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Abstract. The quasilinear method of describing weak plasma
turbulence is one of the most important elements of current
plasma physics research. Today, this method is not only a tool
for solving individual problems but a full-fledged theory of
general physical interest. The author’s objective is to show
how the early ideas of describing the wave—particle interactions
in a plasma have evolved as a result of the rapid expansion of the
research interests of turbulence and turbulent transport theor-
ists.

Keywords: quasilinear theory, turbulent transport, diffusion coeffi-
cients, stochastic magnetic field, plasma

1. Introduction

The quasilinear theory of weak plasma turbulence is indis-
putably a key element of modern plasma physics [1-7].
Indeed, a voluminous book would be too small to cover all
its aspects. Some issues concerning the quasilinear approach
have been highlighted in numerous reviews and monographs,
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whereas others are either forgotten or stay on the sidelines
amid the exponentially growing number of publications
concerning plasma turbulence.

Ideas paramount to the creation of the quasilinear theory
have not arisen in a vacuum. In fact, they emerged from the
work of concrete researchers, among whom were mainly
Soviet scientists, such as A A Vlasov, L D Landau,
I A Akhiezer, Ya B Fainberg, B I Davydov, A B Migdal,
V M Galitskii, B V Chirikov, and Yu L Klimontovich, to
name but a few, and certainly Yu A Romanov and
G F Filippov. Since a discussion of the studies reported by
Vlasov and Landau has a long history, the present review is
focused on a relatively small number of literature sources,
allowing us to follow the formation of theoretical concepts
used as a basis by A A Vedenov, E P Velikhov, and
R Z Sagdeev for the development of the quasilinear method,
not only as a tool for addressing specific problems, but also as
a full-fledged theory of general physical interest.

For example, the concept of formation of a quasilinear
‘platean’ immediately attracted the attention of theorists, as
appears from V D Shafranov’s preprint [8] issued in 1960, i.e.,
before the publication of fundamental articles [2-5] and only
two months or so after a comprehensive discussion of the
quasilinear theory at a LIPAN seminar.! The author already

' LIPAN (Russian acronym)— Laboratory of Measurement Tools of the
USSR Academy of Sciences, subsequently redesignated as the I V Kurcha-
tov Institute of Atomic Energy (today’s National Research Centre
‘Kurchatov Institute’).
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represented the mechanism of plateau formation in the form
of a ‘mnemonic’ rule allowing the state into which the system
passes as a result of the development of Cherenkov type
instability to be predicted. Actually, the quasilinear theory
became for the next decade one of the few ‘foci of comprehen-
sion’ for plasma turbulence.

The elegance of considering interactions between reso-
nant particles and a wave packet in the framework of the
quasilinear approach accounts for the not infrequently
formal attitude toward the notionally important findings of
predecessors, whereas the quasilinear method itself is viewed
now, after 50 years, as an almost ‘literal’ replication of the
work of Vlasov and Landau [9-12]. However, it needs to be
emphasized that the near 15-year time gap between Landau’s
article and the widely cited series of publications by Vedenov,
Velikhov, and Sagdeev was a period of tremendous growth of
plasma physics. It was therefore important for the purpose of
the present review to identify publications dating back to the
period from 1947 to the 1960s, crucial for establishing the
basis of the quasilinear theory.

We start considering issues pertinent to the prehistory of
the quasilinear theory from Davydov’s article [13] and
Galitskii’s thesis [14] in the first place, because we are
interested in the influence of the quasilinear method on the
development of the theory of turbulent transport. It is a
somewhat artificial limitation, because such an approach
disregards earlier results obtained at the time when the
Vlasov equation began to be extensively utilized. It is hardly
possible to cover the whole knot of problems related to the
theory of plasma waves and oscillations or describe the
slowing-down of charged particles and beam propagation
investigated by physicists during that period.

Itis noteworthy that the first publication of the authors of
Ref. [1] appeared as a preprint issued by the I V Kurchatov
Institute of Atomic Energy in 1960 [in a year, they published a
review under the same title in Uspekhi Fizicheskikh Nauk
(Physics—Uspekhi)]. In 1958, volume 1 of the four-volume
work having the general title Plasma Physics and the Problem
of Controlled Thermonuclear Fusion came out. It contained
material on declassified reports highlighting early thermo-
nuclear studies, including the important article by B I Davy-
dov [13] concerning the role of plasma oscillations in the
context of diffusion and thermal conductivity research,
actually written as early as 1951. In fact, it was the first
article raising the question of the influence of the turbulence
on transport processes.

On the other hand, the book of collected memories of
A A Vedenov contains papers by Velikhov and Sagdeev
describing the work of Galitskii [14] and Romanov and
Filippov [2] as important sources of their own research.
Notice that both the introduction to the thesis by Galitskii
[14] and the article by Romanov and Filippov [2] include
references to Davydov’s pioneering work [13]. Unfortu-
nately, the articles by Klimontovich [16] and Chirikov [17]
published in 1958 and 1959 are rarely mentioned in
connection with the quasilinear theory. Despite the absence
of direct references to these articles, it is necessary to
emphasize their notational and temporal relation to publica-
tions dealing with the quasilinear theory. Naturally, the list
of predecessors could be extended by appending the authors
of publications on the role of resonant particles [18, 19],
beam instability [20, 21], etc. But for the purpose of the
present review, it is quite sufficient to refer here to a few of
the aforementioned studies [2, 13, 14, 16].

The quasilinear method is currently one of the most
popular analytical tools for the study of weak plasma
turbulence. Suffice it to say that all turbulent transport
coefficients containing the quadratic dependence of pulsa-
tion amplitudes are traditionally called quasilinear coeffi-
cients. To date, however, i.e., more than half a century after
the publication of Refs [1-7, 22-24], it is important not only to
summarize the data obtained by the quasilinear method but
also to characterize the most significant components of this
approach. It is clear at first sight that the problem encom-
passes a few fundamental ideas, viz. the consideration of
Cherenkov mechanisms, distinguishing between fastly and
slowly evolving components of the distribution function, a
description of the evolution of an excited plasma wave
spectrum and diffusive evolution of the particle distribution
function under weak turbulence conditions, nonlinear effects
associated with the ‘capture’ of particles in potential wells, the
formation of the stochastic layer in the vicinity of separa-
trices, and decorrelation mechanisms governed by stochastic
instability.

Indeed, each of these components had been in some way
or other investigated by predecessors of the authors of the
quasilinear method. Nevertheless, comprehensive considera-
tion of all the ideas forwarded by that time was certainly an
important breakthrough. This is perfectly obvious now, even
from the number of references to and applications of the
quasilinear method.

There are a lot of valuable books in which the majority of
the problems discussed in the present review are discussed
[25-57]. However, most of them are devoted to special issues
and intended largely for plasma physicists; moreover, the
authors are limited by constraints imposed by the length of
the publications and cannot give much attention to the
discussion of the mutual influence of quasilinear and general
physical concepts.

This review is focused on theoretical issues, bearing in
mind that the authors of pioneering studies [1-5] and many
later breakthrough studies were leading Soviet and foreign
theorists. The choice of topics for the present article was far
from random. The author’s objective was to show how the
early ideas of describing wave—particle interactions in a
plasma have evolved as a result of the rapid expansion of the
research interests of turbulence and turbulence transport
theorists.

2. Influence of plasma oscillations on transport

Davydov’s paper considered in this section is called “The
influence of the oscillations of a plasma on its electrical and
thermal conductivity’ [13]. Actually, there had been no
attempts to evaluate such effects before it came out.
Transport coefficients were calculated from collisional
processes making use of the particle mean free path as a key
parameter. Limitations of the approach, taking into account
only the interplay between electrons and ions at distances
shorter than the Debye radius, gave Davydov reason to point
to the importance of considering interactions between
charged particles (electrons and ions) with reference to
plasma waves. Therefore, he proposed, based on the
standard structure of the kinetic equation, to introduce the
effective mean free path /e
1 1 1
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where lyb, L, and /; are the characteristic path scales under
turbulence, electron collisions, and ion collisions. Then, the
quasiclassical transport coefficients in a plasma assume the
form

2

e‘n n
Wl 1=37 (2)

D= %(Vﬂeff’ o
Here, D is the diffusion coefficient of particles, o is the
electrical conduction coefficient of the plasma, y is the
thermal conduction coefficient of the plasma, and kg is the
Boltzmann constant. The author of Ref. [13] does not appear
to have been interested in specific features imparted by the
applied magnetic field, even though he was one of the first
physicists involved through I V Kurchatov in the project on
magnetic plasma confinement for the purpose of controlled
thermonuclear fusion (CTF) [58]. According to A D Sakha-
rov’s recollections, L A Artsimovich and M A Leontovich
discussed the ideas proposed by himself and I E Tamm at the
end of 1950 and early in 1951 [59].

It is worthwhile to note that Davydov was a multi-
discipline theorist [60] well-aware of analogies between
specific plasma problems and the fundamentals of solid-
state physics, in which interactions of electrons and lattice
vibrations constitute a key mechanism [61, 62]. Comparing
ion oscillations (ion-acoustic plasma waves) with acoustic
vibrations of ionic crystals and of electron plasma (Langmuir)
oscillations with optical vibrations in crystals makes it
convenient to use the quantum-mechanical perturbation
theory to calculate the scattering probabilities. Such calcula-
tions were made by Davydov and Shmushkevich for optical
oscillations as early as 1940 [63], and by Landau and
Kompaneets for acoustic vibrations in the 1930s [64].

It was shown that the probability of electron transition
from the state with the wave vector k = mV into the k +q
state upon absorption of a quantum with frequency w and
wave vector q is given by the formula

wt="°_Nn,, (3)

where m is the electron mass, ¢ is the electron charge, n is the
plasma density, and N, is the number of quanta per unit cell.
Thus, the probability of the k — k — q transition correspond-
ing to the emission of a quantum is
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Davydov argued that a plasma normally contains no ions
capable of interacting with Langmuir oscillations having
phase velocities much higher than the thermal velocities of
ions. Getting ahead of the story, let us note that the above
probabilities of emission and absorption of wave quanta were
used later in the pioneering work of Romanov and Filippov
[2] when calculating the quasilinear diffusion coefficient of
electrons in the field of Langmuir oscillations, while the
‘quantum’ method itself became one of the main tools in
plasma turbulence research. This is hardly a surprise, because
the language of quantum mechanics was extensively used by
the majority of physicists working at that time.

It should be noted that Davydov does not mention any
relationship between his quantum method and the Vavilov—
Cherenkov effect. However, he apparently emphasizes the
similarity of the processes under consideration to hydrody-

namic conceptions implying the impossibility of wave
emission and absorption for bodies traveling in a liquid with
velocities below the speed of sound.

Accordingly, for ion-acoustic waves, the following expres-
sions hold (bearing in mind the equiphase conditions for
electron and ion vibrations):
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where M is the ion mass, Q is the frequency of ion-acoustic
vibrations, and Ny, is their intensity (the number of quanta per
unit volume).

The exchange between charged particles and the wave
field by means of quantum emission and absorption is
believed to be associated with minor changes in energy and
momentum which, in turn, suggests the diffusive evolution of
the distribution function. Being a prominent authority in
physical kinetics [65], Davydov found no difficulty in deriving
the Fokker—Planck equations best matched to the problem
under consideration. An additional argument for using the
diffusion approximation was the studies by Bohm and Gross
[18, 19, 66-69] published one or two years before Davydov’s
article. These papers contained a detailed discussion of
interactions between electrons and plasma waves, taking
into consideration the estimates of energy transferred in
‘collisions’:

w
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Here, Vpn = w/k is the phase velocity of a wave. Noteworth-
ily, Landau did not discuss the qualitative picture of
collisionless damping described in his original paper, while
Bohm and Gross actually used the model to describe energy
transport from ‘light to heavy components’, well known in
plasma kinetics.

Davydov made use of such estimates at various times in
the mid-1930s to derive the Fokker-Planck equations
describing the distribution function of electrons in a weakly
ionized plasma placed in an electric field (the Druyvesteyn
distribution was obtained theoretically) [63, 65, 70]. Davydov
distinctly formulated the necessity of taking into account
diffusion effects in velocity space for the analysis of plasma
kinetic problems. Many studies carried out by Davydov were
concerned with diffusion models of various phenomena.
Moreover, he was also well aware of the importance of
‘nondiffusive’ transport [71] for the description of turbulent
diffusion.

The basic kinetic equation was chosen in paper [13] in the
form of the following Fokker—Planck equation:
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where coordinates (7,9, ¢) traditional for plasma kinetics are
used, Dy and Dy are the corresponding diffusion coefficients,
and Gy is the drag coefficient. Naturally, the expression

F = Fycosdexp <— 5) (8)
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is used for the model solution, where Fy(V, T) denotes the
equilibrium distribution. In the absence of an external force
and spatial inhomogeneity, we come to an equation describ-
ing Maxwellian type equilibrium. In the work under con-
sideration, the divergent approach is employed as developed
by Davydov to address problems of weakly ionized plasma
kinetics. He considered a particle flux Sy in the phase space:

1 9 {V2<DV%+GF0)} =0, (9)
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and arrived at the condition for coupling the diffusion (Dy)
and drag (Gy) coefficients, taking advantage of the absence of
a singularity in the expression for the flux of particles Sy at
Zero:

oF,
Sy =Dy——2+GyFy=0.

=7 (10)

Since the equilibrium distribution function is given by the
classical Maxwellian formula

(N o (LMY
0= " 20 P70 )

where the notation 0 = kgT was introduced, it leads to the
coupling condition for kinetic coefficients in the form

(11)

Gy=——Dy.

0 (12)

Then, estimation of characteristic relaxation time 7, and
characteristic spatial scale /1, reduces to calculating the
particle diffusion coefficient in the phase space.

Coefficients Dy and Dy are given by the classical Einstein
expressions

1 {(AVcos¥)?)
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each breaking into two items standing for quantum absorp-
tion (probability W,) and emission (probability W_),
respectively, with a change in velocity AV = fig/m in either
case. The averaging procedure is actually reduced to taking
the corresponding integrals over ¢, 1, and ¢.

For example, the following expressions are obtained in the
case of interaction between electrons and Langmuir waves:

ne* 0
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Assuming that the effective mean free path is estimated from
the relation /iy, o< V7., where
& m2y3

:2Dl;(V)O( net ’

(V) (17)

we arrive at Davydov’s scaling for the particles’ mean free
path brought about by turbulent fluctuations:

4
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As a matter of fact, these results coincide with elementary
kinetic (fluctuation-dissipative) estimates for Coulomb colli-
sions:

ksT)?
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where diffusion in the configuration space is given by the
formula Dgr =l V. The collisional range /[, may be
estimated from dimensional notions when considering Cou-
lomb collisions:
e? N my?

o ~ 2 ) (20)
where lconrozn x 1. Here, the Coulomb collision cross section
is assessed through the characteristic spatial scale in a purely
dimensional manner: ¢ roz. As is well known, the rigorous
kinetic theory of Coulomb collisions developed by Landau
assigns an important role to collisions resulting in small-angle
scattering of charged particles due to their long-range
interaction in a plasma. Naturally, this enlarges the effective
cross section A = In (rp /o) times and consequently shortens
the range /... Here, rp is the Debye radius. In the problems of
interest, the Coulomb logarithm is usually amounted to
A~ 10-20[72].

Similar results are obtained in considering interactions
between electrons and ion-acoustic waves:

ne* 0
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Based on these calculations, Davydov arrived at the conclu-
sion that the contribution from the particle-wave interactions
in a plasma is small in comparison with that of Coulomb
collisions at a noise level commensurate with the thermal
energy.

