
Abstract. Modeling astrophysical flows in the framework of
classical magnetohydrodynamics often encounters significant
difficulties due to high (up to relativistic) AlfveÂ n wave veloci-
ties. Such situations can arise in modeling the magnetosphere of
planets and stars and accretion flows in polars, intermediate
polars, and near-neutron stars. In a strongly magnetized plas-
ma, wave turbulence can develop, which can significantly affect
the energy balance and the forces determining the plasma
dynamics. In this paper, a closed system of equations is ob-
tained for modified magnetohydrodynamics with wave turbu-
lence for a wide range of magnetic fields and turbulence
energies. The turbulent flow is described as the sum of the mean
flow and perturbations induced by relativistic AlfveÂ n waves.
Expressions are derived for the turbulence-induced body force,
viscosity, and dissipative heating. An analysis of equations in
certain limit cases is performed. It is shown that the proposed
approach can be used for modeling a broad class of astrophysi-
cal plasma flows.

Keywords: magnetohydrodynamics, turbulence, Alfv�en waves,
close binary stars

1. Introduction

In many astrophysical problems, the interaction of plasma
with the electromagnetic field can be described in the
classical magnetohydrodynamics (MHD) approximation
for a fully ionized medium (see, e.g., [1]). In this approxima-
tion, plasma can be thought of as a conducting fluid in which
motions are nonrelativistic. The smallness of the character-
istic scales and charge separation times in plasma compared
to the scale of the problem enables assuming the electrical
neutrality of each elementary plasma volume (see, e.g., [2,
3]). Then, under the quasineutrality condition, the genera-
tion of currents in plasma occurs exclusively due to
electromagnetic induction.

As a rule, astrophysical flows can bemodeled by assuming
the idealMHDapproximation, with themagnetic field frozen
into matter. This is due to large spatial scales, which in turn
lead to large magnetic Reynolds numbers. The finite con-
ductivity of plasma does not play a major role here. Despite
the relative simplicity, the MHD approximation allows a
quite detailed description of the structure of astrophysical
flows. In this way, good agreement with observations can be
achieved (see, e.g., [4±9]).

At the same time, we note that criteria underlying the
MHDapproximation are by nomeans alwaysmet in practice.
For example, we consider the plasma flow in polars [10].
These are close binary systems consisting of a red dwarf
(donor star) and a white dwarf (accretor star) with a
sufficiently strong magnetic field (1±100 MG). The mass
exchange causes matter to flow from the envelope of the
donor star through the inner Lagrange point L1 onto the
white dwarf. In a typical polar with a component separation
of about 2R�, the magnetic field strength along the accretion
stream changes from 103 G at the Lagrange point L1 to 107 G
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near the white dwarf surface. The mass of the white dwarf is
about 1M�, which causes an accretion velocity of about
1000 km sÿ1. The accreting plasma temperature can be
estimated to be 104ÿ105 K everywhere outside a close
vicinity of the accretion column base, where the temperature
is comparable to the kinetic one and reaches 108 K [11]. The
plasma number density can change along the accretion
column from 1011 to 1015 cmÿ3 [11, 12]. With such para-
meters, the plasma can be considered fully ionized, quasi-
neutral, frozen (the effects of the Ohmic diffusion of the
magnetic field are much smaller than the induction effects),
and magnetized (the cyclotron radius of electrons is much
smaller than the mean free path). By virtue of the last two
properties, it is possible to assert that the plasma travels along
the magnetic field lines, and thermal pressure effects dom-
inate in the longitudinal direction, while magnetic pressure
effects dominate in transverse directions.

Substituting the parameters in the formula for the
classical velocity a of AlfveÂ n waves, we find [13]

a

c
� 3

B

107 G

�
r

10ÿ9 g cmÿ3

�ÿ1=2
: �1�

In other words, on the one hand, velocities of bothAlfveÂ n and
fast magnetosonic waves in the flow can be relativistic. On the
other hand, they significantly exceed both the sound velocity
and the plasma bulk velocity. The above estimate of the
AlfveÂ n speed already implies that the classical MHD approx-
imation becomes invalid. We note that this situation is not
limited to astrophysics. For example, in the auroral zone of
Earth's magnetosphere, the AlfveÂ n wave velocity can reach
one third of the speed of light [14]. In the polar regions of
Jupiter, the AlfveÂ n velocity, calculated according to the
classical formula, can exceed the speed of light by a factor
of 10 or more. In accretion flows in polars, AlfveÂ n velocity (1)
can be several times the speed of light. In white dwarf
magnetospheres (in intermediate polars and even more so in
polars), the AlfveÂ n velocity can exceed the speed of light by
tens, hundreds, and thousands of times. In neutron star
magnetospheres, it can be even higher. Quite clearly, under
these conditions, the assumptions of classical magnetohydro-
dynamics become invalid.

The problem under discussion also has a purely technical
aspect. Indeed, numerical studies of plasma flows using the
classical MHD approximation can encounter substantial
difficulties. For example, explicit numerical schemes used in
simulations have a limited time step due to the Courant±
Friedrichs±Lewy condition (see, e.g., [15]). In a strong
magnetic field, this condition can be so strong that further
calculations lose practical meaning due to a drastic decrease
in the integration step [13, 16]. Some ways to solve this
problem have been suggested, for example, in [17±19].

In plasma flows immersed in a strong external magnetic
field, in the characteristic dynamical time, AlfveÂ n and
manetosonic waves travel many times in the longitudinal
and transverse directions by interacting with themselves and
the background flow. In many cases, the interaction of these
waves can be considered in the weak (wave) turbulence
approximation. This interaction results in the energy redis-
tribution between waves of different scales, leading to a
turbulence cascade. This approach was justified in the
classical papers on weak turbulence [20, 21]. In particular,
this is true for interacting AlfveÂ n waves [22±24] and for
magnetosonic waves [25, 26].

Some years ago, we elaborated a semiphenomenological
MHDmodel to describe such astrophysical flows [13, 27, 28].
The model is based on the assumption that the plasma
dynamics are fully determined by the slow mean motion
established in the background of rapidly propagating MHD
waves. To describe such a flow, it is possible to use the
averaging over an ensemble of wave pulsations in analogy
with the standard approaches used to describe MHD
turbulence. In our model, the dynamics of plasma in a strong
magnetic field are characterized by a relatively slow motion
along magnetic field lines, drifting under the action of
external forces (for example, gravity) in the perpendicular
direction, as well as by AlfveÂ n and magnetosonic waves
propagating with high velocity. In essence, all information
about fast pulsations is encoded in the expression for the
turbulent viscosity. The values of free parameters were
determined from a comparison of numerical solutions
obtained in our model with those resulting from rigorous
MHD numerical solutions in the case of a weak magnetic
field [29]. We successfully applied this method to model the
structure of flows in polars and intermediate polars [27, 28,
30±34] (see also monograph [13]).

However, in our previous papers, we derived the model
equations from physical considerations by ignoring some
important effects, for example, the wave pressure. In this
paper, we suggest a more rigorous justification of the model
and significantly expand its applicability domain.

2. Basic equations

2.1 Problem setup
MHD waves with a scale smaller than the homogeneity scale
of the magnetic field play an important role in MHD. The
waves can transport a significant part of the energy of matter,
be the source of mechanical stresses, and heat the plasma. In
ideal MHD, there are four types of waves: AlfveÂ n, fast and
slow magnetosonic, and entropy waves [1]. The AlfveÂ n waves
are transverse (incompressible) perturbations in amagnetized
plasma, with the phase velocity relative to the medium at rest

o
k
� a cos y � B��������

4pr
p cos y ; �2�

where r is the matter density, y is the angle between the wave
propagation direction and the homogeneous background
magnetic field, and a is the AlfveÂ n velocity.

Fast and slow magnetosonic waves are longitudinal
(compressible) perturbations. Their phase velocities are

o�
k
� 1���

2
p
n
a 2 � c 2s �

��a 2 � c 2s �2 ÿ 4a 2c 2s cos
2 y
�1=2o1=2

; �3�

where cs is the speed of sound. Entropy waves propagate with
the velocity of the medium and are related to the entropy
transport.

Waves with finite amplitudes can effectively interact. This
leads to energy exchange between perturbations of different
scales. This can result in the formation of an energy cascade,
i.e., an energy flux through the inertial interval extending
from the excitation scale to the dissipation scale. Inside the
inertial interval of scales, an approximately power-law energy
distribution is established [20±26].

Magnetosonic waves are known to decay faster than
AlfveÂ n waves. This can be, for example, due to AlfveÂ n waves
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running strictly along the background magnetic field, while
magnetosonic waves can propagate in all directions. There-
fore, the amplitude of magnetosonic perturbations decreases
more rapidly with the distance from the source. The
compressibility of these waves can lead to radiation losses.
The interaction of fast magnetosonic waves, owing to their
compressibility, can also lead to substantial energy redistribu-
tion into the high-frequency range and to plasma heating,
which takes place, for example, in the solar corona [26]. In
addition, if the gas-to-magnetic-field pressure ratio is small
�c2s=a 2 5 1�, the velocity of fast magnetosonic waves becomes
comparable to the AlfveÂ n velocity. In this case, fast and slow
magnetosonic waves can be ignored, and only AlfveÂ n waves
can be taken into account.

A stationary picture of the AlfveÂ n wave turbulence is
established via resonance interaction of AlfveÂ n waves that
move in opposite directions along magnetic field lines [23, 24,
35, 36]. The amount of energy exchange between the waves
depends on their transverse scales. Multiple interactions
result in energy redistribution across transverse scales, and
an energy cascade arises. Here, the energy distribution over
longitudinal scales does not change. The solar wind is an
excellent natural laboratory to study AlfveÂ n turbulence (see,
e.g., review [37]), in which the turbulence parameters can be
directly measured.

The theory of AlfveÂ n turbulence developed in [24] yields
the power spectrum in the form

E�kk; k?� � f �kk�E?�k?� ; �4�

where E?�k?� � E�kk � 0; k?�, and the factor f �kk� is
determined by the conditions at the turbulence region
boundary. Thus, AlfveÂ n wave turbulence turns out to be
highly anisotropic.

The spectral formof turbulent pulsations can be estimated
from simple considerations [36]. We imagine wave turbulence
at a transverse scale ` as a collection of interacting wave
packets with the total energy v 2

` . We let t denote the
interaction time of a pair of wave packets. Over this time
interval, the wave energy changes little, by dv 2

` � �tv 2` =`�2,
and for a significant change, N` � v 2` =dv 2

` interactions are
needed, which means that the characteristic time of energy
redistribution is

N`t � ` 2

tv 2
`

: �5�

We let E denote the energy flux through the energy cascade. In
the case of developed turbulence, it does not depend on the
pulsation scale and can be expressed as

E � v 2
`

N`t
� t

v 4
`

` 2
: �6�

This yields the energy distribution of pulsations over scales:

v 2
` �

�
E
t

�1=2

` : �7�

Expressing the scale in terms of the wavenumber, k? � `ÿ1,
and the energy in terms of the energy spectrum,
v 2` � k?E?�k?�, yields

E?�k?� �
�
E
t

�1=2

kÿ2? : �8�

The time of turbulence development can now be estimated as

max
`
�N`t� � L?����

Et
p ; �9�

where L? is the maximum transverse turbulence scale. The
time t must be of the order of the AlfveÂ n time for the
longitudinal scale of the problem: t � Lk=a.

