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Abstract. We draw attention to a similarity between mutually
related kinetic material phenomena that are odd in the magnetic
field and produce an electric current or heat flow perpendicular
(1) to the magnetic field, (2) to the electric field strength or to
the temperature gradient. These phenomena include the Hall
effect, the Righi—Leduc effect in nonmagnetic metals, the anom-
alous Hall effect in magnets, the odd Senftleben—Beenakker
effect in molecular gases, and the phonon Hall effect in dielec-
trics. While these phenomena have much in common in terms of
geometry, their formation mechanisms — dynamic and dissipa-
tive — are different. However, in all cases, the flow perpendicu-
lar to the magnetic field arises from the spin—orbit interaction of
carriers with magnetic moments.
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1. Introduction

The Hall effect—the occurrence of a transverse potential
difference (also known as the Hall voltage) in a direct current-
carrying conductor placed in a magnetic field — was discov-
ered by Edwin Hall in 1879 in thin gold films [1]. Because in
those days the publication of a paper even in a high-status
journal did not prevent it from being republished elsewhere, it
comes as no surprise that Hall’s pioneering work “On a New
Action of the Magnet on Electric Current” [1] reappeared as
Refs [2-4]. Apart from Ref. [1], the early bibliography on the
Hall effect includes Edwin Hall’s subsequent work on the
subject [5-14] and responses to it [15-17].

The Hall effect in metals is due to the electron drift in
crossed electric and magnetic fields E and B. In magnets, it
results from the spin—orbit interaction between the conduc-
tion electrons and magnetic moments. In dielectrics, the
magnetic field changes the phonon polarization and affects
the rate of phonon collisions with the magnetic subsystem. In
gases, the precession of magnetic moments in a magnetic field
changes the collision rate of nonspherical molecules. This
review is limited to studies in weak magnetic fields and does
not discuss the quantum Hall effect.

According to the Onsager—Casimir theory of irreversible
processes, the generalized flows at small deviations from
equilibrium are proportional to the generalized forces [18],

Ji=ouXk, (1)

where oy is the electrical conductivity tensor, or equivalently,
Xi = pudr, (2)

where p; =o' is the generalized resistivity tensor. In

accordance with the Onsager principle,
pic(B) = pr(—B). 3)

We note that all phenomena to be considered below have
already been discussed one by one, in particular, in Refs [19—
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23]. The primary objective of this review is to identify the
features common to all these effects. All kinetic effects odd in
a magnetic field produce flows in the transverse direction,

J~BxXx.

Interestingly, however, different mechanisms produce trans-
verse flows in different materials. In nonmagnetic materials,
this is the classical electron drift in crossed fields E and B. In
magnets, there are two mechanisms that lead to the anom-
alous Hall effect [19-21, 24].

First, we have a dynamical mechanism (the left-hand
side of the kinetic equation), according to which trajectories
of conduction electrons are bent due to their spin—orbit
(SO) coupling to magnetic moments. Second, there is a
dissipative mechanism (the right-hand side), in which the
dominant role is played not by the smooth bending of the
trajectory in the Weiss field but by electron collisions with
magnetic atoms.

In dielectrics, similarly, there are also two formation
mechanisms for the transverse heat flow:

(1) a change in the phonon polarization due to the
magnetic field;

(2) the field dependence of the rate of phonon collisions
with magnetic impurities.

Finally, two mechanisms also operate in molecular gases
in which phonons are produced by nonspherical molecules:
the precession of rotational moments in a magnetic field
(dynamical mechanism) and the change in the collision rate
(dissipative mechanism).

In this review, we highlight the relation between the Hall
constant and the Fermi surface curvature and provide an
elementary derivation of the anomalous Hall effect for
various systems in the case where the SO interaction
produces the effect.

The outline of the review is as follows. In Section 2, we
examine the Hall effect in metals and discuss the features of
the effect in doped magnets with a strong interaction
between charge carriers and the magnetic background. In
Section 3, we discuss the anomalous Hall effect in magnets
and briefly mention the spin Hall effect. The Righi—Leduc
effect (transverse thermal conductivity in metals), the
Senftleben—Beenakker effect (an analog of the Hall effect in
molecular gases), and the phonon Hall effect in dielectrics are
discussed in Sections 4, 5, and 6.

