
Abstract. New proton±proton collision data from the LHC have
considerably extended the energy range over which the struc-
ture of the proton±proton interaction region can be studied. In
this paper, we combine the unitarity relation with experimental
data on elastic scattering in the diffraction cone to show how the
shape and the darkness of the inelastic interaction region of
colliding protons change with increasing the proton energy. In
particular, at LHC energies, small-impact-parameter collisions
become fully absorptive, with some implications for inelastic
processes as well. The possibility of changing from the black-
core scenario at LHC energies to the fully transparent scenario
at higher energies is discussedÐa phenomenon that implies
changing from the black disk to black toroid terminology. As
the asymptotic behavior is approached, a different regime may
arise. The parameter determining the opacity of central colli-
sions also crucially affects the differential cross section of
elastic scattering outside the diffraction cone, where all phe-
nomenological models fail for the LHC energies. It is in this
region where the ratio of the real to imaginary part of the elastic
scattering amplitude in nonforward scattering becomes a deci-
sive factor, as indeed it should according to the unitarity condi-
tion. Our results make it possible for the first time to estimate
this ratio outside the diffraction cone by comparing with data
for LHC energies, and it turns out to be drastically different
from the values measured at forward scattering. Moreover,
both real and imaginary parts are found to behave differently
in different phenomenological models and in the approach based
on the unitarity condition. This problem is still to be resolved.
All the conclusions are made solely in the framework of the
indubitable unitarity condition using experimental data on

elastic proton scattering in the diffraction cone, without resort-
ing to other theoretical methods, such as quantum chromo-
dynamics or phenomenological models.

Keywords: Protons, interaction region, elastic scattering, inelastic
processes, unitarity condition

1. Introduction

In this paper, we concentrate on two problems that have
become of topical interest in connection with experiments on
particle interactions done at the highest available energies of
the Large Hadron Collider (LHC) at CERN (Switzerland).
To be more specific, our knowledge of the shape and opacity
of the interaction region of two colliding protons and the
behavior of their elastic scattering amplitude at various
transferred momenta are discussed here. We try to present
them in the way most suitable to beginners.

The general common approach to both problems, con-
sidering the irrefutable statement that the total probability of
all possible processes must be equal to 1, is used in what
follows. It is called the unitarity condition and is applied to
information extracted from experiments on the elastic
scattering of protons at small angles within the diffraction
cone for the first problem and at larger angles outside the cone
for the second problem. The generality of the approach
guarantees the certainty of the obtained results. At the same
time, it cannot of course substitute for knowledge of the
dynamics of the process but helps reach some interesting
conclusions about the problems to be approached. That is
especially important in view of the limited applicability of
QCD to a quantitative description of experimental data. In
addition, some results of phenomenological models are
briefly discussed. The use in the present paper of only these
two indubitable ingredientsÐ the unitarity condition and
experimental results on elastic scatteringÐ is decisive for
providing confidence in the derived conclusions.

Why are these problems so important?
Knowledge of the elastic scattering amplitude in a wide

range of energies and scattering angles would provide some
guides for QCD, which has barely been applied yet to this
process. Several attempts to use diagrams of the elastic
scattering of hadrons containing incoherent quarks and
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gluons were made only in the asymptotic freedom regime of
QCD at large transverse momenta with some phenomenolo-
gical arguments added. The small-angle scattering would
likely require taking the coherent states of partons in the
initial protons into account. The lack of this knowledge
prevents further progress in this field. Any guesses from
experiment about the behavior of the real and imaginary
parts of the amplitude are very desirable.

The parton content of hadrons and their spatial interac-
tion region help visualize the collision processes and compare
them at different energies. The decisive role is here played by
information on elastic scattering at rather small angles in the
diffraction cone, from which we learn about the special
regime with the black central core of the interaction region
of protons with a total energy of 7 TeV in the center-of-mass
system, observed at the LHC. Notably, this knowledge helps
in developing some models of inelastic processes when their
contribution to the unitarity relation is disentangled from
elastic terms. Moreover, one can speculate on the further
evolution of the spatial region with energy leading to some
intriguing predictions.

Definite conclusions about the transverse momentum
dependence (but, unfortunately, not about the energy
dependence) of the elastic scattering amplitude at larger
angles were obtained from the unitarity condition, albeit
with some adjustable parameters. Fits of experimental data
in this region require a noticeably enhanced role for the real
part of the amplitude compared to the diffraction cone. As
regards phenomenological models, their first attempts to
predict the outcome of LHC experiments outside the
diffraction cone failed. Their special feature is the zero of
the imaginary part at the position of the dip of the differential
cross section. No such zero is required by the unitarity
condition. To date, there has been no consensus among
these approaches about the behavior of the elastic scattering
amplitude there.

2. Main facts and relations

Colliding high-energy hadrons can either scatter elastically
when only two of them appear at the final stage without

changing their nature or produce some new particles in
inelastic processes. The kinematics of elastic scattering are
very simple. They are described by two variables: the squared
total energy s � 4E 2, where E is the energy of one of the
partners in the center-of-mass system, and the four-momen-
tum transfer squared, ÿt � 2p 2�1ÿ cos y�, with y denoting
the scattering angle and p the momentum in the center-of-
mass system. For inelastic processes, the kinematics are much
more complicated. Therefore, to avoid some complications, it
is quite natural to try to gain some knowledge about the
dynamics of the whole process at the first stage, starting from
an analysis of elastic scattering and using a general relation,
the unitarity condition. This follows from the irrefutable
statement that the total probability of all (elastic � inelastic)
processes must be equal to 1. In this way, it relates these two
channels of the reaction, albeit in a rather average, integrated
form. This is the main thrust of the approach adopted in this
paper.