Today, it is clear that the choice of the N, and Ng values
as indicators of plasma oscillation intensity corresponding to
thermal equilibrium was at odds with the real role of
turbulence in a plasma. Davydov himself pointed out that it
provided only a lower-bound estimate of the role of
oscillations. It required almost another 10 years to construct
the first self-consistent model for evolution of the distribution
function in the Langmuir oscillation field, taking into
consideration the temporal evolution of oscillation energy
[1-5]. The key point here was the employment of both the
Landau damping mechanism and the diffusion type equation
describing the electron distribution function.

3. Kinetic equation for waves
and thermal conductivity of plasma

Theoretical studies on plasma turbulence initiated by Davy-
dov were continued under the supervision of A B Migdal by
his postgraduate student V M Galitskii, who investigated the
influence of Langmuir oscillations on the transport processes
in a plasma placed in magnetic traps. The volume of collected
works by V M Galitskii came out only in the early 1980s; it
included, inter alia, his declassified thesis for Candidate of
physical and mathematical sciences, defended in 1954 [14].
Davydov was forced to stop his work in the field of plasma
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physics after he was dismissed from LIPAN at the request of
bodies controling the regime of secrecy [60], while the
undergraduate student T F Volkov and postgraduate
student S I Braginskii conducting research under his
guidance switched to investigations into the hydrodynamics
and collisional kinetics of magnetized plasma [73, 74].

The last chapter in Galitskii’s thesis was entitled “Kinetic
equation for waves and plasma thermal conductivity.” In the
introduction, the author directly pointed out the motivational
role of Davydov’s work and stated that determining the
thermal conductivity coefficient related to electron oscilla-
tions was the primary objective of his study. He understood
that waves make only a negligible contribution under thermal
equilibrium. Using the relevant qualitative estimations based
on the classical Rayleigh—-Jeans method for counting the
number of states (waves), Galitskii came to the conclusion
that the number of waves outside the Debye sphere under
near-equilibrium conditions was equal to

L N I B (L>

N ~N ———x = —F
METE T onpa b T ew

' (23)

Here, 8k ~ 21/ L, is the minimal wave number, and Lg is the
plasma volume with the characteristic spatial scale Ly, and
Kmax = 21/rp > kmin, where

| kT

=N\ dnern

Notice that the estimate obtained by Galitskii is similar to
Debye’s calculated result for the heat capacity of solids.
According to Debye, the maximum wave number allowing
integral divergence to be avoided is related to the minimal
characteristic scale coincident with the crystal lattice period.
In the case of Langmuir oscillations, kpax o 2n/rp due to
Landau damping on r < rp scales.

In equilibrium, wave and particle energy densities are
identical, and, therefore, the following estimate is valid:

kBT nkBT
/0 22
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where it was taken into account that Np =nrj =

n[T/(4ne*n)]*?, and n is the plasma density. To recall,
Np > 1 and In Np = A. Galitskii assumed the wave energy
transfer rate determined by group velocity dw/dk and close to
the particle velocity. Characteristic wave time t, introduced
by Davydov is of the same order of magnitude as electron
mean free path time t¢; prior to collision with plasma ions. As
a result, a comparison of wave thermal conductivity with the
kinetic (collisional) one is akin to a comparison between wave
number density Ny/L3 and particle (electron) number
density:

Xturb o (67[2’413))71 _ 62/VD
Lcoll n ks T

<l. (25)

The choice of thermal conductivity coefficients instead of the
diffusion coefficient to analyze the contribution from
turbulent pulsations to the transport processes was dictated
by the necessity to avoid additional difficulties related to
ambipolarity effects. Clearly, these calculations confirmed
the known inference deduced by Davydov suggesting a
negligible influence of turbulence at a thermal noise level [13].

Galitskii’s further studies were motivated by the con-
jecture that the transverse collisional transport should be
suppressed in a strong magnetic field. Indeed, a Larmor
radius inversely proportional to the magnetic field amplitude
serves in this case as the characteristic spatial correlation
scale. Under these conditions typical of magnetic plasma
confinement problems, the contribution from interactions of
particles with turbulent fluctuations becomes an essential
factor. At an earlier stage of CTF research, much attention
was given to the stabilizing effect of strong magnetic fields.
But even at that time, theorists began to think about the
possible role of kinetic instabilities.

A novelty element of importance for all the subsequent
analysis of plasma turbulence, as compared to Davydov’s
approach, is the consideration of the equation for wave
energy spectral density Wj. In this case, energy flux density
is given by the formula

S(r,1) = [a—w Wi (t,r,k)dk. (26)

ok
Here, spectral wave energy density is assumed to depend on
both wave vector k and coordinate r. Galitskii presented the
appropriate equation for field evolution in the form

ow(t,r,k) +6_w ow(s,r.k) 0w oW(irk) dW 27)
ot ok or or ok T dr
by using the geometric acoustic approximation
o OJw
ok ow
=2 2
ot or (29)

Davydov did not consider wave field evolution, assuming
noise amplitudes to be given. However, Galitskii failed to
propose a scheme for matching this equation and Vlasov’s
equation for the particle distribution function. At that time,
solid-state physics theorists had a clear notion of phonon
kinetics, but they had to deal with near-equilibrium states.
Later on, kinetic equations for waves in plasma became the
most important tool for the analysis of nonlinear problems in
the theory of turbulence extensively discussed in the literature
[26, 34, 36, 37, 40, 47].

It is worthwhile to note in the context of this review that
E P Velikhov mentioned in his memoirs on the work on
quasilinear theory the Galitskii thesis as a stimulus that made
him turn to research in a new area [15]. “When I thought
about a subject for my own thesis, Ya A Smorodinskii advised
me: “Look at what is going on with Galitskii.”” At that time
Viktor Mikhailovich worked on his thesis. It proved to be a
classified theoretical study in which the wave—particle
interaction in plasma was considered for the first time,
continuing in some ways the famous classical work of
Landau. I looked through the Galitskii thesis and was greatly
impressed by his ideas.

Plasma phenomena, i.e., the interplay between two gases
(particle-gas and wave-gas), caught my imagination, and I
decided to seek the advice of Sagdeev and Vedenov. We began
to work on the quasilinear theory of turbulence, which was
completed shortly before the First Nuclear Fusion Congress
held in Salzburg.

It was high time to report our results, because William
Drummond had come by then to similar conclusions,
although his was a botched job compared with our elegant
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Electromagnetic process
(transverse waves)
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PHEROM COSETDE

Interaction of a single
particle with waves

Interaction of two particles
with waves

Energy loss by a single par-
ticle and wave formation
Energy gain by a single par-
ticle and annihilation of a
wave

Origin of a wave in a two-
particle collision
Destruction of a wave with
energy transfer to two col-

Cherenkov emission

Cherenkov absorption

Bremsstrahlung emission

Photoeffect in a continuous
spectrum

KR BARMHMEE TacTHoAM

Figure 1. Table from Galitskii’s thesis for Cand. phys.-math. sci. (1954) [14].

liding particles

theory. Both versions were delivered at the congress; pre-
ference was given to our model and it was recognized as the
standard theory.”

The notion of wave-gas undoubtedly gives evidence of
understanding the importance of the correlation between
wave and particle kinetics by theorists. Thereafter, Romanov
and Filippov [2], as well as Vedenov, Velikhov, and Sagdeev
[1, 3, 4], used the equation for spectral density of wave energy
Wi in a reduced form, preserving only effects related to
Landau collisionless damping as one of the main relations in
quasilinear theory:

oW (t
O 2w,

nwi Of
IL=5.7 Ay :
2k2 OV |y ik

(30)

(31)

The traditional notation for oscillation energy density W(r) =
| W(k, 1) d’k is adopted here.

A few bibliographic remarks are in order. To begin with,
Galitskii in all his calculations considered Landau damping as
interpreted by Bohm and Gross (with reference to the relevant
publications). Strange as it may seem, he made no reference to
the classical work of Akhiezer and Fainberg [20, 21] but
mentions the later paper by Akhiezer and Sitenko [75]. In this
context, a characteristic quotation from a Personalia pub-
lished in Physics—Uspekhi in commemoration of the 60th
anniversary of the birthday of A I Akhiezer [76] may be of
interest. It reads: “The classical work of A T Akhiezer and
Ya B Fainberg dated to 1949 predicted the beam instability
effect, namely, the exponential growth of fluctuations in a
plasma traversed by an electron beam. This work, together
with those of A A Vlasov and L D Landau, provided a basis
for investigations of collective interactions in a plasma.”

Notice that Galitskii in 1954 extensively exploited the
notion of Landau damping as the Cherenkov effect (Fig. 1) in
the context of description of particle-wave interactions in a
plasma (Tamm, Cherenkov, and Frank were awarded the
Nobel Prize in Physics only in 1958). Also, Galitskii attended
to effects related to the passage of a beam of charged particles
through a plasma by repeating calculations of his predeces-
sors with the employment of a somewhat different method.
For example, the formula derived by Vlasov [12] in 1945 to
estimate energy losses by particles, viz.

_dw o
KTz

Kmax V'
e 2 I Smax ’
wL

(32)

gave rise to hopes for a possible qualitative evaluation of
transport effects from dimensional considerations making

use of the quantity

e (V)

representing the reciprocal of plasma frequency
oL = \/4me2n/m. Here, a ‘unified’ estimate is used for the
characteristic spatial scale in the form of the Debye radius,
rp < Vr/wr, which allows adequately characterizing the
inverse dependence of energy loss by a particle on its
velocity. Such an approach is in excellent agreement with
the classical collisional description of the plasma. Indeed, the
mean free path markedly increases with particle velocity,
Ionn o V4, i.e., the losses have to decrease as velocity grows.
Nevertheless, the characteristic frequency of Langmuir
oscillations is absent in Galitskii’s estimations of turbulent
transport disregarding the influence of the magnetic field.

It can be noted by way of an intermediate summary that
Davydov’s work and Galitskii’s thesis provided a basis for the
subsequent rigorous analysis of effects associated with
plasma turbulence. However, it proved necessary to move
from a phenomenological description of particle diffusion
effects to a systematic analysis of Vlasov’s equation in order
to construct the consistent quasilinear theory.

dw  e? 1
- X — —
dl I'D I'D

(33)

4. Phenomenological equation
for the plasma wave potential

From the standpoint of an analysis of key theoretical research
preceding the development of the quasilinear theory, it is
worthwhile to mention the paper of Klimontovich [16], dating
back to 1959, which summarizes the most important data on
the interaction between electron beams and plasma available
at that time. They were included in the well-known review
article by Klimontovich and Silin [77] (see Section 7)
published in Physics—Uspekhiin 1960.

At the beginning of Ref. [16], its author draws attention to
the inapplicability of the known analytical formulas describ-
ing the slowing-down of individual charged particles in a
plasma to the description of electron beam scattering. The
unusually fast scattering noted long ago by Langmuir and
beam instability were repeatedly investigated by many
theorists (e.g., Vlasov, Bohm, Akhiezer); the excitation of
plasma oscillations associated with beam propagation was
already observed in experiment [78, 79]. Thus, calculations
based on Coulomb collisions showed that in a plasma of
density 10'* cm~3 the electron range must be of order 10° m at
a beam energy of 2 keV. However, real beams tend to be
attenuated on laboratory scales. Klimontovich proposed to
construct a rigorous theory with the use of the Bogolyubov
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hierarchy [80] for the derivation of a kinetic equation taking
account of plasma wave excitations. His calculations brought
him to the collision integral in the form

St:ngJU(r—r’)a—Gdr/dp’7 (34)

or op’

where the correlation function is expressed as

_of~ , p—p Ofi Ofi
=5, U( )d’{fﬁw } (33

r—r' —
m

Noting that this equation is analogous to the Landau
kinetic equation with Coulomb collisions of charged particles
[42-44, 72], Klimontovich linearized it following the tradi-
tional method and arrived at a classical Fokker—Planck
equation. However, he obtained the diffusion coefficient for
particles in velocity space, taking account of plasma oscilla-
tions:

T

€2kBT
Dy ~
v 2n

Jé(wL _kV)dk, (36)

in a form substantially differing from the aforementioned
result of Davydov. Here, delta function d(wr — kV) makes it
possible to take account in explicit form of the resonant
character of electron—Langmuir wave interactions. The
qualitative estimate can be written out in terms of Langmuir
oscillation frequency wy :

net knT

2
€ 2
DVO(—V3 kgTowy < 7 oy

(37)
though it actually coincides with Davydov’s scaling.
Klimontovich was not satisfied with such ‘duality’ and
attempted, in the same article, to describe the evolution of the
beam distribution function based on direct solution of the
Vlasov equation by the perturbation method representing the
distribution function in the form of a fundamental harmonic
and perturbation: = fy + fi. In fact, Klimontovich postu-
lated his own system of equations. He chose one of them as
the equation for the perturbed part f; of the electron
distribution function. It was obtained from the classical
Vlasov equation:
ofi | 0fi

—tv—+

e 6q)6f1_0
ot ox N

38
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The other, being a phenomenological equation, describes
the evolution of the plasma wave potential amplitude by
virtue of ‘phenomenological’ modification of the classical
Poisson equation:

w09 1 J
2= T _ T —4 — .
Von O V;h a2 el | f1dV —n (39)
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Because Klimontovich aimed to describe beam instability, he
considered the simplest ‘two-hump’ distribution function, the
positive derivative of which on the left-hand side-hump
corresponding to beam particles initiates the development of
Cherenkov type instability (Fig. 2). Here, the Landau
increment is given by the classical formula
3 2
nw; 0f L nb(Vb>

L= s oL — (7] >

V=w/k 4 n AV

e By (40)

fe
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Figure 2. Beam instability.

where ny, is the particle density in the beam, V3 is the
characteristic beam velocity, and AV is the velocity spread.

According to the author’s intention the term
(1 /Vgh)azgo/atz would allow shifting from the classical
Poisson equation to a wave equation, while the term
2(yL/Vpn) 0@ /0x accounted for effects associated with the
Landau resonance mechanism and thereby made possible the
self-consistent description of the evolution of plasma oscilla-
tions under turbulence conditions.

This aspect of Klimontovich’s work deserves special
attention, because it resembles Davydov’s phenomenologi-
cal approach to the description of turbulent diffusion in the
atmosphere [71]. Thus, the classical diffusion equation for
admixture (scalar) transport takes the form

on(x,1t)

B n(x, 1)
ot ’

Ox?

(41)

= 4o

Here, n is the density of admixture particles, and Dy is the
molecular diffusion coefficient of admixture in the medium.
To take into account nonlocal effects arising from turbulent
convection leading to the considerable acceleration of the
transport processes, Davydov included in this equation an
additional term d°n/01% converting the parabolic transport
equation into the hyperbolic type wave equation
*n  on n

Jgm on_pon
a2t e Va2

(42)
Here, 1. is the characteristic time.

Such ‘body-checking strategy’ used by Davydov had
seemed like a sort of revolutionary approach in the mid-
1930s but found wide application just in the 1950s to
describe nonlocal effects in connection with the expansion
of research into atmospheric turbulence and air pollution
[81-84]. To recall, Klimontovich did not refer to Davydov’s
early work [71] but included his article on the influence of
plasma oscillations on electron transport [13] in the list of
cited literature. Interestingly, Klimontovich appealed to
such phenomenology several more times afterwards to
renormalize the kinetic equation for the particle distribu-
tion function [85].

