:

qL
qtm
� �Bm;L� ; m � 1; 2; . . . ; �1:72�

where L and Bm are some pseudo-differential operators
depending on the variables ui. The Lax equations (1.72) can
be written in the form of the zero-curvature condition

qBm

qtn
ÿ qBn

qtm
� �Bm;Bn� � 0 ; �1:73�

which is usually referred to as the Zakharov±Shabat equa-
tion.

Let us illustrate the formalism using the example of the
KP hierarchy. In this case,

L � q�
X1
i�1

uiq
ÿi � q� u1q

ÿ1 � u2q
ÿ2 � . . . ; �1:74�

Bn � �Ln�5 0 ;

where q � q=qx is a differential operator, qÿ1 is formal
integration, and the subscript 5 0 in the definition of Bn

means that only non-negative powers of q must be kept. Let
us go through the first few levels of the hierarchy. For n � 1,
we have B1 � q and

�B1;L� �
X1
i�1

qxui q
ÿi : �1:75�

The equation is then simply qui=qt1 � qxui, which means
t1 � x. The Zakharov±Shabat equation when m � 1 then
becomes

qxBn � �q;Bn� ; �1:76�

which is simply the action of the momentum operator.
The actual KP equation can be derived from the

Zakharov±Shabat equation when m � 2; n � 3. For that, we
calculate

B2 � q2 � 2u1 ; �1:77�
B3 � q3 � 3u 01 � 3u1q� 3u2 ;

where the prime denotes the derivative with respect to the
variable x. The Zakharov±Shabat equation has terms
proportional to q0 and q1, leading to two equations, which,
denoting y � t2, t � t3, u � 2u1, v � u2, can be written as

_ux ÿ 3

2
uxxy ÿ 3vyx � 1

2
uxxxx � 3vxxx ÿ 3

2
�uux�x � 0 ;

ÿ 3

4
uy � 3vx � 3

4
uxx � 0 :

�1:78�

Now, taking derivatives qy and qxx of the second equation
(1.78), we rewrite the first equation in the following form:

_ux ÿ 3

4
uyy ÿ 1

4
uxxxx ÿ 3

2
�uux�x � 0 : �1:79�

This is precisely the KP equation.
Similarly, an integrable hierarchy can be constructed for

the KdV equation, which itself is part of an integrable
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hierarchy. To do this, we define

L � qn � unÿ2qnÿ2 � . . .� u1q� u0 ; �1:80�
Bm � �Lm=n�5 0 :

For n � 2 at levelm � 3, we recover the KdV equation, while
for n � 3 at level m � 2, we recover the so-called Boussinesq
equation

3�u � ÿu 000 ÿ 4�uu 0�0 : �1:81�
To a certain extent, these structures can also be general-

ized to the case with more than two Lax operators, which is
one of the natural ways to generalize the Lax±Zakharov±
Shabat approach to Nambu systems. In particular, the KP
equation becomes a part of the hierarchy constructed using
Lax triples; however, it seems to be not quite integrable.

2. Nambu mechanics

The Hamiltonian mechanics described in terms of Poisson
brackets in the previous sections appear to be a particular case
of more general Nambu mechanics. The dynamics of a
Nambu system is determined in terms of a flow generated by
nÿ 1 Hamiltonians; correspondingly, the Poisson bracket is
replaced by theNambu bracket, which takes n entries. For the
purposes of the present review, we are interested in algebraic
structures relevant to M-theory that appear to be 3-brackets
when speaking about M2-branes, and 5-brackets when
speaking about M5-branes. The history of employing higher
algebraic structures, such as n-algebras, to describe the
dynamics of membranes starts with the work of Basu and
Harvey [59], where an equation was proposed that describes
N M2-branes ending on M5-branes and generalizes Hahm's
equation that describes D1-branes ending on D3-branes. In
string theory, k D1-branes ending on D3-branes from the
point of view of the 4-dimensional world-volume theory
manifest themselves as infinite spikes [60, 61]. On the other
hand, this k monopole system satisfies the Bogomolnyi
equation, which turns out to be the Nahm equation for the
moduli space of monopoles in the gauge theory [62, 63]. The
generalization proposed by Basu and Harvey involves a
Nambu 3-bracket 3 instead of the usual Lie 2-bracket in
Nahm's equation. Based on these results in [64, 65], a world-
volume theory of multiple M2-branes has been proposed.
This is a Chern±Simons-like theory based on a Nambu
3-bracket. Although this theory, known as BLG (Bagger±
Lambert±Gustavsson), was later rewritten in the form of a
more conventional gauge theory in [66] that does not involve
3-algebras, it is clear that a theory of brane dynamics must be
formulated in terms of these kinds of higher algebraic
structures. We will return to a more detailed discussion of
these structures later in Section 4, while here we proceed with
a review of Nambu mechanics and approaches to general-
izations of integrability structures for such systems.

2.1 Nambu structure
Ageneralization of Poissonmechanics to a three-dimensional
phase space with the evolution defined by two Hamiltonians
was proposed by Nambu in [67]. Later, a detailed investiga-
tion of the geometry behind the Nambu mechanical system
was performed by Takhtajan in [53]. In particular, it appears

that Nambu systems are much more rigid than a Poisson
system, which, in terms of M-theoretical degrees of freedom,
manifests itself in the fact that BLG theory describes a stack
of two M2-branes rather than an arbitrary number.

The dynamics of a Nambu system is defined by the
following equation of motion:

df

dt
� fH1; . . . ;Hnÿ1; f g ; �2:1�

where H1; . . . ;Hnÿ1 denote Hamiltonians of the system, and
f. . .g is an n-bracket that satisfies Nambu fundamental
identities�f f1; . . . ; fnÿ1; fng; fn�1; . . . ; f2nÿ1

	
� � fn; f f1; . . . ; fnÿ1; fn�1g; fn�2; . . . ; f2nÿ1

	� . . .

� � fn; . . . ; f2nÿ2; f f1; . . . ; f2nÿ1g
	

� � f1; . . . ; fnÿ1; f fn . . . f2nÿ1g
	
: �2:2�

These ensure that, for each of n functions fi satisfying the
Nambu equation, the bracket f f1; . . . ; fng also satisfies the
same equation. As in the case of Poisson mechanics, the
Nambu bracket can be realized in terms of an n-vector
O 2 G�^nTM�, whereM is the configuration space:

O�df1; . . . ; dfn� � f f1; . . . ; fng : �2:3�

In coordinate notations we have

Om1 ...mn qm1
f1 . . . qmn

fn � f f1; . . . ; fng : �2:4�

A manifold M endowed globally with such an n-vector is
called a Nambu±Poisson manifold and O is referred to as a
Nambu±Poisson structure. Equivalently, we say that M is a
Nambu±Poisson manifold if an RR-multilinear map

f. . .g :
�
C1�M��
 n ! C1�M� �2:5�

is defined on the algebra of (infinitely differentiable) func-
tions C1�M�. Given nÿ 1 Hamiltonians H1; . . . ;Hnÿ1, the
n-bracket defines the evolution of a function f, or the so-
called Nambu±Hamiltonian flow g t.

Here is revealed the crucial difference between theNambu
and Poisson structure on a manifold, which is a much
stronger set of constraints imposed on the n-vector by the
fundamental identity. Acting by the n-vector O twice and
imposing the fundamental identity, we have constraints
following from terms with second and first derivatives of
functions separately. For the former, we have an algebraic
constraint

NMN � P�NMN� � 0 ; �2:6�

where M � fm1; . . . ;mng and N � fn1; . . . nng represent
multi-indices, the tensor NMN is defined as

Nm1...mn; n1...nn� Om1...mnO n1 ...nn� O nnm1m3...mnO n1...nnÿ1m2 � . . .

� O nnm2...mnÿ1m1O n1...nnÿ1mn ÿ O nnm2...mnO n1...nnÿ1m1 ; �2:7�

and P interchanges the first and �n� 1�th indices, i.e., m1

and n1. It can immediately be noticed that for n � 2 the
condition is identically satisfied, while for n5 3 it is
nontrivial.3 Strictly speaking, a 4-bracket, but one entry is always fixed.

March 2024 Integrability structures in string theory 227



The condition descending from terms linear in derivatives
of functions readsXn

l�1

�
O lm2...mnqlO n1...nn � O nnlm3...mnqlO n1...nnÿ1m2 � . . .

� O nnm2...mnÿ1l qlO n1...nnÿ1mn

�
� 0 : �2:8�

For n � 2, this is simply

O l �mqlO nk� � 0 : �2:9�

Hence, it can be concluded that, in contrast to Poisson
manifolds, no totally antisymmetric globally defined tensor
Om1 ...mn on a manifold is capable of defining a Nambu
structure. On top of the usual differential constraints, one
has to satisfy algebraic constraints.

An observable F 2 C1�M� is called an integral of motion
if

fH1; . . . ;Hnÿ1;F g � 0 : �2:10�

The first nÿ 1 integrals of motion are the Hamiltonians; the
fundamental identity ensures that the Nambu bracket of
integrals of motion is again an integral of motion. Naively,
one can extend the notion of Liouville integrability toNambu
systems, defining an integrable Nambu system as having n
integrals of motion, each in involution with regard to the
Nambu bracket. However, the analogy does not go much
further, since it is not evident how the action±angle variables
can be introduced to completely integrate equations of
motion. The same holds for the naive generalization of the
proof that Nambu flow preserves phase space volume,
although, for some cases, it can be shown explicitly.

2.2 Examples of Nambu systems
Although the construction of Nambu mechanics might seem
rather exotic, it describes mechanical systems, many of which
are familiar and even integrable in the usual sense. As the first
example, consider an n-dimensional harmonic oscillator with
the Hamiltonian

H � 1

2

Xn
i�1
�p 2

i � x 2
i � : �2:11�

According to [68], this can be written as a Nambu system
using other integrals of motion as additional Hamiltonians.
Consider for example the case n � 2, that is, a harmonic
oscillator in two dimensions. We choose the following set of
integrals:

H1 � 1

2
�p 2

1 � x 2
1 � ;

H2 � 1

2
�p 2

2 � x 2
2 � ; �2:12�

H3 � x1p2 ÿ x2p1 :

The Nambu bracket describing the system can then be chosen
as

fH1;H2;H3; f g � 1

p1p2 � x1x2

q�H1;H2;H3; f �
q�p1; p2; x1; x2� : �2:13�

A simple check shows that the above reproduces equations of
motion of the two-dimensional oscillator, and the bracket

satisfies all the necessary conditions. This system is integrable
in the usual sense.

Consider now the example presented by Nambu in the
original paper, which describes the rotational dynamics of a
rigid body with principle axes of inertia Ii and angular
momenta Li, where i � 1; 2; 3. This system is commonly
referred to as the Euler asymmetric top. Equations of motion
are

dL1

dt
� I3 ÿ I2

I2I3
L2L3 ;

dL2

dt
� I1 ÿ I3

I1I3
L1L3 ; �2:14�

dL3

dt
� I2 ÿ I1

I1I2
L1L2 :

These can be written in terms of Nambu equations for a
system with the following two Hamiltonians:

H1 � L2
1

2I1
� L2

2

2I2
� L2

3

2I3
; H2 � 1

2

ÿ
L2
1 � L2

2 � L2
3

�
: �2:15�

These are the full energy and the full momentum of the top,
and the equations of motion can be written as

dLi

dt
� E i jkqjH1 qkH2 ; �2:16�

where qi � q=qLi. This suggests the following definition for
the Nambu bracket:

fH1;H2; f g � E i jkqiH1 qjH2 qk f ; �2:17�

the most natural choice for a three-dimensional system.
Equations of motion for the asymmetric Euler top have

SU(2) symmetry and are also known under a different name,
the Nahm system, when they arise in the theory of static
monopoles. As we discuss in subsequent sections, such
equations naturally appear in the description of branes
ending on branes as world-volume spike-like monopoles.
Their generalization, known as the Basu±Harvey equation,
underlies the so-called BLG theory describing the dynamics
of two M2-branes [64, 65]. The Nahm system is usually
written as the following set of equations of motion:

dx1
dt
� x2x3 ;

dx2
dt
� x1x3 ;

dx3
dt
� x1x2 ; �2:18�

which can be expressed in the Nambu form, given
H1 � x 2

1 ÿ x 2
2 , H2 � x 2

1 ÿ x 2
3 . This system is also integrable

in the usual sense.
The least action principle can be extended to the Nambu

mechanics, leading to an action presumably describing
movement of open membrane boundaries. Following Takh-
tajan [53], we define

o2 � x 1 dx 2 ^ dx 3 ÿH1 dH2 ^ dt ; �2:19�

the Poincar�e±Cartan integral invariant 2-form for Nambu
mechanics on the phase space ~X parametrized by coordinates
fx 1; x 2; x 3; tg. We now follow the same lines as in Section 1.4,
where an invariant action for a Poisson system was con-
structed. Define vector field ~L � qt � L using

L � Liqi ; Li � 1

2
E i jk

q�H1;H2�
q�x j; xk� : �2:20�
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Nambu equations then simply become _f � ~L� f �. The vector
field ~L is a line field of the 3-form do2, i.e., i ~L do2 � 0, which
simply follows from the explicit expression for the derivative

do2 � dx 1 ^ dx 2 ^ dx 3 ÿ dH1 ^ dH2 ^ dt : �2:21�

Now, for a given 2-chain c in ~X, we denote g t�c� its Nambu±
Hamiltonian phase flow, then a tube of phase trajectories
will be given by J tc � fg t�c�; 04t4 tg. Finally, since
qJ tc � cÿ g t�c� and given i ~L do2 � 0, we have�

c

o2 ÿ
�
g t�c�

o2 �
�
J tc

do2 � 0 ; �2:22�

which basically demonstrates invariance of the integrated
two-form. Hence, for the action A of the system, we take the
following integral:

A�c� �
�
c

o2 �
�
c

x 1 ^ dx 2 ^ dx 3 ÿH1 ^ dH2 ^ dt : �2:23�

The first term of the Takhtajan's action (2.23) has
precisely the form of the Wess±Zumino term of the action of
an M2-brane ending on an M5-brane. In the Nambu±Goto
form and dropping all possible world-volume gauge fields, we
can write for the M2-brane

SM2 �
�
S
d3x det �ÿG� �

�
S
C3 ; �2:24�

where G denotes the metric pull-back and C3 �
Ci jk dx

i ^ dx j ^ dxk denotes the 3-form living in the target
space. Supposing theWess-Zumino term dominates, and that
the 3-form varies slowly along the boundary qS of the
M2-brane, we write for the boundary action

SqM2 / C123

�
qS

x 1 ^ dx 2 ^ dx 3 ; �2:25�

which is precisely expression (2.23). This provides yet more
evidence that the Nambu mechanics with all its structures
must be relevant tomembrane dynamics inM-theory. Amore
detailed discussion of the above narrative can be found in [69].
We will return to the description of membrane dynamics in
later sections.