The experimental data about elastic scattering at a given
energy are not very abundant. The only information about
this process comes from the measurement of the differential
cross section as a function of the transferred momentum at
the experimentally available values of t and of the ratio of the
real and imaginary parts of the elastic scattering amplitude
f �s; t� r�s; t� � Re f �s; t�=Im f �s; t� just in the forward direc-
tion t � 0 r�s; 0� � r0 but not at any other values of t. This
ratio is obtained from studies of interference between the
nuclear andCoulomb contributions to the amplitude f , which
becomes practically noticeable only in the near-forward
direction.

The differential cross section is related to the scattering
amplitude f �s; t� as

ds
dt
� �� f �s; t���2 : �1�

Thus, from measurements of the differential cross section at
any energy of colliding particles, we acquire information only
about the modulus of the amplitude at the experimentally
available values of t. Typical shapes of the differential cross
section at small and larger values of jtj are demonstrated for
the LHC energy

��
s
p � 7 TeV in Fig. 1, borrowed from [1, 2].
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Figure 1.Differential cross section of elastic proton±proton scattering at the energy
��
s
p � 7 TeVmeasured by the TOTEM (TOTal Elastic and diffractive

cross section Measurement) collaboration. (a) The region of the diffraction cone with the jtj-exponential decrease [1]. (b) The region beyond the

diffraction peak [2]. The predictions of five models are demonstrated.
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Themost prominent feature of the plots in Fig. 1 is the fast
decrease in the differential cross section with increasing the
transferred momentum jtj. As a first approximation at
present energies, it can be described at comparatively small
transferred momenta in Fig. 1a by the exponential shape with
the slope B such that

ds
dt
� s 2

t

16p
exp

ÿÿBjtj� ; �2�

where st denotes the total cross section. This region is called
the diffraction peak. The peak becomes higher and its width
shrinks with increasing energy, because both the cross section
and the slope increase with energy. The slope slightly depends
on t if more careful fits of experimental data are attempted, as
seen in Fig. 1a. It diminishes somewhat at energies up to the
ISR (Intersecting Storage Rings) energies with increasing the
transferred momentum, while it starts increasing at the LHC
energy 7 TeV (Fig. 1a). Moreover, some oscillations around
the exponential were found in [3] at the energy

��
s
p � 11 GeV.

A review of the early data can be found in [4]. Interesting in
and of themselves, these details are not very important for our
approach because only integrals of (2) are used in what
follows, and such details can then be taken into account by a
slight variation of B. In fact, the values of B at small
jtj < 0:3 GeV2 are important.

At larger values of jtj outside the peak, we observe the dip
and slower decrease in the plots with jtj than in the diffraction
cone (Fig. 1b). We note that the normalization of the
amplitude is fixed by Eqns (1) and (2).

To separate the real and imaginary parts of the amplitude
from the ratio r, one needs help from theorists. On the
theoretical side, the most reliable information comes from
the unitarity condition. The unitarity of the S-matrix,
SS� � 1, imposes definite requirements on the behavior of
the elastic scattering amplitude f �s; t� and the amplitudes of
inelastic processes Mi. In the s-channel, this behavior is
described as [5, 6]

Im f �p; y� � I2�p; y� � g�p; y�

� s

8p3=2

��
dy1 dy2 sin y1 sin y2 f �p; y1� f ��p; y2�

� 1������������������������������������������������������������������������������������������
cos yÿ cos �y1 � y2�

��
cos �y1ÿ y2� ÿ cos y

�q � g�p; y� :

�3�
The integration region in (3) is determined by the conditions

jy1 ÿ y2j4y ; y4y1 � y2 4 2pÿ y : �4�

The nonlinear integral term represents the two-particle
intermediate states of the incoming particles. The function

g�p; y� /
X
i

�
dFi MiM

�
i �y� �5�

represents the shadowing contribution of the inelastic
processes to the imaginary part of the elastic scattering
amplitude. Following [7], it is called the overlap function. It
defines the overlap within the corresponding phase space dFi

between thematrix elementMi of the ith inelastic channel and
its conjugate counterpart with the collision axis of initial
particles turned through the proton scattering angle y in the

elastic process. It is positive at y � 0 but can change sign at
y 6� 0 due to the relative phases of inelastic matrix elements
Mi.

At t � 0, relation (3) leads to the optical theorem

Im f �s; 0� � st
4
���
p
p �6�

and to the general statement that the total cross section is the
sum of cross sections of elastic and inelastic processes,

st � sel � sin ; �7�

i.e., that the total probability of all processes is equal to unity.
This allows estimating the real and imaginary parts

separately just in the forward direction t � 0 after the values
of r0 and st are measured.

The real and imaginary parts of the amplitude are in
general related at any t by the dispersion relations as parts of
an analytic function. This approach was used for predictions
of the energy behavior of r0 and was only successful at the
qualitative level, because its accuracy depends on extrapola-
tions of Im f �s; 0� and, consequently, of st to higher energies.
A similar treatment at arbitrary values of t requires some
additional assumptions, and the conclusions strongly depend
on them.

The theoretical approaches differ in ascribing different
roles for the relative contributions of the real and imaginary
parts at t 6� 0. Unfortunately, the available tools are rather
modest and cannot exploit the power of QCD at full
strength. Elastic scattering implies that the same hadrons
are observed in the final state, which means that the partons
inside them act collectively, while QCD methods are
applicable to incoherent interactions of individual partons
at high transferred momenta. Therefore, the phenomenolo-
gical models and some insights from the unitarity relation
are mostly used.

From experiment, we also know the energy behavior of
the real and imaginary parts of the amplitude (or their ratio
r�s; 0� � r0) in the forward direction t � 0. At high energies,
this ratio is rather small. For proton±proton scattering, it is
negative at lower energies (reaching values about ÿ0:3),
becomes equal to zero at energies about 100 GeV, exhibits a
positive maximum and decreases to about 0.1 at the LHC
energy 7 TeV. Most phenomenological models aim to fit
experimental data on the differential cross section and the
ratio r�s; 0� in a wide energy range and to predict them at
higher energies. We still cannot claim that the desired aim has
been achieved, as can be seen, in particular, in Fig. 1b, where
the failure of predictions of five theoretical models at 7 TeV is
shown, even though all of them were quite successful at lower
energies.