Turbulence can have a significant effect on theMHD flow
by changing both the energy balance and forces acting in the
medium. It seems possible to take the AlfveÂ n turbulence
effects into account in the MHD approximation. To do this,
we suggest considering a turbulent flow as the sum of the
`mean' flow and perturbations. Averaging over an ensemble
of perturbations leads to the appearance of additional terms
in the equations, due to perturbation correlations. By
specifying the statistical properties of perturbations, it is
possible to obtain a closed system of equations. Such an
approach has been used in many studies, both in hydro-
dynamics andMHD (see, e.g., [38, 39]). One of the distinctive
features of the present study is that the perturbation is treated
as an ensemble of AlfveÂ n waves whose statistics correspond to
the developed AlfveÂ n turbulence [24].

We mentioned above that in some applications, the
velocity of AlfveÂ n waves can reach relativistic and super-
relativistic values, while the mean flow remains nonrelativis-
tic. It turns out that the presence of electromagnetic
phenomena with relativistic spatial and temporal scalings
causes the appearance of additional terms in the MHD
equations. As we see in what follows, accounting for the
displacement current in the presence of AlfveÂ n turbulence
gives rise to an additional force acting on the plasma.

2.2 Semirelativistic magnetohydrodynamics
We define all thermodynamic quantities in the local reference
frame comoving with the flow and the components of vectors
and tensors in the inertial `laboratory' frame. The joint
equations of the relativistic flow dynamics and electromag-
netic field in this frame are [13, 40]

q
qt
�Gr� � H�Grv� � 0 ; �10�

q
qt

�
G 2

c 2
�e� P� v� S

c 2

�
� H

�
G 2

c 2
�e� P� v
 v� PÎ� P̂

�
� 0 ;

�11�
q
qt

�
G 2 �e� P� ÿ Pÿ Grc 2 � w

�
� H

n�
G 2 �e� P� ÿ Grc 2

�
v� S

o
� 0 : �12�

Here, r is the volume mass density, v is the mass velocity, P is
the pressure, e is the volume energy density, including the rest-
mass energy,

e � rc 2 � re ; �13�
e is the thermal energy density per particle, and Î is the three-
dimensional unit tensor. The Lorentz factor is

G �
�
1ÿ v

2

c 2

�ÿ1=2
; �14�

the Poynting energy flux vector is

S � c

4p
E� B ; �15�
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the volume density of the electromagnetic energy is

w � E 2 � B 2

8p
; �16�

and the Maxwell stress tensor is

P̂ � wÎÿ E
 E� B
 B

4p
; �17�

where E and B are the electric and magnetic field strength
vectors. The symbol 
 denotes the tensor product, i.e., for
example, E
 B yields EiBk. We assume the sound velocity in
themedium to bemuch less than the speed of light and assume
the perfect-gas equation of state with the adiabatic exponent g
such that

P � �gÿ 1�re : �18�

It can be shown that up to a temperature of 109 K, relativistic
corrections to this relation are insignificant. In general, the
equation of state is more complex [14].

We assume the medium velocity to be much less than the
speed of light; then G � 1, e � re, and Eqns (10)±(12) reduce
to

qr
qt
� H�rv� � 0 ; �19�

q
qt

�
rv� S

c 2

�
� H

�
rv
 v� PÎ� P̂

�
� 0 ; �20�

q
qt

�
re� r

v 2

2
� w

�
� H

��
re� r

v 2

2
� P

�
v� S

�
� 0 : �21�

System of equations (19)±(21) should be complemented with
the Maxwell equations

rotE � ÿ 1

c

qB
qt

; �22�

HE � 4pq ; �23�

rotB � 4p
c

j� 1

c

qE
qt

; �24�

HB � 0 ; �25�

where q is the volume charge density in the comoving frame
and j is the conductivity current density.

With the given charge density q and current density j,
Eqns (18)±(21) jointly withMaxwell equations (22)±(25) form
a complete system of equations. The current density is to be
determined from Ohm's law with a finite conductivity s,

j � qv� s
�
E� v

c
� B

�
: �26�

The first term in the right-hand side of (26) is the convection
current. It is due to the presence of noncompensated electric
charges in the plasma with a charge density q. The second
term describes the conductivity current.

We estimate different effects on the plasma flow and field
generation. From Eqns (24) and Ohm's law (26), we can
derive the magnetic field induction equation

qB
qt
ÿ rot

�
v� Bÿ c 2

4ps
rotB� c

4ps
qE
qt
� c

s
qv

�
� 0 : �27�

The last two terms in the left-hand side are respectively
responsible for the magnetic field generation due to the
displacement current and the convective current. The dis-
placement current is due to electromagnetic waves. The
appearance of the convective current in a quasineutral
plasma is due to the charge separation of electrons and ions.
The noncompensated electric charge and the displacement
current appear on short time scales and small spatial
variability scales in plasma.

The electric field induction is described by Eqn (24) and
Ohm's law (26):

1

4p
qE
qt
� qv� s

�
E� v

c
� B

�
ÿ c

4p
rotB � 0 : �28�

The divergence of this equation yields the charge induction
law:

qq
qt
� Hj � 0 �29�

or

qq
qt
� H�qv� � ÿH

�
sE� s

v

c
� B

�
: �30�

The directed charge generation is due to the second term in
the right-hand side of this equation, while the first term
provides its dissipation. Let L and T be the characteristic
spatial scale and the time variability scale of the problem:

H � 1

L
;

q
qt
� 1

T
: �31�

Using Eqn (23), it is possible to estimate the charge density in
the stationary limit of Eqn (30) as

jqj � v

cL
B ; �32�

and using Eqn (22), we can estimate the electric field strength:

jEj � L

cT
B : �33�

The terms in Eqn (27) compare as the ratio

1 :
vT

L
:
c 2T

sL2
:
1

sT
:
v 2T

sL2
: �34�

We assume that the scale ratio L=T is of the order of the
plasma velocity v; the above ratios can then be rewritten as

1 : 1 :
1

sT
c 2

v 2
:
1

sT
:
1

sT
: �35�

The conductivity s is usually high in astrophysical
problems, and hence sT4 1. Clearly, in this case the
displacement current and the conductivity current are of the
same order of smallness and are much smaller than other
terms, the induction term �rot �v� B�� and the dissipative
term �/ H2B�. Hence, magnetic field induction equation (27)
takes the form

qB
qt
ÿ rot

�
v� B� c 2

4ps
rotB

�
� 0 : �36�
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If there are electromagnetic perturbations in the system
with short time variability scales (for example, electromag-
netic waves, for which L=T � c), the terms in (27) compare as

1 :
v

c
:
1

sT
:
1

sT
:
1

sT
v 2

c 2
: �37�

Because sT4 q, only the inductive term remains to be a
source of the magnetic field:

qB
qt
ÿ rot �v� B� � 0 : �38�

Thus, in the approximation sT4 1, the contributions from
the displacement current and electric charge to the magnetic
field induction equation can be ignored both in the case of
slowmotion,L=T � v5 c, and for electromagnetic perturba-
tions, L=T � c.

A similar analysis of the electric field induction equation
in the case L=T � v yields the relation

E� v

c
� B � c

4ps
rotB : �39�

If sT4 1, the right-hand side of this expression can be
ignored. The resulting relation

E � ÿ v

c
� B �40�

can be used as an approximation for the electric field strength
instead of induction equation (28). We note that in the case of
small-scale perturbations �L=T � c�, the last equation
together withMaxwell equation (22) is equivalent to Eqn (38).

To proceed, it is convenient to transform equation of
motion (20) and energy equation (21). It follows from the
Maxwell equations that

1

c 2
qS
qt
� HP̂ � ÿqEÿ 1

c
j� B ; �41�

and therefore Eqn (20) can be rewritten as

qv
qt
� �vH� v � ÿHP

r
ÿ B� rotB

4pr
� qE

r
ÿ 1

4prc
qE
qt
� B : �42�

Here, we used continuity equation (19) and expressed the
current from Maxwell equation (24).

Energy conservation law (21) can be changed by the
equation for entropy. Ignoring flows with discontinuities
and other dissipation effects (for example, diffusion and
viscosity), we are left with only one source of entropyÐ
Ohm's conductivity. In the relativistic form, the entropy
equation becomes [41]

q
qt
�Grs� � H�Grsv� ÿ j 2

sT
� 0 : �43�

Here, s is the entropy per unit mass, which is related to the
pressure and density by the equation

P � kB
m

rT �
�
r
m

�g

exp

�
�gÿ 1� m

kB
s

�
; �44�

where T is the temperature,m is the mass of gas particles, and
kB is the Boltzmann constant. For nonrelativistic flows,

qs
qt
� �vH� s � c 2

�4p�2srT

�
jrotBj2 ÿ 1

c

qE
qt

rotB� 1

c 2

���� qEqt
����2� :
�45�

It is easy to show that the effect of the displacement
current on the flow motion is noticeable only for relativistic
perturbations �L=T � c�:

jB� rotBj :
���� 1c qE

qt
� B

���� � c 2 :
L2

T 2
: �46�

The same holds for the displacement current effect in entropy
equation (45).

For the induced charge effects to be important, relativistic
perturbations alone are insufficient. It is necessary that the
plasma bulk velocity also be relativistic:

jB� rotBj : jqEj � c 2 :
L

T
v : �47�

This case is beyond the scope of the semirelativistic model;
therefore, we disregard the volume charge density effects in
what follows.

2.3 Taking turbulent perturbations into account
We assume that we can separate an MHD flow into slow and
fast parts. For the slow part, spatial and temporal scales have
the nonrelativistic ratio L=T, and we can therefore ignore the
displacement current and volume charge density. The fast
part corresponds to short-period perturbations. If perturba-
tions have sufficiently small variability scales and high
velocities, taking their influence on the slow flow into
account requires relativistic effectsÐ the electric charge
induction and displacement current.

The perturbation field is to be defined by statistical
properties of the developed AlfveÂ n wave turbulence. The
turbulence elements include AlfveÂ n waves (incompressible
transverse perturbations propagating along the background
magnetic field in plasma). In general, they include perturba-
tions of the velocity, electric andmagnetic fields, and charges.

