
Abstract. The paper reviews theoretical predictions about the
behavior of two-dimensional low-density electron systems at
nearly absolute zero temperatures, including the formation of
an electron (Wigner) crystal, crystal melting at a critical elec-
tron density, and transitions between crystal modifications in
more complex (for example, two-layer) systems. The paper
presents experimental results obtained from real two-dimen-
sional systems in which the nonconducting (solid) state of the
electronic system with indications of collective localization is
actually realized. Experimental methods for detecting a quan-
tum liquid±solid phase interface are discussed.

Keywords: two-dimensional electron systems, Wigner crystal,
semiconducting electron systems

1. Introduction

The term `Wigner crystal' refers to a crystal which is not
made up of ion cores, as usual, but of electrons (or holes).
This type of crystal formed of low-density electrons was
predicted theoretically [1] as far back as 1934. Clearly, two
conditions are necessary for such a crystal to be created.
First, a system containing an electron gas should be neutral
as a whole. Otherwise, the Coulomb repulsion forces will
make the crystal unstable. Second, the characteristic energy
of the Coulomb interaction between the electrons, EC,

should greatly exceed the characteristic kinetic electron
energy Ek.

The first requirement is most simply satisfied for two-
dimensional electron systems (semiconductor devices or an
electron layer above a liquid-helium surface [2]), because in
this case the compensating positive charge can be located
remotelyÐ for example, at a separate electrode. This
`capacitor' arrangement has the additional advantage that it
allows the external monitoring of electron density in the two-
dimensional layer. The properties of a Wigner crystal in a
two-dimensional semiconducting system were first consid-
ered in Ref. [3]. It is these electron systems with which we will
be concerned below.

As is the case with ordinary crystals, Wigner crystals melt
as the temperature increases and the electron system under-
goes transition to a liquid phase. For this to occur, the
fluctuation of the distance between neighboring electrons
due to thermal vibrations should become sufficiently large
compared to the crystal's lattice constant. The last statement
is in line with the Lindemann criterion [4], which proved quite
successful in predicting the melting temperatures of usual
crystals. Similar melting can also occur at a temperature close
to absolute zero if the zero-oscillation amplitude satisfies the
Lindemann criterionÐsimilar to what occurs, for example,
in quantum liquids [5]. This kind of melting, referred to as
quantum melting, proceeds at a certain critical electron
density nc. In this paper, we consider the features of quantum
melting that it exhibits under various conditions in various
electron systems.

A special note should bemade here to avoid confusion. The
existence of a conventional electron liquid at zero temperature
is forbidden by the Nernst theorem. In the following discus-
sion, we will assume that the electron system is kept at a
sufficiently low temperature for the quantum fluctuations to
dominate over the thermal ones but is still able to remain a
conventional (or unconventional) Fermi liquid. For a two-
dimensional system at a finite temperature, the very notion of a
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crystal becomes meaningless for a large-size sample due to the
logarithmic divergence of the thermal displacement of an
electron from a crystal lattice site. We should therefore
confine ourselves to small-size two-dimensional systems (on a
1-cm scale at liquid-helium temperatures).

More complex two-layer systems allow the formation of
two-dimensional crystals consisting of electrons from differ-
ent layers, such that the symmetry of the crystal can be
changed by varying the parameters (for example, the electron
density). Theoretical predictions concerning phase transitions
between various types of crystals at nearly absolute zero are
also reviewed in the present paper.

The study of Wigner crystallization is still topical today
[6]. The boom in this field at the turn of the 21st century was
due both to the improved quality of the structures studied and
to newly developed experimental methods (see, for example,
Ref. [7]). Notably, all possible simple experiments have
naturally been conducted.

The advances of recent years are due primarily to the
development of complex and labor-consuming investigation
methods [8]. In essence, Jang et al. [8] provided the first
reliable demonstration of the existence of acoustic resonances
in an electronic `solid' (and possibly crystalline) phase. The
situation where the acoustic resonances manifested them-
selves most clearly is that of the integer quantum Hall effect
close to the filling factor n � 1 (n � chns=�eB�, where B is the
normal component of the magnetic field, ns is the density of
the two-dimensional electron gas, e is the electron charge, c is
the speed of light in vacuum, and h is the Planck constant);
however, these resonances are also pronounced at noninteger
filling factors. The most remarkable point is that in the
experiment conducted in Ref. [8] the formation of the
crystalline phase does not involve all electrons, but only
those excitations that arise in the electron system under
conditions where the filling factor differs from the correct
integer or noninteger value.

Advances in experimental technology are not the only
factor stimulating current research into Wigner crystalliza-
tion. Novel materials (for example, graphene) have appeared
and new ideas emerged on how the solid phase looks in them.
A vast field of experimental study arose, lacking thus far both
materials of necessary quality and, even more important,
experimental methods. Presenting this field requires the
analysis of a large body of work, a task which the author
attempted to fulfill, if partially, in this paper.

2. Wigner crystal
in the absence of a magnetic field

The stability region of the Wigner crystal of an ideal
(impurity-free) electron system in a zero magnetic field is
estimated applying the Lindemann criterion [9, 10]. For the
Coulomb interaction, the characteristic vibrational frequency
of electrons about a lattice site is o � �e 2�pns�3=2=�em ���1=2,
where e is the dielectric constant, and m � is the electron
effective mass. The zero oscillation amplitude is u �
��hom ��ÿ1=2. According to the Lindemann criterion, this
amplitude is compared at the boundary of quantum melting
with the lattice constant: u � g�pns�ÿ1=2, where g � 0:2ÿ0:25
is a numerical parameter. As a result, the critical electro-
nconcentration nc is given by

nc �
�
p
�
a �

g 4

�2�ÿ1
; �1�

with a � being the effective Bohr radius. Of special note is the
fact that, because of the uncertainty in g, Eqn (1) yields only a
crude estimate of the critical concentration. In some calcula-
tions (see, for example, Ref. [11]), the value of g is about two
times larger than that given above.

It is expected that a system with electron density above
(below) the critical value will be in a liquid (crystalline) state.

If the compensating charge is located at a metal electrode
parallel to the two-dimensional electron layer, then at low
concentrations the screening by the electrode will establish a
new boundary for quantum melting, nc1 < nc, below which
the interaction will again be weak.

The Coulomb interaction between electrons is commonly
characterized by the parameter rs � �pns�ÿ1=2=a �. In the
simplest case of a single-valley degenerate system in a
semiconducting structure, one has rs � EC=Ek, and the
interaction increases as the electron density decreases.

Expression (1) predicts that the electron densities neces-
sary for the formation of a Wigner crystal are extremely low,
and hence the values of rs are extremely large. For example,
nc � 5� 106 cmÿ2 for electrons in the GaAs/AlGaAs hetero-
structure. Theoretical simulations using various methods [12,
13] confirm the small values of ns, because it is found that the
electron±electron separation corresponding to the critical
concentration is 37a � �rs � 37�. In real two-dimensional
electron systems, the transition from a liquid phase to a
solid (and hence nonconducting) phase occurs at an electron
density two or even three orders of magnitude higher than the
theoretical prediction of nc.

