
Abstract. The propagation of high-power ultrashort light pulses
involves intricate nonlinear spatio-temporal dynamics where
various spectral±temporal field transformation effects are
strongly coupled to the beam dynamics, which, in turn, varies
from the leading to the trailing edge of the pulse. Analysis of this
nonlinear dynamics, accompanied by spatial instabilities, beam
breakup into multiple filaments, and unique phenomena leading
to the generation of extremely short optical field waveforms, is
equivalent in its computational complexity to a simulation of
the time evolution of a few billion-dimensional physical system.
Such an analysis requires exaflops of computational operations

and is usually performed on high-performance supercomputers.
Here, we present methods of physical modeling and numerical
analysis that allow problems of this class to be solved on a
laboratory computer boosted by a cluster of graphic accelera-
tors. Exaflop computations performed with the application of
these methods reveal new unique phenomena in the spatio-
temporal dynamics of high-power ultrashort laser pulses. We
demonstrate that unprecedentedly short light bullets can be
generated as a part of that dynamics, providing optical field
localization in both space and time through a delicate balance
between dispersion and nonlinearity with simultaneous suppres-
sion of diffraction-induced beam divergence due to the joint
effect of Kerr and ionization nonlinearities.

Keywords: ultrashort laser pulses, ultrafast nonlinear optics, laser-
induced filamentation

1. Introduction

Rapid progress in laser technologies is giving rise to a new
generation of high-power sources of ultrashort pulses of
electromagnetic radiation capable of delivering ultrahigh-
intensity, ultrahigh-peak-power laser pulses at a high repeti-
tion rate within a broad spectral range [1, 2]. Propagation of
such pulses through a medium is accompanied by a complex
nonlinear evolution [3±5], where various spectral±temporal
field transformations are strongly coupled to spatial beam
dynamics, which, in turn, is nonuniformwithin the laser pulse
(Fig. 1a). Such regimes of pulse propagation are of special
interest in the context of long-distance transmission of high-
power ultrashort pulses through the atmosphere [6, 7],
efficient white-light supercontinuum generation [8±13], and
temporal compression of high-power ultrashort pulses [14±
16] in the laser filamentation regime. Lasing in laser-induced
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filaments [17] offers unique opportunities for a highly
sensitive remote sensing of the atmosphere [18, 19].

When the peak power of an ultrashort pulse is much
higher than the self-focusing threshold, a light beam becomes
unstable [20] with respect to a breakup to multiple filaments
(Fig. 1a). Since such beam instabilities are seeded by random
intensity fluctuations across a laser beam or optical inhomo-
geneities of a medium, a laser beam undergoing multiple
filamentation usually loses its axial symmetry. In each of the
filaments arising as a part of this process, diffraction is
suppressed due to the joint action of nonlinear polarization
induced in the medium and the radial profile of electron
density [3, 4, 21]. Within a limited parameter space, as recent
studies have shown [22], high-power single-cycle and subcycle
optical pulses can be generated in laser filaments, giving rise
to ultrashort bursts of electromagnetic fields, whose duration
is less than a field cycle. The correct analysis of this intriguing
regime of pulse evolution is not possible in the ordinary
slowly varying envelope approximation (SVEA) and

requires the inclusion of all the relevant non-SVEA effects in
the nonlinear spatio-temporal dynamics of high-power
ultrashort light pulses.

The diversity of physical phenomena involved in this
regime of nonlinear spatio-temporal field evolution and the
related physical scenarios that may lead to the formation of
single-cycle and subcycle pulses can only be understood in the
framework of a full model of spatio-temporal field dynamics,
including all the relevant non-SVEA effects. Since single-cycle
and subcycle pulses need to be adequately described,
numerical analysis has to be performed with a high resolu-
tion in spatial and temporal coordinates within the entire
pathway of nonlinear interaction, which is often very long in
the regime of laser filamentation. Such an analysis is
equivalent in its computational complexity to a modeling of
the temporal evolution of a physical system possessing a few
billion degrees of freedom. Its implementation requires
exaflop computations and is usually performed with the aid
of supercomputers.

