
Abstract. A brief review is given of scalar field theories with
second-derivative Lagrangians yielding second-order field
equations. Some of these theories permit solutions that violate
the null energy condition but otherwise show no obvious incon-
sistencies. The use of these theories in constructing cosmologi-
cal scenarios and in the context of a laboratory-created universe
is illustrated with examples.

1. Introduction

Among various energy conditions discussed in the context of
general relativity, the null energy condition (NEC) plays a
special role. This condition states that the matter energy±
momentum tensor Tmn obeys the inequality

1

Tmnn
mn n > 0 �1�

for any null (light-like) vector n m, i.e., for any vector
satisfying gmnn

mn n � 0. The reason the NEC is particularly

interesting is twofold. First, the NEC is quite robust; we
illustrate this point in Section 2. In fact, until rather recently,
the common lore was that the NEC could not be violated in
a healthy theory, with the possible exception of a scalar field
nonminimally coupled to gravity [1]. The developments that
refuted this viewpoint are the main emphasis of this mini-
review.

Second, the NEC is a crucial assumption of the Penrose
singularity theorem [2], valid in general relativity. The
theorem assumes that (i) the NEC holds and (ii) the Cauchy
hypersurface is noncompact. The theorem states that once
there is a trapped surface in space, there will be a singularity
in the future. A trapped surface is a closed surface on which
outward-pointing light rays actually converge (moving
inwards). In a spherically symmetric situation, this means
the following. Let R be a coordinate that measures the area
of a sphere, S�R� � 4pR 2. Then the sphere is a trapped
surface if R decreases along any future null direction; all
light rays emanating from this sphere in this sense move
toward its center (see Appendix A for the details). An
example is a sphere inside the horizon of a Schwarzschild
black hole, or in the case of a contracting, spatially flat
homogeneous isotropic Universe, a sphere greater than
jH jÿ1 in size, where H is the Hubble parameter. Thus, for
matter obeying the NEC, there is always a singularity that is
formed inside the black hole horizon, and any contracting
universe ends up in a singularity, if its spatial curvature is
dynamically negligible (which is often the case). By time
reversal, an expanding universe has a singularity in the past.
All this is true in classical general relativity; things are
different in other classical theories of gravity, and probably
very different in quantum gravity.

Inter alia, the Penrose theorem almost forbids, within
classical general relativity, a bouncing Universe scenario, in
which the Universe contracts at early times, the contraction
terminates at some instant of time, and the Universe enters
the expansion epoch, which continues today. We show
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1 The case of the cosmological constant, Tmn � Lgmn, is special. We then

have Tmnn
mn n � 0. In what follows, we do not exclude the possibility that

the cosmological constant is nonzero, but we assume that some other

matter is also present in the system. Our entire argument then stays in

force.



explicitly that the NEC is crucial for that ban. We consider a
homogeneous isotropic Universe with the Friedmann±
Lemaitre±Robertson±Walker metric

ds 2 � dt 2 ÿ a 2�t�gi j dx i dx j ; �2�
where gi j is a time-independent metric of the unit 3-sphere
(a parameter k � �1 is assigned to this case) or the unit
3-hyperboloid �k � ÿ1� or the Euclidean 3-dimensional
space �k � 0�. Matter governing the evolution of this
universe must also be homogeneous and isotropic, meaning
that the only nonvanishing components of the energy±
momentum tensor are

T00 � r ;

Ti j � a 2gi j p ;

where r and p are the energy density and effective pressure.
The �00� and �i j� components of the Einstein equations then
give

H 2 � 8p
3

Grÿ k
a 2

; �3a�

2 _H� 3H 2 � ÿ8pGpÿ k
a 2

; �3b�

where H � _a=a is the Hubble parameter. A combination of
these equations determines how it changes with time:

_H � ÿ4pG�r� p� � k
a 2

: �4�

Now, we choose the null vector n m entering Eqn (1) as
n m � �1; aÿ1n i�, where gi jn

in j � 1, and find that the NEC is
equivalent in the cosmological setting to the condition

r� p > 0 :