Reference [14] reported calculation of the critical concen-
tration for aWigner crystal-to-the liquid phase transition in a
zero magnetic field in the presence of chaotically distributed
impurities with a density of 1010 cmÿ2 at a distance of 10 nm
from a two-dimensional electron gas. The qualitative result of
calculations is that the impurities facilitate the transition to
the solid phase. It was found that the critical concentration
increased by a factor of 24. The calculation is carried out in
such a way that the appearance of a polycrystal is ruled out,
and the solid phase is either a single crystal with defects or an
amorphous phase. In the neighborhood of the transition
point, the solid phase is a single crystal with defects. The
authors of Ref. [14], aimed at explaining the results obtained
on the high-mobility Si-MOSFET (metal oxide semiconduc-
tor field-effect transistor) [15], used the corresponding
parameters (electron mass, dielectric constant) and obtained
a result close to the experimental value of the critical
concentration. There was no awareness at the time of some
facts about Si-MOSFET that could greatly affect the critical
electron concentration.

Because real impurity-containing systems can, in princi-
ple, be totally different from a crystal in the distribution of
localized electrons, we will use the term `solid phase' in
discussing such systems

Consider again an ideal electron system. Because the
crystallization predicted for such a system must occur for a
very strong electron±electron interaction, the question arises
automatically whether this strong interaction will allow the
electron liquid to remain what it is, just a Fermi liquid we are
familiar with. This point was first raised in Ref. [16], which
predicted a phase transition that is associated with fermion
condensation and can precede Wigner crystallization.
According to Ref. [16] and the follow-up publications (see,
for example, Ref. [17]), the electron±electron interaction leads
to the flattening of the single-particle electronic spectrum in a
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certain neighborhood of the Fermi momentum pF, as shown
in Fig. 1. An experimental manifestation of this is that the
electron effective mass on the Fermi surface increases with
decreasing electron density [18]. As a certain concentration
nFC is reached, all electrons in the interval Dp turn out to be at
the chemical potential level, and the electron liquid ceases to
be a Fermi liquid.

Numerical simulations [19] have shown that the effective
mass can be made to increase more significantly by introdu-
cing impurities; however, the currently available data (see, for
example, Ref. [20]) do not support this conclusion.

The increase in the critical concentration on the boundary
of the transition from the two-dimensional liquid to the solid
phase in a zero magnetic field can be attributed to the
influence of impurities in real two-dimensional structures.
Two possible scenarios are the following: a direct transition
from the Fermi liquid to the solid nonconducting phase
�nc > nFC�, and a two-step Fermi liquid±fermion conden-
sate±solid phase transition �nc < nFC�. There is no knowledge
yet of the properties of the electron system after the first phase
transition in the presence of impurities. The only reliable
observation is that, in all the experiments done, the solid
phase is a collective phenomenon and has no relation to the
single-particle electron localization.

3. General picture in a normal magnetic field

Research into Wigner crystals in two-dimensional electron
systems placed in a normal magnetic field was begun
historically by Fukuyama [9] and Lozovik and Yudson [10].
According toRef. [10], in an impurity-free electron system the
quantum melting of the Wigner crystal in strong magnetic
fields should occur at an electron concentration proportional
to the magnetic field value, with proportionality factor 2g 2,
where g is a parameter involved in the Lindemann criterion.
Thus, the quantum melting boundary in a strong magnetic
field corresponds to the filling factor n � 0:1 (Fig. 2). A
similar result �n � 0:15� was obtained in Ref. [21].

The linear dependence of the quantum melting boundary
was observed repeatedly in various two-dimensional electron
systems [22±26], but in none of the known experiments was
the filling factor corresponding to the boundary slope so
small.

It would seem that the slope of the liquid±solid phase
interface is not exact due to model built in Ref. [10], which

assumed that all electrons at a lattice site vibrate indepen-
dently and at the same frequency, similar to Einstein's
thermal conductivity model. In reality, the vibrations of the
electronic lattice are collective and dispersive. Taking this into
account [27] decreases the interface slope by another factor of
two.

As already mentioned, in a zero magnetic field in two-
dimensional systems with a metal electrode, a decrease in the
electron density to below nc can lead to originating a new
melting process (blue line in Fig. 2) due to the Coulomb
interaction screening by the gate. Indeed, because the distance
to the metal electrode is determined during the sample
preparation process, it follows that, under the condition
2D < rc, a Wigner crystal will not exist at all in a zero
magnetic field; in the ideal case, it will only appear in a
sufficiently strongmagnetic field. The phase diagram in Fig. 2
corresponds to the inequality 2D > rc. The region of existence
of the liquid phase embraces a certain region in the �B; ns�
plane, and the interface for B! 0 has the same asymptote as
in strong fields.

4. Mixing of quantum levels
in a weak quantizing magnetic field

The position of the quantum melting boundary is signifi-
cantly affected by the ratio between the cyclotron and
Coulomb energies. If the Coulomb electron±electron interac-
tion energy exceeds the cyclotron energy, we can no longer
treat each electron as being in the lowest quantum state, nor
can we apply the Lindemann criterion to zero-point oscilla-
tions as in Ref. [10].

The determining parameter for the mixing of states at
various quantum levels is defined as follows:

a � e 2�pns�1=2
e�hoc

� nrs
2
: �2�

Shown by the red dashed line in Fig. 3 is the curve �a � 1� that
divides the �B; ns� plane into two regions, in one of which the
mixing of quantum levels is important. To the left of the point
where this curve intersects the straight line n � 2g 2, quantum
level mixing changes appreciably the position of the quantum
liquid±solid phase boundary. Of particular interest are
noninteger filling factors with an odd denominator. It is
shown in Ref. [31] that, as a result of quantum level mixing,
a liquid phase in the fractional quantum Hall effect (FQHE)
regime may be less favored energetically than a liquid phase,

pF

jpj0

Dp

m

E

Figure 1. Single-particle electronic spectrum under conditions close to

fermion condensation [17].

ns

B

nc � �pr 2c �ÿ1
nc1 � pÿ1�rc=4D�2

n � 2g 2

Figure 2. (Color online.) Quantum melting boundary according to

Ref. [10]. Here, rc � a �=g 4, and D is the distance to the gate. The dark

region corresponds to the Wigner crystal.
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which can cause the interface to oscillate, as shown qualita-
tively in Fig. 3. A similar phase diagram obtained from
empirical considerations was recently displayed in Ref. [32].