This situation is described in more detail in review paper
[6], and we do not repeat it here. Instead, we concentrate on
the two important problems described above.

3. Geometry of the interaction region

The structure of protons is one of the main problems in
particle physics. It is well known [8] that there is currently a
� 7s disagreement between the proton charge radius deter-
mined frommuonic hydrogen and that from electron±proton
systems: atomic hydrogen and eÿp elastic scattering. The
partonic structure of protons is successfully studied in deep
inelastic electron±proton collisions. The point-like nature is
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ascribed to the colliding electron. Therefore, the interaction
region is defined by the proton size. Its size and opacity (or
darkness) are determined by the Fourier image of the
generalized parton distribution functions of protons depend-
ing on the total energy and the virtuality of the exchanged
photonmeasured in experiment. Both the size and the opacity
evolve with energy, because the parton content of the proton
evolves.

In proton±proton, as well as in proton±nucleus and
nucleus±nucleus collisions, both objects have some compli-
cated internal structure. The partons of one of them can
interact with many partons of the other, distributed somehow
within some spatial volume. Moreover, there can be coherent
interactions of some groups of partons. It is therefore difficult
to disentangle the individual contributions. The correlation
femtoscopy, using its correspondence to the Hanbury±Brown
and Twiss intensity interferometry, well known in astrophy-
sics, is widely used in studies of the space±time structure in
inelastic processes. Correlations between the momenta of
newly created particles (mostly pions) reveal the spatial
structure of the interaction region. This technique is espe-
cially successful in application to nuclei but meets some
problems [9] for smaller objects like protons, due to the
Heisenberg uncertainty relation. The uncertainty limit is
about 1 fm for current high-energy experiments. The
coherence of individual sources should be taken into account
for such systems.

Here, we show that it is possible to study the spatial
structure of the interaction region of colliding protons even at
smaller distances using information about their elastic
scattering. We discuss the transverse size of this region. We
do not consider the longitudinal and temporal sizes, because
they are closely related to the model-dependent assumptions
on the partonic structure of protons (the relative contribu-
tions of partons with definite shares of the longitudinal
momentum). In fact, the role of the generalized parton
distribution functions integrated over the longitudinal
momenta is to be studied. Experimental results on the
properties of the diffraction cone, which automatically
account for the nonperturbative dynamics of the process
and coherence of unknown internal sources, determine the
main features of the transverse structure. The parameters
obtained from experimental data on elastic processes are
directly related to the properties of this region such as its
transverse size and opacity (or blackness). Their energy
dependence determines its evolution with the collision energy.

To define the geometry of the collision, all characteristics
defined in terms of the angle y and the transferredmomentum
t must be reexpressed in terms of the transverse distance
between the centers of the colliding protons, called the impact
parameter b. This can be easily done by the Fourier±Bessel
transform of the amplitude f , which retranslates the
momentum data to the transverse space features and is
written as

iG�s; b� � 1

2
���
p
p
�1
0

djtj f �s; t� J0
ÿ
b
�����
jtj

p �
; �8�

where J0 is the Bessel function.
The unitarity condition in the b-representation is given by

G�s; b� � 2ReG�s; b� ÿ ��G�s; b���2 : �9�

The left-hand side (the overlap function in the b-representa-
tion) describes the transverse impact-parameter profile of

inelastic collisions of protons. It is just the Fourier±Bessel
transform of the overlap function g. It satisfies the inequal-
ities 04G�s; b�4 1 and determines how absorptive the
interaction region is, depending on the impact parameter
(with G � 1 for full absorption and G � 0 for complete
transparency). The profile of elastic processes is determined
by the subtrahend in Eqn (9). If G�s; b� is integrated over the
impact parameter, it leads to the cross section of inelastic
processes. The terms in the right-hand side would respectively
produce the total cross section and the elastic cross section, as
should be the case according to Eqn (7). The overlap function
is often shown in relation with the opacity (or the eikonal
phase) O�s; b�, such that G�s; b� � 1ÿ exp �ÿO�s; b��. Thus,
full absorption corresponds to O � 1 and complete trans-
parency to O � 0.

Even though the impact parameter cannot be measured
directly, the geometric picture is instructive and closely
related to experimentally found characteristics such as the
ratio of the diffraction cone slope to the total cross section,
which provides immediate guides to its energy evolution. The
impact parameter profiles of elastic and inelastic hadron
collisions are derived as Fourier±Bessel transforms of
measurable data. They help us visualize the geometric picture
of partonic interactions, indicating their spatial extension and
the intensity. Our intuitive guesses about the space±time
development of these processes can be corrected in this way.

The diffraction cone contributes mostly to the Fourier±
Bessel transform of the amplitude. Using the above formulas,
we can write the dimensionless quantity G as

iG�s; b� � st
8p

�1
0

djtj exp
�
ÿBjtj

2

�ÿ
i� r�s; t�� J0ÿb �����

jtj
p �

:

�10�

Here, the diffraction cone approximation (2) is inserted.
From this,

ReG�s; b� � 1

Z
exp

�
ÿ b 2

2B

�
�11�

is calculated, where we introduce the dimensionless ratio of
the cone slope (or the elastic cross section) to the total cross
section:

Z � 4pB
st
� st

4sel
: �12�

This dependence on the impact parameter was used, in
particular, in [10]. Possible small deviations from the
exponential behavior (see, e.g., [3, 4]) inside the cone barely
change the value of the integral contribution. The differential
cross section is quite small outside the diffraction peak and
does not influence the impact parameter profileG. Therefore,
our first problem turns out to be practically independent of
the second problem.