Here, we present methods of physical modeling and
numerical analysis that allow problems of this class to be
solved on a laboratory computer with a cluster of graphic
processing units (GPUs). Exaflop computations performed
with the use of these strategies reveal new unique phenomena
of the spatio-temporal dynamics of superpower ultrashort
light pulses, including the generation of single-cycle and
subcycle field waveforms. In special regimes of nonlinear
dynamics, such field waveforms are shown to evolve into
multiple light bullets.

2. Physical model

The spatio-temporal dynamics of high-power ultrashort
pulses is analyzed using the generalized nonlinear SchroÈ din-
ger equation (GNSE) for the complex éeld amplitude
involving ultrafast éeld-induced ionization processes [3ë5,
23, 24]:
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Here, A�Z; x; y; z� is the complex field amplitude, A�o; x; y; z�
is its Fourier transform, I�Z; x; y; z� � jA�Z; x; y; z�j2 is the
field intensity, Z is the retarded time, x and y are the transverse
coordinates, z is the coordinate along the propagation axis,o
is the radiation frequency, D? � q2=qx 2 � q2=qy 2 is the
diffraction operator, ~D � k�o� ÿ k�o0� ÿ qk=qojo0

�oÿ o0�
is the dispersion operator, o0 is the central frequency of the
laser pulse, k�o� � on�o�=c is the wave number, n�o� is the
refractive index, n0 � n�o0�, ~F is the Fourier transform
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Figure 1. (Color online). (a) Spatio-temporal dynamics of a high-peak-

power ultrashort light pulse in a �3� 1�-dimensional problem in spatial x,

y, and z coordinates and time Z in the retarded frame of reference running

with the pulse: (left) temporal evolution of the pulse, (center) spectral

transformation and supercontinuum generation, and (right) spatial

dynamics involving modulation instability of the beam leading to the

loss of axial symmetry. (b) Diagram of computations at each step of the

numerical algorithm. The number of parallel MPI processes is defined by

the number of graphic processors M (for the developed laboratory

computer station, M � 4). (c) Parallel computations determining the

nonlinear operator, performed by graphic processors on an xyZ grid

including 512� 512� 2048 nodes. Grid node layers in the xZ plane within
which each of the graphic processors performs parallel computations are

shown in color.
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operator in the time variable, w �3�, w �5�, w �7�, and w �9� are the
third-, fifth-, seventh-, and ninth-order nonlinear-optical
susceptibilities, n2, n4, n6, and n8 are the Kerr nonlinearity
coefficients, ~T � 1� ioÿ10 q=qZ, R�Z� is the Raman response
function, fR is the fraction of the Raman (delayed) non-
linearity in the overall nonlinear response of the medium, r is
the electron density, Ui � U0 �Uosc, U0 is the ionization
potential, Uosc is the ponderomotive energy of field-induced
electron oscillations,W�I � is the photoionization rate, s is the
avalanche ionization cross section, rc � o2

0mee0=e 2 is the
critical electron density, r0 is the neutral gas density, me is
the electron mass, e is the electron charge, and e0 is the
permittivity of a vacuum.

Field evolution equation (1) is solved jointly with the
equation for the electron density, which involves field-
induced ionization, as well as avalanche ionization and
recombination:

qr
qZ
�W�I � � s�o0�Uÿ1i rIÿ r

tr
; �2�

where tr is the recombination time. The photoionization rate
W in equations (1) and (2) is calculated applying the Keldysh
formalism [25, 26]. The avalanche ionization cross section s is
calculated with the use of the Drude formula s�o� �
e 2tc�mee0n0c�1�o2t 2c ��ÿ1, where tc is the characteristic
collision time.