2. Hall effect in metals

When applied to a metal, Eqn (2) takes the form of Ohm’s
law,

Ei=pyJi, pi = pdi+ RewBy, (4)
where E; is the electric field strength, J; is the vector of
the electric current density, p is the resistivity, R is the
Hall constant, 6; is the Kronecker symbol, and e, is the
totally antisymmetric unit tensor. As usual, it is assumed
that J;||x, B;||z. The magnetic field dependence of p, is
found by solving the stationary Boltzmann kinetic
equation,

of e of B

(where V is the velocity and St is the collision operator) by
introducing a small deviation from the equilibrium distribu-
tion function, () = f— £ 1In the linear order in £, Eqn (5)
becomes

of0 e

e Bl
opi +C[VX ]' opi

For the Fermi distribution, the first term is

of©®
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Introducing y;, Q,and 4 as

o7 ofO
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and canceling the factor eE;|0 f(*) /d¢|, we rewrite Eqn (6) in a
more compact form:

Vi=(A+ Q). (8)

In the relaxation time approximation, the self-adjoint
collision operator Q (Qy = Q4;, det Q > 0) is replaced with
1/7. The electric current density is given by

of
0 | = e* (Vi) Ex

Ji= ZeVifI e’ E Z Vit
po

po

where we introduce averaging near the Fermi surface,

ofO
()=> =
po
(For a spherical Fermi surface, (1) =pd/(2n%),

N =p}/(3n?), (1) =3N/(2¢r), where pr and e¢r are the
Fermi momentum and energy.) As a result, the electrical
conductivity tensor takes the form

o = (Vi) . )

Next, we rewrite Eqn (9) by replacing the dynamical terms
with the right-hand side of Eqn (8) and thereby making the
symmetry of this tensor manifest:

Oik = 62<Xk(§2 + /i)Xi> = 6[(/?) + 0-,‘5;> : (10)
The first term in the right-hand side of Eqn (10), al.(,j) =
e2(yQy;),is a symmetric tensor with no components odd in a
magnetic field.

To calculate the part of oy that is linear in the magnetic
field, O’i(k_) =eX (e Ay,

(11)

it suffices to take the zeroth order of the vector y in the field
(here acquiring the meaning of the mean free path),

W =L=0'V. (12)
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The Hall conductivity in a weak field B|| z is given by the
antisymmetric half-difference

) . ) ) e3B 0L,
6.x<'y) = 2 (O—x('y) - UJEX)) - 2¢ <<Ly Vy $:>

oL, oL, oL,
(g (B - ().

In the 7 approximation L; = tV;, we obtain

3.2
o e B/, 20V S/ O
Gx}’ 2¢ (<Vx a[)y + Vy apx V«\ V)' apy .

(13)

The section of a Fermi surface by a plane perpendicular to
the z axis has the curvature

2 2
_ 2eepexy — £58yy — €y Exx

K 32 v (14)
(2 +22)"
e vy ; N
V,-:a,:a—pi7 * = ViK-) =5,
K.(p) = 2V Vyery — Vieyy — V\z Exx

Vi

at a point p (see, e.g., Ref. [25]), and therefore the transverse
conductivity, Eqn (13), can be represented as a weighted
average of curvature (14) [26], which gives

72e’B
‘Tﬁ? =T o <V\sz>a V\|2 =VitVy. (15)
Hence, the Hall constant is found to be
(=)
_ Oy
p}"‘_RB_ia(Jr)aH) . (16)
xx ' Oyy

We note that for a cubic crystal, Eqn (15) can be replaced
with the more symmetric formula
12e3B

oy = Vka),

(17)

where k3 is the sum of the principal curvatures of the three-
dimensional surface,

ky = (8},2)73/2(818[38113 — 4E48pp) - (18)

To the best of our knowledge, the relation given by
Eqns (15) and (16) between the Hall constant and the Fermi
surface curvature has never been published before (except for
Ref. [26], which is not easily accessible).

We also note that in the two-dimensional case, an
alternative arises [27] to represent the Hall conductivity ai}f)
geometrically as the area 4 = [dL x L swept by the vector
L = Vrt as it moves along the Fermi surface.