Despite the very long history of experimental investiga-
tions, no reports are available on the direct observation of the
oscillation of the quantum liquid±Wigner crystal interface in
the FQHE regime (the onlyÐ though not very convincingÐ
exception being Ref. [33]). On the other hand, the literature
abounds with reports on the re-entrant dielectric phase in the
FQHE regime [34±39]. How the re-entrant behavior occurs in
the range of the filling factor n � 1=5 is illustrated in Fig. 3,
where the quantity m corresponds to the chemical potential
level in a zero magnetic field. In the FQHE regime, the
chemical potential exhibits slight oscillations [40], which we
ignore here for simplicity.

As illustrated in Fig. 3, in the region of a relatively weak
magnetic field, a two-dimensional electron system resides in
the state of a quantum liquid. In a magnetic field exceeding
that corresponding to the filling factor n � 1=3, the ground
state is the crystalline state which ceases to exist and becomes
a quantum liquid in the neighborhood of the filling factor
n � 1=5. Clearly, depending on the position of the chemical
potential, similar behavior can also be realized for other
fractional filling factors.

Both interface oscillations [24, 25, 41] (Fig. 4) and re-
entrant behavior [42] were observed experimentally in two-

dimensional electronic systems of silicon field effect transis-
tors for integer filling factors.

An attempt at a theoretical explanation of interface
oscillations in the region of the integer quantum Hall effect
was undertaken in Ref. [43] under the assumption that at the
quantum liquid±solid phase interface both phases coexist,
and hence the electron chemical potentials in these two phases
are equal, namely

mS�nc� � mL�nc;B� : �3�

The chemical potential of the solid phase in a magnetic field
remains constant (or varies weakly monotonically), whereas
the chemical potential of the liquid oscillates. Expanding
Eqn (3) up to first-order corrections and taking into account
that the chemical potentials in a zero magnetic field are equal,
we obtain

dnc � dm�B�
��

dmS
dns
ÿ dmL

dns

�
nc;B�0

�ÿ1
: �4�

As seen from Eqn (4), the phase and amplitude of interface
oscillations are determined by the compressibility difference
between the liquid and solid phases.

The compressibility of the liquid phase at such a low
density as nc is negative. The compressibility of the solid phase
is determined by the same Coulomb interaction and is also
negative, but the compressibility of the liquid phase is larger
in absolute value; therefore, the phase of the interface
oscillations coincides with that of the oscillations of the
liquid chemical potential. As shown in Ref. [43], expression
(4) gives a correct order of magnitude value for interface
oscillations, while failing to fully describe their shape.

5. Strong normal magnetic field

Wenow consider the opposite limit, a < 1. As shown in Figs 2
and 3, it is expected that the boundary will tend to an
asymptote which passes through the origin of coordinates
and whose slope corresponds to the filling factor n � 0:1.

Measured boundary positions in high-mobility (2� 106

to 8� 106 cm2 Vÿ1 sÿ1) heterostructures GaAs/AlGaAs are
demonstrated in Fig. 5. The first point to note is that the re-
entrant behavior of the boundary is observed in the magnetic
field region where quantum level mixing is of no importance.
The dashed line in Fig. 5 marks the boundary of the strong
quantum level mixing. To the left of it, mixing is weaker. Still,
this region exhibits a re±entrant behavior of the solid phase,
as illustrated in Fig. 5 with data from the sameRef. [22] (in the
main figure, the corresponding points are shown by trian-
gles).

The observation of re-entrant behavior in this region can
be attributed either to the large numerical factor on the right-
hand side of expression (2) or to the fact that quantum level
mixing is not the primary mechanism for the oscillations of
the solid±liquid phase interface, or else to the fact that re-
entrant behavior has no relation to interface oscillations.

The strong-field boundary indicated in Ref. [22] (solid line
in Fig. 5) is indeed close to a straight line, but its slope is about
two times larger than expected. Moreover, contrary to
theoretical predictions, the straight line does not pass
through the origin of coordinates. If we allow for the
possibility of an oscillating phase interface, the solid line is
not a true phase interface in strong magnetic fields. The true

n � 1=5

n � 2=3 n � 1=3

ns

B

m

Figure 3. (Color online.) Schematic of the interface between the quantum

liquid and Wigner crystal (dark region) in a magnetic field, taking into

account quantum level mixing. Even in an ideal electron system, quantum

level mixing due to the Coulomb interaction [28±30] changes significantly

the position of the quantum melting boundary.
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Figure 4. Experimental observation of the quantum liquid±solid phase

interface oscillations in the region of the integer quantum Hall effect in

Si-MOSFET (100). (Data taken from Ref. [41].)
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boundary should be determined by a line drawn through the
triangle points lying to the right.

A solid±liquid phase boundary in a high-mobility silicon
MOSFET structure was measured in Refs [23, 24]. The data
of Ref. [24] are presented in Fig. 6. The specimen studied, with
the mobility range of 20,000±30,000 cm2 Vÿ1 sÿ1, did not
exhibit the fractional quantum Hall effect, so there is no
reason to expect boundary oscillations similar to those shown
in Fig. 3. As mentioned (see Fig. 4), oscillations at integer
filling factors occur. As the magnetic field is increased and the
boundary crosses the value n � 1, the boundary becomes a
straight line. Similar to the GaAs/AlGaAs heterostructure,
the straight line does not pass the coordinate origin. The slope
of the straight line is close to the filling factor n � 1=2 (see
Fig. 6).

While apparently similar, the results from Si-MOSFET
and GaAs/AlGaAs heterostructures are considerably differ-
ent: in the former case (see Fig. 6) and in the latter case (see
Fig. 5), quantum level mixing is, respectively, strong and
weak in the region where the straight-line boundary passes.

To check that the shape of the solid±liquid phase
boundary depends only weakly on quantum level mixing, we
conducted measurements on In0:75Ga0:25As quantum wells
20 nm in thickness sandwiched between In0:75Al0:25As
barriers.1 The two-dimensional electron gas in these struc-
tures exhibited strong Rashba spin±orbit coupling [44, 45]
and a mobility of 3� 105 cm2 Vÿ1 sÿ1. From a comparison of
Figs 6 and 7, the main difference between the electrons in the
InGaAs quantum well and in Si-MOSFET is in the degree of
quantum level mixing in the region of measurement. Despite
this difference, the experimental results are similar: the
boundary is a straight line, it does not pass through the
origin of coordinates, and its slope greatly exceeds the
expected theoretical value.

In concluding this section, it is worthwhile to note that all
known experimental results for a strong magnetic field

disagree with theoretical expectations. First, the slope of
nc�B� turned out not to be universal. Second, the straight
line nc�B� in the �ns;B� plane does not pass through the
coordinate origin. There is a simple physical justification for
the requirement that nc be proportional to B: in strong fields,
the amplitude of zero-point oscillations is inversely propor-
tional to the magnetic field. Linearity (rather than propor-
tionality) might only occur if some of the electrons localize on
positively charged centers with a localization radius signifi-
cantly shorter than the lattice constant of the Wigner
crystallites.