It is clear now that the small perturbations of which
Klimontovich spoke cannot generate a finite-amplitude
wave. The artificial character of Klimontovich’s approach is
quite obvious today when the evolution of the electric
potential in the classical quasilinear theory of a weak plasma
turbulence is described in spectral terms. The effectiveness of
this approach has already been confirmed in the theory of
vortex hydrodynamic turbulence [86-92]. The use of spectral
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terms to describe wave packets in plasma problems also looks
more natural.

The main elements of the Klimontovich theoretical model
are, in fact, similar to those formulated later in the quasilinear
theory. They include, inter alia, the employment of the Vlasov
equation for the electron distribution function, the delta
function in the expression for the particle diffusion coeffi-
cient in the phase space, taking account of the resonant wave—
particle interaction, and the inclusion of classical Landau
damping (with the increment borrowed from the linear
theory). It will be shown in Section 5 that the ideas
Klimontovich put forward in 1959 were further developed
already in 1960-1961 when the first quasilinear equations
were derived.

5. Coefficient of diffusion
in the wave random phase approximation

The comprehensive article by Romanov and Filippov [2]
published in 1961 (although known to theorists since 1960)
summarized results of the efforts undertaken during a
preceding decade in search of an adequate model for one of
the most important problems of plasma turbulence. The
authors of Ref. [2] criticized attempts to explain abnormally
fast beam scattering by voltage fluctuations at the boundary
and singled out the well-known beam instability related to
Landau damping reversal as the main factor responsible for
turbulent fluctuations in the presence of a spectral region with
0f/0V > 0. Another essential point is understanding the
necessity to consider fluctuations in terms of spectral energy
density W of plasma waves:
dW(Kk, 1)

(43)
To recall, the turbulence theory developed by Kolmogorov
and Obukhov away back in 1941 for the spectral distribution
of energy became by the 1960s a classical tool for specialists
engaged in research on atmospheric and oceanic turbulence.
Galitskii [14] also proposed to use spectral representation, but
his thesis could hardly be known to the authors of Ref. [2]. At
the same time, Romanov and Filippov were among the
participants in the Soviet Atomic project [59], and the
analysis of results of many atmospheric nuclear tests
inevitably implied investigations into atmospheric turbu-
lence.

On page 2 of their article [2], Romanov and Filippov
recognize the influence of Klimontovich’s work [16] but point
out its main drawback arising from the unjustified assump-
tion of the formation of a steady wave in the plasma. They
proposed an equation describing the evolution of plasma
wave energy density Wi (k,r, ) in the form

OWj 0w oWy
ot Gk, 6x,~

=4 =+ 27]_, Wk ) (44)

where A is the term taking account of spontaneous plasmon
emission and y; is the Landau increment. Here, the Galitskii
collision integral acquired a more concrete form, because it
took into account, in a ‘self-consistent manner’, both
excitation and attenuation of plasma waves under the effect
of Cherenkov mechanisms.

Romanov and Filippov argue that diffusion effects in the
case of interaction between a beam of fast electrons and

longitudinal plasma waves can be calculated by Davydov’s
method with the involvement of quantum concepts. Specifi-
cally, these effects account for appearing the probabilities of
emission and absorption of the quantum with frequency o
and wave vector k by an electron in the form

+ “L
= A 15 Nu) 1 ) 4
wh=s i WNe+1) (45)
2
_ w
w _275ka2 s (46)

where o = 4ne?n/m. Importantly, probabilities w ™ and w~
presented by Romanov and Filippov precisely match prob-
abilities used by Davydov in the study on electron scattering
by Langmuir waves.

Coefficients entering the Fokker—Planck equation were
calculated by considering the mean and root-mean-square
(rms) acceleration imparted to electrons by the turbulent
electric field. For friction, one obtains

e At
(AV}:EJ (E(x(1).1)) 1,

0

(47)

and for diffusion in the velocity space, the result reads as
follows:

62 At At
(AVAV,;)zWL dtL (E, (r(0), ) By ((t'), 1)) dr'. (48)

In these calculations, it was taken into consideration that
both the width of the Langmuir wave spectrum Ak and
Landau damping satisfy the condition

1 > At > ]
— > > — X7 .
L ZY

(49)
This is actually the phase chaoticity condition for the waves
present in the packet under consideration; it is needed to
ensure the randomness of particle bouncing and, therefore,
the possibility of applying the diffusion model of the
distribution function evolution. It is also important that this
criterion includes the Landau increment as one of the
parameters of the problem. The following expression holds
for the fast electron flow:

Ae _n (VY

— > —(— .

k no AV
The relevance of the condition for disregarding higher-order

terms in series expansion of the distribution function has the
form

(50)

Ak\*
W:JWkd3k< <7> — (51)

On the one hand, it is the weak turbulence condition; on the
other hand, it offers a wide enough wave packet. Now, the use
of spectral terms looks quite natural in the description of
wave packets. The importance of conditions for the applic-
ability of quasilinear expressions will be demonstrated in the
next sections.

Another important issue concerns the derivation of the
equation describing diffusion of electrons as a result of their
interaction with the field of turbulent pulsations of the electric
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potential:

B 4nezw§ Jk,- ki Wy (52)

) Tk _ 3
D,k = m2 2 o2 5(kV (,U)d k.

This formula is remarkable for several reasons. To begin with,
it is the first expression for the electron diffusion coefficient in
the velocity space containing, in a correct manner, the
Langmuir oscillation frequency @ = w(k). Moreover, even a
superficial qualitative analysis permits relating this expres-
sion to the classical definition of turbulent diffusion proposed
by Taylor for the admixture transport under hydrodynamic
turbulence conditions:

Dy = J(V(O) V(1)) dt o< Viteor (53)

where (V(0)V(r)) is the autocorrelation function of the
velocity of Lagrangian liquid particles. It is an example of
the quadratic dependence of the transport coefficient in the
usual configuration space on the amplitude V,, of velocity
pulsations. In our kinetic case, we have to deal with a velocity
space in which pulsations are related to accelerations:
A x eE/m, and scaling can be expected in the form

2
1
DV:AzTZ% (é‘) e (54)
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It is to such a dimensional estimate that the Romanov—
Filippov formula leads.

There is one more peculiarity arising from the almost
parallel development of hydrodynamic and plasma turbu-
lence theories. In 1960, I D Howells published in the Journal
of Fluid Mechanics the now classical article in which the
coefficient of turbulent diffusion of the admixture was
expressed via the spectral energy density Ey(k) of hydro-
dynamic pulsations [93-95]:

2 [T Ep(K)
Dp_Jk 2L

(55)
Here, normalization of the energy spectral density to the
square of the characteristic amplitude of pulsations of the
liquid particle velocity, V;, was used:

V2o
T J E(k) dk. (56)
2 Jo

The equations thus obtained make it possible to estimate
the quasilinear relaxation time of an electron beam. Roma-
nov and Filippov derived the following expression containing
as a multiplier the logarithm of the ratio between electrostatic
noise energy densities at the beginning and end of the process:
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It should be noted by way of an intermediate summary
that Romanov and Filippov [2] integrated the main ideas of
their predecessors, viz.

— ‘reversal’ of the Landau damping effect (Akhiezer—
Fainberg, Bohm—Gross);

— diffusive evolution of the distribution function (Davy-
dov);

— spectral
(Galitskii), and

— consideration of ‘resonant’ particle—wave interaction
in the expression for the coefficient of electron diffusion in the
phase space (Klimontovich).

Setting priorities is beyond the scope of this review
confined to the analysis of the evolution of theoretical
models designed in describing the weakly turbulent state of
the plasma. Nevertheless, the fact that three articles by
independent groups of authors appeared almost simulta-
neously cannot be overlooked. Certainly, Romanov and
Filippov were the first to publish their paper [2]. They refer
to the work by Klimontovich [16] and the report by Davydov
[13, 60] but appear to be unaware of the Galitskii thesis [14].

It is easily seen that the equations used by Romanov and
Filippov are defined as quasilinear in modern terminology.
References to their article can be found in the very first work
by Vedenov, Velikhov, and Sagdeev [1] on this subject.
Moreover, Sagdeev writes [15]: “The quasilinear theory has
become an illustration of how a nonlinear theory should be
constructed. One idea was to apply a method analogous to
that proposed by another outstanding physics theorist
Bogolyubov, who was interested, as a young researcher, in
devising the methods concerned with nonlinear oscillations of
systems simpler than plasma. An impetus to use Bogolyu-
bov’s method was given by the participation of Yuri
Romanov and my fellow student Gennady Filippov in our
seminar. They presented a report in which they insisted on the
necessity to consider quantum and semiquantum recoil effects
for an electron experiencing interactions with waves. [t was an
elegant work!

However, we made use of the Bogolyubov method, i.e.,
averaging over minor oscillations. This gave rise to the
quasilinear theory. We extended it over other types of waves
known to occur in a plasma, especially those propagating in a
plasma placed in a magnetic field.”

representation of turbulent fluctuations

6. Quasilinear method and ‘plateau’ formation

We discussed in Section 5 the quasilinear diffusion coefficient
reported in the article by Romanov and Filippov [2]. Another
widely known quasilinear method for the description of weak
turbulence is based on the work initiated by Vedenov,
Velikhov, and Sagdeev [1, 3, 4]. Their quasilinear method
for the analysis of Vlasov equations became prototypical and
found especially wide application. It is fairly well described in
many review articles (including those of the authors them-
selves) and monographs [28—-52]. Therefore, the relevant
calculations are only schematically described below.

The authors of classical work [2] considered the interac-
tion of particles with wave packets based on the Vlasov
equation

of  vOf nof

divE = 4mne deV.

0, (58)

(59)

Here, f is the velocity distribution function, E is electrical
field strength, and # is the plasma density. Such an approach
appears to be quite natural in the context of turbulent plasma
theory. Romanov and Filippov showed that the Landau
linear mechanism is sufficient to account for abnormal beam
scattering. On the other hand, the energy exchange must
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result in the phase mixing of electrons, and the equation for
the averaged particle distribution function in the resonance
region must take the diffusive form. Indeed, Fourier
components of the field independently acted on electrons in
the linear approximation used by Landau in the collisionless
damping problem. Turning to the nonlinear analysis, one
encounters a situation in which even a weak field may exert a
considerable influence on resonant particles and thereby
appreciably alter their distribution function.

Vedenov, Velikhov, and Sagdeev considered the problem
of the evolution of the electron distribution function in the
velocity space on the assumption that in the one-dimensional
case in the absence of spatial inhomogeneity it can be
presented in the form

f:f()(V,l) +f1(V7x7l)7 (60)
where f; and fare slow and fast oscillating functions of time,
respectively. Accordingly, the electric field is represented as

E = Ey(t) + E(x,1), (61)
free from the mean electric field, £y = 0. Here, the spatial
homogeneity of the smoothed distribution function fo(V, )
follows from the assumption of the absence of electron
‘capture’ by individual harmonics of the electric field having
the shape of a wide enough wave packet:

8@0
— 62
2, (62)
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where &F = [dk |Ex|*/k? is the characteristic amplitude of
the electric field potential. In fact, electrons migrate ‘between
packet harmonics’ (in the reference frame moving with a
phase velocity of waves, the packet forms an ‘undulating
landscape’), and they can no longer stay in the potential well
of one of the waves longer than the time of flight over this
region.

The substitution then leads to the expression for the
Vlasov equation modified in accordance with the perturba-
tion method:

(fo+f1)+V (/0+f1)**E (f0+f1) (63)

Averaging over fast oscillations and subtracting the averaged
equation from the complete one yield two equations

ofy e /=0fi\ _
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This set of equations is called quasilinear. An argument for
the choice of such a name is the conservation of the nonlinear
term in the equation for the averaged particle distribution
function and the employment of the linear equation for its
perturbations. This approach is widely applied not only to
solve problems related to Vlasov’s equation but also to
construct various passive scalar transport models [96—-100],
the stochastic magnetic field evolution [101-103], etc.

The diffusive evolution of the averaged distribution
function fo(¥,1) is quite apparent even at this early stage.
The use of the equation for f] in a simplified form ignoring the

spatial derivative 0 f; /0x gives

Aol Ey o

(66)
The substitution into the evolution equation for the averaged
distribution function yields the sought diffusion relation

[ el 2

in which the diffusion coefficient has, as exzpected, the
characteristic ‘Taylorian’ form: Dy ~[(e/m)Ep| 1, with the
amplitude E, of fluctuations of the electric field strength.
The formal method for the purpose is based on the use of
the full equation for the fast oscillating part of the distribution
function, which coincides with the Landau approach

(67)
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At this stage, additional assumptions about the character of
the wave field are needed. Assuming that the electric field can
be represented as the superposition of independent harmonics
(letting the Fourier component amplitude to be small and
therefore disregarding interharmonic interactions):
E(x, 1) = J Egexp [—i(wkt — kx)] dk.

—o0

(69)

To recall, w; = @y + 1y, and, because the electric field must
be real-valued, E_; = E', by = —@_k, 7, = —7_;- In the case
of weak damping (small damping increments y), the standard
method for transformation of the denominator in the
expression for the fast oscillating part of the distribution
function £

1
w—kV

:P(w_lkV> —ind(w — kV), (70)

is used, which reflects the adiabaticity assumption of switch-
ing on the electric field in an infinitely remote past:
fi(V,x,t — —o0) = 0. This leads to a frequency renormaliza-
tion consisting in the appearance of an infinitesimal positive
addition: w — o + ie. Here, the traditional symbol of the
principal value is used:

1
0)-{;
X 0,

It is now possible to evaluate the nonlinear term in the
equation for the averaged particle distribution function fy:

gn=[i<[ B

on —kV
+ %be exp (—27,1)3(x

x#£0,
x=0.

(71)

exp (—2y,1) dk

afo

— kV)dk (72)

Clearly, consideration of only the resonant term in this
expression leads to the sought diffusion equation in the phase
space:

ofy O (D afo>’
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with the quasilinear diffusion coefficient

2 2
_ (¢ |Ex|
Dy = (m) Jw(k) —kV dk.

These equations are supplemented by the relation describing
the evolution of amplitudes of the Fourier harmonics of the
electric field governed by Cherenkov mechanisms of wave
emission and absorption:

(74)
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where the Landau increment y,, is defined as
0
yk:2ne2wJ§ o(w—kV)dV. (76)

Here, w(k) describes the dependence of frequency on the wave
number k, while |E;|* is the spectral function of the electric
field. This closed system of equations for the averaged
distribution function fj and the square of Fourier harmonics
|Ek|2 is the simplest form of quasilinear equations allowing
the interaction between resonant particles and a wave packet
to be described.

In the case of the one-dimensional formulation of the
problem, the Cherenkov resonance condition wp — k. V, =0
accounts for the one-to-one coupling of the wave vector and
velocity: k. = wpe/ V.. As aresult, equations of the quasilinear
theory written in terms of energy density W(V;, t) assume the
form

ofo 0 (me’V. 20/0
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Distinguishing the common structural element |Ey|* 8 fy/0V.
in equations (77) and using the substitution readily yield the
quasilinear integral

0 e2n o (|Eyf
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This means that we come to the equation relating the final and
initial states:
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If the initial fluctuations are thermal, Wr ~ kgT(1/r}) ~
nkgT/Np < nkgT, one can assume that |E;(r= 0)\2 =0;
hence, the self-consistent picture of ‘plateau’ formation in
the distribution function and of electrostatic noise enhance-
ment (Fig. 3):

V.