2.3 Lax pair and generalized Yang±Baxter equation
In Section 2.2, we have seen that many dynamical systems,
integrable in the usual sense, possess a Nambu structure. This
makes it natural that integrability structures, such as the Lax
pair, can be reformulated in terms of Nambu brackets,
probably giving a criterion for three-dimensional integrabil-
ity. To our knowledge, the program of defining integrability
for Nambu dynamical systems has not been completed at
least to the level of understanding we have for Poisson
systems; however, certain progress has been made. The
overall aim of this review is to collect observations that give
hints at the integrability in the theory of membranes, or more
generally, in three dimensional systems. Hence, we start with
aNambu systemwithHamiltoniansH1 andH2 and equations
of motion given by

df

dt
� fH1;H2; f g �2:26�

and try to generalize the Lax pair construction. Naturally, the
very first attempt would be to introduce a Nambu tri-bracket
and to rewrite the above in terms of a Lax triple,

_L � �L;M;N� ; �2:27�

for a somehow definedNambu bracket � ; ; �, which is indeed a
useful construction for defining Nambu hierarchies. We will
discuss these in a moment, as it is worthwhile to start with a
different generalization that has more transparent links to
M-theory.

Consider a Lax pair, that is, a pair of matrices L;M 2 g,
where g is an algebra, such that

_L � �L;M� : �2:28�

Given a tensor r123 2 g ^ g ^ g, we define a 3-bracket

fL1;L2;L3g � �r123;L1� � �r123;L2� � �r123;L3� ; �2:29�

where we denote

L1 � L
 11
 11 ; L2 � 11
L
 11 ; L3 � 11
 11
L : �2:30�
We impose a fundamental identity on this defined 3-bracket,
that is, turn it into a Nambu structure. This restricts r123
to satisfy a condition similar to the classical Yang±Baxter
equation. Let fTag � bas g denote the basis of the
algebra, fab

c denote its structure constants, and r123 �
r abc Ta ^ Tb ^ Tc. Then, the condition that is often referred to
as the generalizedYang±Baxter equation can be written in the
component form as

r a1 �a2ja6jr a3a4ja5 j fa5a6
a7� ÿ r a2�a1ja6jr a3a4ja5j fa5a6

a7� � 0 : �2:31�

The 3-bracket then defines a Nambu system, whose integrals
of motion can be expressed in the usual form Fk � TrLk. It is
a simple calculation to check that these are in involution with
regard to this constructed Nambu bracket,

fFi;Fj;Fkg � 0 : �2:32�

If there was a procedure allowing us to introduce action±
angle variables and completely solve equations of motion
using these integrals of motion, we would say that such a
constructed system is integrable. However, the authors are
not aware if these kinds of constructions for Nambu systems
exist.

Equations (2.31) are fascinating in a different respect: they
were first derived when investigating U-dualities of M-theory
in [37, 38] (and earlier in [34] in the form of a vanishing
R-flux). To be more precise, equations of 11-dimensional
supergravity are known to be symmetric under a set of
particular transformations, called Nambu±Lie U-dualities,
whose underlying algebraic structure is formulated in terms
of the so-called exceptional Drinfeld algebras. A particular
subset of such generalized U-dualities (so-called deforma-
tions) can be parametrized by tensor r abc, which has precisely
the same meaning as above. The condition for such a
deformed supergravity background to satisfy equations of
11d supergravity is precisely equation (2.31).Wewill return to
this in more detail later, while here it is important to mention
that these are mainly generalizations of similar structures in
string theory conforming to the usual classical Yang±Baxter
equation (see the summary section of [38]). The most
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important observation is that deformations parametrized by
the matrix r ab satisfying the classical Yang±Baxter equation
preserve the integrability of the string sigma model. Hence,
starting with different phenomena involving integrability and
generalizing them in the more or less same way, we arrive at
the same equation (2.31), which allows speculating further on
these matters. We will do so in Section 4.6.

2.4 Lax triples and volume preserving flows
As has already been mentioned in Section 2.3, a more
straightforward generalization of the Lax construction to
Nambu systems is to introduce a Lax triple (multiple). It is
convenient to proceed with a construction of integrable
hierarchies based on the Lax triple and a Nambu 3-bracket.
As in previous explicit examples, we will find that familiar
systems, the hierarchy KP in this case, can be formulated in
terms of such generalized structures. The approach we will be
following here is the one advocated by Guha in [70] and
further applied to various examples in [71, 72]. The idea is to
generalize the method of [73, 74] developed to study the area
preserving diffeomorphic KP equation. This approach, in
turn, originated from studying self dual Einstein equations.
Generalized flows of [70] briefly reviewed below are integr-
able in the same sense as the SDiff(2) flows of [73, 74], i.e., in
the sense of the nonlinear graviton construction.

Consider a triple of generalized Lax operators L, M, N
that are Laurent series in a spectral parameter l with
coefficients being functions of some variables p; q. By
definition, the volume preserving integrable hierarchy is
given by

qL
qtn
� �B1n;B2n;L� ;

qM
qtn
� �B1n;B2n;M� ; �2:33�

qN
qtn
� �B1n;B2n;N�

with the additional involution constraint �L;M;N� � 0
ensuring volume preservation. Here, � ; ; � is a Nambu tri-
bracket satisfying the fundamental identity. As in the case of
ordinary integrable hierarchies, we restrict the operators B1n

and B2n to have only positive values of L,M:

B1n � �Ln�
���
n5 0

; B2n � �Mn�
���
n5 0

: �2:34�

The condition for the flows to commute boils down to an
analogue of the Zakharov±Shabat equation:

�qmB1n;B2n; �� ÿ �qnB1m;B2m; �� � �B1n; qmB2n; ��
ÿ �B1m; qnB2m; �� �

��B1n;B2n;B2m�;B2m; �
�

ÿ ��B1n;B2n;B1m�;B2m; �
�
: �2:35�

An important remark here is that, for SDiff(2) area preserving
flows, equation (2.35) is simply the zero-curvature condition.
We have already observed the same for Poisson integrable
hierarchies, where the Zakharov±Shabat equation (2.35)
contained the zero-curvature condition for the Lax connec-
tion 1-form. Hence, one would expect that the above contains
a three-dimensional analogue of the zero-curvature condition
of an analogue of the Lax connection, given by a 2-form.

From the geometric point of view, self-duality simply
means a Ricci flat K�ahler geometry; hence, SDiff(2) flows are

naturally expressed in terms of a K�ahler-like 2-form. The
analogue here is a 3-form,

O �
X1
n�1

dB1n ^ dB2n ^ dtn � dl ^ dp ^ dq

�
X1
n�2

dB1n ^ dB2n ^ dtn ; �2:36�

where we used the following notations: t1 � l, B11 � p,
B21 � q. Given the flow equations (2.33), the 3-form can be
expressed simply as

O � dL ^ dM ^ dN : �2:37�

The 3-form O can be verified to be closed, dO � 0, giving

d

�
M ^ dL ^ dN�

X1
n�1

B1n ^ dB2n ^ dtn

�
� 0 : �2:38�

Hence, the expression in brackets, at least locally, can be
written as an exact form,

dQ �M ^ dL ^ dN�
X1
n�1

B1n ^ dB2n ^ dtn ; �2:39�

that is an analogue of the Krichever potential, i.e., contains
the action.

Let us now consider an example of hierarchy generated by
a volume preserving the Lax triple equations. Here, we follow
[72], where the KP hierarchy was first written in terms of Lax
triples. The hierarchy is defined as

dL

dtmn
� �Bm;Bn;L� ;

L � q�
X1
i�0

vi�t�qÿiÿ1 ;
�2:40�

Bn � �Ln�5 0 ; n5 0 ;

B0 � 1 ;

where, as before, the subscript5 0 means that only operators
with positive powers of q are kept. The standardKP hierarchy
is recovered from the above when m � 0:

dL

dt0n
� �B0;Bn;L� � �Bn;L� : �2:41�

The most interesting question is whether integrable
hierarchies can be derived for other cases with m 6� 0.
According to [72], it has affirmative answer: at least for
certain given pairs �Bm;Bn�, one obtains integrable equations
that are already present in the KP hierarchy. It is tempting to
claim that the integrable KP hierarchy can be equivalently
written in terms of the usual Lax equation or in terms of the
generalized equation for Lax triples. However, a subtlety
standing in the way of this interpretation was also observed in
[72] when analyzing the hierarchy further for larger values of
�m; n�: the hierarchy contains equations that do not pass the
Painlev�e integrability test. Hence, not all equations of the
generalized Lax triple hierarchy seem to be integrable;
however, those that are not contain soliton solutions.

To conclude, we observe that at least some of the steps in
the standard path for constructing integrability structures can
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be repeated for Nambu systems. In particular, one may
introduce infinitely many conserved charges, a Lax operator
generating them, an involution condition, volume preserving
flows, and hierarchies based on Lax triples. Moreover, a
Nambu bracket of a dynamical system can be generated by an
analogue r of the classical r-matrix, which is no longer a
matrix, however naturally it appears in the context of U-
duality symmetries of M-theory. The same object is in
principle expected to appear in a quasi-classical limit of the
tetrahedron equation describing factorization of the scatter-
ing process of straight strings. Combining all these observa-
tions together, it is tempting to conclude that structures
reviewed above must be relevant when describing the
integrability of 2+1-dimensional systems, i.e., membranes.
As we will discuss in more detail later in Section 4, one indeed
finds similar constructions when approaching from the
M-theory and supergravity side. In particular, the dynamics
of membranes naturally leads to tri-brackets via the Basu±
Harvey equation, the object r naturally appears in the open
membrane metric, and an analogue of the evolution operator
can naturally be constructed using loop algebras. Loop
algebras, in turn, appear in the analysis of M5-branes
holding boundaries of M2-branes, which scatter precisely as
strings in the 6-dimensional world-volume.

3. 10d supergravity and strings

Methods for investigating integrability structures for two-
dimensional systems briefly reviewed above can well be
applied to the dynamics of a fundamental string propagating
on a background defined by a solution to supergravity
equations. As we discuss in more detail below, the dynamics
of the string on certain backgrounds defined in terms of the
two-dimensional nonlinear sigma model (NLSM) is classi-
cally integrable, i.e., a Lax connection can be constructed.
Among other similar results, the integrability of the string on
certain backgrounds is of particular interest, e.g., in the
context of holography. Indeed, holographic correspondence
basically says that the same system can be described
equivalently in terms of very different variables. For exam-
ple, in the case of AdS/CFT, correspondence equivalence of
descriptions in terms of closed and open strings of the near
horizon region of a D3-brane results in correspondence
between 10d supergravity on AdS5� SS5 and N � 4 d � 4
super Yang±Mills theory. Now, since the string on
AdS5� SS5 is known to be integrable [6] (see also [75] for a
review), the same can be claimed for the gauge theory, as this
is simply a different way of parametrizing the same dynamics.
Indeed, integrability structures of N � 4 d � 4 have been
addressed from different perspectives, which include, e.g., the
thermodynamic Bethe ansatz and the spectral curve.
Although intimately related, these approaches stand beyond
the scope of our review and have been well covered in various
reviews [1±5]. In this section, we focus on integrable nonlinear
2d sigmamodels on groupmanifolds and (super-)coset spaces
and their continuous Yang±Baxter deformations.4 Such
deformations that preserve the integrability of a 2d NLSM
were introduced in [19] for a string on a group manifold
and further generalized to coset spaces in [20]. Their
extension to general solutions of supergravity suggested
first in [29, 30] and further developed in [31, 32] does not

seem to have a straightforward relation to integrability;
however, it does allow introducing similar structures for
membranes, i.e., 3d NLSM, which will be discussed further
in Section 4.

3.1 Yang±Baxter deformed 2d sigma models
An approach to finding a Lax pair for every 2d principal
sigma model on a simple compact group G based on the
inverse scattering method was suggested by Zakharov and
Mikhailov in [78]. A particular example of this model is the
one with G � SU�2�, which was found to belong to a
continuous family of integrable models by Cherednik in [79].
Given g 2 SU�2�, the model is defined by the following
action:

S � ÿ 1

2

�
dt ds Tr

�
Ad�q�g gÿ1�JAd�qÿg gÿ1�

�
; �3:1�

where the diagonal matrix J � diag �J1; J2; J3� stands for a
deformation of the Killing form. In [19], it was shown that
model (3.1) can be understood in terms of Yang±Baxter sigma
models, i.e., sigma models deformed by a classical r-matrix R
that satisfies the (modified) classical Yang±Baxter equation

�RM;RN� ÿ R
ÿ�RM;N� � �M;RN�� � c�M;N� ; �3:2�

where M;N 2 su�2�. It is worth mentioning that, for histor-
ical reasons, the classical r-matrix defining deformations of
2d sigma models is denoted by a capital letter R, which in the
mathematical literature is reserved for the quantum r-matrix,
i.e., the one solving the quantum Yang±Baxter equation. To
keep notations correlated with the rest of the string theory
literature, we follow this historical rule, which, however,
should not cause much confusion.

The deformation procedure used in [79] is specific to the
SU(2) group manifold and cannot be directly generalized to
any group manifold taken as a target space. The approach of
[19] suggests that the following action be considered:

S �
� 


gÿ1q�g; �11� ER�ÿ1gÿ1qÿg
�
; �3:3�

where the angle brackets denote the Killing form on the Lie
algebra g of a simple compact Lie group G. Further in [80],
this model was shown to be integrable, and the corresponding
Lax connection can be written as follows:

A��l� �
�
E 2 � ERÿ 1� e 2

1� l

�ÿ
11� ER

�ÿ1
gÿ1q�g ; �3:4�

where l 2CC is a complex spectral parameter. When E � 0, the
above reproduces precisely the Lax connection introduced by
Zakharov and Mikhailov.

The procedure of deforming principal sigma models
preserving integrability was generalized to sigma models on
coset spaces in [20]. The action for the deformed sigma model
on a coset space G=F now involves the so-called dressed
r-matrix Rg � Adgÿ1 RAdg:

Here, P1 is the projection onto the subspace g �1� of the Lie
algebra g of G, which corresponds to the value s � �1 of an
order-2 automorphism s : g! g. Using this approach, an
integrable deformation of the AdS5� SS5 superstring in the

4 Other examples of integrable strings that we will not focus on here are the

l deformations of [76, 77].

11
S �

� �
�gÿ1q�g� �1�; 1� Z2

ÿ ZRg P1
�gÿ1qÿg� �1�

�
: �3:5�
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Metsaev±Tseytlin formalism was constructed in [21], which
we will discuss in a moment. Two important observations
have been made concerning such a deformed superstring:
(i) the deformed sigma model can be understood as a string
propagating on a metric background (ABF) that does not
satisfy supergravity equations [25]; (ii) kappa symmetry of the
GS superstring still holds [27]. Remarkably, kappa-symmetry
of the GS superstring has been shown to imply a slight
generalization of supergravity equations [26], which are
precisely the ones solved by the ABF background. Hence, it
can be concluded that the space of consistent vacua, at least
for the GS superstring, is wider than the space of solutions to
supergravity equations, and, moreover, certain points in this
space are connected by Yang±Baxter deformations.5 Later in
Section 4, we will see that the same picture holds for 11d
supergravity, although several loose ends must be tied up,
such as kappa invariance of the membrane on similar
deformations.