For an isotropic metal with the spectrum & = p2/(2m),
Eqn (16) produces the usual expression

B 1
"~ Nec'

(19)

For a metal with a two-dimensional narrow band with
nesting,
g=—ty, 7y=cos(pca)+cos(pya),
the curvature and hence the Hall constant are negative

(positive) in the lower (higher) half of the band, and near the
half-filling Ny s, we have

R~ (N—Nys). (20)

If the crystal section perpendicular to the magnetic field
has a rectangular symmetry and if the electron spectrum is
given by

2 2
=Ll P

21’}’11 21’}’12
(=)

then the conductivity tensor component g, ’ can be written as

o)

We therefore conclude that Eqn (19), commonly used to
determine the sign and density of charge carriers, is valid only
in the simplistic undergraduate-level case of free electrons
with the spectrum ¢ = p2/(2m).

The calculation of the Hall effect in a real metal requires
that

(1) the features of the Fermi surface be taken into
account;

(2) the carrier velocity and the Fermi surface curvature be
allowed to be direction-dependent; and

(3) the t approximation be discarded and the conductiv-
ity tensor calculated taking collisional anisotropy into
account in the multimoment approximation (see, e.g.,
Refs [26, 28)).

We do not elaborate here on the last item for brevity.
The most important point—the dependence of the Hall
effect on the Fermi surface curvature—is illustrated by
Eqn (195).

This makes it all the more dubious to apply the t
approximation to systems with strong electron correlations,
including doped antiferromagnets and high-temperature
superconductors (HTSCs).

The strong coupling of charge carriers to the magnetic
spin background results in the bare carrier (which we treat as
a hole, similarly to the cases of lanthanum and yttrium
HTSCs) being ‘dressed’ by spin excitations, thus markedly
changing the bare spectrum. The hole is scattered on the spin
subsystem, exciting a spin wave

S¢ = exp(~iqR)Sg,
R

with & = x, y, z being the polarization direction. The scatter-
ing is described by the interaction

2 i A
Hin = JZ icq, 9, Sq 0,7, M 5
k.q

where Jis the spin—hole coupling strength and ¢* are the Pauli
matrices. The ‘dressed’ hole ay, is a quasiparticle that can be
viewed as a superposition of the states of a bare hole with spin
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excitations,

&ka = U (k)akn’ + Z uj (k7 q)S(rO_:a’ak*Q«al
q

+3 w(k,q.q)SS) (0% ")t qg .o+, (22)
q.q'

with certain coefficients u;(k,q,...) determined by the
structure of the magnetic background. In this case, solving
the Boltzmann equation requires the use of the multimoment
approximation. Notably, the choice of the moments is not
unique; to give an example, polynomials in the velocity
components and their derivatives can be used. When treated
in this way, the Hall effect acquires a temperature depen-
dence. An implementation of this approach is described in
detail in Refs [29-32].

3. Anomalous Hall effect in ferromagnets

We next consider the transverse electrical conductivity in
ferromagnets — the so-called anomalous Hall effect (AHE)
first observed by Kikoin [33, 34]. The AHE is several orders
of magnitude stronger than the classical Hall effect. In
ferromagnets, the strong SO coupling HY ~ SL operates
in addition to the Lorentz force (see, e.g., Ref. [35]).

A point to note is that the orbital momentum L = r x p of
conduction electrons does not reduce to the orbital momen-
tum of the atoms. The simplest possible AHE mechanism is
due to the coupling of conduction electrons to the coherent
subsystem of spontaneous magnetic moments; it manifests
itself as an effective (molecular) Weiss field, which is
proportional to the spontaneous magnetization of the body,
B = yM, and is much stronger than B. The description of
electron motion is then modified by replacing the Lorentz
force term in Eqn (8) with the following expression containing
the Weiss field:

AM :2 IV x yM] (23)

and the transverse component of the electrical resistivity
becomes

v _ M
pyx - NC"C . (24)
This dynamical mechanism results from the effect of the
average magnetization on the trajectory of a conduction
electron.

More interesting is the AHE mechanism associated with
the SO anisotropy of electron scattering by the magnetic
moments M of a ferromagnetic lattice. This dissipative
mechanism was treated theoretically in Refs [19-21, 24] (see
also review [36]) and arises due to the SO scattering of
conduction electrons on fluctuations of the magnetic
moments of inner-shell electrons. The magnitude of the effect
is estimated by going beyond the Born approximation in
considering scattering (i.e., by calculating through the second
order in the potential interaction with impurities, # ™) and
through the linear order in H D).