By = 4an;J (J(o0) — fo(0)) V. (80)

0

This result for the quasilinear diffusion coefficient of
electrons in the velocity space proved to coincide with the
result obtained by Romanov and Filippov. A few references
to the problems pertinent to the setting of priority as regards a
quasilinear description of the particle—wave packet interac-

J)
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Figure 3. Formation of the quasilinear plateau in the distribution
function.

tion can be found in the volume dedicated to the memory of
A A Vedenov. For information, here is an excerpt from
Yu A Romanov’s “Review of A A Vedenov’s Thesis for
Doct. Phys.-Math. Sci.” [15]:

“A A Vedenov’s thesis presents an analysis of various
phenomena in a plasma that occur when the energy density of
plasma oscillations is much higher than the thermal noise
energy density. These phenomena are considered based on the
quasilinear equations derived earlier by other authors
(Yu A Romanov and P F Filippov).

The central idea of the thesis embraces the existence of a
quasilinear state to which plasma comes after the develop-
ment of perturbations. In this state, the electron distribution
function in a certain part of the phase space turns out to be
constant, while plasma oscillation energy density becomes
rather high. It should be emphasized that the quasilinear state
is realized only when the electron distribution function can be
regarded as one-dimensional.”

On the other hand, Vedenov argued in his first review
article on the quasilinear theory published in Voprosy Teorii
Plasmy (Reviews of Plasma Physics) [6] that Romanov and
Filippov “postulated their equations.” This opinion is also
justified: it will be shown in the following sections that
Vedenov—Velikhov—-Sagdeev’s scheme gives an advantage in
considering such issues as turbulent diffusion of admixtures
(passive scalar), chaoticity of magnetic lines, and turbulent
convection.

Formally speaking, it is no stretch to believe that
Romanov and Filippov realized the potential of the quan-
tum-mechanical approach proposed by Davydov for the case
of Langmuir oscillations, which enabled them to derive the
necessary equations, whereas Vedenov, Velikhov, and Sag-
deev developed an efficacious perturbation method for the
solution of Vlasov’s equation and formulated the concept of
‘plateau’ formation in the averaged particle distribution
function. Clearly, the quasilinear character of the theory
accounts for the relatively small amplitudes, and these
estimates need to be elaborated in greater detail by an in-
depth consideration of both the wave packet structure and the
decorrelation mechanisms responsible for the diffusive
character of the distribution function evolution.
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7. Stochasticity in a wave packet
and correlation scales

The quasilinear description of a weakly turbulent plasma is
based on the concept of the absence of particle capture by
individual harmonics and the randomness of wave phases in
the ‘packet’; such an approach makes it possible to
implement the decorrelation mechanism behind the diffu-
sive wandering of particles in the velocity space (Fig. 4).
Here is a quotation from Ref. [1]: “Let us assume the
simultaneous presence of many waves with different vectors
and randomly distributed phases in a plasma. Then, the
wave packets are wide enough and the capture of particles by
‘potential wells’ of individual harmonics can be ignored....”
To recall, Drummond and Pines [5] did not even discuss this
important problem.

It is convenient to consider the correlation-related
aspects of quasilinear diffusion in the framework of the
Chirikov concept suggesting the appearance of a stochastic
layer near the physical pendulum separatrix in the presence
of modulating perturbation [17, 45, 46]. In this case, the use
of Chirikov’s criterion for the stochastic layer overlap (Fig. 5)
allows us to obtain useful estimates of key parameters of the
quasilinear model. For example, the amplitude of electric
field perturbations is given in the spectral representation by
the expression

SE o |Ex|* 8k . (81)
Here, |E;|* is the spectral distribution, and 8k is the wave
packet width in the wave number space. The width of the
stochastic layer can be estimated from the particle velocity
6Vs acquired in the field of fluctuations of the electric
potential d¢:
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Figure 4. Wandering of electrons between wave packet harmonics.
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Figure 5. Overlapping island ‘chains’ create conditions for particle
diffusion in the velocity space.

The use of OF «x Vo x 6¢ k representation leads to the
expression for the characteristic amplitude of electric
fluctuations 8¢ created by wave packet harmonics in
the form k238¢p? oc E? 8k. Substituting the expression for
d¢ into the equation for the stochastic layer width 8§V
yields

2 2 1/4
8Vso<(€ —"Sk) .

P (83)

The distance between harmonics of the wave packet of
interest in the velocity space is given then by the formula

5(%) - 51/:6(2’:‘) Sk = (la—w—lf>5k

ok
:*(Vg_ V¢)~

- (54)

In the case under consideration, it is supposed that the waves
composing the packet have amplitudes of the same order,
V4 < Vg, which gives the simple estimate for power-law
dependences w(k):

(k)

The resonance overlapping condition 8(w/k) < Vs is
useful at once in two ways. First, it allows determining the
lower boundary of plasma oscillation noise level in the
quasilinear approximation:

e’ E} e
(W 72 8k> > — dk. (86)
Second, 6k actually makes up a model parameter that can be
deduced from the ‘moderate’ Chirikov condition for reso-
nance overlapping that takes, in this case, the form of the
algebraic equation for dk:

e? E,{2 AT

k2
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Simple calculations permit estimating the packet width
involving key parameters of the wave field:

2 1/3 12
Bk*:(e E,f) K

) pYYER (88)
where the condition kVy = w is fulfilled.

Not only the possibility but also the randomness of
transitions must be provided in the framework of the random
walk model. It yields the stochasticity condition for wave
phases. Assuming that the wave packet ‘misphasing’ takes a
characteristic time 7, allows us to write out the following
estimates

AO xx A(wt) o< AVktpy = 1. (89)
Here, AV is the characteristic width of the wave packet in the

velocity space. Therefore, the phase mixing time may be
estimated as follows:

1 1 1
Tph X 7 X 7 =——

KAV "k 3V N’ (90)

where N is the number of waves in the packet. Evidently, the
mixing time tp, is much shorter than correlation time
7~ 1/(kdV), as far as a wide packet having N > 1 harmonics
is concerned.

The use of correlation scales 8V, ~ dVs(dk,) and 1, ~
1/(k3V.) makes it possible to write out the condition for the
maximum permissible packet energy density, which is
actually a criterion for rapid ‘stirring’ of wave phases:

AV)?
Dy '’

o1

Tph <K Trel &

where Dy o« 8V?2/(z.(k)) is the diffusion coefficient in the
velocity space. For the ‘jump’ amplitude in the velocity space
one obtains

o2 , 1 1/3
OV, ~ 6Vg x (m E; —) . (92)

&)

The dimensional estimate 7.(k) o< 1/(kdV.) needs to be
utilized as the characteristic correlation time, because
OV, =~ dVg = V. Substitution yields the following quasiclas-
sical result for the diffusion coefficient:

51?2 e 2E,f
n(k) (m) Vo

It was shown earlier that this formula is in line with Taylor
notions of turbulent diffusion. But we are dealing here with
the velocity space, instead of a merely ordinary one. The
analysis with the use of the stochastic layer overlap model
allowed important features of the decorrelation mechanism
to be elucidated. For example, the Landau increment in the
quasilinear method behaves externally only as a characteristic
determining the evolution of the wave packet harmonics,
whereas the mechanism of Cherenkov interaction creates a
wave modulation effect underlying stochastization and
‘overlapping’ of separatrices; as a consequence, the particle
motion in the packet field acquires a diffusive character.
Formally, it is possible to calculate the width of the
stochastic layer by the Mel’nikov integration method [104—
108], but it yields only the linear dependence on the

Vo=w/k

perturbation amplitude &V, o &,, whereas parametric
dependences in the expression for correlation scales will be
lost.
It should be noted that the introduction of the frequently
used formal criterion for stochasticity K, viz.
Vs

K=—>1

14 ’ 04)

allows representing the applicability conditions of the quasi-
linear approximation tp, < T, < Ty in the form
L1 L (NS s (V)
kSV N~ kdVs D T vk’

(95)

which leads to K < N or, in fact, to the boundedness
condition for the stochastic layer width: 6 Vg < AV.

The question of characteristic times goes beyond the
Tph < T« < Trel hierarchy: 7, can be readily redefined in terms
of the quasilinear diffusion coefficient:

1 1
kv, > kD)

T, R

(96)

This characteristic scale is of the same order of magnitude as
the time scale tx characterizing stochastic instability and as
the ‘bounce-period’ 15 ~ (ky/e®,/m)”'. The time scale
hierarchy can now be represented as

Toh < To R Tk R T < Trel - (97)

Bass, Fainberg, and Shapiro [109] appear to have been the
first to pay attention in 1965 to the relationship between the
quasilinear approach and Chirikov’s ideas and to emphasize
the importance of taking into account the finiteness of
correlation splitting time. It is worthwhile to mention that
Chirikov published his article on stochasticity in dynamical
systems [17] as early as 1959. Moreover, he worked at LIPAN
under the supervision of G I Budker, doing research on
plasma confinement in magnetic traps from 1954 till 1960,
i.e., in the same period as the authors of the quasilinear
method (at the Theoretical Sector headed by M A Leontovich)
[1]. For all that, calculations of correlation effects and
stochastic layer width began to be systematically considered
in the framework of the Hamiltonian formalism only in a
series of publications by Zaslavskii, Sagdeev, and Filonenko
in 1966-1968 [110-112].

8. Self-similarity and ‘fronts’ in velocity space

This section opens with a quotation from the article by
Gurevich, Pariiskaya, and Pitaevskii [113] published in 1966
that reads as follows: “The system of equations describing
collisionless plasma is very complicated, which makes it
difficult to formulate a nonstationary nonlinear problem
that would have a clear physical sense, the solution of which
could be brought to completeness.” But it is exactly such a
problem that was solved in the paper by Ivanov and Rudakov
dated 1966 [114]. It was the time of tremendous upgrowth of
the kinetic plasma theory and exponential development of its
analytical methods [115]. The concepts of diffusion and
source-sink in the velocity space became commonplace. It
was time to import one more beautiful hydrodynamic idea
related to ‘front’” propagation [114]. The ‘inner side-hump’ of
the electron distribution function is known to generate
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Figure 6. Quasi-linear front movement.

Cherenkov radiation by virtue of 0f/0)V > 0 and thereby
tends toward the region of lower velocities due to beam
electron energy loss. Importantly, the side-hump becomes
increasingly steeper, because more energetic particles lose
proportionally more energy. It is actually the front movement
in the velocity space (Fig. 6).

The analytical representation of the front propagation
process was obtained by introducing self-similarity variables
that were already used at that time in collisionless plasma
kinetics (see the aforementioned studies by Gurevich and
Pitaevskii [113, 116]), but in the context of the spatio-
temporal problem. Ivanov and Rudakov [117] reduced the
set of quasilinear equations to the well-known class of
nonlinear diffusion (thermal conductivity) equations. It is
convenient to move from the squares of Fourier harmonics to
energy density W as a function of velocity V.. In this case,
Wywp(dV./V?) is the energy density of oscillations with
phase velocity in a range from V. to V., 4+ dV.. As a result,
the equations of the one-dimensional quasilinear theory in
terms of energy density Wy (V-, ) will take the form

of m [e\’d of

L= (=) = (vwy

ot wp<m> 6V( v

Wy _mwy oo Of
=2y,

ot n v’

This system can be simplified by introducing a new
‘renormalized’ noise density function

v=wyr*. (99)
Then, trying to get identical ‘combinations’ in both equa-
tions, the following expressions are obtained with the self-
similarity parameter o = —1:

af  m (e of
a—w—p@ av( Vv )’

O wp ., 0f
o " PV

(100)

The algebraic substitution of the second equation into the
first one and subsequent integration over time yield a system
in which the equation for noise density i allows an
independent solution:

W_m (e
at_wp m

vy S w2y o

It is easily seen that the equation for the ‘renormalized’ noise
density function yy = W), /V is a nonlinear diffusion equation

(power-law nonlinearity) with a source. Here, fy(V) and
Wo(V) are initial distributions of the renormalized particle
and noise distribution functions, respectively.

Self-similarityl variables provide an efficient tool for
analytical studies of such problems [117]. However, the
presence of a 0fy/0V-related source permits additionally
singling out characteristic stages of the beam relaxation
process. For example, the initial stage of plateau formation
and noise level enhancement is mainly due to the influence of
term m(w,/n) VY 0 fo/0V under small nonlinearity. Conse-
quent ‘weakening’ of the electron distribution function profile
permits neglecting the term with the source (0fy/0V — 0) and
thereby making use of self-similarity variables for the solution
of the reduced equation in noise density:

N m (e P2

-z (m) b2 -, (102)
It is this self-similarity regime that provides an approach to
the description of both the propagation velocity and the width
of the perturbation front for i and f in a form analogous to
the thermal wave front.

Because the traditional scaling method for nonlinear
equations in thermal conductivity does not yield a fundamen-
tally new invariance relation, Ivanov and Rudakov [114]
introduced the self-similarity variable in the form

U

ﬁ(UvT):l_W»

(103)

analogous to the variable in the classical spatial diffusion
problem where the spatial and temporal scales are related
by the expression & =//y/f. In addition, dimensionless
quantities for the key parameters of the model were
introduced:

~ Vb . w
F==f(V), w=W, —2— 104
np F¥), w k 2nmn, V3 (104)
Ny V
= o =— 1
T = Ty (no) t, U 7 (105)

Transformation then yields an ordinary differential equation
for the function ¢ = w(U, t) — wo(U) being sought:
& dp o’p

*5& ((PJFW’())

(106)

Here, there are two boundary conditions, ¢(0) =1 and
¢@(00) = 0. The authors of Ref. [114] found an approximate
solution to this equation for the case of increasing noises

(In(@/wo) > 1):

1 1
5 50(50 - é)ln )

wo

P = (107)

where the constant ¢, is given by the condition ¢(0) = 1;
evidently, it determines position of the front traveling in the
velocity space: &y = 1/2/1n (1/wyp). Turning back to dimen-
sional quantities, one can use the definition of the self-
similarity variable

ﬁoci Ve =V

Vo /mowp(ny/no)t (108)
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in order to determine beam relaxation time in the velocity
interval AV = Vy, — V(Af):

LAV 1 oy, 1
Atms (=) —Z2In—.
2\AVy/) mwp ny  wo
Because the Landau increment is estimated by the expression
Ny Vb 2
~ro,—|-—] ,
L P n \AV
it is easy to obtain the relaxation time

1 1

—In— > .
2y wo YL

(109)

(110)

Trel =~

The logarithmic factor is comparable to the Coulomb
logarithm, since it is related to the noise amplitude ratio at
the beginning and end of the relaxation process.

A qualitative assessment of the front velocity is given
by the ratio of the characteristic ‘displacement’ dVp
AV/1In (1/wyp) to the time it needs to occur (inverse increment
1/yL). Ivanov and Rudakov also investigated in detail the
structure of the front by simplifying the key self-similar
equation. In doing so, the evaluation of the width of the
transition zone, traditional for thermal wave propagation
problems, is impossible, because the spatial scale ‘drops out’
of the model equation.

This elegant solution proposed by Ivanov and Rudakov
demonstrates the effectiveness of the simultaneous solution of
the diffusion equation for the averaged distribution function
nonlinearly related to the equation for noise spectrum
evolution. Indeed, it opens up a new level of understanding
the Vlasov approach in which the kinetic equation is regarded
as ‘self-consistent’ with the Maxwell equations. Since then,
the self-similarity solutions of kinetic equations have greatly
contributed to the analysis of three-dimensional beam
relaxation models [41], ion-acoustic turbulence [118], and
strongly nonequilibrium suprathermal electron distribution
functions [40, 52, 119-121].