We represent all quantities in the equations as the sum of
`slow' and `fast' terms, with the latter regarded as perturba-
tions:

v 7! v� dv ; B 7!B� dB ; E 7!E� dE : �48�

In Section 2.2, we showed that estimate (40) for the electric
field strength is also valid when fast waves are present in the
plasma. Therefore, the electric field perturbations can be
determined from the expression

dE � ÿ dv
c
� Bÿ v

c
� dBÿ dv

c
� dB : �49�

Substituting definitions (48) and (49) in continuity
equation (19), magnetic induction equation (27), Euler
equation (20), and entropy equation (45) results in the
appearance of additional terms containing linear, quadratic,
and cubic perturbations. By specifying the collection of
perturbations as a statistical ensemble, we can average the
equations over perturbations. Setting the mean values of
perturbations to zero and disregarding third-order terms, we
eventually obtain evolutionary equations for `slow' variables.
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They contain sources that are defined in terms of pair
correlators of the `fast' variables.

AlfveÂ n perturbations are incompressible, and therefore
continuity equation (19) does not change. The Euler equation
after averaging takes the form

qv
qt
� �vH� v� HP

r
� B� rotB

4pr

� ÿHhdv
 dvi � HhdB
 dBi
4pr

ÿ H

jdBj2�
8pr

ÿ 1

4pr

�
1

c

qd�1�E
qt
� dB

�
ÿ 1

4pr

�
1

c

qd�2�E
qt
� B

�
; �50�

where d�1�E and d�2�E are the linear and quadratic parts of
electric field perturbations (49). The induction equation after
averaging takes the form

qB
qt
ÿ rot �v� Bÿ Z rotB� � rot hdv� dBi : �51�

We here let Z � c 2=�4ps� denote the Ohmic magnetic
viscosity coefficient. The entropy equation becomes

qs
qt
� H�sv� ÿ Z

T

jrotBj2
4pr

� Z
T


jrot dBj2�
4pr

ÿ 2Z
T

1

4pr

�
1

c

qd�1�E
qt

rot dB
�
ÿ 2Z

T

1

4pr

�
1

c

qd�2�E
qt

rotB

�
� Z
T

1

4pr

����� 1c qd�1�E
qt

����2�� 2Z
T

1

4pr

�
1

c 2
qd�2�E
qt

qE
qt

�
: �52�

Turbulent sources in the right-hand sides of (50)±(52)
should be expressed from the solution of equations for
perturbations. These equations can contain higher-order
perturbations. Thus, a chain of equations (generally speak-
ing, infinite) for correlators of various orders arises. In [38],
this method was used to take the effects of compressible
hydrodynamic turbulence on the background of slow motion
into account, and turbulent sources were calculated up to the
fourth order. In [39], an ensemble of small-scale perturbations
was introduced to subgrid the modeling of compressible
MHD turbulence. To complete the equations, the authors of
that paper used model expressions for mechanical and
magnetic stress tensors induced by turbulence.

In this paper, to compute turbulent sources in Eqns (50)±
(52), we rely on the results in [24], where the power spectrum
of AlfveÂ n wave turbulence was obtained. In that paper, the
AlfveÂ n wave turbulence was represented as an ensemble of
spatial Fourier harmonics each of which corresponds to a
separate AlfveÂ n wave. We adopt the same approach. Here,
the pair correlators that correspond to turbulent sources are
expressed through the power spectrum of the ensemble of
AlfveÂ n perturbations. The accuracy of this approach turns
out to be insufficient, for example, to compute turbulent
viscosity effects (see Section 4). In such cases, the pair
correlators are calculated in the t-relaxation approximation
using the spectrum from [24] as the zeroth approximation.

3. Linearized perturbations

To calculate turbulent sources in Eqns (50)±(52), we need
expressions for AlfveÂ n wave amplitudes, as well as more
general expressions for amplitudes of small perturbations

propagating in a weakly inhomogeneous background flow.
We write the linearized equation for perturbations (48) by
ignoring the displacement current effects in the background
flow:

qdv
qt
� �vH� dv� �dvH� v� dB� rotB

4pr

� �H
 dB�Bÿ �BH� dB
4pr

� 1

4prc
qd�1�E
qt
� B � 0 ; �53�

qdB
qt
� �vH� dBÿ �BH� dv� �dvH�Bÿ �dBH� v� �Hv� dB

� B �Hdv� � rot �Z rot dB� � 0 : �54�
Here, the electric field perturbations include only linear
components of Eqn (49).

3.1 AlfveÂ n waves
In view of the properties of AlfveÂ n turbulence, we are
interested only in incompressible velocity and magnetic field
perturbations whose amplitude vectors are transverse to the
background field. We assume that the background density,
velocity, and magnetic field change little on the characteristic
variability scale of perturbations, and therefore their deriva-
tive can be ignored. For convenience, we express the magnetic
field vectors in velocity units:

a � B��������
4pr
p ; db � dB��������

4pr
p : �55�

We define the Fourier transformation of a perturbation
d f �t; x�:

d ~fo;k � 1

�2p�4
�
dtd3x exp �iotÿ ikx� d f �t; x� ; �56�

d f �t; x� �
�
do d3k exp �ÿiot� ikx� d ~fo;k : �57�

Below in this section, we omit the indices of Fourier
amplitudes.

In the harmonic representation, linearized Euler equation
(53) and induction equation (54) with account for (49) and
(55) take the form

�oÿ vk� d~v� �ak� d~b� a 2

c 2
o d~vÿ �av�

c 2
o d~b � 0 ; �58�

�ak� d~v� �oÿ vk� d~b � 0 : �59�

Here, we neglect the magnetic viscosity Z and take into
account that the waves are incompressible and have a
polarization orthogonal to the background magnetic field:

k d~v � k d~b � 0 ; �60�
a d~v � a d~b � 0 : �61�

We define the mutually orthogonal unit vectors ek, e?, and en
as follows:

a � eka ; k � ekkk � e?k? ; en � ek � e? : �62�

AlfveÂ n wave properties (60) and (61) imply that their
amplitude vectors are orthogonal to the vectors a and k
simultaneously:

d~v � en d~v ; d~b � en d~b : �63�
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Assuming that o � ak and jd~vj � jd~bj, it is possible to
estimate the contribution from different terms to Eqn (58):

a

c
:
v

c
:
a

c
:
a 3

c 3
:
a 2

c 2
v

c
: �64�

In these ratios, the last two terms correspond to the
contribution from the displacement current. We consider
two cases. Let v � a5 c. This corresponds to the classical
nonrelativistic MHD case. Indeed, both terms related to the
displacement current are small because �v=c�2 5 1. The
dispersion relation in this case takes the form

o� � vk� jakj : �65�
Substituting this in (59) yields a relation between the
perturbation velocity and magnetic field amplitudes:

d~v� � � sgn �ak� d~b� : �66�

When v5 a, only the last term in (53) related to the
displacement current is negligibly small. The next-to-last term
can be not small if �a=c�3 0 v=c. The characteristic equation
in this case becomes�

1� a 2

c 2

�
o2 ÿ

�
2� a 2

c 2

�
�vk�oÿ �ak�2 � �vk�2 � 0 : �67�

The dispersion relation takes the form

o� �
�
1ÿ g 2A

a 2

2c 2

�
�vk� � gA jakj

�
1�

�
gA

a 2

2c 2
vk

jakj
�2�1=2

;

�68�

where

gA �
�
1� a 2

c 2

�ÿ1=2
: �69�

Substituting the dispersion relation in (59) and using (63), we
obtain a relation between perturbation amplitudes:

d~v�� sgn �ak�
(
g 2A

a 2

2c 2
vk

jakj � gA

�
1�
�
gA

a 2

2c 2
vk

jakj
�2�1=2)

d~b� :

�70�
It can be shown that the estimate

gA
a 2

c 2

���� vkak
����4 av

c 2

�
1�

���� k?kk
����� : �71�

holds in general. In the next section, we see that the ratio
jk?=kkj can be quite large. However, in the approximation
v5 a � c, the quantity in (71) is small compared with unity.
Using this, we can simplify the form of the dispersion
equation and the relation between amplitudes:

o� �
�
1ÿ g 2A

a 2

2c 2

�
�vk� � gA jakj ; �72�

d~v� � � sgn �ak� gA d~b� : �73�

It is easy to see that in the case a5 c, relations (72) and
(73) respectively transform into (65) and (66). In the opposite
case a4 c, we find

o� � �jckkj ; �74�
d~v� � � sgn �ak� c

a
d~b� : �75�

If the formal value of AlfveÂ n velocity (55) is much higher than
the speed of light (this can take place not only in a strong
magnetic field but also in a low-density medium), velocity
perturbations disappear, and magnetic field perturbations
behave as they do for an electromagnetic wave in a vacuum.

We write the final form of the system of equations for
AlfveÂ n waves in the adopted approximation by assuming a
slow change in the background variables and also taking the
possible magnetic viscosity contribution into account. Fol-
lowing the estimates made above, we should omit the term
proportional to the bulk gas velocity in the expression for the
displacement current [the last term in Eqn (53)]. Then the
displacement current effect in the Euler equation reduces to
the appearance of a relativistic correction to the acceleration
component orthogonal to the background field:

1

4prc
qd�1�E
qt
� B � a 2

c 2
ÿ
Îÿ ek 
 ek

� qdv
qt

: �76�

In the case of AlfveÂ n waves on a homogeneous background,
Euler equation (53) constrains only the transverse perturba-
tion components. This remains valid if a slow variation of the
background variables is required. Thus, with account for (61)
and (76), the system of equations for AlfveÂ n perturbations on
an inhomogeneous background takes the form

gÿ2A

qdv
qt
� �vH� dv� �dvH� v� db� rot aÿ �aH� db � 0 ; �77�

qdb
qt
� �vH� dbÿ �aH� dv� �dvH� aÿ �dbH� v� �Hv� db

� rot �Z rot db� � 0 : �78�

Equations for Fourier harmonics (72) and (73) respectively
correspond to these equations.