Hence, if the second, spatial curvature, term in the right-hand
side of Eqn (4) is negative (k < 0, openUniverse), zero (k � 0,
spatially flat Universe), or negligible, the Hubble parameter
decreases in time. If it is negative (contraction), it remains
negative. Therefore, a bouncing Universe is almost impossi-
ble. A loophole is that the bounce is possible for a closed
Universe �k � �1� if the energy density and pressure grow
slower than aÿ2 as the Universe shrinks [3].2 We note that the
Penrose theorem does not apply in the last case because
the Cauchy hypersurface is compact in a closed Universe
(3-sphere).

Applied to the present-day Universe (which is spatially
flat to an excellent accuracy), the NEC implies that the
Hubble parameter cannot grow today. Observational evi-
dence for the growing Hubble parameter would mean that
either dark energy violates theNECor general relativity is not
valid at the present-day cosmological scales. This would, of
course, be highly nontrivial.

Another facet of theNEC shows up through the covariant
energy±momentum conservation HmT

mn � 0. In the cosmolo-
gical setting, it takes the form

dr
dt
� ÿ3H�r� p� : �5�

Thus, the NEC implies that the energy density always
decreases in an expanding Universe. Modulo the loophole
mentioned above, the Penrose theorem states that the
expansion starts from a singularity (infinite energy density,
infinite expansion rate).

One more consequence of the NEC is an obstruction to
the creation of a universe in the laboratory. The question of
whether one can in principle create a universe in the
laboratory was raised in [4 ± 6] soon after the invention of
the inflation theory [7±12]. Indeed, inflationÐnearly expo-
nential expansion of the Universe at a high expansion rateÐ
is capable of stretching, in a fraction of a second, a tiny region
of space into a region of a huge size, possibly exceeding the
size of the presently observable Universe. It therefore appears
at first sight that it is not impossible to artificially create a
region in our present Universe in which the physical
conditions are similar to those at the onset of inflation, and
then this region would automatically expand to a very large
size and become a universe like ours. In theories obeying the
NEC and within classical general relativity, this is impossible
[6, 13] because of the Penrose theorem. By definition, a
universe `like ours' is a nearly homogeneous patch in space
whose size exceeds the Hubble distance Hÿ1. The Hubble
sphere is then an anti-trapped surface, and hence there had to
be a singularity in the past. Because we cannot create an
appropriate singularity (and control the evolution through
any singularity), we cannot create a universe `like ours'.
Widely discussed ways out are to invoke tunneling [14±23]
or other quantum effects [24±27] and modify gravity [28±30],
but it is certainly of interest to stay within general relativity
and invoke NEC violation instead. There have been several
attempts in this last direction [31±34], but many of them are
problematic because of instabilities.

Finally, theNEC also forbids the existence, within general
relativity, of throats in space, both static [35±37] and time-
dependent [38]. Such a throat could join asymptotically flat
regions of space, forming a Lorentzian wormhole [35±37, 39,
40] (Fig. 1). Alternatively, it could serve as a bridge between a
large but finite region of space and an asymptotically flat
region, forming a semiclosed world [24] (Fig. 2). Again, it is of

2 According to Eqn (5), for matter with the equation of state p � wr, this
requires w < ÿ1=3.

Figure 1. Spatial geometry of a Lorentzian wormhole.
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interest to construct healthy NEC-violating theories posses-
sing wormhole solutions.