As was mentioned, the ratio r�s; t� is very small at t � 0,
and we first neglect it and obtain

G�s; b� � 2

Z
exp

�
ÿ b 2

2B

�
ÿ 1

Z 2
exp

�
ÿ b 2

B

�
: �13�

For central collisions with b � 0, this gives

G�s; b � 0� � 2Zÿ 1

Z 2
: �14�
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This formula is very important because it implies that the
darkness at the very center is fully determined by the
parameter Z, the ratio of experimentally measured char-
acteristicsÐ the width of the diffraction cone B (or sel) and
the total cross section. Their energy evolution defines the
evolution of the absorption value. The interaction region
becomes completely absorptive, G�s; 0� � 1, in the center
only at Z � 1, and the absorption diminishes for other
values of Z.

In Table 1, we show the energy evolution of Z and G�s; 0�
for p±p and pÿ�p scattering as calculated from experimental
data on the total cross section and the diffraction cone slope
at corresponding energies.We note that starting from the ISR
energies, the value of Z decreases systematically and at the
LHC energies becomes equal to 1 within the accuracy of
measurements of B and st.

The impact parameter distribution ofG�s; b� in (13) has its
maximum at b 2

m � ÿ2B lnZ with the full absorption
G�bm� � 1. Its position depends on both B and Z.

We note that for Z > 1, we have incomplete absorption
G�s; b� < 1 at any physical b5 0, with the largest value
reached at b � 0, because the maximum occurs at nonphysi-
cal values b < 0. The disk is semitransparent.

At Z � 1, the maximum is positioned exactly at b � 0,
and the absorption is absolutely strong there:G�s; 0� � 1. The
disk center becomes impenetrable (black).

At Z < 1, the maximum shifts to positive physical impact
parameters. A dip is formed at the center, which leads to the
concave shape of the inelastic interaction region, approaching
a toroid shape. It becomes deeper at smallerZ. The limit value
Z � 0:5, leading to complete transparency at the center b � 0,
is considered in more detail below.

Themaximum absorption in central collisions,G�s; 0��1,
is reached at the critical point Z � 1, which is the case at the
LHC energy

��
s
p � 7 TeV, as seen from Table 1. This case is

therefore considered first. Moreover, the strongly absorptive
core of the interaction region grows in size, as we see from the

expansion of Eqn (13) at small impact parameters:

G�s; b� � 1

Z 2

�
2Zÿ 1ÿ b 2

B
�Zÿ 1� ÿ b 4

4B 2
�2ÿ Z�

�
: �15�

The second term proportional to b 2 vanishes at Z � 1, and
G�b� develops a plateau that extends to quite large values of b,
about 0.4±0.5 fm. The plateau is very flat because the third
term starts to play a role at 7 TeV (where B � 20GeVÿ2) only
at even larger values of b. The structure of the interaction
region with a central core at energies of 7±8 TeV is also
supported (see Fig. 2, where it is compared with correspond-
ing structures at the ISR energies) by direct computation [11]
using the experimental data of the TOTEM collaboration [1,
2] about the differential cross section in the region
jtj4 2:5 GeV2.

The results of analytic calculations according to (13) and
of the direct computation practically coincide (see Fig. 1 in
[13]). It was also shown in [13] that this two-component
structure with the central black core and more transparent
periphery is well fitted by the expression with an abrupt
(Heaviside-like) change of the exponential. However, it is
still quite far from the black-disk limit, because the peripheral
region at b near 1 fm is very active and shows a strong increase
compared to the ISR energies [11]. This is demonstrated in
Fig. 3, where the difference DG�b� � G�s1; b� ÿ G�s2; b�
between the overlap functions at different energies s1 and s2
is displayed.

The lower plot in Fig. 3, obtained in [12], demonstrates
that even within the quite narrow interval of ISR energies, the
role of peripheral interactions with the impact parameters
about 1 fm increases in inelastic processes with an energy
increase. Even more spectacular is the peripheral increase in
passing from ISR to LHC energies, as seen in the upper plot in
Fig. 3. Moreover, the darkness of the central core strongly
increases in Figs 2 and 3, which becomes especially important,
as we discuss in detail in the next section.

Table 1. Energy behavior of Z and G�s; 0�.��
s
p

, GeV 2.70 4.11 4.74 7.62 13.8 62.5 546 1800 7000

Z

G�s; 0�
0.64

0.68

1.02

1.00

1.09

0.993

1.34

0.94

1.45

0.904

1.50
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0.97

1.08

0.995

1.00

1.00

0.1

0.4

G

0.5

0.3

0.6

0.8

1.0

0.2

0.7

0.9

0.5 1.5 2.5 3.5

b, fm

0 2.0 3.0 4.01.0

ISR, s1=2=23.5 GeV

ISR, s1=2=62.5 GeV

TOTEM, s1=2=7 TeV

Figure 2.Overlap functionG�s; b� at 7 TeV (upper curve) [11] compared to

those at ISR energies 23.5 GeV and 62.5 GeV (all of them are computed by

using the fit of experimental data according to the phenomenological

model in [12]).
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It is interesting that the positivity of G�s; b�, i.e., of
sinel�s; b�, imposes some limits on the relative role of B and
st. Namely, it follows from Eqn (14) that

2Z � 8pB
st
� st

2sel
5 1 : �16�

This relation implies that the slope B should increase with
energy at least as rapidly as the total cross section st.

This inequality is fulfilled at present-day and intermediate
energies. If the value of Z decreases at energies above 7 TeV,
as could be expected from its tendency shown in Table 1, and
approachesZ � 0:5, then this inequality can be saturated.We
first discuss what happens in the region 0:54Z4 1. The
values Z < 0:5 are addressed at the end of this section.