3.2 Double correlators
Turbulent sources in Eqns (50)±(52) are double correlation
functions (correlators) of perturbations. We represent the
correlators in the form of decomposition into spatial Fourier
harmonics:

df �x� dg�x� �
�
d3p

�
d3q exp

�
i�p� q�x� d~fp d~gq : �79�

We assume that the perturbation modes form a statistical
ensemble, with modes with different wave numbers being
mutually uncorrelated. The correlation function of modes in
the Fourier space is then expressed in terms of the spectral
density or the power spectrum, denoted as hd~f d~gi:
hd~fp d~gqi � d�p� q� hd~f d~gip : �80�

The correlation coefficient of the fields df and dg at a point x
can also be expressed in terms of the power spectrum:


df �x� dg�x�� � � d3k hd~f d~gik : �81�

If the power spectra of correlation functions are known,
they can be used to directly calculate the sources in
Eqns (50)±(52). However, the accuracy of calculating
sources in this way can be insufficient if the power spectra
were obtained in an inherently rough approximation. In this
case, to compute the sources, we can use the equation for
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small AlfveÂ n perturbations. For this, we write the relations
for double correlators:

q
qt
�dv
 dv� � qdv

qt

 dv� dv
 qdv

qt
: �82�

The time derivative here should be substituted from
Eqn (77). After averaging, linear combinations of double
correlators of the velocity perturbation components and the
magnetic field, as well as cross correlators, appear in the
right-hand side. Equations for hdb
 dbi and hdv
 dbi can
be derived similarly. In the coordinate representation in
Cartesian coordinates, evolutionary equations for the
spectral powers of double correlators have the form (we
omit indices besides those designating Cartesian compo-
nents of vectors)

q
qt
hd~vi d~vji � ÿig 2A�vk�hd~vi d~vji ÿ g 2A�Hlvi�hd~vl d~vji

� g 2Aeilm�rot a�lhd~bm d~vji� ig 2A�ak�hd~bi d~vji� �i$ j � ; �83�
q
qt
hd~vi d~bji � ÿ2ig 2A�vk�hd~vi d~bji ÿ g 2A�Hlvi�hd~vl d~bji
� g 2Aeilm�rot a�lhd~bm d~bji� ig 2A�ak�hd~bi d~bji
� i�ak�hd~vi d~vji ÿ �Hlaj�hd~vi d~vli � �Hlvj�hd~vi d~bli
ÿ �Hv�hd~vi d~bji ÿ Zk 2hd~vi d~bji ; �84�

q
qt
hd~bi d~bji � ÿi�vk�hd~bi d~bji � i�ak�hd~vi d~bji
ÿ �Hlai�hd~vl d~bji � �Hlvi�hd~bl d~bji ÿ �Hv�hd~bi d~bji
ÿ Zk 2hd~bi d~bji� �i$ j � : �85�

Here, eilm is the Levi-Civita symbol, �rot a�l � eli jHiaj, and
k 2 � k 2

k � k 2
?. The symbols �i$ j � denote permutation of

indices i and j.
Instead of directly solving system of equations (83)±(85),

we use the iteration procedure. We write this system of
equations in the form

dCa

dt
�
X
b

UabCb ; �86�

where Ca are double correlators and Uab is the matrix of
system (83)±(85). We assume that the right-hand side of this
equation causes relaxation of the system to some equilibrium
state C �0� over a characteristic time t. At the same time,
perturbations can take the system away from equilibrium.
Small deviations from equilibrium can be described in the
framework of the so-called t-approximation:

X
b

UabC
�0�
b � Ca ÿ C

�0�
a

t
: �87�

Hence,

Ca � C �0�a � t
X
b

UabC
�0�
b : �88�

Repeating substitutions like (88) in Eqn (86), we can obtain
higher-order corrections in the relaxation time to the
equilibrium solution C

�0�
a .

The characteristic relaxation time can be defined as the
inverse of the maximum-modulus eigenvalue of the matrix
Uab. We rewrite system (83)±(85) by ignoring the background

flow velocity and background variables gradients:

q
qt
hd~v 2i � 2ig 2Aakkhd~v d~bi ; �89�

q
qt
hd~v d~bi � iakkhd~v 2i � ig 2Aakkhd~b 2i ÿ Zk 2hd~v d~bi ; �90�

q
qt
hd~b 2i � 2iakkhd~v d~bi ÿ 2Zk 2hd~b 2i : �91�

The matrix of this system has three eigenvalues:

1

t0
� ÿZk 2 ; �92�

1

t�
� 1

t0
� ÿZ 2k 4 ÿ 4g 2Aa

2k 2
k
�1=2 �93�

(the signs � in these formulas must not be confused with the
propagation directions of AlfveÂ n waves). At k � 0, all
eigenvalues vanish. If k!1 or akk ! 0, we have

1

tÿ
� ÿ2Zk 2;

1

t�
� 0 : �94�

It is easy to see that the solutions always relax, with the
fastest relaxation occurring for the solution of the tÿ branch.
Indeed, when the expression in the radicand in (93) is positive,
we have

1

tÿ
4

1

t0
4

1

t�
< 0 : �95�

Otherwise,

Re

�
1

tÿ

�
� Re

�
1

t�

�
� 1

t0
< 0 ; �96�

where Re �z� denotes the real part of a complex number z.
The expression for eigenvalues (93) suggests that the

relaxation has two regimes: the AlfveÂn one, with the
characteristic time of the order of jgAakkjÿ1, and the
dissipative one, with the characteristic time of the order of
�Zk 2�ÿ1. We define the characteristic relaxation time in the
t-approximation in the form

t � min �tA; td� ; �97�

where we let

tA � 1

jgAakkj
�98�

denote the AlfveÂ n time and assume the approximate dissipa-
tion time to be

td � 1

2Zk 2
: �99�

Besides the dissipation relaxation regime, Ohmic dissipa-
tion determines the smallest transverse spatial scale forAlfveÂ n
waves:

lmin � 4Z
gAa

: �100�

Indeed, it can be shown that for waves with transverse wave
numbers satisfying k? > lÿ1min, the eigenvalues in (93) are real
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and negative. This means that such waves only decay without
oscillations. In the limit of a very high AlfveÂ n velocity, a4 c,
the smallest transverse scale of AlfveÂ n waves tends to 4Z=c.

3.3 Power spectrum
Turbulent sources in Eqns (50)±(52) contain quadratic
dependences on the amplitudes of perturbations and are
expressed in terms of double correlation functions of the
components of velocity and magnetic field perturbations, as
well as their products. In Section 3.2, we have shown how the
double correlation functions can be calculated taking non-
equilibrium effects into account. In this section, we formulate
expressions for equilibrium correlators based on the theory of
AlfveÂ n wave turbulence presented in [24].

Each wave vector is associated with a pair of AlfveÂ n waves
traveling along the background magnetic field in opposite
directions (see Section 3.1). If we assume that waves running
in different directions and with different wave vectors do not
mutually correlate, then, with (63) and (73), we can write the
spectral density of correlation tensors of perturbations db and
dv in the form

hd~b
 d~bi� � en 
 en hd~b 2i� ; �101�
hd~v
 d~vi� � en 
 en g 2Ahd~b 2i� ; �102�
hd~v
 d~bi� � � sgn �kk� en 
 en gAhd~b 2i� : �103�

We note that these tensors have nonzero components only in
the plane orthogonal to the AlfveÂ n velocity vector. Expres-
sions (101)±(103) contain the same quantity hd~b 2i�, which we
call the power spectrum and for which we introduce the
notation

P��k� � hd~b 2i� : �104�

The energy flux is associated with AlfveÂ n waves. The
corresponding Poynting vector can be written as

dS
r
� c

4pr
d�1�E� B� c

4pr
d�1�E� dB� c

4pr
d�2�E� B :

�105�
Only the second term in the right-hand side of (105) makes a
nonzero contribution to the energy flux after averaging over
themode ensemble. Indeed, themean of the first linear term is
zero. The third term contains the vector square of en and also
vanishes. In the Fourier representation, the mean energy flux
transferred by AlfveÂ n waves with a wave vector k is

hd~Si�
r
� ÿ
�d~v� � a� � d~b�

� � � sgn �kk� gAaP��k� : �106�

The dispersion relation for AlfveÂ n waves in Eqn (72) has two
branches corresponding to the opposite directions of the
phase velocity. Here, the mutual orientation of the amplitude
of the velocity perturbations and magnetic field (73) also
depends on the wave vector orientation relative to the
background field direction. Possible types of AlfveÂ n waves
are listed in Table 1. It is seen that for a given mutual
orientation of d~v� and d~b�, only one orientation of the wave
vector and one direction of energy propagation is possible.

Nonlinear equations of AlfveÂ n wave turbulence were
formulated and solved in [24] in terms of the Elsasser
variables z� � dv� db. In such an approach, the same wave
vector is associated with a pair of waves that differ by the
mutual orientation of the velocity and magnetic field

perturbation amplitudes and hence by the energy flux
direction. We let the energy power spectrum in the Elsasser
variables be denoted as 1

P��k� �

�~z��2�

2
: �107�

As shown in [24], the universal character of the energy
spectrum in AlfveÂ n wave turbulence appears only for the
energy spectrum part depending on the transverse wave
numbers k?, while the longitudinal part of the spectrum
(depending on kk) is determined by external conditions and
enters the wave turbulence equations only as a parameter.
These properties of the energy spectrum are due to the AlfveÂ n
wave turbulence in a strong magnetic field redistributing
energy in the directions perpendicular to the background
field. As a result, the energy spectrum of AlfveÂ n turbulence
takes the form

P��kk; k?� � f �kk�P�? �k?� ; �108�

where f �kk� is an arbitrary dimensionless function of the
longitudinal wave vector component satisfying the condition
f �0� � 1, i.e., P�? �k?� � P��kk � 0; k?�, where P�? is the
transverse part of the energy spectrum. Below, following the
notation in [24], we write the transverse energy power
spectrum as

E�? �k?� � 2pk?P�? �k?� : �109�

According to Table 1, in the Elsasser variables, waves with
opposite signs transfer energy in opposite directions; no
distinction is made between different branches of the
dispersion relation (the lower sign � at the amplitude
vectors). The formalism in [24] can be made consistent with
the definitions adopted here if the power spectrum is

P��k� �
f �kk�
2pk?

E�? �k?� ; kk > 0 ;

E�? �k?� ; kk < 0 :

(
�110�

It is shown in [24] that as turbulence sets in, the inertial
interval forms, inside which the energy spectrum has a power-
law dependence on the transverse wave number: 2

E�? �k?� / kn�
? : �111�

The spectral exponents are in the range ÿ3 < n� < ÿ1 and
are related as n� � nÿ � ÿ4.

It follows from (111) that waves with different signs
can form energy cascades with different exponents. The

Table 1. Types of AlfveÂ n waves.

kk > 0 kk < 0

d~v� "" d~b�
d~v� "# d~b�
d~vÿ "" d~bÿ
d~vÿ "# d~bÿ

ì

dSk;� > 0

dSk;ÿ < 0

ì

dSk;� < 0

ì

ì

dSk;ÿ > 0

1 In [24] the power spectrum is denoted by e�.
2 In comparisonwith formulas (63) and (64) from [24], this expression does

not contain a small parameter in linearized MHD equations because it is

assumed to be included in the total turbulent energy.
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energy flux along and across the background field can also
be different in general. The case of a balanced spectrum is
interesting, where the total energy flux vanishes,
hdS�i � hdSÿi � 0, and the spectral exponents are n� �
nÿ � ÿ2. In this case, the energy spectrum takes the form [24]

E?�k?� � E�? �k?� � Eÿ? �k?� �
�

2Ea
pJ�ÿ2�

�1=2

kÿ2? ; �112�

where E is the energy flux through the inertial interval.3 The
variable J in the denominator of this expression depends on
the spectral exponent and can be found from the kinetic
equation for AlfveÂ n wave turbulence [24]:

J�n� � 2 n�3
�1
1

dx

� 1

ÿ1
dy

�����������������������������������x 2 ÿ 1��1ÿ y 2�p �xy� 1�2
�xÿ y�n�6�x� y�2ÿn

� ��x� y�1ÿn ÿ 21ÿn� ln�x� y

2

�
: �113�

This integral converges for ÿ3 < n < ÿ1. The plot of J�n� is
presented in Fig. 1. For the balanced spectrum, J�ÿ2� � 1:86
and

E?�k?� � 0:59
�����
Ea
p

kÿ2? : �114�

The longitudinal part of the spectrum is independent of
the external conditions. It should be remembered, however,
that k?4 kk is assumed in the wave turbulence approxima-
tion in which solution (111) was obtained. In addition, the
longitudinal part of the spectrum is restricted by the condition
f �kk � 0� � 1. Introducing the characteristic longitudinal
scale for the magnetic configuration, Lk, we can use the
approximate expression

f �kk� � h
ÿ
1ÿ jkkLkj

�
; �115�

where h�x� is theHeaviside function equal to 0 for x < 0 and 1
otherwise.