The model based on Eqns (1) and (2) comprises all the key
physical effects that show up in the evolution of high-power
ultrashort pulses in a nonlinear dispersive medium. The
spectral representation of the dispersion operator ~D allows
the material dispersion to be described exactly rather than
through its polynomial expansion about the central frequency
o0. An accurate description of material dispersion is of
crucial importance for the analysis of a broad class of
nonlinear optical processes, including multioctave super-
continuum generation, as well as single-cycle and subcycle
pulse generation, where the models based on a series
expansion of the frequency dispersion profile in oÿ o0 fail.
The physical model adopted in our work also includes linear
loss and diffraction effects, the field-induced change in the
refractive index due to the third-, fifth-, and, whenever
necessary, higher-order Kerr type optical nonlinearities,
pulse self-steepening, spatio-temporal self-action phenom-
ena, as well as plasma loss, dispersion, scattering, and,
finally, defocusing due to an ultrafast ionization of the
medium by the laser field.

Field evolution equation (1) is solved by the split-step
method. The linear diffraction and dispersion operators in
this equation are computed using the Fourier method. The
nonlinear part of the field evolution equation, as well as the
equation for the electron density dynamics, are solved by the
fourth- or fifth-order Runge±Kutta method.

Importantly, the assumption of an axially symmetric
beam, which substantially simplifies the solution of equa-
tion (1), fails in the regime of multiple filamentation. In this
regime, a laser beam tends to break up into multiple filaments
due to spatial modulation instabilities arising from random
hot spots across the beam, seeded by noise-induced intensity
fluctuations and random optical inhomogeneities in the
medium. In its fully three-dimensional version, field evolu-
tion equation (1), which also involves a time variable and is,
hence, often referred to as a �3� 1�-dimensional model, leads
to calculations of high computational complexity.

3. Numerical methods

To provide the accuracy sufficient for an adequate descrip-
tion of single-cycle and subcycle pulse generation, the
computational grid used in simulations has to have a step in
time well within the optical cycle. The overall sizes of the grid,
on the other hand, have to be large enough to accommodate
the entire laser pulse and all the field components generated at
each point in space and time and propagating with funda-
mentally different group velocities.

For a 1- to 10-cycle optical pulse, depending on the field
intensity and beam-focusing geometry, this typically dictates
a grid with 1024 to 4096 nodes in the time variable. An
accurate modeling of subcycle pulses often requires computa-
tional grids with an even larger number of nodes.

Analysis of nonlinear beam dynamics is performed on a
two-dimensional grid whose step in transverse coordinates
has to be much smaller than the size of individual filaments.
The most efficient pulse compression is often confined to a
small area near the beam axis. The two-dimensional spatial
grid for beam dynamics modeling has to be fine enough to
resolve and accurately describe this effect. However, on the
other hand, the overall sizes of the grid should be large
enough to completely accommodate the spatial field compo-
nents, which may be generated within a broad range of
angles and can undergo focusing by the Kerr lens and
diffraction by the transverse electron density profile, increas-
ing this range of angles even further. For peak powers below
100 critical powers of self-focusing, these requirements can
usually be satisfied with grids possessing 512� 512 to
1024� 1024 nodes.

The maximum admissible step along the longitudinal
coordinate is typically determined from the condition that
the nonlinear phase shift not exceed 0.025 rad if the nonlinear
operator in equation (1) is computed using the fourth-order
Runge±Kutta method, and 0.05 rad if the fifth-order Runge±
Kutta method is employed. The overall extension of the grid
along the longitudinal coordinate is determined by the
integral nonlinear phase shift. To model a typical experiment
on multiple filamentation of high-power ultrashort laser
pulses, the number of grid steps along the longitudinal
coordinate should be on the order of 10,000.

Thus, a �3� 1�-dimensional analysis of the evolution of a
high-power ultrashort laser pulse with a fixed set of para-
meters in the regime of multiple filamentation typically yields
a data array of 10±100 Tb. The total number of nodes in a
typical (3+ 1)-dimensional grid along a longitudinal and two
transverse coordinates, as well as along the time variable,
reaches 2048� 1024� 1024 � 109 nodes. Analysis of the
propagation of an array of complex numbers, representing
the nonlinear evolution of a high-power ultrashort laser pulse
on such a grid, along the longitudinal coordinate is, thus,
equivalent to the analysis of an evolution of a few billion-
dimensional problem within an interval covering 104 steps in
time.