It is usually stated that the equality 2Z � 8pB=st �
st=�2sel� � 1 corresponds to the black-disk limit. Certainly,
the equality of elastic and inelastic cross sections is fulfilled:
sel � sinel � 0:5st. However, in addition to this equality, the
scattering on the black disk should result in a special
nonexponential shape of the differential cross section like

ds
dt
/ J 2

1

ÿ
R

�����jtjp �
jtj ; �17�

where J1 is the Bessel function. It has a zero at jtj � 3:67=B if
the relationR 2 � 4B is used. At the energy of 7 TeV, this zero
should be placed at jtj � 0:3 GeV2, which is not confirmed by
experiment; neither is the equality of cross sections of elastic
and inelastic collisions confirmed experimentally.

In principle, we cannot exclude a possible fast replace-
ment of the regime of the exponential decrease in the
diffraction cone (2) by a new one. The appearance of another
steeper exponential at the end of the diffraction cone in Fig. 1a
at 7 TeV and the noticeable shift of the dip position to smaller
transferred momenta at the LHC compared to lower energies
could be the first signs of it.

Nevertheless, we continue to study the situation assuming
that the exponential regime valid up to the LHC energies
persists at higher energies. We see from Eqn (14) that
G�s; b � 0� � 0 at Z � 0:5, i.e., the inelastic interaction
region is completely transparent in central collisions. Of
course, it should not be called a black disk. This paradox is
resolved [14] if we write the inelastic profile of the interaction
region using Eqn (13). At Z � 0:5, it is

G�s; b� � 4

�
exp

�
ÿ b 2

2B

�
ÿ exp

�
ÿ b 2

B

��
: �18�

We see that the black disk must be renamed a black toroid (or
a black ring if we consider its two-dimensional projection)
with full absorption G�s; bm� � 1 at the impact parameter
bm � R

���������������
0:5 ln 2
p � 0:59R, complete transparency at b � 0,

and a rather large half-width of about 0.7R. Thus, the
evolution to values of Z smaller than 1 at higher energies
(this can happen if the tendency of Z to decrease with energy,
shown in Table 1, persists) would imply a quite special
transition from the critical two-scale regime at the LHC
energy to concave toroid-like (or ring-like in two dimen-
sions) configurations of the interaction region if the exponen-
tial shape of the diffraction cone described by Eqn (2) persists.

It looks as if the protons penetrate through one another in
central collisions, just scattering elastically, while peripheral
collisions become responsible for inelastic processes. Elastic
and inelastic profiles become equal only at b � bm. The elastic

one dominates at b < bm, while the inelastic one dominates at
the periphery, b > bm.

Is the parton coherence inside each colliding proton
responsible for that? Can we observe its effects similarly to
the difference between light scattering in water (coherence!)
and in air? (Decoherence and fluctuations are responsible for
the blue color of the sky!)

Paradoxically enough, this pushes us back to the early
suggestions that inelastic processes are more peripheral
(recall the one-pion exchange model!) than elastic scatter-
ing, which is a shadow of inelastic interactions (more pions
exchanged). This tendency is clearly seen already at present-
day energies, as demonstrated in Fig. 3. We stress that the
total region of proton interactions preserves the Gaussian
shape described by the first term in the right-hand side of
Eqn (13). The Gaussian shape is also preserved for the elastic
profile, but with an exponential that is twice as steep [see
Eqns (13) and (18)].

Concerning the longitudinal distances, it is commonly
assumed in the parton model that they are much larger than
the transverse size, especially for soft partons. Then the region
of inelastic interactions would just resemble a toroid, i.e., a
tube, at the center of which only elastically scattered protons
fly.

The plateau of G�b� at small b was confirmed in [15], as
shown in Fig. 4. However, an additional substructure at the
level of 10ÿ4 at a single point was mentioned there. The
function Ginel � 0:25G at 7 TeV, plotted there, slightly
decreases at b � 0 compared to its values at b � 0:1ÿ0:3 fm
(compare the numerical values shown in Fig. 4). This could be
an indication thatZ becomes somewhat less than 1 already at
7 TeV and the transition to the concave shape starts at this
energy. At the same time, no decrease is seen in Fig. 2. This
disagreement is especially surprising because the same model
[12] was used in papers [11, 15] to fit experimental results at
7 TeV. However, we see that the excess at impact parameters
0.1±0.3 fm compared to the center, pointed out in [15], reveals
itself in the fourth digits only, while the error bars of the slope
B and the total cross section st are larger by an order of
magnitude. This excess is so small that it can be explained
either by insufficient precision in determining the values of B
and st (and, consequently, of Z) and by inaccuracy in
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Figure 4. Impact parameter dependence of the function Ginel�b� �
0:25G�b� at 7 TeV [15]. It is obtained using the fit of experimental data

according to the model in [12].
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accounting for different scales or by different procedures
adopted in [11, 15] for extrapolations to the ranges of
transferred momenta where there are no experimental data
yet.

Therefore, it seems too early tomake any statements (even
preliminary ones). However, a comparison of the results in
[11] and [15] shows that we are in the critical regime of elastic
scattering withZ � 1 at 7 TeV, as was pointed out in [14]. We
stress that, with good precision of the experimental data, the
proposed approach allows analyzing the fine structure of the
core of the interaction region at very small scales, as opposed
to the less precise correlation methods. Therefore, we should
pay special attention to the evolution of the parameter Z at
the higher energy 13 TeV, which will become available soon.
Especially precise measurements of the diffraction cone slope
B and the total cross section st would be very desirable.

Another consequence of Eqn (14) follows from a study of
the energy evolution of G�s; 0�, shown in Table 1. In
connection with the torus-like concave structure, it is
interesting to note the value Z � 0:64 or G�s; 0� � 0:68 at��
s
p � 2:70 GeV and the maximum G � 1 at b 2

m � 4B ln 2.
However, at this rather low energy, the whole analysis should
be redone with the diffraction cone behavior, the total cross
section, and the value of the ratio r taken into account. We
also note that in the energy interval 4 <

��
s
p

< 8 GeV, the
values of Z are slightly larger than 1, such that the values of
G�s; 0� are smaller than but very close to 1. These facts require
further studies in the energy interval 2:7 <

��
s
p

< 8 GeV,
especially in view of the proposed experiments in Protvino.
The dark core must be smaller at lower energies than at the
LHC energy because of smaller values of B. Moreover, the
contribution due to the real part of the amplitude is larger at
these energies, and the larger jtj beyond the diffraction cone
can be important.