Next, the dissipative part of the Hall current is obtained
by means of a calculation that neglects dynamical mechanism
(23) in Eqn (8) but in which the collision integral includes not
only the potential scattering on impurities Q®) but also the

M-linear contribution from the SO scattering Q %), giving

Vi=(Q" + Q6. (25)

Conductivity tensor (9) can be written in the form
o = > (Vi) = e (1 (@ + @B = oy + o-iScSL) :
(26)
where al.(,?) = (e2/7){x,x;) is a symmetric M-even tensor. The
tensor

oi = (12", (27)
transforms under coordinate rotations as the product of two
polar vectors () and is linear in M. Therefore, neglecting the
anisotropy of the medium, M is the dual vector to the tensor
(ka?(s” 1), and the antisymmetric part of the conductivity
tensor can be written as [18]

O-i'<1\:9L) — ﬁeiklMl s 0)€§L> — _ﬂM )

(28)

Below the Curie temperature, the vector M is the
spontaneous magnetic moment; in the paramagnetic
domain, M = yH.

To determine which of the mechanisms considered above
is more important, the coefficients y in Eqn (24) and f in
Eqn (28) should be calculated for a specific SO interaction
model. This, however, is beyond the scope of the present
review (see Refs [19-21, 24]).

We mention the so-called spin Hall effect predicted
theoretically by Dyakonov and Perel [37, 38] as far back as
1971 and thus named by Hirsch [39] in 1999. Similar to the
AHE, the spin Hall effect does not require the presence of an
external magnetic field. There are two varieties of this effect,
external and internal. The former arises due to the anisotropy
of the electron scattering by Coulomb centers, the anisotropy
originating from the SO coupling. As the current flows
through the material, electrons with spin up relative to the
plane scatter predominantly to the right and those with spin
down scatter to the left, as in the anomalous Hall effect. As a
result, one side edge acquires an excess of spin-up electrons,
and the other of spin-down electrons, similar to the excess
charge in the ordinary Hall effect. For the internal spin effect,
it is the SO coupling which pushes the opposite-spin carriers
apart.

The existence of the spin Hall effect has recently been
demonstrated experimentally not only in semiconductors
[40—42] but also in metals [43—45].

4. Righi—Leduc effect

We now consider the transverse thermal conductivity in
metals— the anomalous Righi-Leduc effect, which was
discovered simultaneously by the Italian physicist Augusto
Righi and the French physicist Sylvester Leduc. Their two
1887 papers, ““Sulla conducibilita calorifica del bismuto posto
in un campo magnetico” (““Thermal conductivity of bismuth
in a magnetic field”) by Righi [46] and ““Sur la conductibilité
calorifique du bismuth dans un champ magnétique et la
déviation des lignes isothermes” (“‘On the calorific conduct-
ibility of bismuth in a magnetic field, and on the deviation of
the isothermal lines”’) by Leduc [47], are commonly referred
to as pioneering, although in actual fact both physicists
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started studying and reporting on the effect in 1883—1884 [48—
54] (here, references are given only for the first publications,
and reprints are excluded).

Like Edwin Hall, Righi and Leduc did quite a consider-
able amount of original work, enough for us to avoid citing it
in full. An exhaustive bibliography drawing together the early
literature on galvanomagnetic and thermomagnetic phenom-
ena can be found in book [55].

In considering the transverse thermal conductivity in
metals, the logarithm of the temperature gradient and the
heat flow play the respective roles of a generalized force and a
generalized flow. Linearized Boltzmann equation (6) should
be modified by replacing the first term according to the
equation

10
(V)70 = - vy L2
which gives
o1 o or
(¢ — w)(VV1In T)‘ éb +% [V x B, é[ 4 stsm
(29)
Defining
- (0)
Vo= 1Vi. V=T L

reduces this problem to that considered in Section 2, but this
time, instead of the current density, we have to find the heat
flux density carried by electrons (see Ref. [56]):

qi= Z( wWVif = (Viz)(VIn T)- (30)
po

Equation (8) is replaced by

Vi= Az + Q1 (31)

and Eqn (11) by the expression for the thermal conductivity
coefficient x,

— 1 0 - 0
) == A", (32)

where the function ;(,.(O) is a solution of the Boltzmann
equation in the absence of a magnetic field,

The calculations are similar to those in Section 2 and are
not repeated here. In Section 5, we discuss the Senftleben—
Beenakker effect.