9. Wave scattering effects and sectoral plateau

The quasilinear approach makes it possible to analyze not
only one-dimensional problems. Specifically, the ‘plateau-
formation’ phenomenology can be employed to consider
electron scattering by an ion-acoustic wave packet. This
mechanism was postulated by Kadomtsev and Sagdeev as
being of primary importance for explaining anomalous
plasma resistance to an electric current passing through it
[26, 122, 123]. Marked non-one-dimensionality (anisotropy)
in the development of instability of ion-acoustic waves in a
current-carrying plasma was demonstrated in the numerical
experiments of Field and Fried [122]. It was shown that the
role of waves directed at a large enough angle to the electric
current vector becomes important at long times. Moreover,
electron diffusion develops in the velocity space along the
azimuthal angle.

The manifestation of anisotropy effects can be accounted
for in terms of the mechanism underlying resonant interac-
tions between electrons and ion-acoustic waves. The latter
become unstable in a nonisothermal plasma, where electron
temperature is much higher than ion temperature (7, > T;)
under conditions when the directed velocity of electrons U

exceeds a certain critical value: U > U, =~ ¢ [26, 47]. It
occurs, for example, in the presence of an external electric
field. Electron scattering by ion-acoustic waves is related to
the Cherenkov mechanism of interaction, for which the
resonance condition has the form

o =kV,=kV,cos0,, (111)

where 0, is the angle between electron velocity direction V.
and wave vector k of ion sound. At small wave numbers (the
long wavelength limit w/k = +/T./m;, k < 1/rpe), this
condition is fulfilled only when cosf, ~ w/(kV,) =~
(me /mi)l/ 2. This means that only those electrons that travel
toward a wave at an almost right angle interact with it, while
incremental velocity AV./V. = cos 0., being parallel to the
wave vector k, turns out perpendicular to V.. Indeed, a
change in momentum in each quantum emission—absorption
act, Ap =mAV = Jik, leads to a change in energy Ae¢ =
mVAV = IkV = how. Formal estimations yield

Ap ho  kV A [my
— X — X — | — 112
pO(mVZ/ZwO(S me’ (112)

which allows us to use with confidence the elastic scattering
model.

Once the instability increment of ion-acoustic waves
excited in a plasma through which electricity flows is small,
U > ¢, a quasilinear plateau corresponding to a concrete
wave vector direction forms in the electron distribution
function (Fig. 7). Here, U is the drift velocity of current-
carrying electrons. Kadomtsev [26] maintained that if wave
vectors fill a certain sector in the current flow direction, the
plateau formation region (electron distribution function
isotropization region) broadens appreciably, because the
distribution function must be constant at the intersections of
different resonance belts. Evidently, such ‘non-one-dimen-
sionality’ significantly complicates theoretical analysis in
comparison with that of a one-dimensional quasilinear
model [1-7].

It was noted in the foregoing discussion that Davydov
examined the influence of ion-acoustic waves on the electron
distribution function F. for the case of thermal noise
(T. > T;) using the model Fokker—Planck equation [13]. He

Figure 7. Quasilinear plateau corresponding to the distinguished wave
vector direction.
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also described the scattering effect by invoking the collision
integral analogous to the integral of electron collisions with
infinitely heavy ions (the Lorentz approximation):

1 0 . oF,
St [Fe] = m @ <veffsm0' 69/> .

Here, ver = wpe W/ (nTe) is the effective collision frequency,
and 0’ is the azimuthal angle of the electron velocity vector.
Traditional normalization in terms of noise energy density
was employed:

(113)

sznJ kzdkj Wi(k,0")sin0'd0’. (114)

0 0

The ‘sectoral plateau formation’ concept and the kinetic
(Lorentz) model of electron scattering by noises actually
provided a basis for the development of the ion-acoustic
turbulence theory in Refs [124-128]. Rudakov and Korablev
[125] were the first to thoroughly investigate a quasistationary
state in which the dynamic friction force prevents the majority
of the electrons from passing into the free acceleration regime.
The simplified kinetic equation for the electron distribution
function is traditionally written out with the use of spherical
coordinates V, 0', ¢’ for particle velocity. This equation lacks
the dependence on ¢’ due to a problem symmetry, and
contains the variable £ = cos0’:

F(V,8) =) +4(V,9), (115)

Fo(V, &) = fo(V) +f1(V,§)*fn*E %
Vi o 0
:%&[(lfiz)veff(ﬁ)a*jg} (116)

Here, the effective collision frequency ve(&) appears as a
result of calculating the quasilinear collisional term

6‘2 dk 0 2 oF
StQL—nTezl(zT)%kW |q)k| T[&(C()k—kv)(k W) (117)

The expression for v is written through the definition of the
spectral oscillation density

2 2
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(118)

and has the following form

Veff (é)

VT J-oo k} ko~\/ 1762

noTe

N(k, x) <w>2 x2 ax.

0 -2 \key) 1-¢2

(119)

where the spherical coordinate system k, 0, ¢ for the wave
vector and notation x = cos 0 are used.

The central point in the development of the quasilinear
method concerns the consideration by Rudakov and Kora-
blev of the stationary equation for spectral energy density of
ion-acoustic oscillations:

ys(k,0) N(k,0) = 0. (120)

Here, yy is the sum of increments responsible for excitation
and damping of ion-acoustic waves. In the simplest formula-

tion [125], the increment of excitation of ion-acoustic waves
with the aid of the nonequilibrium electron distribution
function was taken into account, namely

2n%e? ofi
———JdVé(w—kV) (k W) ,

(121)
as was the wave damping on ions by virtue of Cherenkov
interaction (Landau damping):

4
k(L) B2
1= 3)(3)

Here, the authors of paper [125] used for the first time
the separation-of-variables approximation N(k,0) =
N(k)®(cos 0), where k is the modulus of an acoustic wave
vector, and 0 is the angle between the wave vector and the
electron drift velocity. The ‘peaked’ delta-shaped distribution
was chosen for N(k):

(122)

(2n)? 8(k — ko)

2 b
w kg

N(k) = (123)

where ko was found from the increment extremality condition
(there is an analogous condition in Ref. [124]):

0
&VZ(]C(MH) :07 }'Z(k(be) =0.

= 124
0—0 0—0 ( )

Importantly, physical concepts of the mechanism behind ion-
acoustic wave excitation make it possible to obtain the
equation describing the angular dependence of wave distribu-
tion function @(cos@). This, it is natural to suppose that
waves are excited in the region shaped like a cone broadening
in the current flow direction. As a follow-up to Kadomtsev’s
inference, the authors of Ref. [125] suggested that the apex
angle of the cone 0y < m/2; therefore, ®(cos 0) differs from
zero only in the region 1 = cos = x = cos ) = x.

We can safely say that theorists had here a piece of good
luck, because the stationary equation for spectral wave
density reduces in this case to the Abel integral equation

O z o
g(x)—JO G-z dz, O<ax<l.

(125)

Itis a special case of the Volterra integral equation of the first
kind having the analytical solution

_ sin (o) d jx

n  dx),

®(x) (x— 1) "g(r)ds. (126)

Omitting the cumbersome calculations, it suffices to note here
that in the case considered by Rudakov and Korablev,
a=1/2.

However, the angular distribution of turbulent pulsations
obtained by solving the Abel equation leads to divergence as
0 — 0, suggesting the infinity of the wave packet energy. This
difficulty was overcome by Kovrizhnykh [126], who included
pair ion collisions in the consideration and added a relevant
increment

m; T;

1 me T\ V% c2k?
Vslzm< . e) =V, (127)
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Figure 8. The quasilinear diffusion region in the Rudakov-Korablev
model.

where

4ren

:WIHA, (128)

Vei

in the expression for ys. As a result, he obtained the following
angular distribution:

®(cosh) = P(x) = ¢ {p[p+ 3x2(1 — x)]

x(1 ;ix)

3 1/2
~ 2 ixgin %} (129)

serving in this place as an illustration of the potential of the
analytical approach. Here, x> — x¢ = p, ¢y is a constant, and
Ais the parameter differing from unity that takes into account
the contribution from ion—-ion collisions. The absence of
collisions in Ref. [125] corresponds to 2 =1 and, as a
consequence, to the ®(x) divergence as x — 1, &(x) x
1/[x(1 — x)]. The Kadomtsev sectoral diagram conforms to
a small excess of drift velocity U over phase velocity ¢s of
acoustic waves. An illustration for the general case is
presented in Fig. 8, where the resonance condition is shown
schematically.

The analysis of quasilinear results revealed serious
problems associated with the model theory. For example, a
rise in temperature leads to a greater number of runaway
electrons and a system escape from the stationary state,
meaning that the applied electric field must be much weaker
than the critical one that makes electrons escape, i.c., the
Dreicer field Ep rapidly decreasing with temperature:

e
EDO(/lg(Te) ln/locT62 , (130)
where /. is the electron range, and InA is the Coulomb
logarithm. Indeed, elementary estimates give nol. =~ 1,
e/o = kpT., where ¢ is the cross section. On the other hand,
the effects of ion distribution function anisotropy, resonant
wave absorption by ions, and nonlinear wave-to-wave
interaction (induced scattering, etc.) are disregarded here.
The solution of kinetic equations for plasmons, taking
account of nonlinear effects, became a natural area of further
studies [127-130]. In 1956, Sizonenko and Stepanov [124]
noted that the level of ion-acoustic oscillations must be

correlated with nonlinear processes. It is this modified
equation for the number of quanta that was used by Silin
and co-workers [131, 132], who disregarded the model delta-
shaped N(k) profile but retained the variable separation
method and the Abel integral, to obtain the self-consistent
analytical solution to the problem of quasistationary ion-
acoustic turbulence. Much as we would like to further
elaborate on this theme, we have to confine ourselves to this
brief comment. To conclude this section, it is worthwhile to
note that the description of ion-acoustic turbulence (IAT) is a
nonacademic problem, and many of its important aspects
remain to be clarified [132—-134].

10. Increment balance
and suprathermal particles

The quasilinear approach to the analysis of collective effects
associated with oscillations excited in the plasma consider-
ably expanded the circle of solvable problems in the kinetic
plasma theory. For example, it proved possible to describe, in
the framework of the Lorentz approximation and with the use
of the quasilinear diffusion coefficient, anisotropic distor-
tions of the particle velocity distribution function related to
oscillations under the influence of an external electric field.
Here, we shall consider the phenomenological method for the
solution of quasilinear equations based on the balance of
characteristic times for the problem. Indeed, the expression
for the Landau damping increment includes a derivative of
the particle distribution function. Therefore, the comparison
of this increment with other characteristic inverse times
describing oscillation decay (e.g., due to particle—particle
collisions) allows us to obtain a simple differential equation
for the distribution function. In the simplest case, it is a mere
balance of two increments.

An interesting model of this type was proposed by Ryutov
[135], who considered the evolution of Langmuir noises
arising in the problem of runaway electrons. The author was
interested in the case of weak fields in which an electric field E
is lower than the critical Dreicer field Ep o< (mVr/e)vei(Vr),
where v¢i(V7) is the frequency of electron—ion collisions at
particle velocities of the order of thermal ones, V7. Under
these conditions, only a small fraction of particles can
undergo acceleration and give rise to the formation of a
second maximum in the function of electron distribution over
velocities. Because fast electrons are virtually uninvolved in
pair collisions, Ae Ve4, the collective processes associated
with the buildup of Langmuir oscillations began to play an
important role. The quasilinear equation for spectrum
evolution assumes the form

OE) 2y (k) — vstva)] Wik (131)
where
! a o
p (k) = Teope % (V2 #:) " (132)

with n' being the characteristic fast electron beam density
scale. In a one-dimensional case close to a stationary one (the
absence of an electric field in the first approximation), it is
expected that the increment balance in the interval of wave
numbers, k; < k < k,, can be written in the form

(k) —vei(V7) =0. (133)
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F)

Vi Vs V

Figure 9. Particle distribution function in the Ryutov model.

This equation looks simpler than the Rudakov-Korablev
stationary balance, although it is easy to see that the former is
equally efficient. Suffice it to say that substituting the
increment and the frequency matched to the problem under
consideration results in the following simple form of the
sought equation for the distribution function:

af( V) OR
SR 134
TR (134)

where ar = (n/n')vei(Vr)/(Twpe ). Integration yields

F) = o (=1 (135)

Ry )

where

Wpe pe

- = 1
% Vi<V, kr (136)

Outside this velocity range, the distribution function remains
unaltered and retains its initial form fo (V) (Fig. 9). In such a
formulation, the parameters are V'; and 1, velocities found
from two conditions. One is the law of conservation of the
total number of particles:

Vs

ocR(—flnﬁf 1) +Jmfo(V)dV:1.
V>

v v (137)

The other ensures continuous distribution of particles over
velocities:

R <VL1 - Viz) =/fo(V2).

The author of Ref. [135] proposed that a weak electric field be
taken into account by considering points ¥} and }, as mobile
and representing the distribution function for V' > V) in the
form

1) :fo(V—% Ez>.

(138)

(139)

This naturally leads to redefining the characteristic scales of
V1 and V7, velocities due to the inclusion of Et dependence.

Moreover, it becomes possible to find the spectrum of
Langmuir oscillations, the energy of which vanishes in the
absence of an electric field. Thus, the classical one-dimen-
sional quasilinear equation

of ng_‘mzezi W(wpe/V) 8f
ot 'm V. m? oV 14

(140)
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Figure 10. Evolution of the spectral function in the Ryutov model.

takes (after simple modifications) the form

1 dV (ope eEk  4m?e? k3
- -1 _ = Wik t. (141
V2 dr < k > Mwpe m?  wpe (k) + const. (141)

Because w(k;) = 0, one obtains

€Ek1
moyp

const — — @ve 4V
ki Vlz dt

(142)

As a result, the evolving spectral function is given by the
expression (Fig. 10)
_nekE

—— (k=ki)(k = k2).

Wik) = mk*

(143)

This rather simple model demonstrates the efficiency of
considering the balance between characteristic increments
(times). The quantities characterizing such important non-
linear processes as induced scattering or various decorrelation
mechanisms can be used as the increments. Taken together,
the data that can be obtained by such a simple method depict
the qualitative picture of the phenomenon, without which it is
impossible to construct a rigorous theory.

11. Force line diffusion
and ‘island’ structures

Consideration of electron—wave packet interaction in quasi-
linear terms was based on the concept of particle wandering
inside a wave packet. Such a mechanism was visualized in the
phase plane as particle transition between the waves due to
overlapping of stochastization regions in the vicinity of
separatrices. Investigations into the structure of magnetic
surfaces in high-temperature plasma confinement devices
revealed ‘island’ structures delimited by separatrices close to
the resonant surfaces [136—-141], analogous to the phase
portraits of wave groups (Fig. 11). Such a similarity is not
purely coincidental, the analogy being due to the Hamilto-
nian structure of the equations describing magnetic field lines
trajectories.

Rosenbluth et al. [142] made use of this property to
construct a quasilinear model of stochastic magnetic field
line wandering in plasma traps with destroyed magnetic
surfaces based on the phenomenological definition of the
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Figure 11. Cross section of toroidal magnetic surfaces and island

structures.
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k /S T7 1 Ak
7 7
k /// Y Ak

Figure 12. System of magnetic islands.

magnetic field line diffusion coefficient Dy,:

At (1))

D ¢ / (144)

This formula has been derived by calculating the transverse
displacement Ar, (/) of the magnetic field line as seen by an
observer moving along it at a distance /.