The dependence of Z on energy shown in Table 1 looks as
if the interaction region at low energies becomes black at the
center b � 0, but at higher energies, up to the ISR ones, it
loses this property, trying to restore it at the LHC energy.

In principle, the positivity of the inelastic cross section

sinel � pB
Z 2
�4Zÿ 1�5 0 �19�

allows values of Z as small as 0.25, which corresponds to
sel � st and sinel � 0. The values Z < 0:5 lead to negative
values of sinel�s; b�, i.e., to negative Fourier±Bessel transforms
of g�p; y� in Eqn (5). They are not forbidden if the relative
phases of matrix elements of inelastic processesMi in Eqn (5)
interfere in such a way. Unfortunately, we have no knowledge
about them. This possibility was treated as another branch of
the solution of the unitarity condition and named anti-
shadowing or refractive scattering in [16] and resonant disk
modes in [17]. However, the value ofZ is close to 1 even at the
LHC energies, and this regime requiring Z < 0:5 is certainly
shifted to extremely high energies if it can be observed at all.
The approach to the asymptotic regime is typically assumed
to follow the logarithmic dependences of cross sections
st / sel / ln2 s and sinel / ln s. The depletion of G�s; 0� in
[15] was ascribed to this regime bymistake, because the values
of Z at 7 TeV are near 1 but not as small as 0.5.

4. New tendencies of inelastic collisions

The maximum absorption in central collisions at LHC
energies must reveal itself in some special features of inelastic

collisions in such a critical regime withZ � 1. The diffraction
cone contributes mostly to G�s; b�. The large-jtj elastic
scattering cannot serve as an effective trigger of the black
core. One of the typical features of high-energy inelastic
processes is the production of high-energy jets, i.e., colli-
mated groups of particles. Inelastic exclusive processes can be
more effectively used for the analysis of the central black core.
Such triggers that enhance its contribution are needed.
Following the suggestions in [10, 18], it has become possible
[13] to study the details of the central core using the
experimental data of the CMS (Compact Muon Solenoid)
collaboration at 7 TeV on inelastic collisions with high
multiplicity triggered by hadron jet production [19], as well
as some other related data. Triggers (charged particles or jets)
with large transverse momenta are produced in central
collisions. Therefore, the black plateau in the central part of
the interaction region with b < 0:4ÿ0:5 fm should result in
the corresponding plateau of the charged-particle density in
the transverse region 60� < jDfj < 120�, defined as

mtr �
N tr

ch

DZD�Df� ; �20�

whereN tr
ch is the charged particle multiplicity in the transverse

region, DZ is the pseudorapidity range studied, and D�Df� is
the azimuthal width of the transverse region. This is indeed
the case, as shown in Fig. 5.

We explain. Starting from large transverse momenta of
triggers on the right-hand side of Fig. 5 and going to the left,
we first sort of probe the central region from b � 0 to the end
of the plateau. Then the density of accompanying particles in
the transverse region should not change until we approach the
end of it. Only then should the decrease in the distribution of
the accompanying particles start. The difference in positions
of such a decrease in the two plots is defined by the difference
in the choice of the leading trigger used by the two
collaborations, CMS and ALICE (A Large Ion Collider
Experiment). The flat dependence of mtr on pt shows that
activity in the transverse region is independent of the hard
process scale if the scale is hard enough for all proton±proton
interactions to be central.

Many other characteristics of such inelastic processes
considered in [13] support this conclusion. The use of very
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Figure 5.Charged-particle density in the transverse region as a function of

pt of the leading object [13] (CMSÐcharged-particle jet, ALICEÐ

charged particle). CMS analyzes particles with pt > 0:5 GeV/c and

jZj < 2:4, ALICE analyzes those with pt > 0:5 GeV/c and jZj < 0:8.
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high-multiplicity events in combination with jet properties is
crucial. In particular, themost important observation is that a
significant reduction in the jet rate at very high multiplicities
compared to MC predictions requires new inputs in the
models. Separating the core contribution with the help of
these triggers, we arrive at the important conclusion that the
simple increase in the geometrical overlap area of the colliding
protons does not account for the properties of jet production
at very high multiplicities. It looks as if the parton (gluon)
density must strongly increase in central collisions, and rare
configurations (fluctuations) of the partonic structure of
protons are involved. So far, paper [13] remains the only
attempt to explain the distinctive features of jets and under-
lying event properties at LHC energies. The correlation
studies of jets (see, e.g., [20]) can be used for further
femtoscopy of the fine-structured system. Without a doubt,
some further proposals to study the critical regime at 7±8 TeV
will be put forward.

At the same time, implications of the energy evolution of
Z (if observed!) for inelastic processes are of great interest.
The shares of elastic and inelastic cross sections will start
approaching one another if the values of Z decrease below 1
with an increase in energy. The mean multiplicity will
probably decrease because of the more peripheral origin of
newly created particles. The decreasing role of central
interactions can lead to some changes in the shape of the
multiplicity distributions (lower tails?) and diminished share
of jets, which will acquire new features. Jets will become
produced at the periphery, in distinction to the situation
described above. That would imply that they will have to
penetrate larger distances in the transverse direction than in
the forward directions. This would give rise to their stronger
depletion in the transverse plane and therefore to the
azimuthal asymmetries, which were sought in [20]. Of
course, other criteria of the transition to the concave shape
of the interaction region of inelastic processes will be found.

We will hardly be able to reach a regime with extremely
small values Z < 0:5 when inelastic processes would play a
negligibly small role compared to elastic ones.