To date, great progress has been made in understanding
Yang±Baxter deformed sigma models on group manifolds
and coset spaces and in finding new examples. Let us mention
some of themost compelling results. A slight generalization of
the q-deformation of [21] has been suggested in [22] that
contains twists of the R-operator, allowing us to perform
partial deformations affecting only of the sphere part of the
AdS5� SS5 superstring. Recall that the r-matrix describing the
standard q-deformations is a so-called Drinfeld±Jimbo type:

RDJ � a
X
M

1

Tr �eM fM� eM ^ fM ; �3:6�

where the indexM labels positive eM and negative fM roots of
the isometry algebra. Jordanianmatrices are constructed by a
linear twist of RDJ by an arbitrary (bosonic) root. A general
class of integrable deformations of sigma models on coset
spaces whose Poisson brackets are related to those of [21] by
an analytic continuation was found in [84]. This generalizes
earlier studies [76, 85, 86], where integrable deformations
were constructed as interpolations between exact WZW
CFTs. (For more details see, e.g., reviews [87, 88], PhD thesis
[89], and references therein.) Integrable deformations of the
string on AdSn� SS n were intensively investigated in [90±93].
Given the discussion at the beginning of this section it is also
worth mentioning [29, 30, 94], where a gauge theory
interpretation of integrable deformations was presented
using the formalism of Drinfeld twists. This generalizes the
known interpretation of Abelian deformations, such as the
U�1��U�1� deformation of Lunin and Maldacena as the
twisting of the fields product, to the non-Abelian case (for
more details on the Abelian case, see, e.g., [95]). The result is a
noncommutative Yang±Mills theory, which is expected, since
the generators of the deformations are taken along the AdS
space.

3.2 Integrable deformation of the AdS5� SS 5 superstring
Let us illustrate the formalism of integrable Yang±Baxter
deformations by the example of Z-deformation of the
AdS5� SS5 superstring following [20]. We start by recalling
the construction of the Lax connection for the Metsaev±
Tseytlin superstring [96]. The Type IIB background

AdS5� SS5 is supported by the nonvanishing self-dual RR
five-form flux, and hence the superstring on this background
can conveniently by described using the Green±Schwarz
formalism. Such a superstring lives in the following sym-
metric superspace:

PSU�2; 2j4�
SO�4; 1� � SO�5� �

SU�2; 2� � SU�4�
SO�4; 1� � SO�5�

� SO�4; 2� � SO�6�
SO�4; 1� � SO�5� � AdS5� SS5 : �3:7�

The corresponding GS sigma model is formulated in terms of
a 1-form A 2 su�2; 2j4� built out of a supergroup element
g 2 SU�2; 2j4� as

A � ÿgÿ1 dg � A�0� � A�1� � A�2� � A�3� : �3:8�

Here, the decomposition is due to ZZ4-grading of su�2; 2j4�
induced by a certain order 4 automorphism. This defined
1-form A is flat:

qaAb ÿ qbAa ÿ �Aa;Ab� � 0 : �3:9�

The action of the superstring onAdS5� SS5 then takes the form
of the so-called Metsaev±Tseytlin superstring [97]:

SMT � ÿ g

2

�
dt ds

�
g ab STr �A�2�a A

�2�
b � � kEab STr �A�1�a A

�3�
b �
�
;

s 2 �ÿr; r� ; �3:10�

with g � R 2=�2pa 0�, where R is the SS5 radius and a 0 is the
string slope, gab � �������ÿhp

h ab, where h ab is the inverse
worldvolume metric, STr denotes the supertrace, and E ab is
the worldvolume totally antisymmetric tensor, E ts � 1.

For further discussion, it is convenient to introduce
tensors

P ab
� �

1

2
�g ab � kEab� ; �3:11�

which are orthogonal projectors in cases k � �1, and four
projectors Pk onto the corresponding subspaces of su�2; 2j4�
with grade k � 0; . . . ; 3, such that A�k� � PkA. Also, we will
use the following conventions for projected vectors
V a
� � P ab

� Vb. In these notations,

SGS � ÿ g

2

�
dtdsP ab

ÿ STr
ÿ
Aa�P1 � 2P2 ÿ P3�Ab

�
: �3:12�

The GS action (3.12) must obey a local fermionic
symmetry, called k-symmetry. It halves the number of
world-volume fermionic degrees of freedom, making them
consistent with the space±time supersymmetry of the string
physical spectrum. Its transformation acts on A as

dEA � ÿ dE� �A; E� ; E � E �1� � E �3� ; �3:13�

with

E �1� � A�2�a;ÿk
�1�; a
� � k �1�; a� A�2�a;ÿ ; �3:14�

E �3� � A
�2�
a;�k

�3�; a
ÿ � k �3�; aÿ A

�2�
a;� :

An interesting fact is that the k-invariance of the action
requires k � �1, and hence P ab

� are indeed orthogonal
projectors.

5 See, however, the discussion concerning the consistency of generalized

supergravity backgrounds on which the string is only scale invariant or the

corresponding FT counterterm seems to be nonlocal [81±83].
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Equations of motion for (3.12) can be written in the
following compact form:

0 � qa�g abA�2�b � ÿ gab�A�0�a ;A
�2�
b �

� 1

2
kEab

ÿ�A�1�a ;A
�1�
b � ÿ �A�3�a ;A

�3�
b �
�
;

0 � P ab
ÿ �A�2�a ;A

�3�
b � ; �3:15�

0 � P ab
� �A�2�a ;A

�1�
b � :

The global PSU�2; 2j4� symmetry of the sigma model
corresponds to conservation of the following Noether's
current:

J a � gg

�
g abA�2�b ÿ

1

2
kEab�A�1�b ÿ A

�3�
b �
�

gÿ1; qaJ a � 0 :

�3:16�

This model is classically integrable, meaning that the
equations of motion (3.15) together with the flatness condi-
tion forA (3.9) are equivalent to the zero curvature condition,

qaLb ÿ qbLa ÿ �La;Lb� � 0 ; �3:17�

for a Lax connection La defined by

La � `0A�0�a � `1A�2�a � `2gabE brA�2�r � `3A�1�a � `4A�3�a : �3:18�

The prefactors must be chosen as

`0 � 1 ; `1 � 1

2

�
z 2 � 1

z 2

�
;

�3:19�
`2 � ÿ 1

2k

�
z 2 ÿ 1

z 2

�
; `3 � z ; `4 � 1

z
;

where z is the spectral parameter and k � �1. Thismeans that
the requirement of integrability automatically leads to the
same constraints as k-invariance.

Let us now briefly discuss the results of [21], where the
integrability of the superstring on the Z-deformed AdS5� SS5

has been demonstrated. Note that forAwe use the convention
(3.8) of [96], which differs from [21] by a `ÿ' sign. The
superstring on the Z-deformed AdS5� SS5 can be written as
the following Z-deformation of the Metsaev±Tseytlin super-
string (3.12):

S
Z
MT� ÿg

�
dtds

�1� Z2�2
2�1ÿ Z2� P

ab
ÿ STr

�
Aa P � 1

1ÿ ZRg � P �Ab�
�
;

�3:20�

where

P � P1 � 2

1ÿ Z2
P2 ÿ P3 ; ~P � ÿP1 � 2

1ÿ Z2
P2 � P3 :

�3:21�
The crucial ingredient here is a skew-symmetric operator on
su�2; 2j4�, which acts as Rg � Adÿ1g � R �Adg and solves the
modified classical Yang±Baxter equation. Specifically,
8M;N 2 su�2; 2j4�:
�RM;RN� ÿ R

ÿ�RM;N� � �M;RN�� � �M;N� �3:22�

and STr �MRN� � ÿSTr �RMN�.

For Z � 0, action (3.20) reproduces (3.12). The following
vectors,

Ja � 1

1ÿ ZRg � P �Aa� ; �3:23�

~Ja � 1

1� ZRg � ~P
�Aa� ; �3:24�

allow writing equations of motion for (3.20) in the most
convenient way:

0 � P�qaJ a
ÿ� � ~P�qa ~J a

�� ÿ
�
~J�a;P�J a

ÿ�
�ÿ�Jÿa; ~P�~J a

��
�
: �3:25�

Finally, we can define

La
� � ~J

a�0�
� � l

�������������
1� Z2

p
~J
a�1�
� � lÿ2

1� Z2

1ÿ Z2
~J
a�2�
�

� lÿ1
�������������
1� Z2

p
~J
a�3�
� ; �3:26�

M a
ÿ � J a�0�

ÿ � l
�������������
1� Z2

p
J a�1�
ÿ � l2

1� Z2

1ÿ Z2
J a�2�
ÿ

� lÿ1
�������������
1� Z2

p
J a�3�
ÿ �3:27�

with the spectral parameter l. Then, the whole set of
equations of motion (3.25) and the zero curvature equations
(3.9) are equivalent to

qaLa
� ÿ qaM a

ÿ ÿ �Mÿa;La
�� � 0 : �3:28�

Introducing La � L�a �Mÿa, we obtain the standard Lax
equation

qaLb ÿ qbLa ÿ �La;Lb� � 0 : �3:29�

This confirms the integrability of the Z-deformed sigma
model. Also, it is worth mentioning that action (3.20) is
k-invariant.

3.3 Poisson±Lie T-duality
Yang±Baxter deformations appear to be a particular example
of Poisson±Lie T-duality and in particular can be represented
as a non-Abelian T-duality with an additional parameter,
whose inverse is precisely the deformation parameter [98].
While a detailed review of Poisson±Lie T-dualities is not
really necessary to define Yang±Baxter equations, this part of
the story is still important for the purposes of the present
review. The reason is that there are two known ways to arrive
at a 3d generalization of the classical Yang±Baxter equation:
use algebraic arguments based on generalizations of the
Drinfeld double construction [37, 38] or address deforma-
tions from the supergravity side [34, 36]. The former are based
on a generalization of the U-duality symmetry of the
membrane to the so-called Nambu±Lie symmetry along the
same lines that lead from the ordinary T-duality to Poisson±
Lie duality. This approach is restricted to only group
manifolds, while for a general 11d background, one follows
the latter approach, which is based on exceptional field theory
and eventually again onU-duality, now understood as a local
symmetry of a specially extended space. For this reason, we
find it useful to show the relation between Yang±Baxter
deformations and Poisson±Lie T-dualities to further exploit
the logic in the 11d case.
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Poisson±Lie T-duality transformations were suggested in
[99] to answer the question of whether an inverse of a non-
Abelian T-duality transformation can be constructed. The
crucial observation here is that the standard (Abelian) T-
duality defined by Buscher rules preserves the U(1) isometries
on which it is constructed. To generalize these dualities, one
may start with a non-Abelian group of symmetries G of a
background rather than the Abelian group of a torus [100].
These non-Abelian T-duality transformations in general
break the initial isometries, and it is not very obvious how
an inverse transformation can be constructed. To T-dualize
backgrounds without isometries in the usual sense, in [99], an
algebraic approach was suggested based on the notion of
Drinfeld doubles, where the isometry actually exists and is
hidden inside the algebraic structure of the double. Let us give
more details on the construction focusing primarily onYang±
Baxter deformations inside the Drinfeld double. For a review
of non-Abelian T-dualities and their applications as a
solution generating technique, see, e.g., [88, 101, 102] (for
more details on Poisson±Lie T-dualities, including their
realization in double field theory, see, e.g., [103±106]). For a
recent discussion related to Poisson±Lie and non-Abelian
T-duality symmetry for the quantum superstring, see [107,
108], and for a general approach to solution generating
techniques, see [109, 110].

To go beyond T-dualization along isometries defined by
conserved charges in [99], a conception of the noncommuta-
tive conservation law has been introduced. For a sigmamodel
on a group manifold G, the noncommutative conservation
law is defined as

dJa � 1

2
~fa
bcJb ^ Jc ; �3:30�

where the currents defined by 1-forms Ja correspond to the
standard action of the group G on itself. In coordinates, the
group action can be written as dx i � vaiE a. Under such
coordinate shifts, the action of the 2d sigma model trans-
forms as

dS �
�
d2s E aLva�Ei j� qx i �qx j �

�
dE a ^ Ja ; �3:31�

where E � G� B. Integrating the last term in (3.31) by parts
and assuming proper boundary conditions, we see that the
action stays invariant under the transformation when either
the usual conservation law dJa � 0 or the noncommutative
conservation law (3.30) holds together with

Lva�Ei j� � ~fa
bcva

kvb
lEkiEjl : �3:32�

The integrability of this constraint implies the following
relation between the quantities ~fa

bc and structure constants
fab

c of the Lie algebra g of the isometry group G:

4 ~f�aa�c fb�ed � ÿ ~fe
cd fab

e � 0 : �3:33�

Together with the integrability condition for (3.30), that is,
~fe
g�a ~fg

bc� � 0, and the Jacobi identity for fab
c, this has the

form of the compatibility condition for the structure of a Lie
bi-algebra on g. In [99], it was shown that, given the algebras g
defined by fab

c and ~g defined by ~fa
bc for a Drinfeld double D

(to be defined below), sigmamodels on backgrounds realizing
g and ~g are equivalent. Equivalence here is meant in the sense
that both sigma models can be obtained translating a

d-dimensional linear space E � TeD tangent to Drinfeld
group D at unity e by either exp g or exp~g. In more physical
terms: the equations of motion are the same.

Let us give more details on the Drinfeld algebra construc-
tion, avoiding however the categorical language of commu-
tative diagrams, since, working with explicit backgrounds,
one always has to choose a specific basis. Hence, let
fTag � bas g and f ~T ag � bas~g with a � 1; . . . ; d, then the
Drinfeld double can be realized as a Manin triple �Ta; ~T a; Z�,
where Z is a nondegenerate quadratic form defined as

Z�Ta; ~T b� � dab : �3:34�

Commutation relations in this basis read

�Ta;Tb� � fab
cTc ;

�Ta; ~T b� � ~fa
bc Tc ÿ fac

b ~T c ; �3:35�
� ~T a; ~T b� � ~fc

ab ~T c :

To define Poisson±Lie T-dualities in these terms, it is
convenient to denote the whole basis by fTAg � fTa; ~T ag
and structure constants by FAB

C, i.e., �TA;TB� � FAB
CTC.

The quadratic form is then given by the invariant tensor ZAB
of the O�d; d� group,

ZAB � 0 dab

dcd 0

� �
: �3:36�

Poisson±Lie T-duality transformations are then such O�d; d�
rotations of the basis

T 0A � CA
BTB �3:37�

that preserve the Drinfeld double. To construct a geometric
realization, one takes the so-called geometric subgroup,
which is by definition the one generated by g, and constructs
right-invariant 1-form r � gÿ1 dg, where g 2 G. The dual
background is then constructed as the geometric realization
of the transformed geometric subgroup generated by g 0. For a
more detailed description of this algorithm, see [37, 39, 111].
The search for such a matrix CA

B 2 O�d; d� preserving a
Drinfeld double is the most complicated task in constructing
Poisson±Lie T-dual backgrounds. Certain classification
results for lower dimensional Lie algebras are available in
the literature [112±114]. For special matricesCA

B correspond-
ing to inner automorphisms of the O�d; d� group (factorized
T-dualities), one has discrete transformations that are
guaranteed to preserve a given Drinfeld double. An example
of such a transformation is switching g$ ~g, which is a
different way of saying that a given Drinfeld algebra can be
decomposed into two Manin triples. Moreover, in [115],
examples of Drinfeld doubles were found that can be
decomposed into more than three Manin triples, which has
been called Poisson±Lie T-plurality.