Let us consider a plane section through magnetic surfaces
stretched along the z-axis, in which the island structure is
formed by several chains (Fig. 12). The similarity with the
phase portrait of a longitudinal wave packet is very obvious.
In this case, the z-axis is analogous to the time axis, x stands
for velocities, and y is particle displacement in the wave field.
Then, the analog of the oscillator wave phase ¢ = kx — wt is
the magnetic field perturbation phase ¢, = k,y — k.z, and
the individual perturbation harmonic assumes the form

B, = B, cos (k,y —k.z). (145)

The equations of ‘motion” of the magnetic field line have the
traditional form

dx B,
=2t (146)
dy B,
E—Fo—by, (147)

where By is the unperturbed magnetic field along the z-axis,
and b, and b, are the characteristic velocities of motion of the
magnetic field line in the transverse direction.
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Figure 13. Sheared magnetic field model.

For the complete understanding of the above analogy, the
simplest equation for the evolution of resonant particle
velocity in the wave field should be written out taking
advantage of the Cherenkov resonance condition @ = kV
and presenting the equation of particle motion in the frame of
reference moving together with the wave:

dv

e ~
G m Eycos (kx)

(148)
where x = (w/k)t + X. Representing the particle displace-
ment X in the integral form, viz.

X= J V(r)de, (149)

yields the equation describing the interaction between a
resonant particle and an individual harmonic of the electric
field:

cil—lt/:%Eocos (kjﬂdz). (150)

The resonance condition can be just as well formulated for
magnetic field harmonics using the derivative dy/d/ = B, /B,
as an analog of velocity. The phase steadiness condition,
kyy + k.z, together with the adequately chosen dependence
By (x) allows us to obtain the condition for the resonant
surface x¢. Using the above analogy, dependence B, (x) must
be linear in x. Such dependence is provided by the simplest
sheared field approximation (Fig. 13)

0B, By
= — X = —
Ox L

By(x) X, (151)
where L is the characteristic spatial scale (shear parameter).
Integrating the equation of motion of the magnetic field line
yields

7)(0[ 1 (
y= L. +LJ xdl.

(152)

RY]

It follows from the resonance condition at x = x that the
expression relating the main parameters of the problem has
the form

(153)
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Indeed, the resonance condition k. = —k,(y/z) should be
compared with the equation for the unperturbed component
z/By = y/B? or B}(,’ = (By/Ls)xo. Hence, we have the equa-
tion for the displacement velocity of a magnetic line toward
the x-axis:

dX_BJ_ ky *
?[—FOCOS <ESJ Xd[),

Xo

(154)

which is a close analog of the above equation of particle

motion in the electric field of an individual harmonic. It

establishes a direct correspondence between parameters of the

problem of particle—wave packet interaction and that of force

line wandering in the system of magnetic islands:
Bi e k}

= —E L k.
B()Hm 05 s<_>

T (155)

Consideration of the ensemble of magnetic field harmonics in
the form of Fourier expansion

By =" Brexp (ik.z + ik,p)
kyk.

(156)

allows generalizing the quasilinear diffusion coefficient for
resonant particles in the phase space:

nelE?
DVZZ — E S(wp —kV).

- (157)
-

Here, the electric field is defined by a set of Fourier
harmonics:

E=>Egexp [—i(wt — kx)]. (158)
k

The quasilinear diffusion coefficient of stochastic magnetic
field lines acquires the analogous form

B | x
Dn=)Ym 52 O\ Ktk ).

kyk 0

(159)

To study the transport of particles in a stochastic
magnetic field, additional arguments concerning decorrela-
tion mechanisms are needed [143—150]. In the simplest case of
ballistic (collisionless) motion of ‘magnetized’ particles along
the magnetic lines, the transport depends only on the
decorrelation properties of the magnetic field:

Ar?(t)  Ari(z)

Dr=——=—2 22—y Dy,
T lor T

(160)

where characteristic correlation time = leor/V), V) is the
particles’ longitudinal velocity, and I, is the longitudinal
correlation spatial scale.

Interesting possibilities arise from the application of
magnetic line diffusion coefficients to the problems of fast
electron propagation in different stochastization regions of a
magnetic field. The model kinetic equation describing
distortions of the tail of the distribution function of
suprathermal electrons with the collision integral in the
Fokker—Planck form looks like

% 10 Te(x)
~[u[vDm ﬁ: =25 [Uzve(v) (vf+ ;LX) a—f)}
0 0
+ve(v) o {(1 - ) é] (161)

Here, v, is the frequency of electron collisions, ve(v,x) =
dnet Ane(x)/(m>v?), u=cosO, f(x,v,u) is the electron
distribution function, D, is the anomalous diffusion
coefficient, T, is the bulk electron temperature, n. is the
electron number density, 0 is the pitch-angle of the electron
velocity, and v is the electron velocity modulus. The term
related to the influence of the electric field E can be
disregarded [120], because the disturbances it causes
become apparent only at high enough electron energies,
& > ep ~ 4ne’n.A/E. The use of the self-similarity variables
permits the description of a spatially nonuniform medium
to be reduced to an expression similar to that describing
runaway electrons in a homogeneous plasma [150—152]. The
solution of such equations was technically well developed by
Gurevich and Lebedev. For example, the distribution
function in a given concrete problem shows different
behavior in the regions delimited by the values of the
velocity v;(Dp,) and vy(Dy,). These theoretically computed
values can be used to determine D, in experiment from
results of X-ray measurements [119, 153].

It is noteworthy that Ref. [142] appeared only in 1966,
whereas L S Solov’ev, interested in the splitting of magnetic
surfaces in toroidal plasma traps, had referred in his Ref. [137]
to the review by Vedenov, Velikhov, and Sagdeev published
as early as 1961. The gap can be attributed to the fact that the
relationship between the quasilinear method and the Chir-
ikov criterion for resonance overlapping had not been
established in due time. Nevertheless, the combination of
quasilinear ideas, Chirikov’s approach, and Hamiltonian
models for a system of nested magnetic surfaces gave a
powerful impetus to the development of the dynamic chaos
theory.

12. Transport of admixture
and correlation effects

One of the lines along which the quasilinear approach
developed was its application to describing the turbulent
diffusion of passive admixtures (scalars) in hydrodynamic
flows. By passive admixtures are meant particles introduced
into a hydrodynamic flow and having no effect on its
character. Under conditions in which the temperature of
each liquid particle remains unaltered, i.e., ‘frozen’ in the
medium, it can also serve as a scalar.

Notice that the idea of averaging the transport equation
was effectively implemented shortly before the appearance of
the quasilinear method for the description of anomalous
scalar diffusion by Taylor [154], who considered the scalar
transport in the laminar flow of a fluid with the nonmono-
tonic velocity profile:

on on
— 4V — =DyVn.
+ ~(y72) aX 0V n

= (162)

Here, n is the particle number density, V', is the longitudinal
(along the x-axis) velocity, and Dy is the seed (molecular)
diffusion coefficient. Also considered was the effect of
occasional (due to infusion) inflow of particles into a nonuni-
form longitudinal velocity field, creating longitudinal diffu-
sion in addition to the molecular one. Here, we analyze a slab
model by representing the longitudinal flow profile in the
form V(y) = (Vo/L?*) x (L* — y?), where V; is the character-
istic velocity, and L is the characteristic spatial scale. The
density and velocity distributions are represented as the
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average plus a correction:

1 L
n= iJ n(x,y, t)dy +ni(x,,t) = nop + m(x,y,1), (163)
L

V:iji V(y)dy+ V1 (y) z% Vo+ Vo Ef (Zﬂ (164)

Let us consider a stationary case. Substituting expressions for
n and V into the initial equation and averaging yield the
expressions for the evolution of mean density no(x) and
perturbation n; (x, y):

0 0 %y
V05n0+<V15n1>—D0W, (165)
% an() + % a}’ll + % al’ll 7 ai’ll -D 621/11 n 62111

" ox 0 dx ' ox Pox/ T T ex2 T2 )
(166)

Let us further distinguish the terms responsible for the
expected effect in the equation for perturbation of scalar
density n; and take account of the smallness of On; /0x and
0’n;/0x? in comparison with meaningful dn/dx and
o%n; /oy

a}’l() _ 627’11

Vi ox Yoy

(167)

Here, the nontrivial dependence ny o Vy/Dy is readily
discernible. Hence, the easy solution for #; can be found:

ong Vo (y* 4
n = n0—0<y——y—>—|—const.

T ox 3Dy \ 2 412 (168)

Condition (n;) = 0 also gives

_al’lo VO 7 B
COnSt—aTD()(—@L .

The expression (V] 0ny/0x) defines the additional contribu-
tion to the longitudinal diffusive transport:

(1) gy Sro b O

ox 0x2 945 D, ox2°

(169)

The resulting dependence of the additional longitudinal
diffusion coefficient retains the ‘quasilinear’ (quadratic)
character in terms of velocity amplitude, but proves anom-
alous from the standpoint of molecular diffusion contribu-
tion: Dy o 1/Dy, and
272
Dest = Do + % Vg)f
Similar effects are known to occur in turbulent flows.
Naturally, the new diffusion mechanism will manifest itself a
long way downstream, because the equation thus obtained
holds true only for times ¢ > tp =~ L?/D. On the other hand,
the condition of smallness was used in comparison of the
transverse spatial scale L with the longitudinal scale /: L < /.
It is a striking example of the method suitable for
obtaining a linear (convenient for solution) perturbation
equation by averaging the initial equation. In Section 13
dealing with renormalization of quasilinear equations, it will
be a diffusion type equation. It is noteworthy that the
quasilinear approach to describing turbulent admixture

(170)

(scalar) transport was utilized after it had found wide
application in plasma physics. Specifically, one can consider,
instead of Vlasov’s equation, the continuity equation for
particle number density of a passive scalar involved in an
incompressible flow:

on on

+V—=0.

m o (171)

Here, n(x, 1) is the spatial density of the passive scalar, and
V(¢) is the random velocity field. Let us apply averaging over
the realization ensemble for the continuity equation on the
assumption that the density field can be represented as the
sum n = ny + n; of mean density ny and the fluctuation part
ny =n—(n), and that (n;) =0 and v=wy+ v;, where
vy = const, (v1) = 0. Simple calculations yield two equations

%+’U0%+<’U @I’l1> =0,

ot ox Pox (172)

6111 6n1 al’lo an] an] o
E+U0§+Ula+vla*<vl a>—0 (173)

Suppose that fluctuations n; and v, have the order of
smallness ¢ in comparison with the mean field ny. The
‘quasilinearity’ of the assumption consists in retention of the
nonlinear term of order ¢ in the equation for ny, whereas only
terms of first order in ¢ are conserved in the equation for n;:

al’ll al’ll al’l()

E—l—v()a:—v]a. (174)

The structure of the set of equations describing the evolution
of scalar density proves analogous to that of equations for the
mean and perturbed parts of the distribution function in the
quasilinear plasma theory.

The solution of the density perturbation equation is
obtained by the Green’s function method, regarding it as a
first-order linear hyperbolic equation with source I(x,t) =
—v;(0ny/0x) and homogeneous initial condition n; (x,0) = 0.
Here, Ony/0x is a parameter of the equation. Let us consider
the equation for Green’s function G:

oG oG
+uv—=0(x—x1)0(t—11).

o ox (175)

The solution of this equation is easy to find using the Laplace
transform in time ¢ and Fourier transform in spatial
coordinate x:

G: B exp (—115)

c= - ikx) .
oo = SPEEY exp ik

(176)

Hereinafter, a tilde mark ~ made above a letter denotes
either the Fourier or Laplace transform. The solution has a
clear physical sense of perturbation propagation along
characteristic z = x — vp(t — 1;):

G()C7 Z,xl,tl) = 5()6 —X] — U()(l— t1))@(l— ll),

where @ is the Heaviside function. Then, the solution for
ny(x, t) takes the form

nl(x, l) = —Jtvl(ll) M

0

dr, . (177)
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Substituting Eqn (177) for n; into the mean density equation
and simple transformations yield

al’lo

ano ! 627’10(2, tl)
E"‘ Vo a = JO<U1([)U1([1)> - ' 7

zox 0

(178)

The integral form of this equation reflects the Lagrangian
character of the relationship between derivatives of ng(x, ),
which makes it essentially different from the ‘fundamentally
local’ classical diffusion equation. Characteristic z = z(x, ) in
our consideration relates the derivatives determined at
different time moments. For example, the left-hand side of
equation (178) contains partial derivatives with respect to x
and ¢, while the right-hand side is the sum of 62n0/6x2
calculated along the characteristic with weight C(t,1,) =
(v1()v1(21)), which is an autocorrelation function of velocity
pulsations. In the case of a stationary random process, the
function C(z,1;) =~ C(t — t;) in this equation plays the role of
a ‘memory’ function. The final form of the transport equation
in the framework of the quasilinear approach depends on the
approximation of the correlation function.

The simplest meaningful case is a reduction of the above
equation to the classical diffusion equation

on on
S tvy o= Dr

Ong 0%ng(x, 1)
ot 0x '

% (179)
The reduction is possible if the main contribution to the
integral on the right-hand side of the integral equation comes
from the small interval (z — #; 7), where 7y < t. Given that the
second derivative within this small interval does not change
appreciably, one arrives at

N azno(x, 1)

! no(z,
L<U(’)U(")> aoz(axtl)d““ ox?

t
I C(t— 1) de
-1

sz%C(T)dr. (180)

2
Ox 0

We actually assumed a rapid decay of correlations (‘short’
correlations) and arrived at Taylor’s turbulent diffusion
coefficient [155].

In this example, we disregarded the influence of molecular
diffusion, responsible, for instance, for nontrivial effects of
particle ‘return’ and, as a result, for the striking difference
between the correlation functions and the ‘convenient’
exponential approximation [156-158]. Nor were spectral
properties of the turbulent field taken into consideration.
Unavoidable difficulties were overcome by both rigorous and
phenomenological renormalization methods, e.g., making
use of seed diffusion to couple Lagrangian and Euler
correlations [159]. It is significant that such renormalizations
led to the substitution of the quadratic dependence of
diffusion coefficients on fluctuation amplitudes by the linear
dependence that was observed with increasing frequency in
high turbulence experiments [160-165]. The same issues
continued to be developed in plasma physics, where they
were employed to renormalize quasilinear equations.

13. Phase mixing and renormalization

We can speak with confidence that attempts to improve the
quasilinear model of weak plasma turbulence date back to the
time of its birth. In the classical review published in 1964,
Kadomtsev [26] considered various aspects of transition to

the strong turbulence problem with reference to the interac-
tion between waves making up a wave packet. Reference [109]
is worth mentioning too, since it not only discusses the
possibility of transition from J-correlated fields but also
cites for the first time the Chirikov results in relation to the
quasilinear approach [17, 166]. Nevertheless, the problem of
renormalization of quasilinear equations is usually associated
with the classical work of Dupree [167] that appeared in 1966.

For the purpose of the present article, it is worthwhile to
use ‘intuitive’ arguments, because a detailed discussion of
‘pulsation’ mechanisms would greatly increase the size of this
section. The interested reader can find all necessary argu-
ments and calculations in the relevant literature. Here, only
the relationship (not fixed in the available literature) between
the Dupree approach and the Corrsin’s [168] and Taylor’s
[154] studies needs to be emphasized. These authors, rarely
mentioned in the modern literature, greatly contributed to
understanding decorrelation mechanisms related to seed
diffusion under conditions of spatial flow anisotropy. Both
these studies were united by the common idea of describing
longitudinal displacements of particles in terms of decorrela-
tion time 7, determined by diffusion wanderings in the
transverse direction. Specifically, there is the Taylor scaling
Desr o VZL? /Dy for the above problem. This type of simple
estimate can be obtained taking account of the ‘pulsation’
character of the anomalous contribution to the efficient
transport:

LZ

D, Vit , where ‘L’L(D())O(D—O. (181)
Here, as before, ¥ is the characteristic longitudinal velocity,
L is the characteristic spatial scale, and Dy is the seed
(molecular) diffusion.