6. Wigner crystal in graphene

In this section and also in Sections 7±11, we will consider
`solid' electronic phases in materials that have only
relatively recently become subjects of researchÐ the rea-
son why theoretical studies on them abound, whereas
experimental studies are virtually absent. Information on
these theoretical results will be of use to experimentalists in
formulating a problem and developing necessary investiga-
tion methods.

We begin with a single-layer crystal of graphene, i.e., a
graphite monolayer, lying on a dielectric substrate or freely
suspended. The spectrum of charge carriers is such that the
electron and hole bands touch each other in the corners of the
hexagonal Brillouin zone. There are two independent spectral
branches within the Brillouin zone, each with a spectrum in
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the form

E�k� � �hvGk ; �5�

where the wave vector k is measured from the point of touch,
and the velocity vG is on the order of 108 cm sÿ1. Such a
spectrum is called `massless'. The two-dimensional system of
charge carriers in graphene is ideal in the sense that the wave
function in the direction normal to the plane has the least
possible size.

In Ref. [46], it is shown that no Wigner crystal can exist
in a single-layer graphene in a zero magnetic field. To see
that this is indeed so, note that a prerequisite for the
existence of a Wigner crystal is that the potential energy
of repulsion between charged particles, EC, greatly exceed
the kinetic energy of zero-point oscillations: Ek, EC 4Ek.
For a quadratic spectrum, this condition is equivalent to
condition (1).

In a graphene Wigner crystal with an interparticle
separation L, the potential energy in a region of area A is
EC � nsAe

2=�eL�, and the corresponding kinetic energy is
Ek � �hvG�2p=L�nsA. Because the energy ratio

EC

Ek
' e 2

hevG
�6�

is independent of the electron density, the existence of Fermi
liquid in graphene implies the absence of a Wigner crystal.
Furthermore, because the dielectric constant can only be
increased, it is impossible to achieve crystallization by
varying e. It remains possible to decrease vG, which can be
done by applying a mechanical stress to the graphene layer.
However, achieving Wigner crystallization requires a more
than an order of magnitude decrease in velocity, which does
not seem possible.

The absence of Wigner crystallization in a zero magnetic
field does not at all imply its absence in strong fields. In a
quantizing magnetic field, two ladders of quantum levels exist
in single-layer graphene with different pseudospin indices
corresponding to different valleys. Valley splitting is compar-
able to cyclotron splitting; therefore, the quantum levels can
be presented by the following relations (see, for example,
Ref. [47]):

E u
n � sign n

hvG
2pl

ÿ
2jnj�1=2 ;

�7�
E d
n � sign n

hvG
2pl

ÿ
2jn� 1j�1=2 ;

where l � ��h=�eB��1=2 is the magnetic length. Notice that each
of the levels in formulas (7) is also doubly spin-degenerate.

The question of the possibility of current carrier crystal-
lization in a system with spectrum (5) was considered in
Ref. [48]. While this work has certain limitations (it ignores
the possibility of the fractional quantum Hall effect, dis-
regards quantum level mixing, and limits the mean field
method to the filling factors of those regions which exhibit a
strong correlation between current carriers with different
pseudospin indices from different valleys) and its conclusions
have not been verified in experiments, it is of interest,
however, because it not only predicts the possibility of the
existence of a Wigner crystal but also demonstrates a variety
of crystalline phases with phase interfaces between them.

The authors of Ref. [48] differentiate between a usual
Wigner crystal with one Fermi particle per unit cell, a so-

called bubble phase with two �N � 2� and three �N � 3�
particles per unit cell, and strip phases reminiscent of charge
density waves.

Calculations made in Ref. [48] show, for example, that in
the filling factor range corresponding to the lower, n � 2,
quantum level the following sequence of crystalline phases is
expected to occur as the filling factor is increased: a Wigner
crystal, an N � 2 bubble crystal, and a strip crystal. At the
next Landau level, the N � 3 bubble crystal interferes the
phase competition.

Each of these phases should disappear with decreasing
magnetic field even if the filling factor is fixed. The question of
the boundaries of the existence of crystalline phases in a
magnetic field was not considered in Ref. [48]. Later on, the
same authors showed in paper [49] that the mixing of Landau
levels in graphene causes no significant change in the phase
diagram.

In Ref. [50], the idea was advanced that, in addition to the
nonuniform charge distribution, a set of pseudospin struc-
tures and meron crystals may develop in graphene. The
energies of different meron crystals were compared among
themselves and with the Wigner crystal and bubble crystal
energies to support this idea.

The simplest way to experimentally check the predictions
of Refs [48, 49] is to use Corbino-shaped graphene samples. In
the neighborhood of the corresponding filling factor, even a
slight change in the activation energy due to a phase transition
should show up as the maximum of the measured inverse
conductivity 1=sxx.

7. Two-layer graphene

In recent years, two-layer graphene (Fig. 8a) has come under
research scrutiny by theoretical physicists concerned with
Wigner crystallization in graphene. Thismaterial is composed

a

d

b

Figure 8. (a) Crystal structure of two-layer graphene in the Bernal

AB packing configuration The interlayer distance is d � 0:335 nm.

(b) Projection of two-layer graphene onto the base plane.
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of two closely spaced graphene layers. In the absence of
interlayer tunneling, its spectrum would be exactly the same
as that of single-layer graphene with an additional double
degeneracy.

From Fig. 8b it is seen that the base plane projections of
some of the sites in the two layers coincide, and tunneling over
these sites removes the additional degeneracy. The result of
the tunneling is, in addition to the removed degeneracy,
the disappearance of the conic point. The spectrum
(Fig. 9a) remains gapless with finite but small carrier
mass (m � 0:033m0, where m0 is the free-electron mass).

Can a system with such a spectrum make a transition to a
crystalline state, and if it can, what will be the electron density
distribution? An attempt to answer these questions was made
in Ref. [51] by numerically analyzing the equilibrium
distribution of electron density over various lattice sites of
two-layer graphene in a strong-coupling model. The variable
parameters were the average electron density at a site, the
probability of interlayer tunneling, and the Coulomb poten-
tial. It is shown that there is a region of parameters where a
nonuniform electron distribution over the sites can be treated
as Wigner crystallization. The existence of two phases is
shown to be possible. To the author's knowledge, there has
been no follow-up to Ref. [51], either theoretical or experi-
mental.

One way to produce a gap in the spectrum of two-layer
graphene is to apply an electric potential V across the layers,
with the necessary result that the current carrier concentra-
tion will be different in the layers. The magnitude of the gap is
governed by the applied voltage:

D � eV

�
g 21

g 21 � e 2V 2

�1=2

: �8�

Figure 9b shows a schematic of the spectrum of two-layer
graphene in the presence of a voltage across the layers.