All this motivates the search for healthy NEC-violating
theories. For a field theorist, it is natural to start with scalar
field theories. However, as we discuss in Section 2, solutions
in theories of scalar fields minimally coupled to gravity and
described by Lagrangians containing only first derivatives
either obey theNEC or have pathologies (modulo a loophole,
which we briefly discuss in Section 2). Because of that, one
either turns to vector fields (and, indeed, there are examples of
acceptable NEC-violating solutions in rather contrived
theories involving vector, but not gauge, fields [41, 42]) or
considers higher-derivative Lagrangians. It is commonly
believed, however, that theories with Lagrangians contain-
ing second and higher-order derivatives are unacceptable
(unless the higher-derivative terms are treated as perturba-
tions in the sense of an effective low-energy theory) because
their field equations involve more than two derivatives and
hence these theories have pathological degrees of freedom.
This is not the case, however: there is a class of scalar field
theories with second-derivative Lagrangians and second-
order field equations. These theories were found in an
unnoticed paper by Horndeski [43], rediscovered in a rather
different context by Fairlie, Govaerts, and Morozov [44±46]
and relatively recently became popular in their various
reincarnations, such as the Dvali±Gabadadze±Porrati [47]
model in the decoupling limit [48, 49], Galileon theory [50]
and its generalizations [51±56], k-mouflage [57], kinetic
gravity brading [58±60], Fab-Four [61, 62], etc. As we discuss
in Section 3, there are finitely many classes of second-
derivative Lagrangians yielding second-derivative field equa-
tions [50, 63±65]. At least some of these Lagrangians allow
NEC violation [66±71], with the NEC-violating solutions and
their neighborhoods being perfectly healthy. In Section 4, we
give a few examples of using these theories to construct fairly
nontrivial cosmological models and to give a proof-of-
principle construction for creating a universe in the labora-
tory.

We conclude in Section 5 by pointing out some potentially
problematic features of the NEC-violating second-derivative
theories that have yet to be understood.

2. NEC violation and instabilities

2.1 Tachyons, gradient instabilities, and ghosts
In this paper, we are mainly interested in the weak gravity
regime, which occurs when MPl � Gÿ1=2 is the largest
parameter in the problem. To the lowest order, this
corresponds to switching off the dynamics of the metric and
considering other fields in the Minkowski background. In
many cases, the relevant solutions of the field equations are
spatially homogeneous, and we stick to this case here. We ask
whether the NEC can be violated in this situation.

In a theory of one scalar field p, a spatially homogeneous
classical solution pc�t� may or may not be pathological. The
pathology, if any, shows up in the behavior of small
perturbations about this background, p � pc � w. Assuming
that the linearized field equation for w is of the second order in
derivatives, the quadratic Lagrangian for w is always given by

L �2�w � 1

2
U _w 2 ÿ 1

2
V�qiw�2 ÿ 1

2
Ww 2 ; �6�

where U, V, and W depend on time. We consider the high-
momentum regime, meaning that variations of w in space and
time occur at scales much shorter than the time scale
characteristic of the background pc�t�. Then, at a given time,
the time dependence ofU,V, andW can be neglected, and the
following possibilities exist:

(1) Stable background,

U > 0 ; V > 0 ; W5 0 :

The dispersion relation is

Uo2 � Vp2 �W ; �7�

which is the dispersion relation for conventional excitations,
while the energy density for perturbations

T
�2�
00 �

1

2
U _w 2 � 1

2
V�qiw�2 � 1

2
Ww 2 �8�

is positive, as it should be. For V < U, the w-waves travel at
subluminal speed; forV � U, they travel at the speed of light,
while for V > U, the w-waves are superluminal. While super-
luminal propagation is probably less of a problem, it does
signal that the theory cannot be UV-completed in a Lorentz-
invariant way [72] (meaning that it cannot be a low-energy
theory of some Lorentz-invariant quantum theory valid at all
scales) (see, however, Ref. [73], which debates this point). We
would therefore like to avoid superluminality. The case
U � V is also potentially problematic, since there may or
may not be backgrounds in the neighborhood of pc on which
the perturbations are superluminal. Hence, the safe case is

U > V > 0 :

(1a) Special case:

U > 0 ; V � 0 :

To understand how to treat this case, we think of the original
scalar theory as an effective field theory with a UV cutoff L.
The Lagrangian of such a theory generically has corrections
of a higher order in derivatives, which are suppressed by
powers of Lÿ1 and are therefore normally negligible. For