Each step along the longitudinal coordinate involves
about 20 operations of the forward and inverse fast Fourier
transform (FFT). With the Cooley±Tukey algorithm prop-
erly optimized for our computational procedure, each FFT
operation requires Mq � 5Nq log2 �Nq� operations with com-
plex numbers. Here, q is one of the transverse coordinates
fx; yg or the time variable Z. The linear operator is computed
through three forward and three inverse FFT operations.
Computation of the nonlinear operator using the kth-order
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Runge±Kutta method (in our computations, k � 4; 5)
requires 42k FFT operations. Thus, the total number of
floating-point operations needed to perform FFT on a grid
including Nz � 10;000 steps along the longitudinal coordi-
nate amounts to 100±200 PFlop (1 PFlop� 1015 floating-
point operations). The full number of operations required to
implement a properly optimized computational algorithm,
including auxiliary computational operations, operations
needed to transfer, transpose, and copy the relevant data
arrays, and technical procedures, is as large as 1000 PFlop.

The performance of a modern six-core Intel Core i7-4930K
processor is 120 GFlops (1 GFlops� 109 floating-point
operations per second). With such a processor, analysis of
the evolution of a high-power ultrashort laser pulse in the
multiple-filamentation regime with fixed parameters requires
about a month of computing time.

Since the performance of conventional, even highest-
speed, processors is insufficient, problems of this class are
usually solved on computer clusters consisting of several
hundred processor cores. As an important example, the
performance of a 128-processor cluster of the Lomonosov
supercomputer at Moscow State University is on the order of
1.3 TFlops (i.e., 1:3� 1012 floating-point operations per
second). With such a computational speed, numerical
analysis of the propagation of a high-power ultrashort laser
pulse in the regime of multiple filamentation takes about a
week. As shown below in Sections 4 ± 7 of this paper, with
GPU clusters a full numerical analysis of the propagation of a
high-power ultrashort laser pulse in the regime of multiple
filamentation can be performed on a laboratory computer
station.

4. Exaflop computations
on a laboratory computer station

In this work, numerical analysis of the nonlinear dynamics of
high-power ultrashort laser pulses in the regime of multiple
filamentation was performed on a laboratory computer
station boosted with a cluster of Nvidia GeForce GTX 970
graphic accelerators. The performance of suchGPUunits can
be as high as 2.3 TFlops. With proper optimization, such
accelerators can perform exaflop computations within only a
few days. Parallelizing program algorithms for GPU clusters
is the key factor for the optimization of exaflop computations
utilizing such video cards.

The scheme of parallel computations on a GPU cluster
implemented in this work is sketched in Fig. 1b. In contrast to
a standard method of parallel computations based on a
message-passing interface (MPI) [27], our scheme employs a
hybrid parallelizing technique, in which the computation of
the nonlinear, dispersion, and diffraction operators is
accelerated by combining an MPI interface with a compute
unified device architecture (CUDA) [28]. The number of
parallel MPI processes supported by the developed algo-
rithm is determined by the number of video cardsM (for our
laboratory computer station,M � 4). Each of these processes
implements calculations using the split-step method (Fig. 1b).
The two-dimensional Fourier transform is performed within
the processor segment of the cluster using a standard library
of programs. The dispersion, diffraction, and nonlinear
operators in equation (1) are computed using the CUDA
within the graphic segment of the cluster (Fig. 1b, c). To this
end, the data are transferred from random access memory of
the main processor to the GPU memory and back (Fig. 1b).

Figure 1c illustrates this computational procedure imple-
mented on a grid consisting of 512� 512� 2048 nodes on x-,
y-, and Z-axes, respectively. Colored xZ-plane grid node layers
are involved in parallel computations performed by one
GPU. Computations performed by GPUs on each of these
layers are organized in the units in accordance with the
CUDA scheme. The total number of such units in our
computational process amounts to 8192. Each unit, in turn,
consists of 128 threads (Fig. 1c).

The GPU segment of the cluster computes the dispersion,
diffraction, and nonlinear operators with such a high speed
that the forward and inverse x-to-y three-dimensional data-
array transposition needed for two-dimensional FFT using
the standard library of programs becomes the slowest process
in the procedure.