Using definitions (101), (102), (110), and (112), we can
find the magnetic energy of wave turbulence per unit mass

hjdbj2i
2
�W

2
; �116�

and the kinetic energy
jdvj2�
2
� g 2A

W

2
: �117�

The quantity W is defined such that it is equal to the total
(magnetic and kinetic) energy of turbulence in the weak-field
limit a5 c:

W �W� �Wÿ ; �118�

where W� is the total energy of waves traveling along and
against the background field:

W� �
�
d3kP��k� � 2

Lk

�1
Lÿ1?

dk? E?�k?� � 1:17
�����
Ea
p L?

Lk
:

�119�

Hence,

W � 2:34
�����
Ea
p L?

Lk
: �120�

The vector of energy flux density per unit mass is defined by
the difference between energies in dispersion branches:

hdSi
r
� hdSi� � hdSiÿ

r
; �121�

where, according to (106), (112), and (119),

hdSi�
r
� �gAaW� : �122�

Thus, in the case of a balanced spectrum, the energy flux
along the background magnetic field vanishes.

As noted in Section 3.1, in the limit of a high AlfveÂ n
velocity, the velocity perturbation amplitudes tend to zero
as c=a, and therefore the kinetic energy decreases as c 2=a 2.
We note that expression (117) has no relativistic covariant
form and can be used, strictly speaking, only under the
condition

g 2AW
c 2

5 1 : �123�

The direct substitution of the expression for W straightfor-
wardly shows that the left-hand side of this inequality attains
a maximum at a � c=

���
3
p

; therefore, if the inequality holds at
this AlfveÂ n velocity, it must hold for any value of the AlfveÂ n
velocity with other parameters fixed.

4. Sources

The general expression for the double correlation function
includes the unperturbed part and the correction emerging in
the t-approximation (see Section 3.2):

hdf dgi � hdf dgi�0� � hdf dgi�1� ; �124�

101

102

J

100

ÿ3.0 ÿ2.5 ÿ2.0 ÿ1.5 ÿ1.0
n

Figure 1. Normalized factor J�n� in the energy spectrum as a function of

the spectral exponent.

3 Here and below, the factor E does not coincide with that introduced in

Section 2.1. These factors differ by the dimension of length.
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where

hdf dgi�0� �
X
�

�
d3k hd~f d~gi� ; �125�

hdf dgi�1� �
X
�

�
d3k t�k� q

qt
hd~f d~gi� : �126�

The unperturbed part of (124) is determined only by power
spectrum (110). At the same time, the t-correction is defined
by the right-hand side of Eqns (83)±(85) for the corresponding
spectral density and can depend on the background magnetic
field and its gradients. Below, we take only those terms in the
right-hand sides of (83)±(85) into account that make an
isotropic contribution to integral (126) over the transverse
wave numbers. In addition, we neglect the t-correction if the
unperturbed part is nonzero.

In our case, there are two fundamentally different
relaxation regimes: diffusion and AlfveÂ n. In the first case,
the relaxation time is the characteristic diffusion time td �
�2Z �k 2

k � k 2
?��ÿ1. In the second case, the relaxation time is the

AlfveÂ n time tA � jgAakkjÿ1 and depends on the background
magnetic field. Depending on the problem parameters, either
the diffusion or the AlfveÂ n relaxation regime can dominate in
the integration domain in expression (126).

We consider the scale hierarchy of the problem:

kk < Lÿ1k 5Lÿ1? < k? < lÿ1 9lÿ1min ; �127�

where l is the turbulence dissipation scale (it is defined
rigorously in Section 4.2), and lmin is the minimum possible
AlfveÂ n wavelength (100). We introduce dimensionless vari-
ables as the ratios of some characteristic scales:

a �
�
lmin

2Lk

�1=2

�
�

2Z
gAaLk

�1=2

; �128�

b � L?
Lk

: �129�

It can be shown that the following relations hold:

a 2 9
l
Lk

<
1

Lkk?
< b5 1 <

1

Lkkk
: �130�

Figure 2 shows the location of domains corresponding to
different relaxation regimes on the wavenumber plane. The
rectangles show the possible integration boundaries. It is seen
that a decrease in the background field strength (increase in a)
can lead to the diffusion relaxation only. Indeed, the
condition of the AlfveÂ n relaxation regime can be written as

2Z �k 2
k � k 2

?� < gAakk �131�

or ÿ
a 2Lkkk

�2 � ÿa 2Lkk?
�2
< a 2Lkkk : �132�

For the wave number domain where tA < td to fall within the
integration limits, it is sufficient that inequality (132) hold for
kk � Lÿ1k and k? � Lÿ1? :

a 2 <
b 2

b 2 � 1
: �133�

With (130), this condition can be approximately stated as

a < b : �134�

If a > b, only the diffusion relaxation is realized. This
condition can be rewritten in the form 2ZLk > gAaL

2
?;

therefore, the diffusion regime occurs at low AlfveÂ n velocities
and/or on a small transverse turbulence scale.

4.1 Turbulent pressure and stresses
According to definition (101), components of the magnetic
stress tensor are nonzero only in the directions transverse to
the background magnetic field. The projection of this tensor
onto the plane orthogonal to ek is obviously independent of
the direction in this plane. Moreover, the stress tensor and
pressure (per unit mass) are obviously related as
jdbj2� � tr hdb
 dbi : �135�

Hence, using (116), we obtain

hdb
 dbi � T̂
W

2
; �136�

where T̂ is the projection operator on the plane orthogonal to
the background field direction ek:

T̂ � Îÿ ek 
 ek : �137�

It is seen that the magnetic stress tensor has only the
longitudinal component:

r
�
Î


jdbj2�
2
ÿ hdb
 dbi

�
� ek 
 ek

rW
2

: �138�

td < tA

tA < td
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Figure 2. Relaxation regime of AlfveÂ n turbulence on the wavenumber

plane. Thin dashed lines show the relaxation time isochrones, with the

lines close to the coordinate origin corresponding to longer times. The

long-dashed line separates regions with different relaxation regimes. The

rectangles show integration domains for a < b (larger rectangle) and a > b
(smaller rectangle).
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In a similar way, using (102), we can calculate the stress
tensor due to velocity perturbations:

rhdv
 dvi � T̂
rg 2AW

2
: �139�

Thus, the total turbulent stress tensor has both longitudinal
and transverse components:

r
�
Î


jdbj2�
2
ÿ hdb
 dbi � hdv
 dvi

�
�
�
Îÿ g 2Aa

2

c 2
T̂

�
rW
2

:

�140�

In a weak field �a5 c�, the tensor takes an isotropic form,
and in a strong field �a4 c�, only the longitudinal component
survives.

4.2 Turbulent viscosity
The turbulent source in the induction equation vanishes in the
zeroth order of the t-approximation. Indeed, we can write

hdv� dbi�0� � gA
X
�
��1�

�
d3k sgn �kk� en � en P� : �141�

Clearly, this quantity vanishes. In the first order of the
t-approximation, only one term in the right-hand side of (84)
is potentially nonzero:

hdv� dbi�1� � g 2A
X
�

�
d3k en � �en � rot a� tP� : �142�

This integral can be easily transformed to

hdv� dbi�1� � ÿZwT̂ rot a ; �143�

where

Zw � g 2A
X
�

�
d3k tP� : �144�

The factor Zw should be interpreted as the magnetic viscosity
coefficient due to wave turbulence. Clearly, the turbulent
viscosity effects appear only in the directions orthogonal to
the background magnetic field.

Depending on the relation between the scales and the
AlfveÂ n velocity, the turbulent magnetic viscosity can be
determined by either the diffusion or the AlfveÂ n relaxation
regime. The calculation of integral (144) in the general case
yields

Zw � 2g 2A

� Lÿ1k

ÿLÿ1k
dkk

�1
Lÿ1?

dk? tE?

� g 2A
2Z

WL2
k â

2

�
1

3
� a 2

â 2

�
ln

b 2

â 2
� 4

3

a
b
ÿ 4

3

a
â

��
; �145�

where â � min �a; b� [see notation (128), (129)]. In the
diffusion relaxation regime a > b, setting â � b gives

Zw � g 2A
L2
?

6Z
W : �146�

For a strong AlfveÂ n regime a5 b, we have

Zw �
gAWLk

a
ln

�
gAaL

2
?

2ZLk

�
: �147�

The form of the turbulent viscosity can also be obtained
from physical considerations, because it is determined by the
turbulent energy and the relaxation time: Zw �Wt. In the
diffusion regime, the relaxation time is independent of the
background field strength, and the viscosity coefficient grows
with the turbulence energy (which depends on the field as
W / B 1=2). In the AlfveÂ n regime, the relaxation time
decreases with the background field strength. This weakens
nonequilibrium effects [see expression (88)] and hence
decreases the viscosity coefficient.

Figure 3 shows the plots of the magnetic turbulence
viscosity (in dimensionless variables) as a function of aÿ2/ a.
The plots demonstrate that in weak fields (at large a), the
dimensionless viscosity coefficient is independent of the field
strength, which corresponds to the diffusion relaxation
regime. The dependence of the viscosity coefficient on the
pumping scale for different field strengths is shown in Fig. 4.
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Figure 3. Magnetic turbulent viscosity coefficient as a function of the

background magnetic field �aÿ2 / a� for different scale ratios b: b � 10ÿ4

(solid line), b � 10ÿ3 (dashed line), and b � 10ÿ2 (dashed-dotted line).
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Figure 4. Magnetic turbulent viscosity coefficient as a function of the

pumping scale b for different values of the parameter a: a � 10ÿ5 (solid

line), a � 10ÿ4 (dashed line), and a � 10ÿ3 (dashed-dotted line).
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At small pumping scales �b! 0�, the diffusion relaxation
regime with a quadratic dependence on scale always occurs.
At large pumping scales, the viscosity coefficient increases
logarithmically.

The dissipation scale determines the smallest turbulence
scale or the lower inertial interval boundary. It can be defined
as the scale l at which the turbulent viscosity equals the
microscopic one. We use expression (146) for the turbulent
viscosity in the diffusion relaxation regime, which is valid in
the small-scale limit:

Zw �
2:34

6

g 2A �Ea�1=2
Z

L3
?