Figure 2. Spatial geometry of a semiclosed world.
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V � 0, however, these corrections cannot be neglected,
because only these corrections give the terms in the Lagran-
gian for perturbations that involve spatial gradients [74]. The
dominant higher-derivative terms in the Lagrangian for
perturbations involve second-order derivatives, and hence
the Lagrangian is given by3

L �2�w � 1

2
U _w 2 � 1

2L2

�
a�w 2 � b _w 2�qiw�2 � c�qiqiw�2

�
;

where we setW � 0 for simplicity, as in the ghost condensate
theory [74]. The dispersion relation, modulo corrections
suppressed by Lÿ1 even more strongly, is now

Uo2 � c

L2
p 4 ;

which is healthy for c > 0. Other roots of the dispersion
equation obey joj4L, and hence cannot be trusted in the
low-energy effective theory.

(1b) Tachyonic instability:

U > 0 ; V > 0 ; W < 0 :

Formally, dispersion relation (7) yields imaginary o for
sufficiently low momenta, Vp2 < jW j, and hence there are
growing perturbations w / exp �� joj dt� with joj4 jW j1=2.
This is indeed a problem, if the time scale jW jÿ1=2 is much
shorter than the time scale characteristic of the background
pc�t�. In the opposite case, we cannot use the approximation
of slowly varying U�t�, V�t�, and W�t� and hence cannot
conclude that the background pc is unstable. Instead, the
background is stable at short time scales, and to see what is
going on at long time scales, we have to perform a full stability
analysis. We note in passing that tachyonic instabilities are
inherent in some NEC-violating models of dark energy [41,
42], and they may have interesting observational conse-
quences [75, 76].

(2) Gradient instability:

U > 0 ; V < 0 or U < 0 ; V > 0 :

According to Eqn (7), the `frequencies' o�p� are imaginary at
high momenta, and there are perturbations that grow
arbitrarily fast. This means that the background pc is
unstable, and hence not healthy. Considering the original
scalar theory as an effective low-energy theory valid below a
certain UV scale L does not help: for consistency, the rate of
variation of the background pc�t�must be well belowL, while
the rates of development of the instabilities extend up to L;
the background is ruined at short time scales.

(3) Ghost instability:

U < 0 ; V < 0 :

In classical field theory, the background is stable against high-
momentum perturbations: Eqn (7) shows that the frequencies
are real at high momenta. Yet the background is quantum
mechanically unstable. Indeed, energy (8) is negative at high

momenta, and the w-particles acquire negative energies upon
quantization; they are ghosts. Energy conservation does not
forbid pair creation from the vacuum of ghosts together with
other, normal particles (say, via graviton exchange, since
gravitons definitely interact with w-quanta); the vacuum is
quantum mechanically unstable. Energies and momenta of
the created particles can take values up to the UV scale L
below which one can trust the theory, and hence the available
phase space is generically large, and the time scale of the
instability is short. Unless L is low enough, this instability is
unacceptable. Therefore, backgrounds with ghosts are gen-
erally considered to be pathological. We note in passing that
in a Lorentz-invariant theory and for the Lorentz-invariant
background pc � const, the ghost instability is truly cata-
strophic: if particles can be created from the vacuum with
some energies and momenta, then the same, but Lorentz-
boosted, process is also allowed; the available phase space is
proportional to the volume of the Lorentz group, i.e., it is
infinite; the time scale of the instability is infinitesimally short.
Put differently, ghosts in the present Universe are allowed
only if Lorentz invariance is violated in the ghost sector in
such a way that the energies of ghost particles cannot exceed
3 MeV [77].