Two-layer graphene with a voltage applied across the
layers is more convenient for experiment. Various versions of
Wigner crystallization in this material are considered theore-
tically in Ref. [52]. We will restrict ourselves to the lowest
electron subband. We divide the energy axis into four
intervals as follows (Fig. 9b):

�I� E � vG p ; vG p4 g1 ;

�II� E � v
2
G p 2

g1
; �eVg1�1=2 5 vG p5 g1 ;

�9�
�III� E � eV� v 4G p 4

2eVg 21
; eV5 vG p5 �eVg1�1=2 ;

�IV� E � eVÿ 2v 2
G p 2

g 21
� v 4

G p 4

2eVg 21
; vG p � eV :

Within interval I, i.e., for high energies and large electron
concentrations, the layer-to-layer coupling is weak, the
spectrum is linear, and the Coulomb interaction has the
same form as in a single-layer graphene. No Wigner crystal
can exist in this interval.

In interval II, charge screening is an important factor. The
Coulomb energy has the formEC�r4 1=qTF� ' e 2=��qTFr�2r�,
where �qTF�ÿ1 � hvG=�2pg1� is the Thomas±Fermi screening
length. It is clear that the Coulomb energy cannot exceed the
kinetic energy in this interval, so that here also Wigner
crystallization is impossible.

In interval III, the spectrum of the electron system of a
two-layer graphene has a gap and hence is similar to that of
an insulator. The screened Coulomb interaction takes the
form

EC

�
r4

�hvG

�eVg1�1=2
�
� 3eV

4
ln

�hvG
eVr

: �10�

The electron±electron interaction closely resembles the
interaction between Abrikosov's vertices in a superconduc-
tor which, as is known, form a triangular lattice.

The quantum melting boundary in interval III is deter-
mined in Ref. [52] using a Hamiltonian with effective
interparticle interaction defined by Eqn (10). According to
the Lindemann criterion, the boundary is specified by the
condition

a4
dg0

�eVg1�1=2
; �11�

where a is the crystal lattice constant, and g0� 2�hvG=�3d ��
2:8 eV4 g1 � 0:39 eV. Because a determines the electron
density, condition (11) gives the upper boundary of quantum
melting.

Further lowering the electron density causes a transition
to interval IV, where another change in screening occurs and a
symmetry-changing structural transition crystal±crystal takes
place. The last transition is determined by the condition
a � dg0g1=�eV�2. Figure 10 shows the electron density
distribution in the neighborhood of lattice sites.

A distinctive feature of two-layer graphene in interval IV
is a sombrero-shaped single-particle electronic spectrum. A
convenient way to consider how and why such a spectrum
leads to a nontrivial electron density distribution in Wigner
crystal sites is through the example of a one-layer electron
system with a strong spin±orbit coupling.

vG p=g1III

II
I

E=g1

IVD

1

ÿ1 10

b

p

p

g1

E
a

Figure 9. Schematic spectrum of two-layer graphene: (a) in the absence of

an electric field, and (b) in the presence of a potential difference applied

across the layers.
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8. Wigner crystal in a system
with strong spin±orbit coupling

In this section, we will consider an electron gas with a strong
Rashba type spin±orbit coupling. The kinetic part of the
Hamiltonian assumes the formX

i

H0i �
X
i

�
p 2
i

2m
� l�sxpyi ÿ sypxi� ÿml2

2

�
; �12�

where l is the spin±orbit coupling constant, and sx; y are the
Pauli matrices. The solution of the SchroÈ dinger equation with
this Hamiltonian is the single-particle spectrum shown in
Fig. 11a. The electron spin is normal to the electron
momentum, and the points of minimal energy in p-space
form a circle of radius ml.

The potential part of the Hamiltonian is expressed asX
i<j

e 2

jRi j � ri jj : �13�

Here, Ri specifies the position of a site in the triangular a-
periodic lattice, ri is the displacement of the electron from the
corresponding site. If the Coulomb interaction is strong and a
crystal forms, the oscillation frequency around a lattice site is
of order

o0 '
�

e 2

ma 3

�1=2

; �14�

in accordance with Eqn (13).
In what follows, it is assumed that the spin±orbit coupling

is strong and

ml2 4 �ho0 ; �15�

hence, the Wigner crystal borders a liquid, which occupies in
p-space a narrow strip near the circle jpj � ml. The usual
condition e 2=a4 �ho0 is assumed to be satisfied.

Here, a question unintentionally arises: are not the above
inequalities contradictory? It is a matter of simple arithmetic

to show that they are consistent if the condition

l5
e 2

e�h
�16�

holds. A realization of a two-dimensional Rashba type-
coupled electron system meeting condition (16) has been
reported recently [45].

The following discussion refers equally to systems like the
ones we consider in this section and to all two-dimensional
electron systems with the `sombrero'-shaped spectrum. We
will build a crystal by placing a packet of single-particle
electronic wave functions at each site. To do this, all states
within the strip near a circle jpj � ml could be used. The zero-
point oscillation energy of such a symmetric wave packet
would be determined by the quantity Dp:

�pÿml�2 < Dp 2 '
�
e 2�h 2m

a 3

�1=2

5 �ml�2 : �17�

However, the zero-oscillation energy can be reduced if we
break the wave packet symmetry, for example, as shown in
Fig. 11b. Taking Dpx 5Dp will extend the electron wave
function in the x-direction in real space. For the y-direction,
accordingly, the formation of a wave packet will require the
momentum interval defined by ml4Dp4Dpx, which will
not increase the zero-oscillation energy noticeably, because
the magnitude of hH0ii is minimal along the circle jpj � ml
(see Fig. 11). As for the change in the potential energy due to
the x-extension of the wave function, its small value
compared to the zero-oscillation energy imposes the limita-
tion on Dx ' �a 3�h 2=�me 2��1=4.

Clearly, the system of parallel-extended ellipsoidal wave
packets at crystal lattice sites shown in Fig. 11c is not the only
possibility [53]. Possible alternatives are, for example, crystals
of ellipsoids oriented orthogonally, as shown in Fig. 10b or of
ellipsoids rotated by 120�, the latter case suggesting possible
transitions between various crystalline phases in systems with

b

a

Figure 10. Schematic of electron density in a Wigner crystal for intervals

III (a) and IV (b). (Results taken from Ref. [52].)

c

jpj � ml

px

E

0

a

b

jpj � ml

Dpx

Dpy

Figure 11. (a) Spectrum of an electron system with a strong Rashba type

spin±orbit coupling. (b) Formation region of a wave packet in momentum

space. (c) Symbolic depiction of aWigner crystal with asymmetric electron

density distribution at lattice sites, with arrows showing the electron spin

orientation.
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a strong spin±orbit coupling. Electron systems with screened
interaction provide even more possibilities for constructing
various crystalline phases [54].