After this long introduction, we are finally at the point
of defining Yang±Baxter deformations in terms of Drinfeld
doubles and Poisson±Lie symmetries. Consider a contin-
uous family of deformations of a given Drinfeld algebra
~fa

bc � r d�b fadc�, which corresponds to deformation of the
Drinfeld algebra with ~fa

bc � 0 by the following matrix:

CA
B � dab r ac

0 ddc

� �
: �3:38�
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Such defined dual structure constants ~fa
bc satisfy all compat-

ibility conditions if r ab satisfies classical Yang±Baxter
equation

r e�ar j f jbfefd � � 0 : �3:39�

In the language of double field theory to be discussed below,
this matrix corresponds simply to a special case of generalized
diffeomorphisms of extended space [116, 117]. Since such a
Yang±Baxter deformation changes the initial Drinfeld alge-
bra, it is strictly speaking not a duality in the usual sense of a
relation between two different descriptions of the same
physics. However, geometric realization of the deformed
Drinfeld double solves supergravity equations, given the
initial background is a solution and the so-called unimodu-
larity constraint r ab fab

c � 0 holds, which is best seen in the
formalism of double field theory, which we now turn to.

3.4 Bi-vector deformations
of 10d supergravity backgrounds
As has already been mentioned, the construction above is
restricted to group manifolds and coset spaces (in the case of
non-Abelian T-duality (NATD) [98]). The reason can be seen
in the fact that it is very algebraic in its nature and heavily
relies on the usage of right-invariant forms as target-space
vielbeins. A more field theoretic approach to Yang±Baxter
deformations was suggested in [29, 30] and further developed
in [31, 32, 117, 118]. The approach of [29, 30] was based on
noticing that Yang±Baxter deformations of a background
given by metric G can be represented in the form of an open-
closed string map

�Gÿ1 � b�ÿ1 � g� b ; �3:40�

where g and b are the deformed metric and deformed 2-form
Kalb±Ramon field, and the deformation parameter
b � r abka ^ kb is defined in terms of Killing vectors
ka � ka

mqm of the initial background. Let us note here that
the deformation parameter bmn enters equations very similar
to the noncommutativity parameter of Seiberg and Witten
[119]. Although the deep meaning of this is not clear, exactly
the same is observed in 11 dimensions. There, the deforma-
tion parameter has 3 indices Omnk precisely as the membrane
noncommutativity parameter, and generalized Yang±Baxter
deformation rules have precisely the form of the open-closed
membrane map to be discussed in Section 4.4.

Since we are not able to comment more on this very
intriguing relation, we prefer to formulate Yang±Baxter
deformations in the O�10; 10� covariant language that is
ready to generalize to 11 dimensions. This is the language of
double field theory, where all supergravity fields depend on a
doubled set of coordinates fXXMg � fxm; ~xmg subject to the
so-called section constraint

ZMNqM � qN� � 0 ; �3:41�

where the bullets stand for any of the fields of the theory and
their combinations. Basically, the section constraint removes
the dependence on half of the coordinates, e.g., on the so-
called nongeometric ones f~xmg. In what follows, we will
always assume this choice of the section. The idea of
doubling the coordinates follows from the early work by
Fradkin and Tseytlin [120], where right and left moving
modes of a closed string on a torus are considered indepen-

dently, hence the alternative reference for ~xm as winding
coordinates. The notion of the section condition and general-
ized Lie derivative were introduced in [121, 122]. Full
formulation of double field theory was developed in [123]
for the NS±NS sector, in [124] for the full bosonic field
content of supergravity, and in [125] to include supersymme-
try. For the purposes of this review, double field theory
simply provides a convenient choice of parametrization of
fields for which Yang±Baxter deformations become a linear
O�10; 10� transformation. Hence, we will provide only the
necessary bits of the formalism, and for a more detailed
review the reader is referred to [126±128].

In the covariant formalism, the metric and the B-field of
supergravity are packed into the so-called generalized metric
HMN 2 O�10; 10�=O�1; 9� �O�9; 1�. For our purposes, it is
more convenient to introduce a generalized vielbein
HMN � EM

AEN
BHAB, where HAB is a constant unity matrix.

The generalized vielbein in the upper triangular form can be
defined by exponentiating the space±time vielbein em

a and bmn

with certain generators of O�10; 10�. For that purpose, we
decompose the generators with regard to the action of the
geometric GL(10) subgroup, i.e., parameterize the generators
as follows: fTab;Ta

b;T abg � bas o�10; 10�. Then, the general-
ized vielbein is defined as

EM
A � exp

�
em

aTa
m
�
exp

�
babT

ab
� � em

a bmkeb
k

0 eb
n

� �
: �3:42�

Consider now an O�10; 10� transformation of the form

E 0MA � OM
NEN

A ; OM
N � exp

�
bmnTmn

� � dmn 0

b nk dlk

� �
:

�3:43�
The generalized metric then transforms linearly by conjuga-
tionsH 0 � Oÿ1HO, and in terms of the space±time fields g, b
the transformation has precisely the form of an open-closed
string map. Following [29, 30], we assume the bi-Killing
ansatz for the bivector

bmn � r abka
mkb

n ; �3:44�

where r ab � ÿr ba is a constant matrix and ka
m are Killing

vectors of the initial background g, b. Now, the advantage of
the covariant language is that, to ensure that this transformed
background is still a solution to supergravity equations, it is
enough to check that the so-called generalized fluxes stay
invariant [98]. The fluxes are defined as a generalization of
anholonomy coefficients

LEA
EB � FAB

CEC ; �3:45�
LEA

d � FA ;

where LEA
denote the generalized Lie derivative along the

vielbein EA
M and d is the invariant dilaton. In general, the

fluxes FAB
C and FA are some combinations of the fields g, b,

f, and their derivatives, and become constant in the case of
group manifolds. These are then precisely the structure
constants FAB

C of the corresponding Drinfeld double.
Crucial for discussing this feature of double field theory is
that, pretty much like general relativity, its action and field
equations can be written completely in terms of fluxes and
their derivatives [129]. Hence, if the deformation does not
change generalized fluxes, it is a solution generating transfor-
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mation. This boils down to a condition on the matrix r ab that
remarkably is the classical Yang±Baxter equation together
with the unimodularity constraint:

r e�ar j f jbfef c� � 0 ; r ab fab
c � 0 : �3:46�

To conclude this section, recall that, from the point of
view of the sigma model, Yang±Baxter deformations are the
ones that preserve integrability. In terms of T-dualities, these
act as a special case of the Poisson±Lie symmetry deforming a
given Drinfeld double. Beyond group manifolds, these act as
a solution generating transformations preserving generalized
fluxes of double field theory. At the moment, the latter two of
these approaches to deformations have been generalized to
11 dimensions, apparently without reference to integrability
of the membrane.

4. 11d supergravity and membranes

Classical integrability of a two-dimensional system (say, the
fundamental string) implies that its equations of motion can
be recast in the form of the Lax±Zakharov±Shabat equation
requiring a 1-form A, the Lax connection, to be flat. In turn,
this implies that an evolution operator can be constructed as a
Wilson line that does not depend on the choice of the path.
Taking the flatness condition as a starting point, one may use
the r-matrix satisfying the classical Yang±Baxter equation to
generate Poisson brackets of the system. This equation is a
quasi-classical limit of the quantum Yang±Baxter equation,
whose solution R defines the S-matrix of the system. This
factorization property of the S-matrix means that the theory
is integrable. Given an integrable superstring on a super-
gravity background, classical r-matrix r 2 g ^ g can be used to
define its integrable deformations. For the general case of a
solution to 10d supergravity equations, such (unimodular)
Yang±Baxter deformations work as a solution generating
transformations. The algebraic structure behind these sym-
metries is provided by classical Drinfeld double and Poisson±
Lie T-dualities.

In Section 2.4, we have seen that, when replacing the
Poisson bracket by a Nambu bracket, one naturally arrives at
an action structurally similar to that of the membrane.
Although the integrability in three dimensions is not a well
defined concept, a certain generalization of the structures
responsible for integrability in 2d can be made. Consider as
before a Lax pair. Then, a Nambu bracket can be generated
by making use of the so-called r-tensor r 2 g ^ g ^ g, which
satisfies a certain generalization of the classical Yang±Baxter
equation. Such a r-tensor can be used to deform the so-called
exceptional Drinfeld algebra, which is a generalization of
the classical Drinfeld double standing behind Nambu±Lie
U-duality. The condition for the deformation to preserve the
algebraic structure is the same generalized Yang±Baxter
equation. Beyond group manifolds, one finds generalized
Yang±Baxter deformations as transformations generating
families of solutions to 11d supergravity equations. Unfortu-
nately, at this moment, we are not able to claim that these
deformations preserve the integrability of the membrane due
to the lack of its clear description. Formally following the 2d
constructions, we face the absence of the proper ordering of
points on a 2d surface generalizing Wilson line. The way out
might be in turning to loop algebra variables, which seem
to be more natural for describing membrane dynamics. In
this section, we give a more detailed review of Nambu±Lie

U-duality, deformations of exceptional Drinfeld algebras
leading to the generalized Yang±Baxter equation, and a
generalization of the construction beyond group manifolds;
describe in more detail the arguments for Nambu brackets
and loop algebraic variables to appear naturally inM-theory;
describe the so-called transgression map relating the two; and
finally provide some vague considerations following possible
definitions of a Wilson surface and quasi-classical limits of
tetrahedron equations, which seems to be the proper 3d
analogue of the quantum Yang±Baxter equation.

4.1 Nambu±Lie U-duality
M-theory can be understood as the theory whose weak
coupling approximation is the perturbative string theory.
This statement is supported by the double dimensional
reduction in the membrane when it wraps the compact cycle,
giving the fundamental string. Given that, one may think
of string theory as of a theory of various membranes on
11-dimensional background space±time that can be described
in terms of a Polyakov string at certain points of the moduli
space of vacua where the coupling gs is small. Since, in the
double dimensional reduction, gs is determined by the size of
the compact cycle, the dimension of the background space at
these points is effectively 10. A more detailed discussion of
M-theory from this point of view can be found in [130]. Since
gs does not play the role of a coupling constant in M-theory,
various branes whose tensions differ by its powers can be
mapped into each other by a symmetry that enhances
T-duality and includes S-duality. This so-called U-duality
(for unity or unified) was first observed in 11d supergravity
compactified on a 7-torus in [131], where the resulting 4d
equations of motion were shown to be invariant under E7�7�
transformations. In general, in compactifying 11d super-
gravity on a d-torus, one ends up with a theory invariant
under Ed�d� symmetry, where E3�3� � SL�2� � SL�3�, E4�4� �
SL�5�, E5�5� � SO�5; 5�, and for d5 9 the symmetry algebra
becomes infinite and special constructions are needed. Taking
into account quantum effects breaks this symmetry into
Ed�d��ZZ�, as was shown in [132]. A highly detailed discussion
of exceptional symmetries of toroidal compactifications of
11d supergravity can be found in [133, 134], and of U-duality
symmetries of M-theory, in [135].

Although a construction similar to that of Buscher for the
string does not seem to exist formembranes, simply due to the
fact that one must simultaneously consider M2 and M5
branes to properly define duality transformations, an exten-
sion of the standard Abelian U-duality symmetry to non-
Abelian Nambu±Lie U-duality is possible.6 For that, one has
to construct a generalization of the classical Drinfeld double,
called the exceptional Drinfeld algebra (EDA), where the
O�d; d� symmetry is replaced by one of the U-duality
symmetry groups. This has been done in [37±39, 137] and
the step-by-step algorithm of constructing a Nambu±Lie
dual can be found in [111]. Let us sketch the construction
without going into much detail. Generators of the excep-
tional Drinfeld algebra belong to 10, 16s, 27 for groups
SL�5�, SO�5; 5�, E6�6�, respectively, so in general one has for
the basis

TA � fTa;T
a1a2 ;T a1 ...a5g : �4:1�

6 Note, however, [136], where invariance of membrane equations of

motion are shown for the specific case of a 4-dimensional target space

where the M5-brane cannot fit. Dual coordinates then correspond to

windings of the M2-brane only.
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The generators fTag form a basis of the so-called geometric
subalgebra g, while the others can be understood as
corresponding to windings of the M2- and M5-brane, pretty
much as in the classical Drinfeld double case generators ~T a

defined the dual algebra. The algebraic structure is defined by
the following multiplication table:

TA � TB � FA;B
CTC ; �4:2�

where FA;B
C are to generalized fluxes of exceptional field

theory as structure constants of the classical Drinfeld double
are to generalized fluxes of double field theory. More
concretely, the multiplication table can be represented in the
following form:

Ta � Tb � fab
c Tc ;

Ta � T b1b2 � fa
b1b2c Tc � 2 fac

�b1 T b2�c � 3Za T
b1b2 ;

Ta � T b1...b5 � ÿfab1...b5c Tc ÿ 10 fa
�b1b2b3 T b4b5�

ÿ 5 fac
�b1 T b2...b5�c � 6Za T

b1...b5 ;

T a1a2 � Tb � ÿfba1a2c Tc � 3 f�c1c2
�a1 d a2�

b� T c1c2 ÿ 9Zc d
�c
b T a1a2 � ;

T a1a2 � T b1b2 � ÿ2 fca1a2�b1 T b2�c ÿ fc1c2
�a1 T a2�b1b2c1c2

� 3Zc T
a1a2b1b2c ; �4:3�

T a1a2 � T b1...b5 � 5 fc
a1a2�b1 T b2...b5�c ;

T a1...a5 � Tb � fb
a1 ...a5c Tc � 10 fb

�a1a2a3 T a4a5�

� 20 fc
�a1a2a3 d a4

b T a5�c � 5 fbc
�a1 T a2...a5�c

� 10 fc1c2
�a1 d a2

b T a3a4a5�c1c2 ÿ 36Zc d
�c
b T a1...a5 � ;

T a1...a5 � T b1b2 � 2 fc
a1...a5�b1 T b2�c ÿ 10 fc

�a1a2a3 T a4a5�b1b2c ;

T a1...a5 � T b1...b5 � ÿ5 fca1...a5�b1 T b2 ...b5�c :

In contrast to classical Drinfeld, the double exceptional
Drinfeld algebra is a Leibniz algebra, as structure constants
FA;B

C are not antisymmetric in lower indices. Consistency
requires quadratic relations on the constants fab

c, fa
bcd, Za

that, written in terms of the covariant object FA;B
C, repeat

quadratic constraints of maximal gauged supergravity [138].
Nambu±Lie U-duality is defined as such an Ed�d� transforma-
tion TA ! CA

BTB that preserves the algebra. One immedi-
ately notices the absence of the natural duality, swapping the
geometric algebra g spanned by Ta in the chosen basis and its
dual spanned by the rest, since the dimensions are different
and the rest of the generators do not form a Lie algebra.
However, an analogue of such swapping was suggested in
[139] based on outer automorphisms of ed, which allowed
generating several examples of non-Abelian U-dual back-
grounds in [111].