5. Senftleben—Beenakker effect

We consider the Senftleben—Beenakker effect, a molecular gas
analog of the Hall effect [57-61]. In metals, the magnetic field
(the Lorentz force) acts directly on the orbital motion of
particles (electrons). In gases, the effect of the field on
molecular motion is indirect, via the subsystem of the
molecular rotational moments. The field causes these to
precess, and this precession changes the collision rate of
nonspherical molecules and causes the molecular motion to
relax in a field-dependent manner.

We find the thermal conductivity tensor by solving the
thermal conduction problem for a gas with rotational degrees
of freedom in a magnetic field,
of

+ M x B] ==+ St f=0.

(VV) £ ™M

(33)

Unlike Eqn (6), the Boltzmann equation for metals in
which the magnetic Lorentz force acts on the electron
momentum, Eqn (33) involves the moment of force of the
molecular rotation moment y[M x BJ. The local equilibrium
distribution is then the Maxwell-Boltzmann function at
constant pressure,

D . 1 (mV? n M?
o 1"\ "2 "))
and the temperature gradient plays the role of the electric field

strength. The distribution is sought in the form
=191+ (VInT)y), and the ‘field’ term in Eqn (33) is

written as
). 69

The collision integral in the linear order in VT 'is presented
in the form

/O = const (34)

=fO(VInT)Q, Q=

2 2

T\72 T2

Stf=(VInT)fOQp), Qu=.

Introducing the precession operator A = y[M x B]d/dM for
brevity, we rewrite Eqn (33) as

SONVInT), 0 +fOVInT) Ay, =
Qi = Qs .

—OV;1n T(Qy);,

Canceling by f(©(VIn T'), we obtain [cf. Eqn (8)]
0i=—(Q+A)y (36)

The heat flow in the rest frame of the gas as a whole is

mVv?: M?* 7
JdFV( 5 +7—§T)f

= JdF TO;(1+ (VInT) ) /¥ = =4 (VIn T,

1

()= JdrTf“’), ar=-- Mdp, (1)=TN.

In the element of integration over the rotation moments,

n =1 for two-atomic molecules and n = 0 for polyatomic
ones.

In using the method of moments to find the magnetic

dependence of the tensor

xik = —T(Qixk) » (37)
it should be taken into account that the vector function y,
depends on the rotation moment, which requires using several
moments, making the calculation is fairly tedious. An easier
way to obtain the answer is to transform Eqn (37) into a more
symmetric form [as in Eqn (10)] by simply replacing in (37) the
left-hand side of Eqn (36) with the right-hand side, with the
result

Qi) = <Xk(Q + /i)Xi> . (38)

Kk =
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The tensor %i(]?) = (1 Qy;) is manifestly symmetric and

contributes nothing to the B-linear part of the heat flow. An
effect odd in the field can only result from
1 .
) = () (39)
Here, we can use the solution of Eqn (36) of the zeroth order
in the field (1) = F),

QF = -Q. (40)

The tensor xlg) is nonzero only if AF # 0, which requires that
the vector F be M-dependent.

The quantity Q is a polar vector [see Eqn (35)] and is
independent of the direction of M. However, the solution F of
Eqn (40) depends on the direction of M if the collision
operator Q involves nonspherical collisions. This means that
in addition to the contribution from the t approximation,
F (© = —7Q, the solution of Eqn (40) has a part F ") thatis a
polar vector odd in V and even in M. The simplest possible M-
dependent vector has the form

m=¢(VM)M. (41)
This vector is known in the literature as the Kagan vector.

It should be expected that a deformation of the distribu-
tion of this form is sufficiently close to the exact solution of
Eqn (40). The reason is that the operator Q involves
integration over the directions of V and M, resulting in all
higher harmonics being smoothed and reduced to zero. There
is no reason why the dependence we are discussing should
have a more complex structure than Eqn (41) (see Ref. [56]).

To find the parameter &, we should — as in the discussion
of the phonon Hall effect in Section 6 — go beyond the Born
approximation in calculating the collision rate entering the
collision operator Q. To avoid repetition, we omit this
procedure here.

In this model, tensor (39) has the form

N 0
%i(kl) = <Fk( 7)'Veabz[ubB: oM Fi<m>>
a

MM,
M4

= fzyeaszZ < (MV)((MV)Sm + VaM,-)> . (42)

which, when averaged over the velocity directions, yields
MM,
3IM4
MM, y?

KR Bqi + e MkaMaMi> .