The major problem in studying strongly spin±orbit±
coupled systems experimentally is reaching very low electron
densities and, hence, ensuring high quality. Only the most
perfect systems could exhibit the slight effects described
above. The most convenient candidates would be InAs and
InGaAs quantum wells with InAlAs barriers. Unfortunately,
existing materials of this type are insufficiently perfect; even
the best of them exhibit a percolation transition from the
conducting to nonconducting phase due to residual disorder.

9. Two-layer electron systems

Let us consider an electron system consisting of two parallel
layers with the same electron density separated by a distance
d. It will be assumed that (1) the total electron concentration
ns is less than half the critical concentration, ns < nc=2, (2) the
system is ideal, (3) the Coulomb interaction is unscreened [55±
63], and (4) the interlayer tunneling is negligible.

An electron system like this can be realized in a double
quantum well with a narrow nonconducting barrier. The
equality of concentrations is achieved by using two gates
located on opposite sides of the well at a distance significantly
exceeding the electron±electron separation.

The ground state of the system is determined by the
Coulomb energy minimum which depends on the parameter
Z � dn

1=2
s . It is clear that the crystal lattice will be triangular,

both at very small and very large interlayer separations, but in
the former case the lattice consists of electrons from different
layers (Fig. 12a), while in the latter case, only of electrons
from each layer (Fig. 13b). According to numerical calcula-
tions, increasing the interlayer distance causes a second-order
transition at Z � Z1, after which the lattice in both layers
becomes rectangular with 1 < a1=a2 <

���
3
p

(Fig. 12b). The
next second-order transition will occur at Z � Z2 (Fig. 12c)

and the lattice in each layer will become square and will
remain so for Z until the value Z � Z3, when another second-
order transition occurs, and at a1 � a2 the angle between the
basis vectors will start changing (Fig. 13a). At Z � Z4, the
lattice in each of the layers becomes a triangle (Fig. 13b).

However, if nc=2 < ns < nc, the chain of quantum transi-
tions between solid phases can be interrupted by melting.
Interestingly, in the described chain of Wigner crystals the
modification shown in Fig. 12c turns out to be themost stable
toward thermal melting [64].

In a quantizing magnetic field at filling factors below
unity, the spatial structure of the Wigner crystal is described
by the same five-stage scenario illustrated in Figs 12 and 13
[65]. Including even weak interlayer tunneling will lead to
more complex, diverse, and filling-factor-dependent phase
diagrams, with variations not only in the spatial position of
lattice sites but also in the composition of each site from
electrons appertaining to different layers (pseudospin state of
a site). A detailed discussion of these diagramsmakes no sense
because of the current lack not only of experiments in this
field but also of ideas on how theoretical predictions can be
checked.

10. Methods for detecting
a liquid±solid phase interface

The most convincing method for detecting quantum melting
experimentally would be by observing transverse waves
traveling through the crystal and registering the conditions
in which they disappear due to melting. An observation of
transverse oscillations in a solid phase was reported in an
early publication [66] but was soon disproved [67]. No
successful application of the method has been reported to
date, most probably because of the imperfect solid phases the
researchers work with. Even when investigating most perfect
two-dimensional electron systems, there is no confidence that
the object under study has a single-crystal nature. Many
experiments performed have used other methods that do not
require any long-range order in the solid phase.

It is found that the dissipative conductivity in a solid
phase is of the activated type. Measuring the evolution of the
electron density dependence of the activation energy, Ea�ns�,
as the system approaches the solid±liquid phase boundary
provides the boundary concentration via extrapolating the
activation energy to zero. While conceptually simple, how-
ever, this method requires great effort, because to determine
the activation energy for each electron density it is necessary
to measure the temperature dependence of the conductivity
and to obtain a sufficient number of points in the Ea�ns�
dependence to be able to extrapolate reliably. And all this,
only to obtain one point at the boundary.

a b

Ä

a1

a2

a1

a2

a1

a2

Figure 12. Initial evolution of theWigner crystal in a two-layer systemwith

increasing interlayer distance. (a) Triangular lattice composed of electrons

from different layers. Shown is a unit cell for electrons from one layer,

a1=a2 �
���
3
p

. (b) Rectangular unit cell in each layer, 1 < a1=a2 <
���
3
p

.

(c) Square unit cell in each layer.

a b

a1

a2
a1

a2

Figure 13.Follow-up evolution of theWigner crystal in a two-layer system

with increasing interlayer distance.
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A less labor-consuming, although more poorly grounded
method for obtaining the boundary from transport data, is to
study the nonlinear properties of the solid phase at a
temperature on the order of 10 mK. At these temperatures,
the volt-ampere characteristics of the solid phase demonstrate
a threshold behavior in the voltage interval which smoothly
decreases on approaching the phase interface. The extrapola-
tion to zero of the concentration dependence of the threshold
voltage yields the boundary values of the electron density.
Both transport methods give the same boundary concentra-
tions to within their accuracies [68].

A further and the most rapid `semiquantitative' method
for constructing the solid±liquid phase boundary should be
noted here. With this method, the only thing to do is to mark,
at a sufficiently low temperature (� 30 mK), the concentra-
tion at which the dissipative conductivity is already small (for
example, 0:1e 2=h). The conductivity decreases so rapidly
away from the boundary that the coefficient of e 2=h does
not shift the boundary value of the concentration anywhere
significantly.

To detect the emergence of a solid phase in a single
heterojunction GaAs/AlGaAs, the authors of the experi-
ments in Refs [7, 69] (who assumed this phase to be a Wigner
crystal) also used an optical method, which consists in
observing the spectrum of radiative recombination of 2D
electrons with holes placed in the acceptor delta-layer. It is
shown that at low temperatures in strong magnetic fields
these spectra exhibit an additional line shifted towards lower
energies (Fig. 14). There are many indicationsÐ including
behavior with temperature and suppression at fractional
filling factors, etc.Ð that this line can be ascribed to the
luminescence of electrons in the solid phase, even though the
liquid±solid phase boundary given in Ref. [7] differs from that
obtained from the data reported in Ref. [22]. This difference
can be a fundamental one, because optical experiments
measure bulk properties, whereas transport experiments
examine the properties of the percolation grid (if the system
of current carriers is nonuniform).

And finally, there is yet another possibility of detecting the
liquid±solid phase boundary. In Refs [70±75], it is shown that
when exciting a solid phase by a radio-frequency signal in
strong magnetic fields resonances can be observed that can be
interpreted as the resonance vibrations of a pinned Wigner
crystal. The boundary can be constructed from the resonance
disappearance points.

The response of a two-dimensional electron system to
radio-frequency excitation can also be examined in experi-
ments on the propagation of surface acoustic waves. These
experiments allow working with highest-mobility systems
without screening the Coulomb interaction between elec-
trons and also permit moving away from the boundary
into the depth of the solid phase [76]. Unfortunately,
despite its obvious promise, this method has failed to
demonstrate any advantages over other investigation
methods.