5. Elastic scattering outside the diffraction cone

This problem has attracted special attention since the 1960s,
when experimental data on the differential cross section at
high energies and rather large transferred momenta appeared
for the first time. It was observed that the exponential
t-regime in the diffraction cone is replaced by the exponential��
t
p

-regime at larger angles. The latter region of angles was
called the Orear region, after its investigator.

The unitarity condition happened to be very successful in
that region of angles as well. Theoretically, it can be
approached considering the unitarity condition (3) directly
in s; t variables without using the Fourier±Bessel transform,
as was done at small angles. It was shown a long time ago [5,
21] that the imaginary part of the amplitude f outside the
diffraction cone can be derived from the general unitarity
condition (3), which reduces there to the inhomogeneous
linear integral equation

Im f �p; y� � pst
4p

���������
2pB
p

� �1
ÿ1

dy1 exp

�
ÿBp 2�yÿ y1�2

2

�
� rr Im f �p; y1� � g�p; y� ; �21�

where rr � 1� r�s; 0� r�s; y1�. This reduction becomes possi-
ble because the contribution from the asymmetric configura-
tion of scattering angles in the first term in Eqn (3) dominates
due to the steep Gaussian fall-off inside the diffraction cone.
Because of the sharp fall-off of the amplitude with the angle,
the leading contribution to the integral arises from a narrow
region around the line y1 � y2 � y. Therefore, the values of
one of the amplitudes should be taken at small angles within
the cone as Gaussian, while the other amplitude is kept at
angles outside the cone.

Equation (21) can be solved analytically (for more details,
see [5, 21]) under two assumptions: that the role of the overlap
function g�p; y� is negligible outside the diffraction cone and
that the function rr can be approximated by a constant, i.e.,
r�y1� � rl � const.

We assume that the overlap function is negligible at these
transferred momenta.1 Then the eigensolution of the homo-
geneous linear integral equation is

Im f �p; y� � C0 exp

�
ÿ

����������������
2B ln

Z

rr

s
py
�

�
X1
n�1

Cn exp
�ÿ�Re bn�py

�
cos
ÿjIm bnj pyÿ fn

�
; �22�

with

bn �
��������������
2pBjnj

p
�1� i sign n� ; n � �1;�2; . . . : �23�

This expression contains a term exponentially decreasingwith
y (or

�����jtjp
) (the Orear regime!) with the oscillations imposed

on it more strongly damped by their own exponential factors
bn compared with the first term. The critical role in the
exponent of the first leading term, which determines the rate
of decrease in the differential cross section, is again played by
the parameter Z widely used above Eqn (12). The oscillating
terms become pronounced only at smaller angles and reveal
themselves as a dip in the vicinity of the diffraction cone. The
elastic scattering differential cross section outside the diffrac-
tion cone (in the Orear regime region) is

ds
p1 dt

�
"
exp

 
ÿ

���������������������
2Bjtj ln Z

rr

s !

� p2 exp
�
ÿ

�������������
2pBjtj

p �
cos
� �������������

2pBjtj
p

ÿ f
�#2

; �24�

with the parameters p1 and p2 closely related to C0 and C1.
Just this formula was used in Refs [11, 24] for fits of
experimental data on differential cross sections in a wide
energy range. The ratio r was approximated by its average
values in and outside the diffraction cone, such that
rr � 1� r0rl, where rl is treated as the average value of r in
the Orear region.

The fits at comparatively low energies [24] are consistent
with rr � 1, i.e., with small values of rl close to zero. When

1 The assumption on the smallness of the overlap function outside the

diffraction cone is appealing intuitively: particles newly created in high-

energy inelastic processes move mainly inside narrow angular cones along

the directions of the primary hadrons. Therefore, the geometric overlap of

two narrow cones whose axes are rotated through a comparatively large

angle y, is negligibly small. Moreover, this assumption has been confirmed

[22, 23] by direct computation of the overlap function from experimental

data in a wide energy interval up to the LHC energies.
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Z � 1, as happens at 7 TeV (see Table 1 above), the exponent
of the leading first term is very sensitive to the value of rl
outside the diffraction cone. For the first time, that allowed
estimating the value of r in the Orear region at 7 TeV [23]. The
great surprise of the fit of TOTEM data was the necessity of
using the large (in modulus) negative value rl � ÿ2:1 if
r0 � 0:14 (as it was at ISR energies). Otherwise, the slope of
the first term in Eqn (22) in the Orear region would be
predicted to be equal to zero (constancy!) if Z � 1 and
rr � 1. It becomes larger in modulus, rl � ÿ3, if the
TOTEM value r0 � 0:1 obtained at 7 TeV is used. More-
over, these values of rl can be regarded as upper bounds,
because the effective value of r0 inside the diffraction cone
can be even smaller in view of its widely discussed zero there.
No models have yet explained this finding. Further progress
in solving the unitarity equation with the proper dependence
of r inside and outside the diffraction cone is needed.

The slope of the differential cross section in the Orear
region becomes a very sensitive indicator of the mutual
behavior of Z and rl. A possible decrease in the value of Z
with increasing energy and the transition to the torus regime
discussed above would require a further evolution of the ratio
r to negative values increasing in modulus.

The predictive power of solution (22) lies in its exponen-
tial behavior in

�����jtjp
with a quite definite analytically

calculable exponent and oscillations imposed on it. Unfortu-
nately, we cannot definitely state where its bounds on the
t axis are, and we have to rely on the accuracy of fits within
some range of t. Nevertheless, as was mentioned above,
some important estimates of the value of r in the Orear
region have been made. Another shortcoming of solution
(22) is its ignorance of the energy dependence. Therefore, no
predictions are made concerning higher energies. Not only
are the normalization coefficients C0 and Cn unknown, but
also the exponent of the leading term suffers from the
unpredictable energy behavior of B, st, and rr. Only with
results on B and st obtained from experiments at higher
energies is it possible to estimate the mean value of r in the
Orear region.