The above discussion is straightforwardly generalized to a
theory with several scalar fields p I, I � 1; . . . ;N. The
Lagrangian for perturbations w I is now

L �2�w � 1

2
UIJ _w I _w J ÿ 1

2
VIJ qiw I qiw J ÿ 1

2
WIJ w Iw J ; �9�

and the energy density is

T
�2�
00 �

1

2
UIJ _w I _w J � 1

2
VIJ qiw I qiw J � 1

2
WIJ w Iw J :

Barring the case of a degenerate matrix VIJ, similar to (1a)
above, the matrix VIJ can be diagonalized by a field
redefinition. If it has negative eigenvalue(s), the energy is
unbounded from below [78]: we can construct an initial
configuration with _w I � 0 with an arbitrarily high momen-
tum and p2VIJw Iw J < 0. This is a pathological situation: there
are either ghosts or gradient instabilities, or both. For a
positive definite diagonal VIJ, we can rescale w I to transform
VIJ into a unit matrix,VIJ � dIJ. We can then diagonalizeUIJ

by an orthogonal transformation, and the derivative terms in
the Lagrangian become

P
I�lI� _w I�2 ÿ �qiw I�2�. If UIJ has

negative eigenvalues lI, there are gradient instabilities.
Hence, the requirement of the absence of gradient instabil-
ities and ghosts gives the necessary condition

Stable background: positive definite UIJ and VIJ : �10�

Whether there are tachyons at sufficiently low momenta
depends now on the positive definiteness ofWIJ.

2.2 Scalar theories with first-derivative Lagrangians
The first attempt to construct a NEC-violating theory is to
consider the Lagrangian involving first derivatives only,

L � F�XIJ; p I � ; �11�

where

XIJ � qmp I q mp J :

3 A possible lower-derivative term �a�t�=L� _w�qiw�2, upon integration

by parts, reduces to � _a=2L��qiw�2; the pertinent transformation is

�a=L� _w�qiw�2 ! ÿ�a=L� qi _w qiw � ÿ�a=2L� q0�qiw�2!� _a=2L��qiw�2. It is

subdominant at p24 _aL, but becomes relevant at lower momenta. It is

healthy for _a < 0.
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If we assume minimal coupling to gravity, then the energy±
momentum tensor for this theory is

Tmn � 2
qF
qXIJ

qmp I qnp J ÿ gmnF :

Therefore, for a homogeneous background,

T00 � r � 2
qF
qXIJ

XIJ ÿ F ;

T11 � T22 � T33 � p � F ;

and

r� p � 2
qF
qXIJ

XIJ � 2
qF
qXIJ

_p I _p J : �12�

We see that NEC violation requires that the matrix qF=qXIJ
c ,

evaluated for the background p I
c be nonpositive definite. On

the other hand, we expand Lagrangian (11) to the second
order in perturbations, p I � p I

c � w I, and obtain the Lagran-
gian for perturbations in form (9) with

UIJ � 2
qF
qXIJ

c

� 4
q2F

qXIK
c qXJL

c

_pK
c _pL

c ; �13�
VIJ � 2

qF
qXIJ

c

:

Hence, the stability of the backgroundÐpositive definite-
ness of VIJ [see Eqn (10)]Ð is inconsistent with NEC
violation [78].

A loophole here is related to case (1a) above [79]. To see
this, we consider a ghost condensate theory with a small
potential added [79, 80],

L �M 4�X 2 ÿ 1�2 ÿ V�p� ;
where p is the ghost condensate field [of dimension
(mass)ÿ1], X � qmp q

mp, and M is the energy scale. In the
absence of the potential, there is the solution pc � t, for
which F �M 4�X 2 ÿ 1�2 � 0 and qF=qX � 0. This is on the
borderline of NEC violation. A higher-derivative term of an
appropriate sign renders this background stable. Now, upon
adding a small potential V�p� with a positive slope, we make
� _pc ÿ 1� slightly negative. According to Eqns (12) and (13),
this leads to NEC violation, and at the same time to the
gradient instability. However, with the higher-derivative
terms present, that instability occurs at low momenta p
only, and can be made harmless [80] by a careful choice of
parameters and of the form of higher-derivative corrections.
This construction was used in Ref. [80], in particular, to
design a viable cosmological scenario similar to what is now
called Genesis. We discuss a less contrived Genesis model in
Section 4. Also, the ghost condensate idea was used to
construct consistent bouncing Universe models [81, 82],
which start from the ekpyrotic contraction stage [83, 84].
Again, the consistency of the bounce requires a careful
choice of parameters in these models. We consider a simpler
version of this scenario in Section 4.