11. Intermediate phases

The Lindemann condition, while specifying the stability
boundary of the crystalline state, by no means determines
what will happen to the system of current carriers after
melting. Many theoretical proposals exist on possible inter-
mediate phases between a classical Fermi liquid and a crystal.
One such intermediate phase, a fermion condensate, was
discussed in Section 1. The possible appearance of a highly
correlated intermediate phase was firstmentioned inRef. [77],
which discusses the existence of a liquid of freely traveling
defects in a crystal. For the case of the conventional thermal
melting of a Wigner crystal, it is assumed in Ref. [78] that it
first loses translational order but retains orientational order
(transition through a `hexatic' state). A similar scenario is also
possible for quantummelting. It remains unclear whether and
how the transport properties of high-defect phases will differ
from those of a Fermi liquid.

One further possible intermediate (microemulsion) phase
is proposed in Ref. [79]. Numerous intermediate phases
predicted in Ref. [79] can be realized under special condi-
tions, namely, in the presence of a metal electrode (gate)
located at a considerable distance, nsD

2 4 1, from a two-
dimensional layer. The characteristic size of the microemul-
sion phase apparently exceeds D in this case. The above-
mentioned electron concentrations typical of Wigner crystal-
lization in the pure limit suggest, together with the character-
istic distances to the gate in actually existing structures
(100 nm), that standard structures currently under investiga-
tion are hardly likely to exhibit this type of intermediate
phase.

In one candidate intermediate phase, the many-particle
electronic function has the properties of both a crystal and a
liquid [80, 81]. For example, the density±density correlation
function, which is the joint probability of finding one electron
at point r and at the same time finding the second electron at
zero, has maxima at the sites of the triangular crystal lattice
(as in a crystal) but does not vanish between them, which is
reminiscent of a liquid. Such awave function corresponds to a
liquid of quasiparticles whose mass increases with increasing
interaction [82, 83]. A Monte Carlo calculation showed that
in a system of spin-polarized one-valley carriers this system
can be the ground state in the interval 30 < rs < 80. The
critical concentration that determines the transition bound-
ary between the liquid phase and the hybrid intermediate
phase predicted in Ref. [80] can, in principle, be found from
the change in Fermi surface symmetry from circular to
hexagonal.

12. Conclusion

Despite much work having been done, both theoretical and
experimental, the subject of quantum melting can hardly be

1.5151.5101.5051.500
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Figure 14. Normalized luminescence spectra at an electron concentration

of 5:4� 1010 cmÿ2 in various magnetic fields. Line L corresponds to the

liquid phase, and line S presumably refers to the solid phase. (Data taken

from Ref. [7].)
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considered closed. Outlined below are some of the questions
that remain open.

(1) First, there is the question of the solid±liquid phase
boundary in the �ns;B� plane. No conclusive theoretical
predictions exist on the behavior of the boundary, even for
the case of an idealWigner crystal in a perfect electron system
that allows for competition between the integer and fractional
Hall effects. Which of the following can be expected to occur:
boundary oscillations or, as experiments in Ref. [22] suggest,
the penetration of fractal quantum liquids into the solid phase
region?

There are no theoretical predictions regarding the
behavior of the boundary in a real two-dimensional solid
phase stimulated by impurities.

It remains unclear why the slope of the boundary in strong
magnetic fields is not universal.

A further unknown is the role of polycrystallinity in the
solid phase of actual electron systems.

(2) There is no experimental information on crystalliza-
tion and quantum melting in systems of topical interest (two-
layer graphene, strongly spin±orbit coupled two-dimensional
systems, and two-layer systems).

(3) There is no definite experimental information on
intermediate phases between a classical quantum liquid and
a crystal.

Further experimental progress requires far more perfect
structures than currently available.

Acknowledgments
The authors would like to thankEVDevyatov, VMPudalov,
A A Shashkin, and A V Chaplik for their critical remarks,
useful discussions, and advice. The work was partially
supported by RFBR (grants 15-02-03537 and 16-02-00404),
RAS and the RF Ministry of Education and Science.

References

1. Wigner E Phys. Rev. 46 1002 (1934)

2. MonarkhaYuP, Sivokon' VELowTemp. Phys. 38 1067 (2012); Fiz.

Nizk. Temp. 38 1355 (2012)
3. Chaplik A V Sov. Phys. JETP 35 395 (1972);Zh. Eksp. Teor. Fiz. 62

746 (1972)

4. Lindemann F A Phys. Z. 11 609 (1910)

5. Landau L D, Lifshitz E M Statistical Physics Vol. 1 (Oxford:

Pegramon Press, 1980); Translated from Russian: Statisticheskaya

Fizika 2nd ed. (Moscow: Fizmatgiz, 1964)

6. S�olyom J EPJ Web of Conf. 78 01009 (2014)

7. Kukushkin I V, Timofeev V B Adv. Phys. 45 147 (1996)

8. Jang J et al. Nature Phys. 13 340 (2017); arXiv:1604.06220

9. Fukuyama H Solid State Commun. 17 1323 (1975)

10. Lozovik Yu E, Yudson V I JETP Lett. 22 11 (1975); Pis'ma Zh.

Eksp. Teor. Fiz. 22 26 (1975)
11. Bedanov VM,GadiyakGV, Lozovik Yu E Sov. Phys. JETP 61 967

(1985); Zh. Eksp. Teor. Fiz. 88 1622 (1985)

12. Tanatar B, Ceperley D Phys. Rev. B 39 5005 (1989)

13. Chui S T, Esfarjani K Europhys. Lett. 14 361 (1991)

14. Chui S T, Tanatar B Phys. Rev. Lett. 74 458 (1995)

15. Pudalov V M et al. Phys. Rev. Lett. 70 1866 (1993)

16. Khodel V A, Shaginyan V R JETP Lett. 51 553 (1990); Pis'ma Zh.

Eksp. Teor. Fiz. 51 488 (1990)
17. AmusiaMYa et al.Theory ofHeavy-Fermion Compounds:Theory of

Strongly Correlated Fermi-Systems (New York: Springer, 2014)

18. Dolgopolov V T JETP Lett. 101 282 (2015); Pis'ma Zh. Eksp. Teor.

Fiz. 101 300 (2015)
19. Fleury G, Waintal X Phys. Rev. B 81 165117 (2010)

20. Pudalov VM, Gershenson M, Kojima H, in Fundamental Problems

of Mesoscopic Physics: Interactions and Decoherence (NATO

Science Ser. II, Vol. 154, Eds I V Lerner, B L Altshuler, Y Gefen)

(NATO Sci. Series) (Dordrecht: Springer Science + Business

Media, 2004) p. 309

21. Lam P K, Girvin S M Phys. Rev. B 30 473(R) (1984)

22. Jiang HW et al. Phys. Rev. B 44 8107 (1991)

23. D'Iorio M, Pudalov VM, Semenchinsky S G Phys. Rev. B 46 15992

(1992)