We are interested here in deformations of exceptional
Drinfeld algebras consistent with their structure and defined
by analogy with Yang±Baxter deformations of the classical
Drinfeld double as follows:

fa
bcd � r e�bcfead � ; fa

a1...a6 � r e�a1...a5 fea
a6� ; �4:4�

where fa
a1...a6 � E a1...a6Za. Such deformations of exceptional

Drinfeld algebras were introduced in [37, 38]. In the context of
deformations of supergravity backgrounds, these were con-
sidered earlier in [34] as a generalization of the open-closed
string map to the case of 11d supergravity fields. The
condition for the deformation to preserve the exceptional
Drinfeld algebra structure is called the generalized Yang±

Baxter equations and reads

r a1 �a2ja6jr a3a4ja5 j fa5a6
a7� ÿ r a2�a1ja6jr a3a4ja5j fa5a6

a7�

ÿ 3 fa5a6
�a1r a2�a3a4a5a6a7 � 0 ; �4:5�

r a1a2�a8r a3a4a5a6a7a9 � fa8a9
a10 � 0 :

When restricted to the SL�5� EDA, i.e., four geometric
generators, the above condition is precisely the one of [34]
obtained from the vanishingR-flux condition (to be discussed
in the next section). Note that if r a1...a6 � 0 the generalized
Yang±Baxter equations in the first line above are exactly
conditions (2.31) that ensure that the tri-bracket defined for
Lax operators in terms of the r-tensor r abc is a Nambu
bracket, i.e., satisfies the fundamental identity. To our
knowledge, in the present context, this was first observed in
[39] (Section 4 there), and a candidate for an equation whose
quasiclassical limit gives (4.5) was suggested. Although the
details are not completely clear, the suggested quantum
generalized Yang±Baxter equation looks very similar to the
tetrahedron equation in the form of the decorated Yang±
Baxter equation (see Section 4.6.2). If proven, this would be a
strong hint of the integrability of the membrane.

4.2 Polyvector deformations
As in the cases of Poisson±Lie T-duality and Yang±Baxter
deformations, the generalized Yang±Baxter deformations
discussed above in the context of exceptional Drinfeld
algebras can be extended beyond group manifolds. We will
follow here the construction of [35, 36], where generalized
Yang±Baxter deformations of a general supergravity back-
ground with at least three Killing vectors are given by a
certain Ed�d� transformation. The transformation acts on
fields of exceptional field theory, which is a covariant
formulation of supergravity with the field transforming in
irreducible representations of ed and in general depend on
coordinates XM parametrizing space±time extended by mem-
brane winding modes. Similarly to double field theory, the
consistency of local symmetries requires the section condition,
which we will assume to be solved by keeping only geometric
coordinates xm. We will not go into detail about the
construction, for which the interested reader is referred to
plenty of detailed literature on the subject [140±144].

Since the local symmetry group of exceptional theories
changes with dimension d of the so-called internal space
entering the split 11 � D� d, explicit expressions for
generalized Yang±Baxter deformations also significantly
change. To illustrate the main idea, we take the simplest
SL(5) theory, whose deformations might be trivial in the
sense discussed below; however, all the main features
present. As in double field theory, we focus only on the
generalized vielbein EM

A and the corresponding general-
ized metric mMN 2 SL�5�=SO�5��RR�. Note however, that,
in contrast to the full double field theory, exceptional field
theory includes gauge fields that transform nontrivially under
U-duality. To restrict the discussion to the generalized
vielbein and a dilaton-like field f corresponding to a
determinant of the external D-dimensional metric, a specific
truncation must be performed [35]. Leaving the details aside,
we note that generators of SL(5), when decomposed under the
action of its GL(4) subgroup, follow the same labeling pattern
as generators of the SL(5) EDA,

bas sl�5� � fTAg � fTabc;Ta
b;T abcg : �4:6�
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As before, the last 10, i.e., generators of a non-negative level
regarding the action of the GL(1) subgroup of GL(4), define
the generalized veilbein itself:

EM
A � efT exp

�
em

aTa
m
�
exp

�
CabcT

abc
�
; �4:7�

where T is the generator of RR�. The deformation map is then
defined by negative level generators and has the following
form:

E 0MA � OM
NEN

A ; �4:8�
OM

N � exp
�
OmnkTmnk

� � dmn 0
EnpqrO pqr 1

� �
:

As before, imposing the tri-Killing ansatz

Omnk � r abcka
mkb

nkc
k ; �4:9�

where ka
m denote Killing vectors of the initial background,

and requiring that the deformed background be a solution to
the supergravity equation in the exceptional field theory
form, we arrive at the condition on r abc that is precisely the
generalized Yang±Baxter equation (4.5) together with the
unimodularity constraint

r abc fab
d � 0 : �4:10�

To have 6-vector deformations, one has to go to a larger
symmetry group. The triviality of tri-vector deformations
inside the SL(5) theory mentioned above comes from the fact
that, to ensure invariance of generalized fluxes, which
equivalently satisfy supergravity equations, the unimodular-
ity condition is enough. This is the same as the O(3, 3) double
field theory and is related to the dimension of the internal
space, which renders the (generalized) Yang±Baxter equation
in the form of the vanishing of R-flux to be equivalent to the
unimodularity condition. One can, however, consider Yang±
Baxter deformations that are non-unimodular and hence do
not solve equations of standard supergravity, instead leading
to their generalization [145, 146].

To recap, a generalization of Poisson±Lie T-duality
symmetries to an algebra that includes Abelian U-duality
transformations naturally leads to the notion of the excep-
tional Drinfeld algebra that underlies the Nambu±Lie
U-duality symmetry. As the geometric realization of the
classical Drinfeld double in terms of generalized vielbein
leads to a bi-vector defining the Poisson structure, geometric
realization of the exceptional Drinfeld algebra leads to a
3-vector and a 6-vector defining a Nambu structure. In the
context of generalized Yang±Baxter deformations, these
define a deformed background, and the condition for it to
satisfy supergravity field equations is precisely equations
(2.31), which appear as the condition for a 3-bracket of a
system defined by a Lax pair and the tri-vector to satisfy the
fundamental identity.

Precisely as in the string case, map (4.8) has the form of an
open-closed membrane map of [119]. To see that we should
start with a background with no C-field, the deformed
background in this language will be precisely the background
seen by the openmembrane. The tri-vectorOmnk is then one of
the generalized theta-parameters in the notations of [147] and
defines open membrane noncommutativity. As we discuss
below, the noncommutativity relations are naturally written
in terms of loop variables, which suggests that the same be
done for generalized Yang±Baxter equations.

4.3 Membranes ending on membranes
In Section 2.2, we have seen that the Nahm system can be
equivalently described in terms of Poisson and Nambu
structures. In the latter case, two Hamiltonians have to be
introduced, one of which is simply one of the conserved
charges in the standard Poisson formulation. For our
account, the Nahm system is of interest due to its close
relation to the dynamics of systems of Dp-branes; speaking
more concretely, boundary conditions of the D1±D3-brane
system can be described in terms of Nahm equations. When
uplifted to M-theory, this becomes the system of M2 and M5
branes, where the former ends on the latter, and the Nahm
equation becomes the so-called Basu±Harvey equation. This
procedure was first considered in [59], where a generalization
of the Nahm equation was proposed, which naturally
involves a tri-bracket, and hence possesses a Nambu
structure.

Let us first look at the D1±D3-brane system. The starting
point here is to notice that the brane intersection locus can be
equivalently described by (i) a fuzzy funnel noncommutative
geometry interpolating betweenD1 andD3 brane geometries,
(ii) geometric engineering of Yang±Mills monopoles on the
D3-brane. It is worth mentioning that this is also true for a
more general intersection of the Dp and D(p+2) branes.
These two pictures basically correspond to considering the
intersection from the point of view of the D1-brane and of the
D3-brane, respectively.

D1-brane from the D3-brane point of view. For the second
picture, we start with the worldvolume action of an infinitely
large D3-brane:

SD3 �
�
d4x exp �ÿf�

������������������������
det �g� F�

p
�
�
C4 � C2 ^ B2

� 1

2
C0 ^ B2 ^ B2 ;

�4:11�
F � dA1 � B2 ; t � C0 � i exp �ÿf� :

This action describes a D3-brane that interacts electrically
with the fundamental string F1, which can be seen from the
A1 field in the determinant coupled to open string ends. To
replace F1 by D1 and hence to describe interaction with the
D1 brane, S-duality is performed:

t! ÿ 1

t
� ÿ C0 ÿ i exp �ÿf�

C 2
0 � exp �ÿ2f� ; gmn ! jtj gmn ;

�4:12�
B2 ! ÿC2 ; A1 ! ÿc1 :

Assuming the background is generated purely by the D-
branes, i.e., B2 � 0, we have

S 0 D3 �
�
d4x exp �ÿf�

���������������������������������������������������������
det
ÿ
gÿ jtjÿ1dc1 ÿ jtjÿ1C2

�q
�
�
C4 ÿ 1

2
jtjÿ2C0 ^ C2 ^ C2 : �4:13�

This action describes interaction between the D3-brane and
D1-brane in the sense that the D1-brane endpoints are
charged with regard to the world-volume field c1. From the
point of view of the world-volume theory, D1-branes are seen
as spikes of energy, corresponding to Yang±Mills monopoles
carrying magnetic charge. Let us choose �X 4; . . . ;X 9� � X?
to be transverse directions and chose spherical coordinates on
the brane: �X 1;X 2;X 3� � �r; y;f�. This theory has a classical
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monopole solution,

X 9 � N

2r
; Fyf � ÿrÿ2qrX 9 ; �4:14�

whose charge is given by

Qm � 1

2

�
dOFyf � N : �4:15�

This is interpreted asND1-branes ending on the D3-brane at
the point r � 0 in the chosen coordinates and stretching along
X 9. This is schematically depicted in Fig. 2a.

D3-brane from the D1-brane point of view. The opposite
picture describing a D3-brane from the point of view of the
D1-brane is slightly more subtle and involves non-Abelian
Yang±Mills theories. Let us briefly describe the idea here
and send the interested reader to [63] for details. We start
with a description of N D1-branes stretching along the X 9

direction in terms of N�N real matrices �XX 1; . . . ;XX 8� (see,
e.g., [148]). The worldvolume gauge field also becomes
represented by a matrix AAi and we fix the gauge choice to
be AA9 � 0. Now, we are looking for a (supersymmetric)
solution to equations of the non-Abelian Yang±Mills
theory with XXA� �XX 4; . . . ;XX 8�� 0, which corresponds to
the position of the D3-brane (Fig. 2b). Equations of
motion together with supersymmetry render [149]

where i; j; k � 1; 2; 3, which are Nahm equations. The
following solution to this system of equations precisely
reproduces the monopole profile obtained before in the
opposite approach:

XX i � � 1

2x 9
s i ; �4:17�

where s i are the standard Pauli matrices.
The `coordinates' XX i are used to measure the physical

radius of the sphere around the D1-brane on the surface S?
defined by XXA � 0:

R 2 � 2pa 0

N
Tr

�X3
i�1

XX iXX i

�
� pa 0�N 2 ÿ 1�

�x 9�2 : �4:18�

We see that the space near the intersection has the geometry of
an infinite throat, which at large N indeed matches the
previous result (4.14).

The above picture has been uplifted toM-theory in [59] to
describeM2±M5 brane junctions. The overall idea is basically
the same: from the point of view of the M5-brane theory, the
boundary of the M2-brane is described by a string-like BPS
(Bogomolnyi±Prasad±Sommerfeld) soliton in the N � �2; 0�
supersymmetric gauge theory in d � 6. Scalar fields of the
theory that correspond to embedding functions of the
membrane belong to the supermultiplet that contains a self-
dual 3-form, which makes writing a Lagrangian a hard task.
Equations of motion for fields of the gauge theory have been
obtained in [150, 151] in the so-called superembedding
formalism, where the supermanifold describing the M5-
brane world-volume is embedded into another supermani-
fold whose bosonic part is the target space±time. These
equations are in the Green±Schwarz form, and the string-
like soliton solutionwas obtained in [60]. Althoughwe cannot
provide a detailed review of the formalism without extending
the text well beyond its scope, it is wise to give some more
details and sketch the main results following [60]. First, we
note that all equations below are written in the so-called static
gauge, where using superreparametrization of the world-
volume bosonic coordinates are identified with six target
space±time directions (longitudinal) and 16 out of 32 fer-
mionic fields are set to zero. In searching for classical
solutions, we set the remaining fermionic fields to zero as
well and write the following bosonic equations:

G mnHmHnX
a 0 � 0 ; �4:19�

G mnHmHnrs � 0 :

Conventions for the indices are the following:
m; n; k; . . . � 0; . . . ; 5 and a; b; c; . . . � 0; . . . ; 5 are curved and
flat world-volume indices; a 0; b 0; c 0; . . . � 10; . . . ; 5 0 label
transverse directions. In what follows, we split m � �0; 1;m�
and a � �0; 1; a� with m � 2; 3; 4; 5 and a � 2; 3; 4; 5; labeling
directions transverse to the soliton (curved and flat, respec-
tively). The covariant derivativeHm � Hm�g� is constructed on
the metric written in terms of the standard world-volume
vielbein gmn � em

aen
bZab. The remaining fields are defined as

Gmn � Em
aEn

bZab ;

Em
a � em

b�mÿ1�ba ; �4:20�
ma

b � dab ÿ 2hacd h
bcd ;

Hmnr � Em
aEn

bEr
cmb

dmc
ehade ;

where habc is the world-volume self-dual 3-form.Note that the
field Hmnk is not self-dual and, moreover, can be written as
Hmnk � 3q�mBnk�.

Now, we are looking for a string-like solution that lies in
the �0; 1�-plane, for which we introduce the following ansatz:

X 5 0 � f ;

h01a � va ; �4:21�
habg � Eabgdv d :

Denoting H01m � Vm, we are able to write equations in the
following form:

dmnqmqnf � 0 ; �4:22�
dmnHmVn � 0 :

a bX 9

R

Figure 2. D1-brane ending on a D3-brane from different points of view.

(a) As a soliton solution of the D3-brane worldvolume theory. (b) As a

throat representing fuzzy sphere geometry around the D1-brane. X 9

denotes coordinate along which the soliton field descends. R denotes

physical radius of the fuzzy sphere.

XX i

XX j XX kq
qx 9
� � i

2
E i jk � ; � ; �4:16�
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The solution describing N string-like BPS solitons then
becomes

H01m � � 1

4
qmf ;

Hmnp � � 1

4
Emnpqd

qrqrf ; �4:23�

f � f0 �
XNÿ1
I�0

2Q0

jxÿ yIj2
:

Note that there is no need for a source term; hence, the
solution is indeed solitonic, and due to self-duality, it
possesses both electric and magnetic charges regarding
Hmnk, both equal to �Q0.

The string soliton solution (4.23) has a nontrivial profile
of the X 5 0 field stretching along X 1 and corresponds to the
M2-brane stretched along �015 0� directions, ending on the
M5-brane stretching along �012345� directions. To arrive at a
generalization of the Nahm's equation for the M2±M5-brane
system, we will proceed as before: describe the junction in
terms of the fuzzy sphere construction and write a matrix
equation whose solution gives the string soliton profile. For
this, we need an equation that has SO(4) symmetry rather
than the SO(3) symmetry of the Nahm's equation, which is
basically the technical reason for the Nambu bracket to
appear. The fuzzy 2-sphere describing the D1±D3-brane
junction must be generalized to the fuzzy 3-sphere construc-
tion presented in [152]. The space is described by four N�N
matrices Gi where

N � �n� 1��n� 3�
2

; n � 2k� 1; k 2 ZZ : �4:24�

For n � 1, these matrices are simply the standard gamma-
matrices in four dimensions. The matrices are given explicitly
as

Gi � PR�
XN
s�1

rs�G iPÿ�PRÿ � PRÿ
XN
s�1

rs�G iP��PR� ;
�4:25�X

s�1
nrs�G i� � ÿG i 
 . . .
 1� . . .� 1
 . . .
 G i

�
sym

;

where the `sym' subscript denotes complete symmetrization
of the tensor product. The projectors P� � 1=2�1� G 5�,
where G 5 is the standard gamma-matrix. The projectors
PR� project on the irreducible representations

R� �
�
n� 1

4
;
nÿ 1

4

�
;

�4:26�
Rÿ �

�
nÿ 1

4
;
n� 1

4

�
of the Spin�4� � SU�2� � SU�2� group. Finally, we denote
G5 � PR� � PRÿ .