Lk
: �148�

Here, we have expressed the turbulent energy in terms of the
flux in accordance with definition (120). On the dissipation
scale, we have

Z � 2:34

6

g 2A �Ea�1=2
Z

l3

Lk
: �149�

Expressing the energy flux in terms of the total turbulent
energy, we obtain the dissipation scale in the form

l �
�
6Z2L?
g 2AW

�1=3

: �150�

4.3 AmpeÁ re force
The last two terms in Euler equation (50) are related to the
displacement current. The calculation of the force per unit
mass yields (see Appendix A)

fD � ÿ 1

4pr

�
1

c

qd�1�E
qt
� dB

�
ÿ 1

4pr

�
1

c

qd�2�E
qt

�
� B

�
��

T̂

2
ÿ Î

��
qv
qt
ÿ
�
Hv� Z

3L 2
k
� Z
L?l

�
v

�

� 1

2
g 2Aa� rot a

�
W

c 2
�
��

T̂
qa
qt

�
� rot a

�
Zw
2c 2

: �151�

We estimate the plasma velocity as v � L?=T, the gradient
operator as H � 1=L?, and the turbulent magnetic viscosity
as Zw � g 2AWt. The terms in formula (151) then compare as

1 : 1 :
L?
Lk

Z
Lkv

:

�
Z

L?v
W

v 2

�1=3

:
g 2Aa

2W

v 2c 2
:
g 2Aa

2tW
vL?c 2

: �152�

Clearly, in the case of a high AlfveÂ n velocity, the last two
terms dominate. Then, if the AlfveÂ n relaxation regime is
realized, i.e., t � tA � Lk=�gAa�, the last two terms compare
as

gAa
v

:
Lk
L?

: �153�

It is easy to see that if v5 c, the last term is small, and the
expression for the force takes the form

fD � g 2AW
2c 2

B� rotB

4pr
: �154�

If the diffusion relaxation regime is realized, t �
td � L2

?=Z, the last two terms compare as

Z : L?v : �155�

At the same time, in the diffusion regime, the inequality
Lk=L?>gAaL?=Z holds [see (130)]. Because gAa=v4Lk=L?,
formula (154) for the force fD is also valid in the diffusion
regime.

4.4 Turbulent heating
Turbulent heating is already nonzero in the first order of the
expansion in the relaxation time:
�rot db�2��0� �X

�

�
d3k k 2

?P� : �156�

Because the transverse part of the power density is propor-
tional to kÿ2? , this integral diverges in the limit k? ! 1. To
avoid the divergence, it is necessary to rigorously take into
account the finite upper integration limit over transverse
wave numbers, which is equal to the inverse dissipation scale
lÿ1. As a result, we obtain (by ignoring Lÿ1? compared to lÿ1)


�rot db�2� � W

L?l
� 0:55

g 1=3A W 4=3

Z2=3L4=3
?

: �157�

In this equality, we used dissipation scale (150).
In entropy equation (52), the term responsible for the

turbulent heating has the form�
qs
qt

�
w

� qw
T
; �158�

where qw determines the rate of change of the specific internal
gas energy with an adiabatic exponent g. At constant density,
it turns out to be

qw � Z

�rot db�2� � 0:55

Z1=3W 4=3

L
4=3
?

: �159�

Equation (52) also contains the heat sources due to the
displacement current dissipation (see Appendix B):

qD
Z
� �gAa� v�2

2c 4
W

L?l

�
�
2�

�
g 2Aa

2

c 2
�
�
1ÿ g 2Aa

2

2c 2

�
v 2k
c 2

��
g 2Aa

2

c 2
W

3L2
k

� ��T̂ rot a� � rot a
� g 2AW

c 2
ÿ �T̂�gAa� rot a��2 g 2AW

2c 4
: �160�

The terms in the right-hand side of this formula compare as

v 2

c 2

L2
k

L?l
: 1 :

g 2Aa
2

c 2
:
v 2

c 2
:
g 2Aa

2

c 2
v 2

c 2
:
L2
k

L2
?

:
g 2Aa

2

c 2

L2
k

L2
?
: �161�

In expression (160), the first and the next-to-last terms
dominate. Their ratio is

v 2

c 2
:
l
L?

: �162�

The dissipation scale l is defined according to (150). Using
(157) and (159), we can write

qD
Z
�
� �a� v�2

2c 4
� �T̂ rot a� � rot a

c 2
L?l

�
g 2A

qw
Z
: �163�
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Because v5 c and l5L?, as well as gAa=c < 1, it is clear that
qD 5 qw. Thus, the displacement current does not contribute
to the turbulent plasma heating.

5. Analysis

5.1 Summary of the results
In Section 4, we computed sources of turbulent pressure,
viscosity, and heating. They were expressed through double
correlators of the AlfveÂ n velocity and magnetic field pertur-
bations. The values of the double correlators were calculated
in the first nonvanishing order of the t-approximation. The
power density of AlfveÂ n wave turbulence was taken from [24].
For simplicity, only the isotropic contribution (in the
transverse wave numbers) of the double correlators to the
sources was taken into account.

We write the full system of MHD equations with
turbulent sources in the final form:

qr
qt
� H�rv� � 0 ; �164�

qv
qt
� �vH�v � ÿ 1

r
H
�
P�

�
Îÿ g 2Aa

2

c 2
T̂

�
rW
2

�
ÿ
�
1� g 2AW

2c 2

�
B� rotB

4pr
; �165�

qB
qt
ÿ rot

�
v� Bÿ �Z� ZwT̂� rotB

� � 0 ; �166�

qs
qt
� �vH� s � Z

T

�rotB�2
4pr

� qw
T
: �167�

In Euler equation (165), wave turbulence appears via the
anisotropic stress tensor and the relativistic correction to the
AmpeÁ re force. The anisotropic character is defined by the
projection tensor

T̂ � Îÿ ek 
 ek ; �168�

where ek is the unit vector along the local field B.
The turbulent energy per unit massW includes the energy

of the ensemble of AlfveÂ n waves with the corresponding
power spectrum (112)

W � 2:34
�����
Ea
p L?

Lk
; �169�

where E is the energy flux through the inertial interval,
a � B=

��������
4pr
p

is the AlfveÂ n velocity, and Lk and L? are the
longitudinal and transverse turbulence scales.

In the magnetic induction equation, the wave turbulence
appears as the transverse magnetic viscosity tensor. The
turbulent viscosity coefficient is

Zw �
g 2A
2Z

WL2
k â

2

�
1

3
� a 2

â 2

�
ln

b 2

â 2
� 4

3

a
b
ÿ 4

3

a
â

��
; �170�

where â � min �a; b�, a � �2Z=�gAaLk��1=2, and b � L?=Lk.
In the entropy equation, only one term,

qw � Z
W

L?l
; �171�

is due to turbulence, with the dissipation scale l given by

l �
�
6Z2L?
g 2AW

�1=3

: �172�

To complete the system ofMHD equations (164)±(167), it
is necessary to define the longitudinal Lk and transverse L?
scales, as well as the turbulent energy W or the energy flux E.
The last two quantities determine the intensity of turbulent
velocity and magnetic field pulsations. In model (164)±(167),
it is essential that the background magnetic field and
turbulent intensity are independent variables. Depending on
the relation between them, the proposed model can describe
significantly different physical situations.

We first consider the weak-field limit, or, more precisely,
the approximation in which the AlfveÂ n velocity is low, a5 c.
In this approximation, the anisotropic part of turbulent
pressure in equation of motion (165) vanishes. If the
turbulent energy also tends to zero, then, clearly, the model
reduces to the usual MHD case. Otherwise, depending on the
value of turbulent energy, turbulence can appear on the
dynamical time scale (pressure and the AmpeÁ re force) or
dissipative time scale (viscosity and heating).We note that the
turbulent viscosity coefficient in this approximation is
determined by the Ohmic diffusion time (see Section 4.2)
and has form (146).

In the opposite limit, when the turbulent energy is small
but nonzero and the AlfveÂ n velocity is comparable to the
speed of light, the anisotropic part of turbulent pressure and
the relativistic correction to the AmpeÁ re force become
significant. The diffusion coefficient Zw is now determined
by the AlfveÂ n time and decreases as AlfveÂ n velocity (147)
increases. Because the heat source qw in entropy equation
(167) depends on the turbulent energy to the power 4=3, its
role in thermal balance can be small.

In the limit of extremely high AlfveÂ n velocities, a4 c, the
proposed model is inapplicable in general because we have
used approximate relations for relativistic AlfveÂ n waves (72)
and (73). However, in this case, model (164)±(167) does not
lead to unphysical consequences either. Indeed, at high
AlfveÂ n velocities, the factor gA tends to zero. Consequently,
all turbulent terms except the isotropic part of turbulent
pressure disappear from the equations. In the limit a4 c,
AlfveÂ n waves degenerate into magnetic field oscillations (see
Section 3.1) and therefore the turbulent pressure should be
regarded as the radiation pressure.

5.2 Estimates
As a possible astrophysical application, in Section 2.1 we
mentioned the problem of gas accretion in polars and
intermediate polars. Below, we consider two examples of
such systems: AM Herculis and ER Hydrae, and estimate
the effect of turbulent sources on the accretion process.

For the binary systemwith the polar-like AMHerculis, we
adopt the respective accretor and donor massesM1 � 0:5M�
and M2 � 0:25M�, the accretor radius R1 � 1:3� 10ÿ2 R�,
the binary orbital period Porb � 3:1 h, and the mass accretion
rate onto the white dwarf _M � 10ÿ8 M� yrÿ1. The gas
temperature T is fixed at 104 K. We assume the white dwarf
in this system to have a strong dipole magnetic field
B1 � 107 G on the surface. Numerical simulations of such
systems in [27, 28] have suggested that such a strong field
almost completely controls the gas flow inside the Roche lobe
of the white dwarf. The accretion flow forms a column stream
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that starts at the Lagrange point L1, goes to the magneto-
spheric boundary, and then flows into the polar region of the
white dwarf along the magnetic field lines.

The magnetospheric radius Rm can be estimated as the
AlfveÂ n radius from the relation

B��������
4pr
p � vff ; �173�

where vff � �2GM1=Rm�1=2 is the free-fall velocity. Using the
mass conservation law in the form _M � rvff4pR 2

m, we obtain

Rm �
�

B 4
1R

12
1

2GM1
_M 2

�1=7

: �174�

In the system under consideration, Rm � 3:4� 1010 cm,
which is about half the distance between the binary system
components. The cross section of the accretion stream in the
system with a polar can be assumed to be equal to the stream
cross section at the Lagrange point L1 [13, (2.10)]:

Sstr � pc 2s
4O 2

orb

; �175�

where cs is the speed of sound and Oorb � 2p=Porb is the
angular orbital velocity of the binary system.

We estimate the effect of different terms in Eqns (164)±
(167): the characteristic dynamical time

tdyn �
L
3=2
k�����������
GM1

p ; �176�

the electromagnetic induction time

tind � L?
vff

; �177�

tA �
Lk
a
; �178�

the time of establishing the turbulent cascade (mentioned in
Section 2.1 as the energy redistribution time in the cascade)

tcasc � L2
?a

LkW
; �179�

the characteristic time of turbulent viscosity

tvisc � L2
?