When implemented on the platform of a four-core
laboratory computer station with an Intel Core i5-4690
processor with an ASRock Z87 OC Formula motherboard
and a graphic accelerator consisting of four 1164-core
GeForce GTX 970 GPUs, our algorithm can accomplish a
full spatio-temporal analysis of the dynamics of a high-power
ultrashort laser pulse in the regime of multiple filamentation
within one day. With such an organization of parallel
computations, a specific-target-oriented optimization of
parameters of laser pulses and a medium becomes realistic,
greatly facilitating a search for the ranges of parameter space
where unique physical regimes of the nonlinear dynamics of
high-power ultrashort laser pulses are possible. In Sections 5±
7, we present the results of exaflop computations performed
on a laboratory computer station showing that ultrashort
field waveforms with extremely short pulse widths can be
generated as a result of complex spatio-temporal field
transformations. Based on this analysis, we will define the
parameter space within which nonlinear-optical phenomena
can suppress the diffraction of single-cycle and subcycle field
waveforms.

5. Dynamics of multiple filamentation

A typical picture of the spatio-temporal dynamics of an
ultrashort laser pulse with a peak power P two orders of
magnitude higher than the self-focusing threshold Pcr is
displayed in Fig. 2. Here, calculations have been performed
for ultrashort mid-infrared pulses with a central wavelength
l � 3:9 mm, input energyW0 � 270mJ, and input pulse width
t0 � 100 fs. High-peak-power femtosecond pulses at this
wavelength are delivered by recently developed mid-infrared
sources of generation based on optical parametric chirped-
pulse amplification [29±32]. The dynamics of such pulses in
the regime ofmultiple filamentation is of considerable interest
as a way toward the generation of high-power single-cycle
and subcycle pulses in the mid-infrared range, and in the
context of interesting new phenomena that may be expected
since the central wavelength of such pulses falls within the
range of anomalous dispersion of many solid materials. A
numerical analysis of single-filamentation dynamics [33, 34],
which takes place for much lower ratios of the laser peak
power to the critical power of self-focusing, suggests that
unique propagation regimes, including formation of light
bullets, may become possible for ultrashort laser pulses in
the regime of anomalous dispersion.

A light beam with a peak power several orders of
magnitude higher than the critical power of self-focusing
(P � 100Pcr for the propagation dynamics illustrated in
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Fig. 2) exhibits complex temporal (Figs 2a±c), spatial
(Figs 2d±h), and spectral (Fig. 2i) dynamics. The field
structure turns out to be inhomogeneous across the beam
and within the laser pulse, constantly changing as the beam
propagates through the medium and displaying significant
variations from the leading to the trailing edges of the pulse
(Figs 2a±c). Such variations in the beam structure are due to a
dynamic interplay between the Kerr and ionization nonlinea-
rities, which changes from the leading edge of the pulse to its
tail. The temporal structure of the field is, in turn, nonuni-
form across the beam.

A laser field with a peak power P4Pcr is unstable with
respect to beam breakup into multiple filaments, seeded by
random field intensity fluctuations within the light beam. The
resulting spatial modulation instabilities give rise to field hot
spots across the beam (Figs 2d, e) and eventually lead to a loss
of coherence within the laser beam (Figs 2f±h). As a result of
the joint action of the Kerr and ionization nonlinearities, the
beam breaks up into multiple filaments (Figs 2b, c, f±h). This
phenomenon is accompanied by efficient spectral broadening
(Fig. 2i), which is typical of laser-induced filamentation and is
often referred to as supercontinuum generation.