Now, taking XX i 2MatN�CC�, the proper generalization of
the Nahm's equation can be written as

where the Nambu bracket is given by the following sum over
permutations:

�A1;A2;A3;A4� �
X
s

sign �s�As1As2As3As4 : �4:28�

This equation can be interpreted as the Bogomolnyi equation
for the membrane theory. As in the Nahm case, its solution
can be written in terms of the matrices defining the fuzzy
3-sphere, which, in the largeN limit, takes the following form:

XX i�s� �
������
2p
p

i�������������������
l�n� 2�sp

M
3=2
11

Gi : �4:29�

To see the string soliton profile, we first introduce the physical
radius of the fuzzy 3-sphere,

R 2 � 1

N

����TrX
i

�XX i�2
���� : �4:30�

Taking s � X 5 0 , the above gives the desired result:

X 5 0 � 2pN

l�n� 2�M 3=2
11 R 2

: �4:31�

Hence, we conclude that, in the attempt to generalize
Nahm's equation describing D1±D3-brane junctions to
branes of higher dimensions, the Nambu bracket naturally
appears and the generalization is commonly referred to as the
Basu±Harvey equation. Later, in [64, 65], based on this
observation, an action for a stack of (2) M2-branes was
suggested that essentially includes the Nambu bracket of
world-volume fields. Although later in [66] an alternative
formulation of the world-volume theory (ABJM) that
requires no Nambu brackets was suggested, there still seem
to be traces of this structure inside. We are referring here to
the U(1)3 deformation of the AdS3� SS7 background first
addressed by Lunin and Maldacena in [8], which is hologra-
phically dual to the b-deformation ofABJM theory. From the
supergravity point of view, this corresponds to an SL(2)
transformation of the parameter

t � C123 � i
����
G
p

; �4:32�

where �123� are three SS1 directions of the SS7. Alternatively,
this is simply a 3-vector deformation described by the
generalized Yang±Baxter equation as has been discussed
above. We have already seen that this appears naturally
when a Lax triple is introduced for a Nambu system.

On the ABJM theory side, b-deformations of Lunin±
Maldacena correspond to introducing certain phase factors
for fields entering the superpotential [95]

W!Wb � 4p
k

Tr

�
exp

�
ÿi pb

2

�
A1B1A2B2

ÿ exp

�
ipb
2

�
A1B2A2B1

�
: �4:33�

It is appropriate here to consider a similar deformation of the
N � 4 SYM theory, the U(1)2 b-deformation. On the gravity
side, this is an Abelian bivector deformation along two of
three Abelian Killing vectors of the dual AdS5� SS 5 solution.
On the gauge theory side, things get much more interesting,
and the deformation corresponds to the deformation of the
product of fields

f g! f � g � exp
h
ipb
ÿ
p f
1p

g
2 ÿ p f

2p
g
1

�i
fg ; �4:34�

where p1 and p2 denote generators of the two U(1) isometries
and the superscript denotes whether the generator acts on f

XX i

XX j XX k XX ld

ds
� lM 3

11

8p
Ei jkl
�
G5; ; ;

� � 0 ; �4:27�
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or g. Now, if both isometries are along the AdS space, we end
upwith aMoyal product and a noncommutative deformation
of SYM [95]; if one isometry is along the AdS and one is along
the sphere, we get so-called dipole deformations; and when
both isometries are along the sphere, we get the b-deforma-
tion of Lunin±Maldacena. In this last case, the generators act
simply by multiplication by weight of the operator, and the
deformed superpotential becomes (see [95] for more details
and for the corresponding brane picture)

W!Wb � Tr
�
exp �ipb�F1F2F3 ÿ exp �ÿipb�F1F3F2

�
:

�4:35�

What is most intriguing here is that the bi-vector deformation
effectively introduces a nontrivial bracket of the operators

�x 1; x 2� � b : �4:36�

When both isometries are noncompact, the noncommutative
parameter on the right-hand side becomes literally the bi-
vector deformation parameter naturally appearing from
double field theory. Now, for the exceptional case, we have
a tri-vector, which presumably must correspond to a non-
associativity parameter

�xm; xn; xk� � Omnk �4:37�

or define a Moyal-like tri-product, whose explicit form has
not really been established in the literature (see, however,
[153] for a definition of the star-three product in relation to
ABJM theory). The precise definition of this tri-product as
well as a controllable formulation of a non-associative gauge
theory stand among the fascinating directions of research to
deepen the understanding of membrane dynamics.

4.4 Open membranes and loop variables
Since the boundary of anM2-brane ending on anM5-brane is
string-like, it could be expected that natural variables to
define world-volume theory on a membrane are those taking
values in a loop algebra. To our knowledge, the first mention
of loop algebras in the context of membrane dynamics
appears in [154], where an analysis of the canonical Dirac
bracket for membrane world-volume fields was performed.
The observation was that, in a similar way to how non-
commutativity of open string ends appears for D-branes on a
constant NS 2-form field background, loop space noncom-
mutativity appears for the case of membranes. The authors
define the star product of fieldsXi�s�with s parametrizing the
boundary loop. The fascinating observation relating this
approach to polyvector deformations is that the Omnk tensor
parametrizing deformations defines the open membrane
metric.

Let us start with a brief reminder of expressions related to
open-string noncommutativity; for more details, the reader is
referred to the original work [119]. We consider the theory of
an open string on a background with a nontrivial B-field with
the standard second order action

SF1 � T

�
d2s �

���
h
p

gmnh
ab � bmnE ab� qaXm qbXn ; �4:38�

where the integration is taken over the string world-sheet S
with induced metric hab and coordinates sa � �t; s�. Given
that the metric and the B-field are constant, boundary

conditions along a Dp-brane world-volume take the form

gmnqnXn � bmnqtXn
���
qS
� 0 ; �4:39�

where qn denotes the derivative along a normal vector to qS
and qt denotes a tangent derivative. We are interested in the
quantum properties of such two-dimensional field theory
with a boundary, in particular, in two-point correlation
functions hXm�t; s�Xn�t 0; s 0�i that define the propagator of
the theory. Restricting the surface S to a disk for simplicity
and introducing complex coordinates �z; �z�, as usual, one
arrives at the following expression:


Xm�z�Xn�z 0�� � gmn log jzÿ �zj ÿ gmn log jzÿ z 0j

ÿ Gmn log jzÿ �z 0j2 ÿYmn log
zÿ �z 0

�zÿ z 0
�Dmn ; �4:40�

where Dmn does not depend on world-volume coordinates.
The matrices Gmn and Ymn are defined as symmetric and
antisymmetric parts of the matrix �g� b�ÿ1, respectively.

Now, the fascinating observation is the following. If both
of the points z and z 0 are inside the world-volume and almost
coincident, then the correlator behaves like the usual
propagator of a two-dimensional CFT of scalar fields Xm.
The matrix gmn is then the proper metric for these fields, and
we refer to it as the closed string metric. For an open string,
however, vertex operators must be inserted on the boundary,
i.e., when both z and z 0 are at the edge of the disk, i.e., z � t,
z 0 � t 0. We then have


Xm�t�Xn�t 0�� � ÿGmn log �tÿ t 0�2 � i

2
YmnE�tÿ t 0� ;

�4:41�
where Dmn has been set to a convenient value and E�t� is the
function that is �1 for the positive argument and ÿ1 for the
negative. We see that the matrix Gmn can now be interpreted
as the metric seen by open string ends, since it provides the
correct behavior of the propagator for close points. The
object Ymn is the noncommutativity parameter of the open
string ends, meaning that the effective field theory on a Dp-
brane on a background with a nonvanishing B-field must be
described by the noncommutative Yang±Mills theory. In
[119], it was shown that this is indeed the case.

The relation between open and closed string parameters
can be recast in the following form:

�g� b�ÿ1 � G�Y ; �4:42�

which is precisely the bi-vector deformation rule, when Y is
understood as the deformation tensor, and G, as the initial
undeformed background. Although it is not completely clear
what the underlying reason behind this similarity is, it cannot
be merely a coincidence, as one observes precisely the same
match between open-closed membrane relations of [147] and
tri-vector transformation rules. Before turning to the case of
the membrane, it is instructive to mention another origin of
the open string metric Gmn, the Dp-brane action. Schemati-
cally, it has the form

SDp � Tp

�
dp�1x exp �f�

������������������������
det �g� F�

p
�
�
C�p�1� � . . . ;

�4:43�
where F � dA� b, with A � Aa dx

a denoting the Born±
Infeld world-volume vector field interacting with the open

March 2024 Integrability structures in string theory 241



string endpoints, g and b denoting pullbacks of the target
space fields, C�p�1� denoting the top RR form interacting with
the Dp-brane, and ellipses denoting the remaining terms
altogether rendering the action gauge invariant. Varying the
action with respect to the scalar fields Xm, we obtain the
equation

&�G�Xm � . . . � 0 ; �4:44�

where the box denotes the world-volume d'Alambertian
constructed of the pullback of the open string metric Gmn,
and the ellipsis denotes various terms containing only linear
derivatives qaXm. Hence, we see that the open string metric
appears to be the natural metric for the dynamics of scalar
fields, which are nothing more than open string excitations
transverse to the Dp-brane.

Let us now turn to a three-dimensional sigma model
interacting with target space±time metric gmn, a 3-form field
Cmnk, that will be a model of the M2-brane of M-theory. The
action of the model can be written as follows:

S � 1

2l 2p

�
S
d3s

�������
ÿh
p

gmnh
abqaXmqbXn �

�
S
C�3� �

�
qS

B�2� ;

�4:45�

where S denotes the world-volume of the model and qS
denotes its space-like boundary. Similarly to open string ends,
whose dynamics is effectively described by a Dp-brane, the
boundary of the M2-brane is described in terms of the M5-
brane world-volume theory. Since this theory is non-
Lagrangian, in the sense that its proper Lagrangian descrip-
tion is not known, the task to write an analogue of the DBI
action becomes really tough. On the other hand, the standard
CFT methods used above to obtain correlations on the
boundary of the 2d disk fail here, since the theory is three-
dimensional. To circumvent these difficulties, in [155] an
elegant approach was suggested: (i) impose a special decou-
pling limit to freeze out bulk modes keeping the M5-brane
world-volume theory nondegenerate, (ii) using the primary
constraint of the resulting theory to construct a Dirac bracket
that actually encodes the loop noncommutativity of the
boundary fields.

To comment on the first step, let us first notice following
[155] that inM-theory there is no sense in which the tension of
the probe M2-brane is much smaller than that of the
background M5-brane. This is in contrast to the open string
theory, where the small string coupling gs 5 1 results in large
Dp-brane tension TDp � gÿ1s , while the fundamental string
tension TF1 � 1. To prevent the probe M2-brane from
deforming the background, suppose the latter is generated
by a large stack of N5 M5-branes:

ds 2 � Hÿ1=3 dx 2
jj �H 2=3 dx 2

? ; H � 1�N5l
3
p

x 3
?

; �4:46�

where xjj and x? denote directions parallel and transverse to
the M5-branes, respectively. The 3-form field strength F4 is
proportional to the volume form in the transverse space.
Now, detach a single M5-brane of the stack and shift it to the
position r0 close to the initial stack. If N5 4 1 and r0 is small
enough, interaction between this M5-brane and the remain-
ing stack makes it effectively frozen, such that the M2-brane
can probe it without deformation. Introducing E! 0, we can

write the decoupling limit as

lp � Elp ; �4:47�
N5

r 30
� Eÿ3

N5

r 30
;

such that the product hl 3p remains finite. Here, h enters the
self-dual world-volume field strengthHmnr as

H012 � ÿ h�����������������
1� l 6p h

2
q ;

�4:48�
H345 � h :

In this limit, the action to quantize becomes simply

S � 1

3

�
qS

d2sHmnrX
m _X nX 0 r ; �4:49�

where the dot and prime denote derivatives concerning the
coordinates �t; s� on the boundary qS. The equal time Dirac
brackets between the fields Xa � fX 3;X 4;X 5g then become

�
Xa�t; s�;Xb�t; s 0�� � ÿ 1

h

E abcX 0c�s���Xa�s���2 d�sÿ s 0� : �4:50�

We see that the variables Xa�s� parametrized by the world-
volume boundary coordinate s are indeed noncommutative.
Equation (4.50) can be understood as the commutation
relation for loop algebra variables Xa�s�. The same observa-
tion will be made in the next section based on the ADHM
(Atiyah±Drinfeld±Hitchin±Manin) membrane construction.

Comparing the above commutator to the antisymmetric
part of (4.41), we would expect the right-hand side to be
interpreted in terms of themetric seen by the openmembrane.
That is precisely the case, as it can be learned from [147],
where parameters Ym1...mp were introduced, called there
generalized theta parameters. Instead of copying the relevant
expressions from this paper, let us illustrate the idea in terms
of exceptional field theory parametrization. The open-closed
string map G�Y � �g� b�ÿ1 is nothing but two different
ways of writing the same O�d; d�=O�d� �O�d� coset:
gÿ bgÿ1b bgÿ1

gÿ1b gÿ1

� �
� H � G YG

GY Gÿ1 ÿYGY

� �
: �4:51�

Moreover, decomposing O�d; d� generators under the action
of its GL�d� subgroup (upper-left and lower-right blocks in
the matrix notation) as fTmn;T

m
n;T

mng, the matrix H can be
written as

H � OT G 0
0 Gÿ1

� �
O ; O � exp

�
YmnTmn

�
: �4:52�

In other words, adding the noncommutative parameter Ymn

can be understood as anO�d; d� transformation. Now, raising
this to the exceptional field theory, i.e., replacing the
orthogonal group by one of the groups SL(5), SO(5, 5), or
Ed with d � 6; 7; 8, we reproduce precisely the expressions of
[147]. Let us illustrate this using the SL(5) example. Let us
decompose the generator under the action of its GL(4)
subgroup (upper-left block) fTmnr;T

m
n;T

mnrg and write

U � exp
�
YmnrTmnr

�
; �4:53�

U ÿ1 G 0
0 1

� �
U � Gmn Emr1r2r3Y

r1r2r3

Enr1r2r3Y
r1r2r3 1ÿYr1r2r3Y

r1r2r3

� �
:
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The overall prefactor proportional to powers of 1ÿYr1r2r3�
Yr1r2r3 comes from the proper nonlinear realization of the
SL(5)/SO(5) coset element in terms of the actual space±time
metric and the 3-form C-field.

As we see, three indices of the parameter Ymnr naturally
descend from three space±time dimensions of the M2-brane,
suggesting there must be Ym1...m6 accompanying it, which
appears to be precisely the case. Reducing this to Type IIA,
that is, breaking the exceptional group with regard to its
O�d; d� subgroup, we generate the parameters Ym1...mp and all
the formulas listed in [147]. Hence, the `3-index' feature of the
membrane theory can be understood as either the need of the
Nambu structure to describe its dynamics in algebraic terms,
or loop noncommutativity. It is possible that these two
pictures are completely interchangeable, which stands as an
interesting area of further research.