24. Shashkin A A, Kravchenko G V, Dolgopolov V T JETP Lett. 58

220 (1993); Pis'ma Zh. Eksp. Teor. Fiz. 58 215 (1993)
25. D'Iorio M, Pudalov VM, Semenchinsky S G Phys. Lett. A 150 422

(1990)

26. Kukushkin I V, Timofeev V B Phys. Usp. 36 549 (1993); Usp. Fiz.

Nauk 163 (7) 1 (1993)

27. Ulinich F P, Usov N A Sov. Phys. JETP 49 147 (1979); Zh. Eksp.

Teor. Fiz. 76 288 (1979)

28. Yoshioka D J. Phys. Soc. Jpn. 53 3740 (1984)

29. Yoshioka D J. Phys. Soc. Jpn. 55 885 (1986)

30. Platzman P M, in The Physics of the Two-Dimensional Electron Gas

(Eds T J Devreese, F M Peeters) (NATO ASI Ser., Ser. B, Vol. 157)

(New York: Plenum Press, 1987) p. 97

31. Zhu X, Louie S G Phys. Rev. Lett. 70 335 (1993)

32. Qiu R L J et al., arXiv:1509.07463

33. Shashkin A A et al. Phys. Rev. Lett. 73 3141 (1994)

34. Stormer H L, Willett R L Phys. Rev. Lett. 62 972 (1989)

35. Jiang HW et al. Phys. Rev. Lett. 65 633 (1990)

36. Goldman V J et al. Phys. Rev. Lett. 65 2189 (1990)

37. Williams F I B et al. Phys. Rev. Lett. 66 3285 (1991)

38. Li Y P et al. Phys. Rev. Lett. 67 1630 (1991)

39. Jiang HW et al. Phys. Rev. B 44 8107 (1991)

40. Khrapai V S et al. Phys. Rev. Lett. 100 196805 (2008)

41. Kravchenko S V et al. Phys. Rev. Lett. 75 910 (1995)

42. Pudalov V M, D'lorio M, Campbell J W JETP Lett. 57 608 (1993);

Pis'ma Zh. Eksp. Teor. Fiz. 57 592 (1993)
43. Pudalov V M, in Physics of the Electron Solid (Conf. Proc. and

LectureNotes inApplied Physics, Vol. 1, Ed. S TChui) (Cambridge,

MA: International Press, 1994)

44. Holmes S N et al. J. Phys. Condens. Matter 20 472207 (2008)

45. Kononov A et al. Phys. Rev. B 86 125304 (2012)

46. Dahal H P et al. Phys. Rev. B 74 233405 (2006)

47. Dolgopolov V T Phys. Usp. 57 105 (2014); Usp. Fiz. Nauk 184 113

(2014)

48. Zhang C-H, Joglekar Y N Phys. Rev. B 75 245414 (2007)

49. Zhang C-H, Joglekar Y N Phys. Rev. B 77 205426 (2008)

50. Côt�e R, Jobidon J-F, Fertig H A Phys. Rev. B 78 085309 (2008)

51. Dahal H P et al., arXiv:0706.1689

52. Silvestrov PG,Recher RPhys. Rev. B 95 075438 (2017); arXiv:1602.

02777

53. Silvestrov P G, Entin-Wohlman O Phys. Rev. B 89 155103 (2014)

54. Berg E, Rudner M S, Kivelson S A Phys. Rev. B 85 035116 (2012)

55. Falko V I Phys. Rev. B 49 7774 (1994)

56. Esfarjani K, Kawazoe Y J. Phys. Condens. Matter 7 7217 (1995)

57. Goldoni G, Peeters F M Phys. Rev. B 53 4591 (1996)

58. Schweigert I V, Schweigert V A, Peeters F M Phys. Rev. Lett. 82

5293 (1999)

59. Weis J-J, Levesque D, Jorge S Phys. Rev. B 63 045308 (2001)

60. Messina R, L�owen H Phys. Rev. Lett. 91 146101 (2003)

61. Oguz E C, Messina R, Lowen H Europhys. Lett. 86 28002 (2009)

62. Lobaskin V, Netz R R Europhys. Lett. 77 38003 (2007)

63. �Samaj L, Trizac E Phys. Rev. B 85 205131 (2012)

64. Schweigert I V, Schweigert V A, Peeters F M Phys. Rev. B 60 14665

(1999)

65. Narasimhan S, Ho T-L Phys. Rev. B 52 12291 (1995)

66. Andrei E Y et al. Phys. Rev. Lett. 60 2765 (1988)

67. Stormer H L, Willett R L Phys. Rev. Lett. 68 2104 (1992)

68. Shashkin A A, Dolgopolov V T, Kravchenko G V Phys. Rev. B 49

14486 (1994)

July 2017 Quantum melting of a two-dimensional Wigner crystal 741



69. Buhmann H et al. Phys. Rev. Lett. 65 1056 (1990)

70. Li C-C et al. Phys. Rev. B 61 10905 (2000)

71. Ye P D et al. Phys. Rev. Lett. 89 176802 (2002)

72. Chen Y P et al. Phys. Rev. Lett. 93 206805 (2004)

73. Wang Z et al. Phys. Rev. Lett. 99 136804 (2007)

74. Doveston J B et al. Physica E 12 296 (2002)

75. Wang Z et al. Phys. Rev. B 85 195408 (2012); arXiv:1101.2436

76. Drichko I L et al. Solid State Commun. 213±214 46 (2015)

77. Andreev A F, Lifshitz I M Sov. Phys. JETP 29 1107 (1969); Zh.

Eksp. Teor. Fiz. 56 2057 (1969)

78. Halperin B I, Nelson D R Phys. Rev. Lett. 41 121 (1978)

79. Spivak B, Kivelson S A Phys. Rev. B 70 155114 (2004)

80. Falakshahi H, Waintal X Phys. Rev. Lett. 94 046801 (2005)

81. Waintal X Phys. Rev. B 73 075417 (2006)

82. Dolgopolov V T JETP Lett. 76 377 (2002); Pis'ma Zh. Eksp. Teor.

Fiz. 76 437 (2002)
83. Dolgopolov V T, Shashkin A A JETP Lett. 95 570 (2012); Pis'ma

Zh. Eksp. Teor. Fiz. 95 648 (2012)

742 V T Dolgopolov Physics ±Uspekhi 60 (7)


	1. Introduction
	2. Wigner crystal in the absence of a magnetic field
	3. General picture in a normal magnetic field
	4. Mixing of quantum levels in a weak quantizing magnetic field
	5. Strong normal magnetic field
	6. Wigner crystal in graphene
	7. Two-layer graphene
	8. Wigner crystal in a system with strong spin--orbit coupling
	9. Two-layer electron systems
	10. Methods for detecting a liquid--solid phase interface
	11. Intermediate phases
	12. Conclusion
	 References