%l(kl) = _ézyeab:Bz < V2(M26Ui + MaM’)>

= _fzyeaszz < Vz

Multiplying e, by the product of four M immediately yields
zero. The first term is easily averaged over the directions of
the rotation moment to give the sought effect:

L _ 1. ,, LTN _,
i = 9 Eyei:B-(V7) = 9 m ¢ yein:B: .

Explicitly, we have

1 TN
q=§—62y[VT>< B].
m
An oxygen molecule has the spin S=1 and three
projections S. = 0,+1 on the total moment J, which is close
to the rotational moment. The components with S. = +1

have gyromagnetic ratios of opposite signs and do not
produce an odd effect. An effect linear in the field comes
from the component S, = 0.

In a gas of diamagnetic molecules, in the case S = 0, the
magnetic moment of a molecule is due to the rotation of
nuclei, and y ~ efi/(2Mc). Although this is a very small
moment, the high accuracy of measuring the heat conductiv-
ity allows observing the transverse heat flow in a magnetic
field even in a gas of diamagnetic molecules.

We also note that the effect considered in Section 4 — the
appearance in molecular gases of a heat flow perpendicular to
both the temperature gradient and the magnetic field —can
be extended to include solids in which molecules vibrating
around lattice sites are at the same time free to rotate at
temperatures above the freezing temperature of the rotational
degrees of freedom. Clearly, heat is transmitted not by
molecules tied to the sites but by phonons. It was shown in
[62] that in molecular crystals in which quasifree rotation of
molecules is possible in a wide temperature range, a heat flow
perpendicular to the applied magnetic field and temperature
gradient should also be observed.

6. Phonon Hall effect

Finally, there is one more effect to consider, which was
discovered in the late 20th century and which consists in the
appearance of a transverse heat flow in a dielectric due to the
phonon flow on the background of the spin subsystem.

This analog of the Hall effect was recently discovered [63—
65] in the dielectric compound Tb3;GasOy,. The authors of
Refs [63-65] observed that the heat flow has a component
perpendicular to both the temperature gradient and the field,
q1 ~ VT x B, and named this phenomenon the phonon Hall
effect (PHE). Dielectrics have no free charge carriers, and
therefore the physical nature of this phenomenon is signifi-
cantly different from that of the Hall effect mechanism in
metals. Nor are there present rotational degrees of freedom
that could lead to a process similar to the Beenakker effect in
gases (see Section 5) [57-60]. The authors of Ref. [63] believed
that the PHE is due to the SO coupling of phonons and the
magnetized spins of the paramagnetic ions. In this sense, the
PHE is akin to the AHE in ferromagnets.

In Refs [33, 34, 66—68], the AHE is related to the uniform
part of the SO interaction, a part that leads to the
renormalization of the electron group velocities (the Berry
phase). This idea was used in [69] to describe the PHE.
However, the renormalization of ion group velocities cannot
lead to the PHE, because ions, unlike quasifree electrons,
vibrate near the lattice sites and averaging the SO renorma-
lization of ion velocities always yields zero. In the linear order
in the SO coupling, the phonon velocity is not renormalized
(see below), and the effect of the SO coupling on the heat
conductance tensor can manifest itself through the elliptic
renormalization of the phonon polarization [22, 70, 71]
(magnetoacoustic effect). This mechanism is very different
from those discussed above and is to be considered last.
Closer to the previous mechanism is that of the PHE, in
which this process is viewed, by analogy with the AHE, as a
kinetic phenomenon with an anisotropic SO scattering (see
Section 3).

We consider a model where a scattered phonon retains its
mode number. In this case, the overall heat conductivity of
the dielectric can be represented as the sum of the heat
conductivities of each individual mode.
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As already stressed, the magnetic field does not exert a
direct effect on the motion of phonons, and the Boltzmann
equation has the form

(0)
‘ or +St/W =

o(VVIn T (43)

where f(© is the Bose—Einstein distribution,

G f(0>
‘ Oe

:lf(

) (0)
/041

As before, we introduce

£ = o) L L

Stfh) = V=owV,

©) R
‘% o(VIinTQy) ,

and arrive at the equation of form (25),

Vi=(QO +Q6Hyy, (45)
where Q@ is the collision integral for the scattering of
phonons on impurities without the participation of magnetic
moments (scattering by phonons at low temperatures is
negligibly small), and QY is the contribution from the
spin—phonon scattering. It can be shown that Q¥ appears
already in the Born approximation, and calculating Q%)
requires going beyond the Born approximation linearized
with respect to the SO coupling.