Zw
; �180�

the turbulent heating time

theat � kBT

mpqw
; �181�

the magnetic Reynolds number

Rm � L?vff
Z

; �182�

and the turbulent magnetic Reynolds number

Rw � L?vff
Zw

: �183�

To calculate the times tvisc and theat, as well as the Reynolds
number Rm, it is necessary to know the Ohmic magnetic
viscosity Z � c 2=�4ps�, where the electric conductivity is

s � e 2nt
me

: �184�

Here, t is the characteristic time of electron±ion collisions
[42],

t � T 3=2

5:5nLC
; �185�

where LC � ln �220Tnÿ1=3� is the Coulomb logarithm.
The times tcasc, tvisc, and theat are also determined by the

longitudinal and transverse scales of turbulence and by
turbulent energy. We set the longitudinal scale equal to the
magnetosphere radius, Lk � Rm, and define the transverse
scale as the accretion stream size, L? � S

1=2
str . To estimate the

turbulent energy, we ascribe the turbulence a certain
`effective' temperature Tw,

W � 3kBTw

mp
: �186�

We consider two limit cases: (a) the turbulent energy is equal
to the thermal energy of themediumwith a temperature of the
order of 104 K; (b) the value of the energy is determined by the
matter temperature at the accretion column base, which is
about 108 K [10]. We refer to these cases as the respective
weak and strong turbulence.

Finally, we take the gas number density in the accretion
column n � 1015 cmÿ3 and assume its temperature to be
T � 104 K. The resulting estimates are listed in Table 2. It is
seen that in the case of weak turbulence, the formation time of

Table 2. Characteristics* of the accretion flow for systems like AM
Herculis (the first pair of columns) and EX Hydrae (the second pair of
columns). The first and second columns in the pair respectively correspond
to the weak and strong turbulence.

AMHerculis
Tw � 104 K Tw � 108 K

EX Hydrae
Tw � 104 K Tw � 108 K

B1, G

B, G

n, cmÿ3

Lk, cm

L?, cm

tÿ1dyn, s
ÿ1

tÿ1ind , s
ÿ1

tÿ1A , sÿ1

Z, cm2 sÿ1

Zw, cm
2 sÿ1

tÿ1casc, s
ÿ1

tÿ1visc, s
ÿ1

tÿ1heat, s
ÿ1

Rm

Rw

107

1:8� 102

1015

3:4� 1010

1:4� 109

1:8� 10ÿ3

4:3� 10ÿ2

3:6� 10ÿ5

4:8� 106

5:7� 1017 5:7� 1021

3:3� 10ÿ2 3:3� 102

2:8� 10ÿ1 2:8� 103

1:6� 10ÿ6 3:3� 10ÿ1

1:9� 1010

1:5� 10ÿ1 1:5� 10ÿ5

104

5:1� 102

1015

2:4� 109

1:3� 107

1:0� 10ÿ1

19.0

1:4� 10ÿ3

4:8� 106

9:6� 1015 9:6� 1019

10.5 1:1� 105

58.3 5:8� 105

8:3� 10ÿ4 1:8� 102

6:6� 108

3:3� 10ÿ1 3:3� 10ÿ5

* B1 and B are the respective magnetic éelds on the accretor surface and
at the magnetosphere boundary; n is the particle number density;Lk and
L? are the longitudinal and transverse turbulence scale; Z is the Ohmic
viscosity coefécient; Zw is the magnetic turbulent viscosity coefécient;
Rm and Rw are the respective Ohmic and turbulent magnetic Reynolds
numbers; tÿ1... are the inverse times.
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the turbulent cascade is comparable to the magnetic induc-
tion time and almost one order of magnitude shorter than the
dynamical time, and the turbulent viscosity dominates over
other effects. The turbulent heatingmust then be small.When
Tw � 108 K, all turbulence-related effects increase by four to
five orders of magnitude and should dominate over the ideal
MHD effects. In particular, the turbulent magnetic Reynolds
number is smaller than the Ohmic Reynolds number by 9±
15 orders of magnitude.

Similar estimates can be obtained for the system with an
intermediate polar like EX Hydrae. The respective accretor
and donor masses are M1 � 0:79M� and M2 � 0:096M�,
the accretor radius isR1 � 1:3� 10ÿ2 R�, the accretion rate is
_M� 10ÿ10 M� yrÿ1, the binary orbital period isPorb� 1:64 h,
and the white dwarf magnetic field is B1 � 104 G. In such
systems, themagnetosphere radius is relatively small. Leaving
the inner Lagrange point, the stream forms a disk, and
reaching the magnetosphere, the stream falls onto the white
dwarf by forming an accretion column (or accretion curtain,
better to say) [28]. We again assume the longitudinal
turbulence scale to be equal to the AlfveÂ n radius and the
transverse scale to be equal to the isothermal disk thickness at
the AlfveÂ n radius, L? � Lkcs=vK, where vK is the Keplerian
rotation velocity. Estimates for such a system are also given in
Table 2. As in the case with a polar, the turbulence
significantly exceeds the effects from ordinary MHD terms
in Eqns (164)±(167).

5.3 Strong turbulence approximation
The modified MHD model used in our previous papers [27,
28] corresponds to the strong turbulence limit in plasma flows
in a strong external magnetic field. We show how to pass to
this model from Eqns (164)±(167). The total magnetic field B
in such a plasma can be represented as the sum of the external
magnetic field H and the magnetic field b induced by electric
currents in the plasma, B � H� b. Because the background
magnetic field H is produced by external sources outside the
spatial domain of interest, it must satisfy the potentiality
condition rotH � 0. Induction equation (166) can be rewrit-
ten in the form

qb
qt
� qH

qt
ÿ rot

ÿ
v� b� v�Hÿ Zw rot?b

� � 0 : �187�

Here, we disregarded the Ohmic diffusion compared to the
turbulent one �Z5 Zw�. The index ? denotes components
transverse to the magnetic field vector.

The simplest case corresponds to a stationary magnetic
field, qH=qt � 0. However, problems are frequently encoun-
tered when the magnetic field is nonstationary. This is the
case, for example, in modeling plasma flow around a rotating
magnetized star with the magnetic axis misaligned with the
spin axis. In principle, the external magnetic field can change
in time due to variability of its sources. For example, this can
be due to a variable stellar magnetic moment. However, these
changes typically occur on long time scales [6] and are ignored
in what follows. Therefore, the equation for the external
magnetic field can be written as (see, e.g., [1])

qH
qt
� rot �V�H� : �188�

Here, the right-hand side is due to the effect of motion of the
source as a whole, and the vector V determines the velocity of
the source at a given point. It is equal to the velocity of the

external magnetic field lines in a vacuum (i.e., without
plasma). For example, if the field change is caused by
rotation of a star (the stellar center is at the coordinate
origin) with an angular velocity X, then the velocity is
V � X� r.

We consider the case of a strong external magnetic field
H4 b under strong turbulence conditions, when the mag-
netic Reynolds number Rm caused by wave turbulence is
small, Rw 5 1 [43]. As shown above (see the preceding
section), this situation can occur in the magnetospheres of
white dwarfs in polars and intermediate polars. Retaining the
leading terms in Eqn (187), we find

rot
��vÿ V� �Hÿ Zw rot?b

� � 0 : �189�

This, in particular, implies that the induced field is by an order
of magnitude equal to b � RwH, and in the limit of small
magnetic Reynolds numbers Rw 5 1, it is indeed small
compared to the background field, b5H.

The quantity under the curl operator in the left-hand side
of (189) is equal to ÿcE, where E is the electric field in the
plasma. Equation (189) implies that this field is potential,
E � ÿHj, where j is the corresponding scalar potential.
Therefore, we can write

�vÿ V� �Hÿ Zw rot?b � cHj : �190�

This equation defines the component of the potential gradient
that is transverse to the magnetic field. To find the potential
itself, we extend Eqn (190) by changing rot?b to rot b and
calculate the divergence of the left- and right-hand sides.
Assuming for simplicity that the viscosity coefficient is
constant, we then obtain

H2f � 1

c
H rot �vÿ V� : �191�

In calculating the right-hand side of this equation, we used the
potentiality condition rotH � 0 for the magnetic field.

The electromagnetic force in equation of motion (165) is

fem � ÿwD
B� rotB

4pr
� ÿwD

b� rot b

4pr
ÿ wD

H� rot b

4pr
;

�192�

where wD � 1� g 2AW=�2c 2� is the coefficient due to the
displacement current. The second term in the right-hand
side describes the force

f �2�em � ÿwD
H� rot b

4pr
�193�

acting in the plasma due to the external magnetic field. This
force can be computed in the approximation considered
above. By expressing rot b from (190) and substituting it in
(193), we find

f �2�em � ÿ
wDH

2

4prZw
�vÿ V�? �

wDc
4pr

H� Hj : �194�

It is convenient to introduce the local velocity of magnetic
field lines u (the magnetic field line velocity in the comoving
frame where qH=qt � 0) from the condition

E � ÿHj � ÿ 1

c
u�H : �195�
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From this formula, we can obtain

u? � c

H 2
�E�H� � c

H 2
�H� Hj� : �196�

The expression for electromagnetic force (194) can then be
finally rewritten in the form

f �2�em � ÿ
�vÿU�?

tw
; �197�

where the total velocity of the magnetic field lines is U �
V� u, and the relaxation time is

tw � 4prZw
wDH 2

: �198�

An interesting interpretation of electromagnetic force
(197) can be suggested in terms of a friction force. Indeed, it
is well known (see, e.g., [2]) that in a plasma containing several
particle species, the specific friction force between compo-
nents a and b is

fab � ÿnab�va ÿ vb� ; �199�

where va and vb are velocities of the corresponding plasma
components, and nab is the characteristic collision rate of
species a and b. A comparison of this expression with (197)
suggests that (197) represents a friction force between the
plasma and magnetic field lines. Here, the corresponding
collision rate is nw � tÿ1w . The appearance of a finite collision
rate can be related to the fact that magnetic field lines
chaotically oscillate in a turbulent plasma, which results in
some effective `collision cross section' for plasma particles
with the magnetic field. Thus, in a turbulent plasma, a strong
external magnetic field plays the role of an additional
`effective' fluid with which the plasma interacts due to the
friction force. We stress that this effect occurs only in the
direction perpendicular to the magnetic field. In the long-
itudinal direction, plasma flows freely.