The high speed of computations provided by our
parallelization algorithm and interactive feedback control
over the modeling process, which becomes possible due to
continual access to our laboratory computer cluster, enable a
systematic detailed study of multiple filamentation by
comparing the results of numerical simulations with esti-
mates based on transparent physical models. As an impor-
tant result, we emphasize that the typical length within which
a laser beam breaks up into multiple filaments in numerical
simulations agrees closely with the spatial modulation
instability length as theoretically predicted by Bespalov and
Talanov [20]. In numerical simulations presented in Fig. 2,
multiple filamentation becomes noticeable within a typical
propagation length lm on the order of 1 m (Fig. 2f). In the
Bespalov±Talanov theory [20], on the other hand, the typical
length within which spatial modulation instabilities tend to
build up is on the order of the nonlinear length,
lnl � c�on2I0�ÿ1, where I0 is the field intensity. For the
propagation regime illustrated in Fig. 2, where I0 �
20 TW cmÿ2 and n2 � 1:4� 10ÿ7 cm2 TWÿ1, the buildup of
modulation instabilities closely follows the exp �z=lnl� growth
rate predicted by the Bespalov±Talanov theory. In this
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Figure 2. (Color online). Spatio-temporal dynamics of an ultrashort laser pulse with a central wavelength of 4 mm, a pulse width of 100 fs, and an energy of

270 mJ, propagating in a gas chamber filled with molecular nitrogen at a gas pressure of 4 atm: (a±c) spatial dynamics at the leading edge (Z � ÿ50 fs),
(b) central part �Z � 0�, and (c) trailing edge (Z � 50 fs) of the pulse; (d±h) transverse beam profiles at (d) z � 0 and Z � 0, (e) z � 0:5 m and Z � 10 fs,

(f) z � 1:0 m and Z � 100 fs, (g) z � 1:5 m and Z � 80 fs, and (h) z � 2:0 m and Z � 70 fs; (i) spatial evolution of the pulse spectrum integrated across the

beam. The initial peak power of the laser pulse isP � 100Pcr. The beam is focused by a lens with focal length f � 2m. Simulations were performed on four

core processors and four 1664-core GeForce GTX 970 GPUs on a grid consisting of 2048� 512� 512� 12;000 nodes on Z-, x-, y-, and z-axes,

respectively. The computational complexity of the problem reaches 1000 PFlop. The computing time is 4 days.
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regime, for beam instabilities seeded by noise intensity
fluctuations, a gain of 100 is achieved within a propagation
length of about 1m.Within a broad range of input laser beam
parameters, the length within which multiple filamentation
was observed in numerical simulations agrees well with the
predictions of the Bespalov±Talanov theory for the modula-
tion instability buildup length. This finding allows strongly
coupled complex processes involved in nonlinear spatio-
temporal field dynamics and observed in numerical simula-
tions to be interpreted in a clear, physically transparent way.

6. Self-compression
of high-peak-power light pulses

Soliton self-compression of laser pulses in the anomalous
dispersion regime is widely used for the generation of
ultrashort light pulses in optical fibers [35, 36]. The spatio-
temporal �3� 1�-dimensional dynamics of freely propagating
laser beamswith a peak power well above the critical power of
self-focusing is, however, much more complicated than the
dynamics of light pulses in optical fibers, which can be
accurately described within the framework of the thoroughly
developed model of the generalized nonlinear SchroÈ dinger
equation with one temporal and one spatial coordinate [35].
As shown in Section 5, the spatio-temporal evolution of
optical fields with peak powers P4Pcr in the regime of
anomalous dispersion can often involve beam breakup into
multiple filaments, leading to the loss of beam connectedness
and, eventually, spatial coherence (Fig. 3). Remarkably,
despite all the complexity of their spatio-temporal dynamics,
efficient self-compression of high-peak-power ultrashort light
pulses is still possible, as illustrated in Fig. 3, without the loss
of field connectedness and spatial coherence through beam
breakup into multiple filaments.

Of key significance for this regime of nonlinear dynamics
is that the typical lengths of self-compression andmodulation
instability, lc and lm, should obey the inequality lc < lm.When
this condition is satisfied, a light pulse experiences self-
compression to its minimum pulse width, as a result of the
joint action of anomalous dispersion and nonlinearity, before

the beam breaks up into multiple filaments. As can be seen
from simulations presented in Fig. 3, on the propagation
length z � lc � 2:4 mm, self-compression yields a subcycle
field waveform with a pulse width of about 10.8 fs (Fig. 3c).
Within this propagation length, the beam still does not lose its
connectedness (Fig. 3d), with its angular spectrum (Fig. 3e)
showing virtually no features that would be indicative of the
developed spatial modulation instabilities.