Similarly to ferromagnets [see Eqns (27), (28)], the
transverse part of the conductivity tensor is again found to be

0 | R
=Ly

T %i) ~ CewrM; . (46)

We now treat the PHE as resulting from the influence of
the magnetic field on the phonon polarization (magneto-
acoustic effect). We find the renormalization of the acoustic
phonons due to the SO coupling by taking the self-averaging
of the magnetization (M,, — (M,,) = M) into account on the
scale of the acoustic phonon wavelength.

The Hamiltonian of the spin—phonon interaction has the
form

Hso = —Z([u” X pn],S) s S~M.

n

(47)

We add this to the Hamiltonian of lattice vibrations taken in

the harmonic approximation (uf=u®—u’, Vi =0,
Vg = 0): ‘

Z([u,- x pj,S).

U= S-S
In the harmonic approximation, the classical and quan-
tum equations of motion are identical in form:
v =0 = —iju, H] = _+[u,xs}”, (48)
plt=—ip/Hl =~ Z V;;'b“ii} + [p; x S]“.

J

(49)

The equation for lattice vibrations is obtained as

_ :__Z Vibul 4 200 x S)°. (50)

Here and hereafter, we use the linear approximation to
include the SO coupling.

Solutions of Eqn (50) describe three SO-corrected
acoustic modes, whose spectra and polarizations are deter-
mined by the dispersion relation

oiel = Di’el (51)
where

D = D® +iDf | D = 2wxeu.S. (52)

Dy = Z VP [1 —exp (ikR)], e/ ek = Oy . (53)

The ﬁlfb tensor has the Onsager-Casimir symmetry
D(S) = (D(=S))".

We first treat the problem in the zeroth order in the SO
coupling. In the long-wavelength approximation [72],
/«Lacdbkckd .

1
D" =35> D (kR)* = (54)
R

In the case of a sufficiently high crystal symmetry (cubic,
tetragonal, or rhombic), the nondiagonal elements of the
dynamic matrix satisfy the proportionality relation
D ~ kk, and hence change sign with the sign of k, and
kp, 1.e., on reflection from the corresponding plane in the
reciprocal space. We segregate the nondiagonal terms

§ ab b
Dk ks

b#a

(@i, = D)ey (55)

in dispersion relation (51) (with no SO coupling). The tensor
D is real, and the eigenvectors of Eqn (55) can always be
considered real, which corresponds to linear polarization.

Although the phonon spectrum has been calculated
repeatedly, little or no attention has been paid to phonon
polarization [73]. When the nondiagonal elements D¢ change
sign, it follows from Eqn (55) that the relative sign of the
polarization vector components also changes sign. This
property can be written as

ep. = e/ (k)signk,, (56)

which, when substituted in dispersion relation (56), gives

b
609 = X D!

b#a

(@i, = D) (57)

Because the |DZ| in the right-hand side are absolute values,
the frequency wy, and the unit vector é¢(k) are both invariant
under reflection.

We note that the polarization vector ey is an element of a
displacement vector, i.e., a polar vector, similar to the phonon
vector k. Therefore, Eqn (56) can be replaced by the relation
e, ~ k. The commonly accepted relation e_yx = ey [74] seems
to be artificial.

In the presence of nondiagonal elements D, the zeroth-
order phonon spectrum is almost always nondegenerate.



May 2015

The Hall effect and its analogs 453

Outside the degeneration regions, the SO contribution to the
spectrum and polarization renormalizations can be treated in
the linear order. Because the SO contribution to dispersion
equation (51) is given by the imaginary tensor i8D, the
renormalization of the polarization vector should be imagin-
ary, and the complex nature of the renormalized polarization
vector e + ide! indicates that the renormalized wave has an
‘elliptic’ nature. It is this fact which ultimately leads to the
PHE.

The corrections to the spectrum dwy and to the polariza-
tion vector de are found to be

(w? + 20,80y) (e +1ide) =

D (el +ide?) +i(8D)e?

(58)

The real part of Eqn (58) yields dw; = 0, which means that the
phonon spectrum and the group velocity cx, = Owy,/Ok are
not renormalized. The imaginary part of Eqn (58) determines
the polarization renormalization,

(0?8 — D™)deb = (3D%)e? .
Hence,
2 , S 2 S
b, = 2l xefS 1 dodlea xelS s,
Wy — Wy Wy — W5

Essentially, all acoustic modes contribute to the renormaliza-
tion de;.