When using the approximation under study, the initial
equations (164)±(167) can be significantly simplified. If, in
addition, we can ignore the turbulent pressure and heating,
they reduce to the system of equations

qr
qt
� H�rv� � 0 ; �200�

qv
qt
� �vH�v � ÿHP

r
ÿ b� rot b

4pr
ÿ �vÿU�?

tw
; �201�

qb
qt
� rot

�
v� b� �vÿ V� �Hÿ Zw rot?b

�
; �202�

qs
qt
� �vH� s � 0 : �203�

It is exactly this model that we have used in our previous
studies [13, 27, 28]. Here, to be fair, we should say that to
simplify calculations, we have disregarded the velocity u and
assumed thatU � V. It is important to note that if there is no
external magnetic field, B � b, and no wave turbulence, this
system reduces to the ideal MHD equations. In the opposite
limit of a strong external magnetic field H4 b and strong
turbulence Rw 5 1, induction equation (202) reduces to (189),
and the second term in the right-hand side of (201) can be
ignored. As a result, we arrive at hydrodynamic equations
with additional force (197). In the intermediate cases, system

of equations (200)±(203) does not accurately describe the flow
structure. For a more precise treatment, the full system of
equations (164)±(167) should be used.

6. Conclusion

We have studied the problem of modeling astrophysical
plasma flows in strong magnetic fields. Under these condi-
tions, the classicalMHDapproximation can be incorrect, and
therefore alternative approaches should be sought to describe
such flows. One of the possibilities is to account for wave
(AlfveÂ n) turbulence that can develop in such systems. Indeed,
in the plasma in a strong magnetic field, over the character-
istic dynamic time, AlfveÂ n andmagnetosonic waves can travel
many times across the flow in the longitudinal and transverse
directions with respect to the external magnetic field. The
interaction of theses waves redistributes energy between
different harmonics, thus forming a turbulent cascade.
Wave turbulence, in particular, is observed in the solar wind
plasma and in Earth's polar wind [37]. To describe such flows,
it is possible to use the standard ensemble averaging over
wave pulsations.

We have considered this approach in application to
astrophysical flows. We plan to apply this model in the
future to describe plasma flows in strong external magnetic
fields; therefore, in the basic equations, we included relativis-
tic effects related to high propagation velocities of AlfveÂ n and
magnetosonic waves. A turbulent flow is treated as the sum of
the mean flow and perturbations caused by wave pulsations.
In this approach, it is possible to obtain a complete system of
equations for the mean flow characteristics. In the equations
for mean characteristics, the source terms caused by wave
pressure, turbulent magnetic viscosity, and turbulent wave
heating are taken into account. All transport coefficients are
computed using the wave turbulence spectrum calculated
in [24].

The modified MHD equations (164)±(167) derived here
can be used to model a wide class of astrophysical plasma
flows. It is shown that for plasma flows in strong external
fields and with strong turbulence, these equations take a
simpler form (200)±(203), which corresponds to a semi-
phenomenological model we used in our previous studies
[27, 28]. Thus, this model acquired a more rigorous
justification.

We note several important points. In this paper, we
started from semirelativistic MHD equations. However, to
calculate double correlators, we used the wave turbulence
spectrum obtained in the nonrelativistic MHD approach. In
our model, this factor is not essential. First, only the power-
law character of the turbulence spectrum in the inertial
interval is important in our model, and the turbulent energy
and the power-law exponent are free model parameters.
Second, in the final equations, all information on the
turbulence spectrum is encoded in the transport coefficients,
which are not known precisely anyway.

As pointed out in Section 3.3, an important assumption
made in calculating the turbulence spectrum was that the
spectrum is balanced. In this case, the energy of waves
propagating along the field in one direction is equal to that
propagating in the opposite direction. Clearly, this condition
can be violated in the general case. For example, it is known
that in the solar wind, the energy of waves propagating
against the field is about one tenth of the energy of waves
propagating along the field. However, if the spectrum here
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remains a power-law one (as is the case in the solar wind), all
conclusions remain valid after changing the corresponding
parameters.

Thus, the modified MHDmodel proposed in this paper is
universal and can be applied to a wide range of astrophysical
flows.

The authors thank S N Zamozdra for the useful discus-
sions during the preparation of this paper. The work of
E P Kurbatov is supported by the Russian Foundation for
BasicResearch(project14-29-06059).TheworkofAGZhilkin
is supported by the Russian Science Foundation (project 15-
12-30038).

Appendix. Turbulent sources related
to the displacement current

A. Equations of motion
Here, we provide calculations of turbulent sources for Euler
equation (50) related to the displacement current. We write
the expression for the force keeping only the terms quadratic
in perturbations:

fD � ÿ 1

4pr

�
1

c

qd�1�E
qt
� dB

�
ÿ 1

4pr

�
1

c

qd�2�E
qt

�
� B

� 1

c 2

�
a

�
qdv
qt

db
�
� qv

qt
hdb
 dbi ÿ qv

qt


jdbj2�
� v

�
db
 qdb

qt

�
ÿ v

�
db

qdb
qt

�
� qa

qt
hdv dbi

ÿ qa
qt
hdb
 dvi � a

�
qdv
qt

 db

�
ÿ a

�
qdb
qt

 dv

��
: �204�

(1) In the first term in the right-hand side of (204), the only
potentially nonzero term that arises in the first order of the
t-approximation contains the square of the polarization
vector and hence vanishes:

a

�
qdv
qt

db
��1�
� g 2Aa

X
�

�
d3k


�rot a� d~b� d~b
�
�

� g 2Aa
X
�

�
d3k

��en � en� rot a
�
P� � 0 : �205�

(2) The second term is already nonzero in the zeroth order
of the t-approximation:

qv
qt
hdb
 dbi�0� � T̂

qv
qt

W

2
: �206�

(3) The third term is computed similarly to the second
term:

ÿ qv
qt


jdbj2��0� � ÿ qv
qt

W : �207�

(4) The fourth term is represented by two nonvanishing
terms:

v

�
db
 qdb

qt

��1�
� ÿv

X
�

�
d3k �Hv� Zk 2� hd~b
 d~bi� : �208�

The first term here can be computed in the same way as (206).
The integral for the second term can be easily found using
(157); here, the contribution due to longitudinal wave
numbers in the integrand can be ignored:X

�

�
d3k k 2 hd~b
 d~bi� � T̂

X
�

�
d3k �k 2

k � k 2
?�P�

� T̂

�
W

3L2
k
� W

L?l

�
: �209�

As a result, we have

v

�
db
 qdb

qt

��1�
� ÿT̂v

�
Hv� Z

3L2
k
� Z
L?l

�
W

2
: �210�

(5) The fifth term is calculated similarly to the fourth one,
but has an isotropic form:

ÿv
�
db

qdb
qt

��1�
� v

�
Hv� Z

3L2
k
� Z
L?l

�
W : �211�

(6) The sixth term is processed using (84) and vanishes
similarly to (205):

qa
qt
hdv dbi�1� � g 2A

qa
qt

X
�

�
d3k

��en � en� rot a
�
tP� � 0 :

�212�

(7) The seventh term can be recast in the form

ÿ qa
qt
hdb
 dvi�1� � g 2A

qa
qt

�X
�

�
d3k t hd~b
 d~bi�

�
� rot a :

�213�
By comparing the integral in the square brackets with the
turbulent magnetic viscosity definition, it is easy to see that it
can be written asX

�

�
d3k t hd~b
 d~bi� � T̂

Zw
2
: �214�

The final expression for the seventh term has the form

ÿ qa
qt
hdb
 dvi�1� �

��
T̂

qa
qt

�
� rot a

�
Zw
2
: �215�

(8) The eighth term contains only the components
transverse to the background field:

a

�
qdv
qt

 db

��1�
� �g 2Aa� rot a�

X
�

�
d3k hd~b
 d~bi�

� �g 2Aa� rot a� W
2
: �216�

(9) The ninth term contains only anisotropic parts, as well
as integrals of the mixed correlators hd~v
 d~bi�; hence, it
vanishes:

ÿa
�
qdb
qt

 dv

��1�
� 0 : �217�
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Collecting all terms together, we obtain the final expres-
sion for the force per unit mass:

fD �
��

T̂

2
ÿ Î

��
qv
qt
ÿ
�
Hv� Z

3L2
k
� Z
L?l

�
v

�

� 1

2
g 2Aa� rot a

�
W

c 2
�
��

T̂
qa
qt

�
� rot a

�
Zw
2c 2

: �218�

B. Entropy equation
Here, we present calculations of the turbulent sources for
entropy equation (52) related to the displacement current.
Terms quadratic in perturbations are

qD
Z
� ÿ 2

4pr

�
1

c

qd�1�E
qt

rot dB
�
ÿ 2

4pr

�
1

c

qd�2�E
qt

�
rotB

� 1

4pr

����� 1c qd�1�E
qt

����2� � 1

c 2

 
ÿ2a

�
qdv
qt
� rot db

�

ÿ 2 rot a�
�
qdv
qt
� db

�
ÿ 2 rot a�

�
dv� qdb

qt

�
� a 2

c 2

����� qdvqt
����2�ÿ��ac qdv

qt

�2�!
: �219�

(1) The first term in the right-hand side of (219) arises in
the zeroth order of the t-approximation:

ÿ 2a

�
qdv
qt
� rot db

��0�
� ÿ2a

X
�

�
d3ko�



d~v� �k� d~b���

� 2g 2Aa
2
X
�

�
d3k k 2

kP� � 2g 2Aa
2 W

3L2
k
: �220�

(2) The second term is nonzero in the first order. It can be
processed using (157):

ÿ 2 rot a�
�
qdv
qt
� db

��1�
� ÿ2g 2A rot a�

X
�

�
d3k


�rot a� d~b� � d~b
�
�

� ��T̂ rot a� � rot a
�
g 2AW : �221�

(3) The third term in the first order contains the vector
square of the polarization vector and hence vanishes:

ÿ 2 rot a�
�
dv� qdb

qt

��1�
� 2 rot a

X
�

�
d3k �Hv� Zk 2�hd~v� d~bi� � 0 : �222�

(4) The fourth term no longer vanishes in the zeroth
order:

a 2

c 2

����� qdvqt
����2��0� � a 2

c 2

X
�

�
d3ko2

�

jd~vj2��

�
�
g 2Aa

2 �
�
1ÿ g 2Aa

2

2c 2

�
v 2k

�
g 2Aa

2

c 2
W

3L2
k

�
�
1ÿ g 2Aa

2

2c 2

� �gAa� v�2
c 2

W

L?l
: �223�

(5) The fifth term arises in the first order of the
t-approximation and can be processed using the triple vector
product and expression (157):

ÿ
��

a

c

qdv
qt

�2��1�
� ÿ g 4A

c 2

�a; rot a; db�2�

� ÿ�T̂ �gAa� rot a��2 g 2AW
2c 2

: �224�

The final expression for the turbulent heating source has
the form

qD
Z
� �gAa� v�2

2c 4
W

L?l

�
�
2�

�
g 2Aa

2

c 2
�
�
1ÿ g 2Aa

2

2c 2

�
v 2
k
c 2

��
a 2

3L2
k

g 2AW
c 2

� ��T̂ rot a� � rot a
� g 2AW

c 2
ÿ �T̂�gAa� rot a��2 g 2AW

2c 4
: �225�
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