In parallel, there is a variety of phenomenological models
with numerous adjustable parameters, proposed in attempts
to describe experimental data. The theoretical arguments in
favor of them and their main features are reviewed in some
detail in [6]. Most of them describe the behavior of the
differential cross section in the diffraction cone quite well
(albeit with some precaution). Therefore, if applied to the
problem, they would reproduce themain features of the shape
of the interaction region discussed in the preceding section.
The imaginary part of the amplitude dominates there. At the
same time, the models failed in their predictions at 7 TeV in
the Orear region, as shown in Fig. 1b. The main problem lies
in their inability to predict the energy dependence of
adjustable parameters. Only some qualitative guesses can be
used.

Certainly, it is much easier to use such guesses and to fit
these parameters with the newly available data. This was
successfully done a posteriori, for example, in [11, 15, 25]. The
first two of these papers used the model in [12] proposed long
ago, while a completely new form of the amplitude was
analyzed in [25].

Independently of the success or failure of these models in
describing the Orear region, all of them have a common
heuristic feature. To explain prominent characteristics of the
differential cross section such as the dip (see Fig. 1b), they

have to assume that it originates at the transferred momen-
tum t where the imaginary part of the amplitude (dominating
until then within the diffraction cone!) vanishes. The models
differ only in the number of zeros in the real and imaginary
parts and in their positions, except the definitely fixed t value
at the dip.

As an example, in Fig. 6, we show the corresponding
plots obtained for the model in [25]. The only zero of the
imaginary part at the dip position is marked as ZI. The real
part has two zeros. One of them, ZR�1�, lies within the
diffraction cone. This zero is typical for many models and
was somehow envisaged in [26, 27], albeit without definite
predictions about its position. Its appearance leads to the
necessity to diminish the theoretical estimates of the average
value of r inside the cone, which enters solution (22) as r0
but should be treated, strictly speaking, as the average value
of r inside the cone. That, in turn, would lead to larger
values (in modulus) of rl, as discussed above. The peculiar
feature of the model in [25] is that the real part crosses the
abscissa axis and has a second zero ZR�2�. Therefore, the
ratio r becomes negative in the Orear region, although not
large enough (in modulus) to correspond to estimates
obtained in the unitarity approach. Anyway, there is some
correspondence between them at the qualitative level. Other
models usually have single zeros of the real and imaginary
parts and cannot produce negative values of r in the Orear
region. Probably, this is the origin of their failure to predict
the LHC results.

It is worth stressing here that no zeros of the imaginary
part are predicted in the unitarity approach. The dip is
explained in [23] as the contribution of the oscillatory terms
in (22), whose role increases at smaller transferred momenta.
At the same time, we should critically remark that fits of the
differential cross section in the Orear region with the help of
only the imaginary part of the amplitude become self-
contradictory after the conclusion about the large value of
rl there is obtained. No agreement between these two
approaches has been reached yet. In general, we can state
that the t dependence of the real and imaginary parts has not
yet been understood theoretically.
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Figure 6. Real �Re f � and imaginary �Im f � parts of the proton±proton

amplitude at 7 TeV according to a particular phenomenological model

[25].
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6. Conclusions

The use of the indubitable general principleÐ the unitarity
conditionÐ in combination with experimental results on
elastic scattering in the diffraction cone allows revealing the
spatial image of the interaction region of protons and its
evolution with energy, as well as for the first time estimating
the average value of the real part of the elastic scattering
amplitude beyond the diffraction cone.

The behavior of the real and imaginary parts of the elastic
scattering amplitude as functions of the energy s and the
transferred momentum t completely defines the properties of
this process and, in some way, influences the properties of
inelastic processes through the unitarity requirement. Our
knowledge of this behavior is still quite limited. QCD
methods do not work. The general QCD statements and
phenomenological models are usually considered.

It is shown that the geometrical spatial shape of the
interaction region of protons is mainly determined by their
elastic scattering at small angles. The absorption in the
interaction region center is determined by a single energy-
dependent parameterZ. The region of full absorption extends
to quite large impact parameters, 0.5 fm if Z tends to 1. This
happens at the LHC energy

��
s
p � 7 TeV, where the critical

two-scale structure (the black central core and the more
transparent peripheral region) of the interaction region of
protons becomes well pronounced. The sharp separation of
these two regions leads to special consequences for both
elastic and inelastic processes. The behavior of the parameter
Z at higher energies is especially important for the evolution
of the geometry of the interaction region. The assumption
about its further decrease at higher energies results in a drastic
change in the geometry predicting the tendency for evolution
to the completely unexpected toroid (tube)-like (or ring-like in
two dimensions) configuration, where the core becomes
absolutely penetrable and the complete absorption region is
shifted to some finite impact parameter.

The value Z � 1 attained at the LHC energies is also
crucial for the behavior of the elastic scattering differential
cross section outside the diffraction cone. In this case, its slope
there becomes fully defined by the ratio of the real part of the
amplitude to its imaginary part, which is still unknown at the
LHC energies in this range of the transferred momenta. No
way to its direct measurement is currently foreseen. There-
fore, it is very important that the analysis of experimental
data at 7 TeV concerning the slope of the differential cross
section inside the Orear region with the help of the unitarity
condition provide an estimate of its average value and reveal
that this ratio is negative and surprisingly large in modulus.
The predictions of phenomenological models are contra-
dictory in this region of transferred momenta. In general,
these models should be checked for their self-consistency by
calculation of the overlap functions g�p; y� for each of them.
This is possible because the integral in unitarity relation (3)
can be computed with both real and imaginary parts of the
amplitude for a particular knownmodel. Themeasurement of
the rate of decrease in the differential cross section in the
Orear region becomes very important at higher energies,
because it happens to be very sensitive to the mutual
behavior of Z and rl with an increase in energy.

Thus, the unitarity condition provides many inspiring
guides about hadron interactions, which should be taken into
account by other approaches.

We thank the RFBR grants 12-02-91504-CERN-a, 14-02-
00099, and the RAS±CERN program for support.
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