Within longer propagation paths (z > lm � 3 mm), mod-
ulation instabilities become noticeable (Figs 3a, b, d, f, h),
with field hot spots appearing across the beam (Figs 3a, b).
The angular spectrum corresponding to this phase of the
beam dynamics displays noticeable distortions, indicating
off-axial field components (Fig. 3f). Beam breakup due to
modulation instability is accompanied by multiple filamenta-
tion (Figs 3d, h), caused by the joint action of the Kerr and
ionization nonlinearities.

Thus, our numerical simulations confirm that, when the
spatial length of self-compression is kept shorter than the
length required for the build-up of modulation instabilities,
lc < lm, high-peak-power light pulses can undergo efficient
self-compression without the loss of beam spatial coherence.
This effect is of key significance for identifying the physical
scenarios whereby single-cycle and subcycle light bullets can
be generated in the regime of anomalous dispersion. This
phenomenon is discussed below in Section 7.

7. Subcycle light bullets

Single-cycle and subcycle light pulses, which have become
available due to new approaches to laser technologies [37±40],
provide a unique tool for studying ultrafast processes in
matter [41]. Identifying paths toward higher intensities in
such pulses and higher efficiencies of their generation is one of
the key challenges in ultrafast optical physics. The analysis
presented below in this section outlines one of the promising
approaches to confront these challenges.

Laser-induced filamentation is widely applied for the
compression of high-intensity light pulses at the level of
peak power P � �3ÿ10�Pcr. Scaling this pulse-compression
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technology to higher peak powers, however, faces serious
difficulties. The breakup of a high-peak-power laser beam
into multiple filaments (see Section 5), leading to a loss of
beam connectedness and, eventually, spatial coherence [42], is
one such problem, making power scaling of filamentation-
assisted pulse compression difficult. A series of numerical
simulations performed on our laboratory computer station
enhanced with a cluster of graphic accelerators helps identify
approaches whereby this problem can be addressed. Our
numerical simulations show that self-compression of light
pulses with peak powers P4Pcr in the regime of anomalous
dispersion enables the generation of high-peak-power sub-
cycle light pulses without the loss of spatial coherence.
Moreover, the results of these simulations, presented below
in this section, demonstrate that high-peak-power single-
cycle and subcycle light pulses can be produced in this regime
in the form of light bullets, where field localization in time is
combined with spatial beam confinement. This becomes
possible due to a delicate balance between dispersion and
nonlinearity with simultaneous suppression of diffraction-
induced beam divergence by the Kerr lens, acting jointly with
the ionization nonlinearity.

With numerous simplifying assumptions regarding the
properties of dispersion and optical nonlinearity of a
medium, as well as concerning the symmetry and dimension-

ality of a light beam, criteria necessary for the existence of
light bullets can be formulated as closed-form semianalytical
expressions [43, 44]. However, physical scenarios enabling
the generation of extremely short, single-cycle and subcycle
light bullets can only be identified through an adequate
revision of models toward including realistic dispersion
profiles, higher order optical nonlinearities, ultrafast ioniza-
tion, and beams without axial symmetry. Numerical analysis
of such pulse evolution scenarios is a complex computational
problem, requiring exaflop computations. Still, as the
simulations presented in Fig. 4 show, this problem can be
solved through properly optimized computations on a
laboratory computer station enhanced with a cluster of
graphic accelerators.

In Fig. 4, we present the results of numerical simulations
performed for a light pulse with an initial pulse width of 80 fs,
a central wavelength of 3.9 mm, an energy of 40 mJ, and an
initial beam diameter of 140 mm propagating in the region of
anomalous dispersion in an yttrium aluminum garnet (YAG)
crystal. At the initial stage of spatio-temporal field dynamics,
self-focusing is seen to radically decrease the beam diameter.
As can be seen in Figs 4d±f, within a propagation length of a
few millimeters, the beam diameter decreases to a few
micrometers. However, within the next stages of field
evolution (3±7 mm), the beam diameter remains virtually
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unchanged (Figs 4f±j) even though, in the linear regime, its
drastic decrease within the initial stage of beam dynamics
would have resulted in a significant enhancement of diffrac-
tion-induced beam divergence.