On the other hand, in 1959, Corrsin [159] applied the
diffusion approximation to describe the ‘clouds’ of Lagran-
gian trajectories in the mature turbulent flow (Fig. 14). Thus,
he proposed coupling Lagrangian and Euler velocity correla-
tion functions by the phenomenological relationship

V(x(0),0)V(x(t+1),t+ 7))

= J% (U(x,NU(x+ 4,1+ 71)) pp(4,7)d4,  (182)

Figure 14. Cloud of Lagrangian trajectories and its spreading out.
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Figure 15. Velocity pulsations in the configuration space.

where the Gaussian distribution function was used:

,T) = xp | — .
Po (4nDyt)*/ P 4Dgt

It is worthwhile to note, when moving to the quasilinear
problem, that electron trajectories were assumed to be
unperturbed by electric field fluctuations, as follows from
the equation for the disturbed part of the distribution
function. However, diffusion in the velocity space inevitably
causes ‘spreading out’ (diffusion) of particle trajectories. The
analogy with the Corrsin and Taylor problems becomes
increasingly clear if the necessity of taking into account the
interdependence between configuration and velocity spaces is
understood. In terms of assessments (Fig. 15), one obtains

(183)

(8x)% o (8V7)? x Dyt?. (184)

The system of quasilinear equations makes it possible to
elegantly perform such diffusion renormalization by includ-
ing an additional term D 8°f; /dV2 (taking into consideration
diffusion in the velocity space) in the equation for the
perturbed part of the particle distribution function. Then,
the equations assume the form [167]

fo e/ 0fi\ _

ot m<E oV =0, (185)
ofi | 0N Ofi eEdfy _

TR TR 2R Tt (186)

The inclusion of this term looks justified from the formal
standpoint as well, because it approximates the ‘small
difference between two second-order terms’, VOf;/0x —
(Vo fi1/0x). Also important is the remaining possibility of
applying the Fourier analysis to solve the perturbation
equation due to the linear character of the renormalized
equation

% e = fp

i(kV — ) fx — Dy —~ =—F, . 1
l(kV U))f/ VaV2 o k Y ( 87)
For example, simple transformations lead to a new expression
for the Fourier transform of the perturbed distribution
function:

F=c E 9/
mi(kV — w) + (k2Dy/3)"? oV~

(188)

The term (kZDV/3)1/3 is responsible for the broadening of
resonance inherent in the classical approach and allows the

respective characteristic correlation time to be determined:

kzDV —1/3
Tp = < > ~ TK .

3 (189)

The expression for the diffusion coefficient acquires the
nonquasilinear form:

2

o0 1

Dy = (}%) ZJ |Ex|* exp {i(kV— WiT) — 3 k>Dy7? | de.
k J0

(190)

Renormalization of the quasilinear diffusion coefficient
can be considered in terms of the acceleration autocorrelation
function:

2
Cutt) = () (E(0.1)E(x10).0)). (191)

m

The traditional representation of the electric field as a totality
of many independent Fourier transforms, E(x,7)=
> i Erxexp [i(kx — wit)], yields the formula for the correla-
tion function:

2
() = (£> S~ (Eicexp [i(kx(1) — oxt)] Ei exp [ikx(0)]).
" (192)

Then, by analogy with the Corrsin method for diffusion
approximation of ‘Lagrangian trajectory spreading’, the
independence hypothesis

" 2
cl) = (n%) S EP (exp [i(kx(r) — o) + ikAx(0)])
¢ (193)

and the assumption of Gaussian statistics (exp 4) =
exp ({4%)/2) can be utilized. In this case, the expression for
the correlation function takes the form

2 2 A2
C(t) = (%) Z |Ek|2 exp {i(kx —wit) — M
k

(194)

The use of diffusive estimate d(AV?(¢))/dt ~ 2Dy readily
leads to the expression for the mean square displacement
(Ax?(1)) ~ (2/3)Dyt3. Under conditions of one-dimensional
electrostatic turbulence (when ¢t — o), the diffusion coeffi-
cient is then given by the Dupree formula [167]

Dy = Jot C(r)dr

2 00
= <%> ZJ |E; | exp [i(kV— Wi T) —%kzDVr3 dr.

K J0
(195)

After the introduction of variable J = (kzDV/3)1/3r, con-
venient for integration, this expression gives a scaling
substantially different from the quasilinear one:

Dy(Ex) o |E[*. (196)
The quasilinear result implies a ‘steeper’ dependence
Dqr(Ex) |Ek|2. The renormalized scaling for the diffusion

coefficient obtained by Dupree was verified many times in
numerical experiments reported in Refs [169—176]. Ambigu-



January 2018

Quasilinear theory of plasma turbulence. Origins, ideas, and evolution of the method 75

ities in the results thus obtained precluded a definitive
conclusion. The numerically found diffusion coefficient
proved much smaller than the theoretically predicted one.
O Ishihara and A Hirose confirmed these results. Moreover,
they recalculated diffusion effect using the A Salat method
and concluded that Dy can depend not only on amplitude
fluctuations but also on time. It is appropriate at this point to
cite a review article by Kadomtsev [54] published in 1972: “A
crude quasilinear theory is in some respects even more
preferable as inherently more approximate and therefore
less pretentious. The development of a more exact theory
encounters difficulties arising from nonanaliticity in the next
approximations. Evidently, the following step will bring us to
new concepts and approaches close to strong turbulence
phenomena rather than to terms of a higher order of
smallness.”

Despite the disadvantages of such a phenomenological
method, the Dupree approach permits us to visualize
correlation effects dismissed in the quasilinear approach and
opens up new possibilities for evaluating transport processes
by both renormalization of the density perturbation equation
and the diffusion approximation of correlation effects [159].

14. Stochastic magnetic field
and strong turbulence

The estimation of amplitude dependence of the diffusion
coefficient in Dupree’s approach remained insufficiently
smooth in the context of strong turbulence problems. It
became conclusively clear at that time that quasilinear
scalings failed to reflect the specificity of transport processes
in strong plasma and hydrodynamic turbulence problems. In
the meantime, the Bohm linear scaling that served as a
benchmark for theorists was already discernible in renorma-
lization models of scalar turbulent transport by the hydro-
dynamic turbulence field [93, 94, 177]. Specifically, it could be
constructed by dimensional modeling based on spectral
energy density [89, 93]:

Kmax E( k)

Dy J CIONTS (197)
Kmin

Kadomtsev and Pogutse [178] managed to implement
such an approach by integrating key ideas borrowed from
different sources. Thus, before their work the application of
the passive scalar model for the description of a stochastic
magnetic field yielded only a quasilinear result. The authors
of paper [178] considered a magnetic field with a rather
specific configuration, but the quasilinearity of their result
gives evidence of the possibility of employing a more general
method based on invoking the continuity equation for
magnetic line density np.

We are considering here a specific case of the magnetic line
wandering problem, assuming the presence of a strong
constant magnetic field with superimposed small random
transverse perturbations (Fig. 16). It is possible to totally
reproduce calculations for the case of a scalar transport
taking advantage of the prominence of the longitudinal
direction and the possibility of matching it with the time axis:

al’lB

erbLVLnB:O.

= (198)

Here, b, (/, ) is the perturbations of the magnetic field in the
direction orthogonal to the force line, ng = ny + n;, where

o
g

Figure 16. Stochastic magnetic field lines.
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ng = (np), with the result remaining ‘purely quasilinear’:

1

D (bo) = —rc (b(1,0)b(0,0))dl o b5 Ly, (199)
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where by is the characteristic amplitude of transverse
fluctuations, and L is the characteristic longitudinal correla-
tion scale.

Consideration of this scaling reveals the limitations of the
method in which a single correlation scale is utilized.
Kadomtsev and Pogutse broke apart characteristic spatial
scales in this essentially anisotropic problem, bearing in mind
that force lines are apt to decorrelate much earlier when
transverse fluctuations are large. A criterion allowing the
identification of these regimes is the condition by L > 4, or,
in terms of the dimensionless parameter (the Kubo number
Ku) introduced by the authors, the condition
—_ >

Kt =—-

1. (200)

Here, transverse displacement 4, in the Taylor expression for
turbulent diffusion coefficients b(z, 2, ) = b(z,0) cannot be
disregarded.

Based on the ideas of Dupree, Corrsin, and Howells,
Kadomtsev and Pogutse proposed ‘renormalizing’ the quasi-
linear equations describing scalar transport:

on

SV bm) =0, (o1)
ony - ony ony

E-FbVJ_no =bh a— <b1 a>, (202)

substituting the formerly discarded terms b0n;/0x—
(b0n; /0x) by the diffusion term describing transverse
‘spreading out’ of correlations:

al’ll

— +bViny=D,Vin.

- (203)
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Following Dupree [167], they used the effective diffusion
coefficient Dy, of magnetic field lines, which distinguishes
their model from the scalar transport models of Corrsin [159]
and Dreizin and Dykhne [179]. It preserves the linearity of the
equation despite its conversion from hyperbolic to parabolic.
Its formal solution is found by the Green’s function method:

oG

——DmViG =46(r—r’).

= (204)

The substitution yields the sought mean density equation
ong(z,r) 1 J b2(k) )
———=|z|+—=— dk|Ving,

oz 2 )ik + k2D 1o

where the magnetic diffusion coefficient and the Fourier
spectrum of perturbed amplitudes are given by the formulas

(205)

L[ Pk
Dy — Ejm dk, (206)
b3(k) = (21T)2J<b(0)b(r)> exp (—ikr)dr. (207)

Kadomtsev and Pogutse’s solution allows using the notions
of characteristic scales elaborated for vortical turbulence. For
example, it is possible to distinguish, based on dimensional
estimates, between strong and weak turbulences by compar-
ing longitudinal and transverse scales. In the case of
Ak, > kam, the classical quasilinear expression was derived:

Do = ngkbz(k)é(kz) x bdz o Ku | (208)

where £, is the longitudinal correlation scale. In case of strong
transverse correlations, Ak. < k2 Dy,, the Bohm (linear) type
scaling is obtained (Fig. 17):

2
Dm = ljb (k) dk bo/h_ XX Kum . (209)

2) k2

The analysis of turbulent transport problems in terms of
the Kubo number is currently an indispensable research
component of strong turbulence states due to the possibility
of concentrating attention on the key decorrelation mechan-
isms in low-frequency regimes and comparing theoretical
scalings with experimental findings.

Dm(Kum)

Dy o Kupy,

0 Kum =1 lﬁum

Figure 17. Magnetic field dependence of the force line diffusion coefficient.

15. Drift turbulence and vortex structures

The problem of renormalization of quasilinear equations was
equally acute in the context of research on low-frequency drift
instability of a plasma. These ‘universal’ modes were
investigated in classical studies of the early 1960s [26, 34,
180, 181]. Large turbulent pulsation amplitudes observed in
experiments suggested the inapplicability of the formal
quasilinear theory. The development of a rigorous theory of
strong turbulence in a magnetized plasma encountered the
same difficulties as in the hydrodynamic case, since the
importance of vortex structures (Fig. 18) and the necessity
of taking into account energy transfer from small to large
scales were becoming increasingly clear.

The qualitative picture of the anomalous transport
processes was represented in the framework of Bohm’s
estimates [182]. Thus, the expression for the drift velocity of
charged plasma particles in electric (E) and magnetic (B)
crossed fields has the form

BxE Vg

Vg = .
E CBZ O(BO

(210)

Here, V is the drift velocity, and ¢ is the electric potential.
For electric field fluctuations lower than the ion cyclotron
frequency (low-frequency limit), the motion of particles in the
plasma can be represented as the superposition of the rotation
around a magnetic field line and the drift of the driving center
with velocity Vg. Dimensional considerations permit evaluat-
ing the characteristic decorrelation time 7., of particle
transport via electric fluctuation field:

¢ 0p

c
OVp~—0O8E, ~ — 211
E BO P B() LB ( )
with the characteristic spatial scale Lp:
L L
B~ B (212)

TCW%B—VENEBO'

Here, 8¢ ~ 0E,Lp is the potential perturbation on vortex
scales, and 8F, is the corresponding perturbation of the
electric field strength. Fluctuations in the electric field are
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Figure 18. Current lines (equipotentials) depicting random two-dimen-
sional vortex flow.
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easy to relate to plasma temperature 7}, by the expression
ed¢p = edE,Lp ~ T); hence, the Bohm scaling for anomalous
particle diffusion in a turbulent magnetized plasma takes the
form

L2 ¢ T, edo W\ 12
D B o LpdVp~— 8~ —L2 (=L . (213
B Teor i 4 BO ? eBO <( TP) > ( )

The last expression does not contain the characteristic spatial
scale Lp of vortex structures introduced at the initial stage of
calculations. On the one hand, it may be attributed to the
universal character of the resultant estimate. However, such a
formulation does not provide an opportunity of analyzing the
spatial correlation scales needed, as shown by Kadomtsev
and Pogutse [178, 183], for the construction of a more
comprehensive model of anomalous transport.

Unlike the Bohm phenomenology, the formal quasilinear
particle transport model was based, as usual, on the
Cherenkov electron—drift fluctuation interaction [26, 34].
The expression for the diffusion coefficient obtained after
averaging over random field phases,

E = ZELkexp (ikyx — iat), (214)
k
has a traditional integral form
D, :J|Vk\2rc5(w—kVH) B0 v ak, (215)
ny

where w/k| oc V; is the ion velocity, and | Vil* = (cEl/Bo)i is
the spectral function of velocity V| .The corresponding
estimate of diffusion by virtue of temperature-drift instabil-
ity, namely

Vil? Vi
DL(xj' Kl dk oc g — o< 4 | —, (216)

VekH Ve - mj

gives values in agreement with the classical kinetic model of
Coulomb collisions, but at variance with the observed
anomalous estimates in which diffusion and thermal con-
ductivity y are quantities of the same order of magnitude.
Estimating nonlinear effects of electron capture by drift
waves and investigating individual convection cells failed to
improve the results, as expected. Here is the conclusion of
review [183] dated 1967: “The smallness of the diffusion
coefficient is due to the fact that electrons tend to obey the
Boltzmann distribution and it is difficult to displace them
from magnetic surfaces. If, however, the magnetic surfaces
are destroyed the particle diffusion occurs simultaneously
with heat transfer, and coefficient D, has an order of y.”

In the context of overcoming difficulties, it is worthwhile
to mention the work by Dupree [184], published in the same
1967, that reports the expression for the renormalized
diffusion coefficient

(217)

The Bohm linear result holds for large pulsation amplitudes
in the low-frequency approximation, wtp < 1, where
tp o< 1/(k2D_). The idea of such diffusion renormalization
was further elaborated in many publications [185-191] with
special emphasis placed on the effects in the magnetized
plasma caused by the ensemble of vortex structures. The
authors of these studies used the equations of motion of the

F[Ol’
Figure 19. Motion of particles in a tokamak.

guiding centers in the simplest form (Fig. 19):

dr B xVo(ry,z¢
G- ietVe= V\Wr”%'

0 (218)

In the limit where the collision frequency is lower than the
characteristic frequency of oscillations, longitudinal veloci-
ties can be regarded as constant and the electric potential
presented in the simplest form

o, 1) = o(x,y,z0 + V)t,1), (219)

where zj is the initial particle coordinate. The corresponding
Hamiltonian is given by the expression

C
Y(x,p,t) = —— @(x,9,20 + V£, 1) .