The secondary-quantized phonon Hamiltonian is given
by

_ +
H= E Wy 5
ks

and the displacement vector and its time derivative

a

1 . x
ul = 7\/% exp (ikR;) (ufsa, + ufa’y,)

| 1

a a

Uy, = € =
b 2Mao
a

ou/'
vy =

! ot

(60)

1 . . ”
= \/—TVZ(—I‘UM) 289 (1kRi)(“1fsak; - uik,ra:rks) )
ks

are expressed in terms of the phonon absorption and phonon
creation operators da and ajks.

We note that as the SO coupling is switched on, the
normal-mode expansion retains its form for velocity of the
atom and not for the momentum, as the authors of [69]
believe.

An explicit dependence on the SO interaction appears
only in the renormalization of the polarization vector.
Because the phonon spectrum wy, and the group velocity
(ks = Owgs/Ok are not renormalized, it follows that to
describe the PHE it is necessary to modify the standard
expression for the phonon energy flow g = >, - Wkscks fis bY
including the SO coupling. More specifically, it is necessary,
as shown by Hardy [75], to derive the flow relation anew from
the quantum expression for the vibration energy density of
the crystal. The average phonon energy flow density in the
coordinate representation is then given by

/ — b
= 2V§ XD

(61)

where x;; = x; —
and jth sites.

We note that the quantity v} in Eqn (61) is not the ion
momentum divided by its mass, but the velocity of this ion,
v? = 0h;/opt = p? /m + (u; x S)”. In the presence of the SO
coupling, these two quantities are not the same.

Passing to the momentum representation in Eqn (61)
amounts to the replacement x,j — 10/0k7. The energy flow
operator takes the form

x;, and x; and x; are the coordinates of the ith

D! ax +
eksaks + e*ksafks)

= V. D{
ksy’ Wks

X (ehks,a ks’ — ek Lan)) .

After averaging this operator over the states diagonal in the
phonon number, the anomalous averages (axsa_ky) and
(a®a) can be dropped. Changing the summation nota-
tion, we arrive at the result

" 1 Wk, ks’ » ok
i =gy | (2 20 wiitheised | .
k‘l\'/ S o)
‘ (62)

In the zeroth order in the SO coupling, Eqn (62) takes the
usual form for the phonon energy flow.

Because deyy = —0ey,, efi = ef,, the terms linear in de in
Eqn (62) are given by

Db | Wk ks’
‘]so 4Vzvk < P s, )
kss’ ks

X [_(Belfs)ekx’ + el?s(seks’)] <ak+saks’> .

In this integral, all factors except de are of the zeroth order in
the magnetization S.

The last factor is an element of the one-particle density
matrix (a}ay) ~ VT nondiagonal in modes, which is
calculated by writing an equation similar to the evolution
equation for the Green’s function, but without the inhomo-
geneous term. After proper manipulations, we necessarily
arrive at the result that we obtained in Sections 3-5, which
states that the SO part of the heat flow density is given by

(qdo) = E[Sx VT

7. Conclusion

The search is still on for effects similar to the classical time-
honored Hall effect discovered 136 years ago.

The theory of the magnon (and, in principle, of the
spinon) Hall effect was considered in [76, 77]. The experi-
mental realization of the magnon Hall effect (or more
precisely, the separation of the magnon and phonon con-
tributions) in Lu,; V,07 was reported in [78]. Instead of (or in
addition to) the Lorentz force, this situation involves spin
chirality defined for three sites i, j, k as S; (S; x Si). Due to
the phase shift acquired along the contour i, j, k, the nonzero
chirality is equivalent to a magnetic field, thus leading to the
Hall deviation. Nonzero chirality may be due to frustration
(either of geometric origin, as in triangular, Kagome, and
similar lattices, or caused by competition between the nearest-
neighbor and next-to-nearest-neighbor interactions), or,
alternatively, it may be due to the Dzyaloshinskii-Moriya
interaction. A similar line of research is pursued in Refs [79—
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86] which, however, avoid using the term ‘magnon Hall effect’
and speak instead of a chirality-induced or topological Hall
effect. We do not discuss this subject in greater detail.
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