Beam self-focusing at the initial stage of field evolution
(up to z � 2 mm in Fig. 4a) is accompanied by temporal self-
compression as a result of the joint action of anomalous
dispersion and optical nonlinearity. At a distance z � 2 mm,
the pulse width decreases to about 11 fs (Figs 4a, b). As the
fieldwaveformpropagates further along themedium (3±7mm
in Fig. 4a), its pulse width remains virtually unchanged. On
the entire propagation length (from 2 to 7 mm in Fig. 4a), the
pulse width of the optical field waveform never exceeds the
field cycle (13 fs) of 3.9-mm radiation. Notably, such
propagation dynamics would not have been possible in the
linear regime, wherematerial dispersion would have stretched
the pulse within a typical propagation length of only 50 mm.

Our numerical analysis reveals that spatially and tempo-
rally localized field propagation becomes possible within the
studied parameter space due to a photon bath in the beam
periphery (seen as a pedestal in Fig. 4c), which provides a
constant energy supply to the central part of the beam.
Temporal field dynamics under these conditions, in some
approximation, follows a solitonic pulse evolution (viz.,
soliton pulse self-compression [35]) only on a propagation
length z � 1 mm. Further on along the beam path, the field
propagates in the form of a light bullet, sustained by strongly
coupled spatial and temporal self-action effects. In this
regime, light bullets cannot be adequately described in terms
of spatial or temporal solitonic phenomena.

The light bullet shown in Fig. 4 sustains a pulse width of
11±13 fs within its entire evolution path (Fig. 4a) and contains
up to 15% of the input pulse energy (at z � 3 mm). The
temporal envelope of the overall field waveform containing
this light bullet features a central peak acquiring up to 50% of
the total pulse energy against an extended pedestal (Fig. 4b).
This pedestal plays the role of the photon bath confining the
field to a short time interval.

An appropriate choice of initial parameters is of key
significance for the generation of single-cycle and subcycle
light bullets. As can be seen from the results presented in
Fig. 4a, subcycle pulses are formed within the initial stage of
field evolution (z < 1 mm), where solitonic effects play the
dominant role. This field dynamics can be scaled within the
relevant parameter space using the physically transparent
scaling laws of soliton self-compression. This finding makes it
much easier to identify the parameter range for the generation
of high-power subcycle light bullets. The subsequent spatio-
temporal field dynamics leading to light bullet formation do
not allow an equally physically intuitive analysis to be made
in terms of solitonic dynamics. The optimal range of
parameters for the generation of such light bullets can then
only be defined through a detailed numerical analysis
performed for specific properties of a laser source used to
deliver the input short-pulse optical field. The methods of
physical and numerical analysis presented in this paper open
new avenues for solving such problems.

8. Conclusion

Methods of physical modeling and numerical analysis high-
lighted in this paper are instrumental in solving a broad class
of computationally complex physical problems involving the
intricate spatio-temporal dynamics of ultrashort light pulses

with a peak power well above the critical power of self-
focusing.

Exaflop computations performed with the application of
thesemethods on a laboratory computer station with a cluster
of graphic processing units reveal new unique phenomena of
the spatio-temporal dynamics of superpower ultrashort laser
pulses. We have demonstrated that unprecedentedly short
light bullets can be generated as a part of these dynamics,
providing optical field localization both in space and time
through a balance between dispersion and nonlinearity with
simultaneous suppression of diffraction-induced beam diver-
gence due to the joint effect of Kerr and ionization nonlinea-
rities. Methods of physical and numerical analysis presented
in this paper enabled handling computationally complex
simulations for a target-specific optimization of parameters
of laser pulses and properties of nonlinear media for the
implementation of unique physical scenarios in the nonlinear
dynamics of high-power ultrashort light pulses.
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