4.5 Loop ADHMN construction
The naturalness of the loop algebra description of membrane
dynamics can be seen from the membrane ADHM construc-
tion. For this, let us return to the Nahm and Basu±Harvey
equations and elaborate on the results of studies [156, 157]
(see also lectures [158]), where the Basu±Harvey equation has
been shown to be a loop-space version of the Nahm equation.
The approach of the former starts from noticing that
so�4� � so�3�� so�3�, which allows understanding the fuzzy
3-sphere describing M2±M5-brane junctions as a couple of
fuzzy 2-spheres. The construction of this work, which we will
review in more detail below, uses basically the same loop-
space variables and is based on the so-called transgression
transformation, allowing a finite dimensional gerbe with a
2-form connection to be mapped to an infinite dimensional
vector bundle with a 1-form connection taking values in loop-
space.

To illustrate the construction of [157], let us start with the
case of the ordinary Nahm equation describing the Dirac
monopole. In the notations of [157], we write

d

ds
XX i � 1

2
Ei jk�XX j; XX k� ; �4:54�

where XX i y � ÿXX i take values in the algebra u�k�, hence
describing k D1-branes. To construct the Dirac monopole
solution, we define the Dirac operator

6Hs � ÿ11 d

ds
� s i 
 iXX i : �4:55�

Defining a Laplace operator D �6H y 6H, we see that the
condition �Ds; s i
 11� � 0 is equivalent to the condition
where XX i solves the Nahm equation. Following the standard
ADHMN construction [62, 159], we introduce the following
twist of the Dirac operator:

6Hs; x � ÿ11 d

ds
� s i 
 ÿi XX i � x i 11

�
; �4:56�

which preserves the condition �Ds;x; s i
 11� � 0 for solutions
to the Nahm equation. Now, orthonormalized zero modes of
the twisted Dirac operator

6H ys; xcs; x; a � 0 ; a � 1; . . . ;N ; �4:57�
dab �

�
dsc ys;x; a cs; x; b

define the gauge and scalar fields of the monopole. Here, x i

have themeaning of coordinates in the transverse space andN

denotes the total number of D3-branes carrying endpoints of
k D1-branes. The gauge potential and the Higgs field then
read

Ai �
�
dsc ys; x

q
qx i

cs; x ; �4:58�
F � ÿi

�
dsc ys; x scs; x ;

where the indices a labeling D3-branes are hidden. These
fields solve the corresponding Bogomolnyi equations
Fi j � Ei jkqkF, which descend from the higher dimensional
Yang±Mills self-duality condition. To be precise, we are
working in the setup where all fields of the 10d SYM but Ai

and F 6 � F vanish.
Let us illustrate this by two simple examples. Start with

N � k � 1, which corresponds to a singleD1-brane ending on
a single D3-brane. The D1-brane is stretched along x 6 � s. In
this case, the solution to the Nahm equation is XX i � 0; zero
modes of the twisted Dirac operator read

c� � exp �ÿsR�
���������������
R� x 3
p

x 1 ÿ ix 2

x 1 ÿ ix 2

Rÿ x 3

� �
;

�4:59�

cÿ � exp �ÿsR�
���������������
Rÿ x 3
p

x 1 � ix 2

R� x 3

x 1 � ix 2

� �
;

whereR 2 � x ix i. For the c� zero mode, we get the following
fields

F � ÿ i

2R
;

�4:60�
Ai � i

2�x 1 � x 2�2
�
x 2

�
1ÿ x 3

R

�
; ÿx 1

�
1ÿ x 3

R

�
; 0; 0

�
;

which apparently describe a monopole. For the cÿ zero
mode, we get fields that are related to the above by a gauge
transformation everywhere but the points jx 3j � R. Simi-
larly, for two D1-branes, i.e., when k � 2, N � 1, we find
XX i � �i=2s�s i andF � ÿi=R, precisely the solution we started
with in the previous section.

The above approach can be applied to the Basu±Harvey
equation and the corresponding Bogomolnyi equation for the
self-dual 3-form almost without changes up to the point when
twisting occurs. The equation reads

d

ds
XX i � 1

3!
E i jkl

�
XX j;XX k;XX l

�
; �4:61�

where XX i now belongs to a 3-Lie algebra, which is basically
a linear space with a Nambu bracket. Motivated by T-
dualization and a further uplift of the D1±D3-brane system
to anM2±M5-system, we write the following Dirac operator:

6Hs � ÿg5
d

ds
� 1

2
g i jD�XX i;XX j� ; �4:62�

where D�XX i; XX j� � �XX i; XX j; � is the inner derivative and g i are
the standard Dirac gamma-matrices. For a more detailed
discussion on type IIB and type IIA Dirac operators
motivating the uplift, see the original paper [157]. As before,
the condition that XX i satisfy the Basu±Harvey equation can be
written in the form �Ds; g i j� � 0, where Ds �6Hs

y 6Hs. Next, we
need to introduce an appropriate twist of this defined Dirac
operator, for which we apparently need something of the
form g i jai bj, where ai 6� abi in general for some coefficient a.
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Here, we use the fact that the vector bundle of a 2-sphere
describing a Dirac monopole gets replaced by a gerbe over a
3-sphere, which, by the transgression map, can be understood
in terms of loops over SS3. Hence, we introduce fields x i�t�
with t parametrizing the loop that are restricted by
x i�t�x i�t� � R 2. From this, it follows that x i _x i � 0 and, in
addition, we impose _x i _x i � R 2. Then, the proper twist of the
Dirac operator can be written as

6Hs; x�t� � ÿg5
d

ds
� g i j

�
1

2
D�XX i;XX j� ÿ i x i�t� _x j�t�

�
: �4:63�

We see that loop space variables naturally enter the twisted
Dirac operator, while the construction itself pretty much
repeats the conventional ADHMN approach. The next step
is to construct gauge and scalar fields, now defined in the loop
space, using zero modes of the twisted Dirac operator:

F
ÿ
x�t�� � ÿi � dsc ys; x�t�scs;x�t� ; �4:64�

Ai

ÿ
x�t�� � � dsc ys;x�t�qics;x�t� ;

where the derivative is defined as qi �
�
dt �d=dx i�t��. The

field strength of the gauge field Ai�x�t�� is then defined as
usual as Fi j � 2q�iAj �, and if XX i satisfies the Basu±Harvey
equation, it satisfies

Fi j

ÿ
x�t�� � Ei jkl _xkqlF

ÿ
x�t�� : �4:65�

The crucial statement here is that, while this has schematically
the form of the Bogomolnyi equation for SYM theory, its
loop structure actually makes it the desired Bogomolnyi
equation for the D � 6 N � �2; 0� theory. The relation
between the self-dual 3-form and this defined 2-form field
strength has the following form:

F�V1;V2� �
�
dtHi jk

ÿ
x�t�� _xk�t�V1

iV2
j ; �4:66�

where V1; 2 are arbitrary vectors. Equation (4.65) is then
equivalent to self-duality of the 3-form,

H05i � 1

4
qiF ; Hi jk � 1

4
Ei jkl qlF : �4:67�

As an example, let us look at explicit solutions forN � k � 1,
a single M2-brane attached to a single M5-brane. Then,
XX i � 0 and there are eight zero-modes, of which we will need
only four, g5cs; x�t� � cs;x�t�. This is related to doubling of
zero modes when going from Pauli matrices to gamma
matrices, which, in turn, is required since the SU(2)
symmetry of the Nahm equation gets replaced by the SO(4)
symmetry of the Basu±Harvey equation. The remaining zero-
modes can be arranged as follows:

cs; x�t� � exp �ÿR 2s�

�
i�R 2 � x 2 _x 1 ÿ x 1 _x 2 ÿ x 4 _x 3 � x 3 _x 4�

x 3� _x 1 � i _x 2� � x 4� _x 2 ÿ i _x 1� ÿ �x 1 � x 2�� _x 3 ÿ i _x 4�
0
0

2664
3775:

�4:68�
Note the R 2 in the power of the exponent, which renders the
correct dependence of the scalar field on the physical distance

F�x� � i=2R 2. As before, for the case N � 1 k � 2, we
reproduce the previously discussed solution with XX i / Gi.

To summarize, following [157], we have observed that,
by turning to fields defined in loop space, one is able to
apply the standard ADHMN procedure to the Basu±
Harvey equation and to describe self-dual string solitons
in a way very similar to that of the SYM monopole. In the
process, one replaces gerbes, also appearing naturally in
membrane theory, with vector bundles, albeit over a loop
space.

4.6 Speculations on integrability in M-theory
In Section 3, we briefly reviewed how string theory as a two-
dimensional sigma model becomes (classically) integrable on
certain backgrounds. This means it is possible to write
equations of motion for the string in terms of a Lax
connection or to write a quantum Yang±Baxter equation for
its S-matrix. At the classical level, integrability requires the
Lax connection to be flat, which translates into the possibility
of defining a parallel transport operator, which is basically a
Wilson loop calculated on the Lax 1-form. Turning to a
theory of two-dimensional membranes and naively general-
izing all these structures, one would expect to have a two-
dimensional analogue of the Wilson loop, which it is natural
to call a Wilson surface.7 Crucial here is the fact that, on the
one hand, there is no naturally defined ordering on a two-
dimensional surface, and on the other hand, the 1-form Lax
connection should be replaced by a two-form.

Let us first comment on the latter. Overall, it is natural to
expect a 2-form in the problem, since the endpoints of a two-
dimensional membrane form a string that naturally interacts
with the 2-form. In M-theory, the M2-brane ends on an M5-
brane; hence, the 6-dimensional world-volume theory of the
latter is formulated in terms of a 2-form. Supersymmetry
requires it to be self-dual, rendering a Lagrangian formula-
tion really hard to construct (for various approaches, see
[163±165]). Inmoving from a 1-form connection to the 2-form
case, one naturally ends up with the notion of a gerbe
connection, which appears when gluing co-cycles at the
intersection of four or more maps [166, 167]. Hence, one
possibility of constructing an analogue of the evolution
operator is to use a 2-form gerbe connection.

Although gerbes provide a nice geometric background for
the problem, it still remains unclear whether a natural
ordering on a 2-dimensional surface exists. One way to
parametrize the surface is to swipe it with loops (see, e.g.,
[168]), and hence the Lax connection naturally becomes a
1-form taking values in the loop space. As we have discussed
above, the idea that loop spaces must be relevant to
membrane dynamics is long-standing, and, in particular, in
[154], it was noticed that, much like endpoints of an open
string become noncommutative, string-like boundaries of the
M2-brane become loop-space-noncommutative. Moreover,
the metric seen by the open M2-brane boundary is precisely
the one that appears in the exceptional field theory approach
to deformations. As we briefly review below, the loop-space-
noncommutativity of open membrane boundaries naturally
appears in the analysis of the Basu±Harvey equations
describing M2±M5 brane junctions.

Finally, let us consider the quantum Yang±Baxter
equation describing factorization in scattering point-like

7 Another hint comes from higher gauge theories, where Wilson surfaces

understood as higher holonomies provide a set of observables [160±162].
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particles. Loosely speaking, from the string theory point of
view, this is related to the scattering of endpoints of an open
string, which is further motivated by the Wilson loop
construction discussed above. Speculating further, it can be
concluded that, to describe the integrability of a membrane,
one must be interested in the factorization of the scattering of
strings. Indeed, the corresponding equation has been derived
and is known under the names tetrahedron equation,
Zamolodchikov equation, or Frenkel±Moore equation. We
briefly review progress on relating these structures to 3d
integrability and to M-theory below.

4.6.1 Wilson surfaces and loop-space connections. Recall that,
to discuss the integrability of a two-dimensional field theory,
one introduces Lax connectionA � Aa dsa satisfying flatness
condition F � dA� A ^ A � 0 and constructs an evolution
operator that is basically a Wilson line. For periodic
boundary conditions, we write

T � P exp

� �
g
A

�
; �4:69�

where integration is performed along a line. The flatness
condition, which is a different way of writing equations of
motion of such a system, then implies

_T � �T;M� ; �4:70�

where M � A0�s 1 � 0� and possible dependence on the
spectral parameter is undermined. Then traces of various
powers of T give conserved charges. Considering this to be a
starting point, one is able to generate Poisson brackets of the
corresponding integrable system by using r-matrix
r 2 End �V
 V�, where V represents the Hilbert space of the
system:

fT1;T2g � �r12;T1� � �r12;T2� : �4:71�

Subscripts denote space on which the operator acts, i.e.,

T1 � T
 id ; T2 � id
 T : �4:72�

To generalize these constructions to, say, a three-dimen-
sional theory, one naturally needs aWilson surface instead of
a Wilson line along which a 2-form Bmn is integrated. While
the 1-form A represents a connection on a fiber bundle, the
2-form can naturally be thought of as a connection on a gerbe,
which in turn can be mapped to 1-form connections in a loop
space [169, 170]. The so-called transgression map was used in
[171] to rewrite the N � �2; 0� theory on the M5-brane
formulated in terms of Nambu brackets in [172] as a
Yang±Mills-like theory in a loop space. The map naturally
identifies elements of a 3-Lie algebra with elements of an
associated Lie algebra (of inner derivatives). This is similar
to the construction we discussed in Section 2.3, where a
generalization of the r-matrix r 2 End �V
 V
 V� was
used to define the Nambu bracket for a system described
by Lax pair _L � �L;M� as
fL1;L2;L3g � �r123;L1� � �r123;L2� � �r123;L3� ; �4:73�

where the notations are the same as above. The fundamental
identity for the 3-bracket is precisely the generalized Yang±
Baxter equation (4.5). Now, on the one hand, we have a

formulation of the theory on anM5-brane, that is, a theory of
boundaries of M2-branes ending on it. On the other hand, we
have a generalization of the classical Yang±Baxter equation
that presumably describes the scattering of straight strings
that could also be understood as boundaries of theM2-brane.
We will return to this point in Section 4.6.2, while we now
describe the construction of [171] in more details.

The evolution operator U � P exp
�
g A does not depend

on the path g if the connection A on a fiber bundle is flat.
When considering a surface integral

�
S B of a 2-form, we face

the problem of the absence of a naturally defined ordering of
points on a surface. This could be overcome by splitting a
cylinder shape surface S into a collection of loops C�t�
parametrized by t 2 �0; 1� varying along the cylinder (Fig. 3).
Hence, instead of a curve on a set of points, we consider a
curve on a set of loops and instead of the 2-formBwe consider
a 1-formA representing a connection in the loop space. To be
more precise, consider a space

LM � fC : SS1 !Mg �4:74�

of all loops on a manifold M. In a given patch, the curve is
defined by coordinate maps x m � x m�s� with s 2 �0; 2p�. At
each point of the curve, we can construct a tangent vector
Xm�s�. A collection of such tangent vectors for a given curve
C we will call a vector tangent to a curve (see Fig. 3).8

Naturally, we have a tangent bundle to the space of loops
LM. We denote the basis for vector fields as d=dx m�s� and the
basis of 1-forms as dx m�s�; then, the usual action of 1-forms
reads

dxm�s� d
dx n�s 0� � dm

n d�sÿ s 0� : �4:75�

Following [170, 171], we construct the transgression map
T : O k�1�M� ! O k�LM� relating k� 1-forms on the mani-
foldM to k-forms in the loop space LM. In a given basis, the
map reads

where x m � x m�s� represents coordinates on a loopC. Hence,
on the left-hand side we have a k-form evaluated in k vector
fields at a pointC ofLM, while on the right-hand side we have
a k� 1-form evaluated in k� 1 vector fields at points x m�s�
and integrated to keep the information of thewhole loop. As a

s
t

a

C 0�s� C�s�
b

Figure 3. (a) Path in the space of loops parametrized by variable t. Points

along each loop are parametrized by s 2 �0; 2p�. (b) Loop C�s� and its

deformation C 0�s�. Vector field tangent to the deformation is depicted by

arrows.