= (220)

To avoid a detailed breakdown in the analysis of
fluctuation spectra, the new version contained the results for
the case w — 0 presented as a combination of quasilinear
scaling D; o< Vitp and the diffusion expression for correla-
tion time tp o 1/(k3D_). It is easy to see that the result
obtained, D, « Vyk,, is analogous to that obtained by
Kadomtsev and Pogutse, Dy, o bok . Taking account of
peculiar spectral features results in the appearance of an
additional logarithmic factor [185]. Moreover, flat scaling
regimes were found in which the dependence on the field
amplitude was virtually absent.

The year 1978 was a significant watershed for transition to
nonlinear models. To begin with, an explicit interpretation of
numerical experiments was proposed in Ref. [191] based on
the parametric decay of drift waves as the main mechanism of
convective cell generation [192]. Sagdeev, Shapiro, and
Shevchenko [192] distinguished a mode with kj =0 and
o = 0 in equations for drift wave interactions. The possibil-
ity of a quasistationary state was demonstrated with a Bohm-
type transport by virtue of convective cells.

The second important step was reduced to consideration
of the anomalous transport problem concerned with studies
on the system of lines at the ‘random” hilly landscape level and
based on statistical topography methods [178, 193] (Fig. 20).
Kadomtsev and Pogutse proposed this model to elucidate the
role of mechanisms responsible for Bohm diffusion. By way
of example, transport in the random two-dimensional flow of
an incompressible fluid is described by a set of equations

ov
Vx(xvyal)zf%7 (221)
oY (x,p,t
V(e = SPERD. (222)
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Figure 20. Random landscape as a generator of equipotentials.

We are actually dealing with a Hamiltonian system having
11/2 degrees of freedom [45, 46]. The stochastic layers in the
near-separatrix region of such systems were the subjects of
extensive studies by both mathematicians and plasma
physicists with reference to stochastization of magnetic field
lines in the vicinity of resonant surfaces in magnetic confine-
ment devices [194-197]. Kadomtsev and Pogutse proposed to
obtain such a closed streamlined bunch that circumflows a
large proportion of vortices in the flow and forms a mixing
scale much greater than the size of a single vortex.

In this context, the important articles by Zaslavskii,
Filonenko, and Sagdeev [110-112] should be mentioned,
where the authors derived formulas for the width of
stochastic layers formed as a result of separatrix perturba-
tions. The authors presented two expressions for high and low
perturbation frequencies:

Q
J.exp (—n —p) for Q,> wy, (223)
o
A=
e £ for Q, < wy. (224)
o

Here, / is the characteristic spatial scale, ¢ is the perturbation
smallness parameter, Q, is the perturbation frequency, and
wy 1s the fundamental frequency. Notice that the width of the
streamline bunch making the main contribution to transport
in statistical topography-based models [193, 198, 199] can be
estimated as the width of the stochastic layer 4. This permits
concentrating attention on the generation of realistic systems
of equipotentials. Clearly, the problem of describing anom-
alous transport was moving further and further from the
traditional quasilinear approach in which the pivotal role was
ascribed to resonance (Cherenkov) mechanisms of wave—
particle interplay.

16. Transport in convective cells

Switching in the late 1970s from the description of wave—
particle interactions to transport models assuming the leading
role of vortices had a dramatic impact on modern research.
V 1 Petviashvili formulated the new concept in the following
way: “Enhanced transport in the plasma is due to accumula-
tion of vortices facilitating convective mixing with a very large
characteristic spatial scale” (see, for instance, review [200]).
At the first stage, it was necessary to find a simple model
making possible the analysis, at the new qualitative level, of
the influence of the ensemble of vortex structures on the
turbulent transport. It turned out that such a model is a ‘close
relative’ of the quasilinear problem, while the suitable relief
containing a regular system of vortex structures deliminated
by separatrices had been considered by I M Lifshits [201] as

=
S — p—
Il

A

Figure 21. Regular vortex structure (a), and its rearrangement due to
harmonic amplitude mismatch (b).

early as 1956. This system of regular convective cells is
described by the stream function given by the superposition
of two oblique waves (Fig. 21):

Y(x,y) :% {cosn(%—%) —cosn(g_p%)}
=y, sin (g x) sin (g y) .

Such a stream function was later investigated in connection
with the simplified model of 4ABC-flow [202]. In the presence
of a minor secondary harmonic v (x, y, f) of a similar type,
streamline stochastization occurs in the vicinity of separa-
trices, which gives rise to a regular network of convective
transport channels. The system of two drift waves considered
by Hirshman and Horton reduces to the same system [203,
204]:

(225)

W(x,y) = ux +ysinxcosy

+ Wy sin (kox + o) cos (kyy + o) . (226)
Importantly, the stochastization criterion in these models
coincides with the condition of overlapping the Chirikov
resonances. Moreover, here, as in the quasilinear theory,
attention is not focused on wave packet evolution; rather,
only the density distribution of scalar admixture particles is
investigated in the velocity field given by function .

The results of a numerical experiment on transport
processes in a convective cell system [205] published in 1984
gave evidence of the dependence of the diffusion coefficient
on the velocity pulsation amplitude, D o< /¥y, regarded as
nontrivial at that time. This seemingly simple problem
nevertheless requires a subtle analysis to describe the particle
interaction with such a flow structure. On the one hand,
trapping effects related to capture by individual vortices
cannot be ignored here. On the other hand, convective
transport associated with the presence of stochastic layers in
the vicinity of separatrices delimiting vortices begins to
operate at long times. In this case, the transport is accom-
panied by scattering from the saddle points of the stream
function, forming a square lattice. Notice that the effect of
such scattering was studied by I M Lifshits [206] in 1961, a
landmark year in the history of the quasilinear theory
(Fig. 22).

Let us consider the simplest case, choosing the unified cell
size A and the characteristic velocity ¥} of the convective flow
as parameters. Bearing in mind the importance of the near-
separatrix layer, the effective diffusion coefficient can be
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Figure 22. Random scattering of stream lines at the saddle point.

presented in the form

Deff ~ DTPoo s (227)
where D7~ Vit, Py is the part of the space where the
convection along separatrices occurs. In the case of con-
vective cells, the value of P, is readily estimated as
Poor JA/)2*~ A(Vy) /4, where A is the width of the stochas-
tic layer.

The problem reduces to the choice of a characteristic
time. Formally, there are two options. One arises from the
notion of diffusive escape from the stochastic layer. Then,
T A2 /Dy and, therefore, one has

V243
Der = -2 )
eff Do()u)

Here, Dy is the seed (molecular) diffusion coefficient
determined, for example, by collisions or diffusion due to
stochastization of plasma particle trajectories near separa-
trices partitioning vortices. In a low-frequency streamlined
perturbation regime, the use of the estimate 4 o e, leads to
the dependence Degr ox QS [207, 208].

The other choice of correlation time arises from the
consideration of the particle ballistic motion in the stochastic
layer: © = A/Vy; it becomes important when the velocity
amplitude increases. Then, the expression for the turbulent
diffusion coefficient coincides with the renormalized quasi-
linear Kadomtsev—Pogutse estimate discussed in connection
with force line diffusion [178]:

(228)

Deff( Vo) o /“/0 % = V()A(V()) . (229)
The knowledge of balance between decorrelation mechanisms
underlying particle balance in the layer allows comparing by
an order of magnitude the characteristic time of particle
escape from the boundary layer, t ~ 42/Dy, and the time of
ballistic motion along the cell boundary, T~ 1/Vy. As a
result, here is an important estimate of the boundary layer
width:

(230)

The final formula for the effective diffusion coefficient in the
convective cell system [209] is written out as

Deir = const v/ Dy VoA Vol/2 ,

in agreement with modelled results. The strict solution to the
problem of scalar transport by the stationary field of the
‘vortex lattice’ in the presence of seed diffusion by the method
of multiple scales gives the same scaling [210]. There is a much

(231)

smoother dependence than the quasilinear, Deg ox V7, or
Bohm, D¢y < V), one. These qualitative estimates of trans-
port in the regular convective cell system made it possible to
move from quasilinear transport models to nonlinear
problems.

In general, the single-scale two-dimensional vortex flow is
formed by the superposition of a large number of harmonics
having the same wavelength A, but different amplitudes,
phases, and directions of wave vector k:

N
P(x,y) =Y W;cos(kir+p), N> 1.

J

(232)

It allows simulating a random vortex field of ‘general
position’ to which the aforementioned percolation ideas of
Kadomtsev and Pogutse are applicable and thereby obtaining
experimentally verified scalings for turbulent transport
coefficients [210-217]. However, the computing techniques
are no longer related to quasilinear notions.

17. Conclusions

Meticulous scrutinizing of classical work on turbulent plasma
theory shows that the development of this research area
proceeded in a far from haphazard fashion. Suffice it to
mention the parallel discussions of Vedenov—Velikhov—
Sagdeev and Drummond—Pines reports presented at the
Salzburg conference in 1961. Although many pioneering
studies were classified as secret by governments having
different geopolitical interests, theorists were fairly well
aware of the research carried out by their foreign colleagues.
By that time, the fundamental role of Cherenkov mechanisms
in wave emission and absorption was universally recognized.

B B Kadomtsev [30] pointed out that it had taken more
than 10 years to understand and appreciate Landau’s ideas
concerning collisionless damping. The quasilinear method of
Vedenov, Velikhov, and Sagdeev [3] provided one of the first
efficient tools for the systematic application of the Landau
increment to the solution to the complicated physical
problem. In a sense, the success of the authors was
predetermined by the fact that they were all graduates of the
Faculty of Physics, Lomonosov Moscow State University,
Vlasov’s alma mater; moreover, two of them were Landau’s
students. The analysis of the range of problems pertaining to
the origin and evolution of the quasilinear theory provides
indisputable evidence of the importance of continuity in
science.

The nonlinear theory developed side by side with the
solutions to concrete quasilinear problems [26, 29, 34, 37, 41,
44]. The scope of applicability of the quasilinear theory of
electron beam relaxation in a plasma is limited, because
nonlinear interactions are essential for Langmuir waves even
at low wave energy densities. Therefore, solving kinetic
equations for plasmons, taking account of nonlinear effects,
became a natural area of research. For example, Silin and co-
workers [131, 132] arrived at the self-consistent analytical
solution to the problem of quasistationary ion-acoustic
turbulence by modifying the equation for the number of
quanta without prejudice to the general idea of a kinetic
description. In retrospect, the year 1967 appears to have been
a conceptual watershed in the history of the quasilinear
theory. On the one hand, Ivanov and Rudakov, Rudakov
and Korablev, and Rosenbluth, Sagdeev, and Taylor pub-
lished their elegant solutions in 1966; on the other hand, the
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article by Dupree demonstrated the necessity of developing
renormalization techniques [184]. In this sense, the rational
quasilinear theory had to face the sad fact that long-range
correlations present in the system need to be taken into
consideration.

The theory of plasma turbulence is now more than half a
century old, and many motivational theoretical studies from
the 1960s-1970s tend to be rarely and rather formally
mentioned by modern authors. This is a deplorable and
highly counterproductive practice, because basic ideas
always stay relevant. It would be of special interest to
consider from a single viewpoint both the sources of
theoretical models of turbulent transport in a plasma and
modern applications of quasilinear ideas for the investigation
of anomalous transport under strong turbulence conditions.
We confined ourselves to a single subject to demonstrate the
synthesis of many challenging ideas in the problems related to
the description of turbulent transport under conditions of
well-developed two-dimensional structural turbulence with
special reference to transport in a convective cell system,
which has attracted the attention of researchers for many
decades. It is worthwhile to note that many important aspects
of this nonacademic problem await elucidation [56, 160].

During preparation of this article for publication, it
occurred to the author that the ‘quasihistorical’ aspect
unexpectedly emerges at ‘small’ temporal scales. This
becomes evident, even when looking through the list of
references, which brings to light a number of fun facts.
Remarkably, the article by Davydov [13] does not contain
references to the work by Akhiezer and Fainberg [20] or
Bohm and Gross [18] published in widely circulating journals
in 1949. Although Bohm’s articles translated into Russian
appeared in the journal Problemy Sovremennoi Fiziki,
Davydov just mentioned in passing the nonequilibrium
character of the plasma systems under consideration and
repeated several times that “any ordered flows in the plasma
provoke build-up of oscillations.” Moreover, the Vlasov
equation that later provided a basis for the derivation of the
quasilinear approximation was used by Davydov only to
define a criterion for the existence of ion-acoustic oscilla-
tions: T, > T;. It is traditionally accepted that this result was
obtained by G V Gordeev in 1954 [218]. However, Davydov
unambiguously asserted that it had been reported by
T F Volkov in his graduation thesis in 1951 but could not be
published in open access for reasons of secrecy.

Even more surprising is the absence of references to
Davydov’s paper in the classical study by Vedenov, Veli-
khov, and Sagdeev [3], which was discussed at length at the
seminar led by Leontovich (and previously published as a
preprint by the Institute of Atomic Energy [1] in 1960).
Leontovich could hardly miss an opportunity to the draw
attention of the authors to the paper of their predecessor, who
had recently worked in the same department. All these
inconsistencies may be due to security measures enacted at
that time or to Davydov’s suspension from participating in
the controlled thermonuclear fusion program. On the other
hand, Romanov’s and Filippov’s articles contain references
to Davydov’s paper of 1958. Today, few authors cite
Davydov’s publication, whereas references to the paper by
Klimontovich are virtually nonexistent.

The National Research Centre ‘Kurchatov Institute’ has
recently declassified Velikhov’s Thesis for Cand. Phys.-Math.
Sci. [219], in which a special section is devoted to the
quasilinear approach. The archive of the National Centre

stores reports by Davydov, Braginskii, Volkov, Galitskii, and
other authors. Unfortunately, historians of science have not
yet appreciated the value of plasma research nor have they
taken full advantage of the documents collected in the archive
of the Kurchatov Institute. True, the collected works of
Galitskii, Ivanov, Kadomtsev, Larkin, and Leontovich have
been published. This tradition should be continued to make
accessible to the physical community the studies by Vedenov,
Galeev, Dykhne, Mikhailovskii, Moiseev, Petviashvili, Sha-
franov, and other researchers. The author hopes that the
present review will promote this process, if only modestly, by
attracting attention to the beauty and depth of the work by
Soviet theorists.

The author acknowledges the helpful comments by and
discussions with Yu N Dnestrovskii, I O Zoteeva, N S Ero-
khin, S V Konovalov, L K Kuznetsova, A M Popov,
V D Pustovitov, A A Rukhadze, V P Silin, and E I Yurchenko.

Editorial note

When consideration of this review article by O G Bakunin,
“Quasilinear theory of plasma turbulence. Origins, ideas, and
evolution of the method” by the editors of Physics—Uspekhi
was underway, we learnt the tragic news of the sudden death
of the author. Oleg Gennad’evich Bakunin was only 54 year
old (08.09.1962-17.03.2017).

He was not merely an author but also a friend of our
journal. We had ambitious plans to resume publication of the
series of classical volumes of Problems of Plasma Theory both
in Russian and in English (as Reviews of Plasma Physics), to
complete the collection of materials for a memoir book about
Boris Borisovich Kadomtsev and publish it, and to write new
review articles for Physics—Uspekhi. These plans will be
difficult to fully implement without the indomitable energy
of Oleg Gennad’evich Bakunin. We shall always cherish his
memory.

The obituary in memory of Oleg Gennad’evich Bakunin is
published in the journal Voprosy Atomnoy Nauki i Tekhniki
(VANT). Ser. Termoyaderny sintez, 2017, Vol. 40, Issue 2,
pp- 92-93, http://vant.iterru.ru/vant_2017_2/ ogbakunin.pdf
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