8 We intentionally keep the discussion more intuitively clear. For more

rigor and amathematically formal description of these structures, see, e.g.,

[170] and references therein.

SS 1
�T o�C

ÿ
v1�x�; . . . ; vk�x�

� � � dso
ÿ
v1�s�; . . . ; vk�s�; _x�s�� ;

�4:76�
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more explicit example, consider the case k � 2:

Note the integrals over s and t on the left-hand side, which can
be understood as an analogue of index contraction when
acting by a form on a vector in the loop space, i.e., a form in
the loop space has a discrete index m; n; . . . and a continuous
`index' s; t; . . . . Inserting Dirac delta-functions on the right-
hand side and dropping two integrals, we finally have

�T o�m; s; n; t �
�
dromnr

ÿ
x�r�� dx r

dr
d�sr�d�tr� : �4:78�

The next step in connecting 3-Lie algebra variables of the
N � �2; 0� theory on an M5-brane to a Yang±Mills-like
theory is to construct a Lie algebra out of Nambu brackets.
For this, we simply consider an associated algebra gA of inner
derivatives, i.e., for any two elements a; b 2 A of the 3-Lie
algebra, consider an action

D�a; b� . x � �a; b; x�; x 2 A : �4:79�

The self-dual 3-form Hmnr of the theory takes values in the
3-Lie algebra A and can be mapped to a 2-form Yang±Mills
field strength in the loop space by making use of the
transgression map as described above. To do so, we consider
a loopCm taking values in the 3-Lie algebra. Assume that the
algebra and loop variables detach, i.e.,

C m�s� � Cxm�s� ; C 2 A : �4:80�
Formally, this can be ensured by imposing D�C m;C n� � 0.
The transgression-like map for the self-dual 3-form is then
defined as

In the component form, the action of the 2-form field strength
inside the algebra gA then reads

Given that the 3-form is exact, H � dB, the 2-form Fmn in
the loop space can be represented as the field strength for
a 1-form defined naturally as

Here, we are restricted to loops that are covariantly constant
regarding this defined 1-form connection:

The integral is apparently zero, and the vanishing of the
remaining term effectively implies

�C; �;C � � 0 : �4:85�

The transgression-like map, as above, can also be extended to
fermionic and scalar fields of theN � �2; 0� theory, all taking
values in the 3-Lie algebra. Hence, the whole formalism,
including equations of motion and supersymmetry transfor-
mation rules, gets rewritten in loop variables.

Speculating on these results and those from the previous
section, one may conclude that loop-space variables are more
natural for describing world-volume theory of the M5-brane
and hence the dynamics of the open M2-brane boundaries.
Although the above construction describes the M5-brane
world-volume theory, it gives suggestive hints on how
integrability structures for the M2-brane can be formulated.
To start with, in previous sections, we have seen a tight
relation between the Lax connection for a string on a certain
background, the classical Yang±Baxter equation for the
r-matrix, and the quantumYang±Baxter equation. The first is
simply the quasi-classical limit of the latter, which, in turn,
defines the S-matrix of the string on certain backgrounds.
Poisson brackets for evolution operators constructed of the
former can be defined in terms of the classical r-matrix as at
the beginning of this subsection. Moreover, the classical
Yang±Baxter equation appears in relation to bivector
deformations given by the open-closed string map, as
discussed in Section 3.4. Now, we see the same relation
between an open-closed membrane map and the so-called
generalized Yang±Baxter equation that appears in relation to
tri-vector deformations of 11d backgrounds. The generalized
theta parameter ymnr that defines the open-closed membrane
map also defines the noncommutativity of themembrane on a
background with a nonvanishing C-field. Moreover, commu-
tation relations are written for loop space variables; hence, we
are talking about loop-space noncommutativity. Similarly to
the 2d case, the generalizedYang±Baxter equation guarantees
that the bracket defined using the r-tensor as in (4.73) is a
Nambu bracket, i.e., satisfies the fundamental identity.

To wrap up the above logic, we would like to define an
evolution operator using a properly definedWilson surface or
a holonomy in the loop space, which causes the most trouble.
A way to define an analogue of the Lax±Zakharov±Shabat
construction for higher dimensional theories using loop space
variables has been suggested in [173] (for a concise review, see
[168]). Themain idea is to parametrize theWilson surface by a
collection of loops, each satisfying a parallel transport
equation for a loop space connection Am. The connection
1-form takes values in a non-Abelian algebra and acts
nontrivially on loops. Although this formalism is not
completely identical to the one described above, it is similar
enough to be of interest for further investigation.

4.6.2 Tetrahedron equation. The whole discussion around
open-closed string/membrane parameters, the associated
r-matrix or r-tensor, and Poisson/Nambu brackets has
centered on the classical Yang±Baxter equation and its
generalized analogue for the r-tensor. As was briefly
discussed in Section 3.2, the integrability of the string means
not only the possibility of defining a flat Lax connection but
also a possibility of writing the string S-matrix in terms of the
quantum R-matrix that solves the quantum Yang±Baxter
equation (QYBE)

R12R23R13 � R13R23R12 : �4:86�
Here, the subscript denotes the Hilbert space on which the
R-matrix acts at each intersection. The quantum Yang±
Baxter equation describes the scattering of point-like parti-

SS 1
�Fmn�C�v1; v2� �

�
dsD

�
C;Hmnr

ÿ
x�s�� _xr�s�

�
v m
1 �s�v n2 �s� :
�4:81�

SS 1
Fm; s; n; t . � �

�
dt
�
C;Hmnr�r� _xr�r�; ��d�sÿ r�d�tÿ r� :

�4:82�

SS 1
Am; s . � �

�
ds
�
C;Bmn�s� _x n�s�; ��d�sÿ t� : �4:83�

SS 1

0 � HmC
n � qm _x n�s�C� _x n�Am . C�

�
�

ds
d

dx m�s� _x n�s�C� _x n�Am . C� : �4:84�

SS 1

�
ds dt �T o�m; s; n; tv m

1

ÿ
x�s��v n

2

ÿ
x�t��

�
�

dromnrv
m
1

ÿ
x�r��v n2ÿx�r�� dxr

dr
: �4:77�
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cles, stating that the S-matrix factorizes, and appears to be a
particular case of an infinite series of so-called simplex
equations (see, e.g., [174]). An n-simplex equation may be
understood as describing factorization of the S-matrix
corresponding to the scattering of nÿ 1-dimensional
objects. Hence, we become naturally interested in 2-simplex
equations, also known as the Zamolodchikov tetrahedron
equation (ZTE), introduced in [175] and further developed
in [176, 177] as a description of 3d integrable systems. The
4-simplex equation appeared in [178], and n-simplex equa-
tions have been studied, for example, in [174, 179, 180].

Different labeling schemes can be used to write down the
3-simplex equation: label the states of string segments
between vertices [175], label the state of vacua between the
strings (faces of tetrahedron) [174], or label particles at the
edges of the strings [178]. Let us start with the first one and
consider the scattering of straight strings. The r-matrix then
acts on the space of states V of intersecting strings at each
tetrahedron vertex, and hence R 2 End �V
 V
 V�. Then,
the equation reads

R123R145R246R356 � R356R246R145R123 : �4:87�

An alternative labeling scheme uses labels for the tetrahedron
faces, which are now four in total and hence the scheme is
nonlocal [181]. This corresponds to an equation on V
4

rather than V
6 and is referred to as the Frenkel±Moore
equation:

R234R134R124R123 � R123R124R134R234 : �4:88�

Note the important distinction between the qYBE and ZTE
that indices for each space are contracted more than twice.
More details on the tetrahedron equation and its relation to
other quantum group equations can be found, e.g., in [182,
183].

Given the relations between the quasi-classical limit of the
quantum Yang±Baxter equation and bi-vector deformations
of 10d string backgrounds, it is suggestive to search for similar
relations between the tetrahedron equation (in any formula-
tion) and the so-called generalized Yang±Baxter equation
(4.5). Unfortunately, this path is not as straightforward as it
seems, since it is not known how to define a quasi-classical
limit of a tetrahedron equation. One may take the most naive
path, for which the Frenkel±Moore equation is best suited
and consider R123 � 11
 11
 11��h r123. Substituting this into
(4.88), we find that the orders �h 0 and �h 1 are satisfied trivially,
while the order �h 2 provides

�r123; r124� � �r123; r134� � �r124; r134� � �r123; r234�
� �r134; r234� � �r124; r234� � 0 : �4:89�

This has the form of a nice generalization of the classical
Yang±Baxter equation; however, it cannot be written in the
form (4.5) for a general algebra of endomorphisms. To
illustrate this, we decompose r into a basis ftag � bas g, say,

r123 � r abc ta 
 tb 
 tc 
 1 ; �4:90�

assuming r abc � r �abc� is completely antisymmetric. Now, it is
easy to see that in each term in the classical 3-simplex
equation (4.89) one obtains expressions of the form

a � b
 c � dÿ b � a
 d � c ; �4:91�

where a � b denotes multiplication in the universal enveloping
algebra U�g�. This can be transformed into

a � b
 c � dÿ b � a
 d � c � �a; b� 
 fc; dg � fa; bg 
 �c; d � ;

�4:92�

where �a; b� is the image of the Lie bracket and we formally
define fa; bg :� a � b� b � a. Since we are interested in the
algebra of Killing vectors, it is not completely clear how to
define a symmetric product without introducing a connec-
tion. Certainly, this does not prevent us from searching for
solutions to other realizations of the algebra g, e.g., for
Spin�d�, the anticommutator is perfectly defined and one
may proceed.

A seemingly more fruitful approach is to turn ZTE into
the so-called decorated Yang±Baxter equation. For this,
suppose that the spaces with labels, say 1; 2; 3, are considered
additional (color) states. Then, the two tetrahedra in Fig. 4
are simply two triangula with additional lines decorating
them. Introducing labels a; b; g instead of 1; 2; 3, we may
rewrite ZTE as

Ra; 45Rb; 46Rg; 56 � Rÿ1abgRg; 56Rb; 46Ra; 45Rabg : �4:93�

Hence, we see the familiar structure of the quantum Yang±
Baxter equation, where (i) each R-matrix carries an addi-
tional label (is decorated), (ii) the RHS gets twisted by the
adjoint action of Rabg. It is tempting to think that the
additional color label corresponds to having loop-space
variables; however, a precise realization of this statement is
not clear.

5. Conclusions

In this review, we have made an attempt to collect methods
aimed at investigating the integrability in string theory as a
1+1-dimensional sigmamodel and various observations that
hint at a possible generalization of these methods to the
theory of membranes. In the main text, we briefly discuss
each of the methods and observations in some detail to give a
general expression of the corresponding techniques and
provide links to original studies, reviews, lectures, and
introductory papers. To conclude, let us first recap all this in
the form of simple lists.

Let us start with a list of the techniques and observations
addressed above that are related to the integrability of the
string and to symmetries of its space of vacua, i.e., 10d
supergravity backgrounds.

4

4

3

3
2

2

1

1

=

Figure 4. Factorization of the scattering of straight strings depicted in the

form of a tetrahedron equation. Labeling scheme is chosen according to

Frenkel and Moore, and numbers correspond to faces.
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� A 1+1-dimensional field theory is integrable when its
equations of motion can be written in the form of the flatness
of a connection; the corresponding Wilson line defines the
Lax operator.
� Given a Lax pair, the classical r-matrix can be used to

generate Poisson brackets that define an integrable system.
� Integrable deformations of the 2d sigma model are

generated by the r-matrix solving the classical Yang±Baxter
equation.
� The classical Yang±Baxter equation is a limit of the

quantum Yang±Baxter equation describing factorization of
the S-matrix for scattering particles.
� Yang±Baxter deformations generate families of classical

Drinfeld algebras that stand behind Poisson±Lie T-duality
symmetries.
� At the level of supergravity backgrounds, Yang±Baxter

deformations are generated by a bi-vector that is the r-matrix
dressed by Killing vectors.
� The deformation map has the same form as the open-

closed string map, with the bi-vector having the meaning of
the noncommutativity parameter.

We see here close connections between the classical Yang±
Baxter equation and the integrability of the string, which is in
some sense expected, and symmetries of the space of solutions
of supergravity field equations. Similar connections have
been found in 11d supergravity that provides backgrounds
for the membranes. The corresponding list of statements can
be composed as follows.
� Families of exceptional Drinfeld algebras standing

behind Nambu±Lie U-duality can be generated by general-
ized Yang±Baxter deformation defined by r-tensors satisfy-
ing the generalized Yang±Baxter equation.
� At the level of supergravity, generalized Yang±Baxter

deformations are generated by tri- and six-vectors that are
r-tensors dressed by Killing vectors.
� The deformation map has the same form as the open-

closed membrane map, with the 3-vector having the meaning
of the loop noncommutativity parameter.
� For a given Lax pair, a r-tensor can be used to generate

Nambu brackets that define a mechanical system.
This list intentionally does not mention speculation on

integrability. Indeed, there is no construction for a 1+2-
dimensional theory similar to the Lax±Zakharov±Shabat
description of integrability of 1+1-systems. The results
collected in the second list above and their similarity to the
first list suggest that the generalized Yang±Baxter equation
must have some relation to integrability properties of the
membrane. Certainly, the relation is far from obvious;
however, there are some observations concerning an alge-
braic description of membrane dynamics in general and in the
context ofM-theory that we find particularly useful. They can
be combined in the following list.
� The quantum version of the generalized Yang±Baxter

equation is not known, but the index structure of the
r-tensor suggests that it must be the tetrahedron equation
that describes factorization of the S-matrix for straight
strings.
� A canonical analysis and ADHMN construction for the

membrane suggest that natural variables to describe its
dynamics could be functions taking values in the algebra of
loops.
� Using loops, one is able to introduce a natural ordering

on a Wilson surface, presumably defining the Lax operator
for the corresponding 1+2-dimensional system.

� The quasiclassical limit of the tetrahedron equation is
not known; however, it can be written as a set of Yang±Baxter
equations on decorated quantum R-matrices.
� The natural (Takhtajan) action for a system described

by aNambu 3-bracket has the formof theWess±Zumino term
for the M2-brane ending on an M5-brane.
� Ageneralization ofKP hierarchy that has time variables

tm; n parametrized by pairs of indices can be defined using
Nambu brackets. Similar variables are found when defining a
generalization of Schur polynomials to the case of 3d Young
diagrams presumably describing the integrability of 1� 2-
dimensional systems [184, 185].

We find the following areas of research the most
promising. First, we are naturally interested in finding a way
to arrive at the generalized Yang±Baxter equation from the
tetrahedron equation, which naturally describes factorization
of the S-matrix for straight string scattering. Second, it would
be interesting to construct an analogue of the evolution
operator in 3d using loop algebra variables, which seem to
be natural for describing M2-brane dynamics (or at least the
dynamics of its endpoints). Hopefully, more will be reported
on these and other related questions in the nearest future.
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