3. Second-derivative Lagrangians

The main emphasis of this mini-review is on scalar field
theories with Lagrangians involving second-order deriva-
tives, whose equations of motion do not contain third or
fourth-order derivatives. Although the nomenclature has not
yet been settled, we call them (generalized) Galileons. We

concentrate on theories of one scalar field p in Minkowski
space and write the Euler±Lagrange equation for a theory
with the Lagrangian L�p; qmp; qmqnp�:

qL
qp
ÿ qm

qL
qpm
� qmqn

qL
qpmn

� 0 ; �14�

where

pm � qmp ; pmn � qmqnp :

Because of the last term in Eqn (14), the field equation is
generically of the fourth order in derivatives. However, there
are exceptions, which are precisely Galileons. The simplest
exceptional second-derivative Lagrangian is

L�1� � K mn�p; qlp� qmqnp : �15�

It would seem that the corresponding field equation is of the
third order, but in fact it is not. Indeed, the second term in
Eqn (14) gives rise to the third-order contribution

ÿ qK mn

qpl
qlqmqnp ; �16�

while the third term in Eqn (14) is

qmqnK mn�p; pl� � qK mn

qpl
qmqnqlp� . . . ; �17�

where the omitted terms do not contain third derivatives.
Hence, third-order terms cancel, and the field equation is of
the second order.

It is instructive to make the following observation. There
seem to exist two terms of the general form (15) with different
Lorentz structures:

K�p;X �&p and H�p;X � qmp qnp qmqnp ;

where & � qlq
l and, as before, X � qlpq

lp. But the second
structure can be reduced to the first one by integrating by
parts (which we denote by an arrow):

H�p;X � qmp qnp qmqnp � 1

2
H q mp qmX

� 1

2
qmQ q mp! ÿ 1

2
Q&p ;

where the function Q�p;X � is such that H � qQ=qX. Hence,
the only remaining term in the Lagrangian is

L�1� � K1�p;X � qmq mp : �18�

We note that this term cannot be reduced by integration by
parts to any Lagrangian involving first derivatives only.

We consider a more complicated example of the Lagran-
gian quadratic in second-order derivatives. There are five
possible Lorentz structures:

L�2� � F1 q
mp qnp qlp q rp qmqnp qrqlp

� F2 q
mp qnp qmqlp qnq

lp

� F3 q
mp qnp qmqnp&p

� F4 qmqnp q
mqnp

� F5�&p�2 ; �19�
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where Fa � Fa�p;X �, a � 1; . . . ; 5. The resulting field equa-
tion has the following fourth-order terms:

F1 q
mp qnp qlp q rp qmqnqrqlp

� F2 q
mp qnp qmqn&p

� F3 q
mp qnp qmqn&p

� F4&&p

� F5&&p : �20�

We see that the fourth order terms cancel if F1 � 0, F2 � ÿF3,
and F4 � ÿF5, such that the Lagrangian takes the form

L�2� � H q mp qnp�qmqnp qlqlpÿ qmqlp qnq
lp�

� K�qnqnp qmq mpÿ qnqmp qnq
mp�

� H q mp qnp qmq�npql�q
lp� K qnq�npqm�q

mp ; �21�

where square brackets denote antisymmetrization (our
definition is A�mn� � Amn ÿ Anm without the numerical pre-
factor). We now understand the reason for the cancelation
of the fourth-order terms in the field equation: it occurs
because, e.g., qmq n� ql�q

mp � 0. Again, the first term in (21)
can be transformed to the form of the second term:

H q mp qnp�qmqnp qlqlpÿ qmqlp qnq
lp�

� 1

2
H�qmX q mp&pÿ qlX qmp q

lq mp�

� 1

2
qmQ�q mp&pÿ qnp q

nq mp�

! ÿ 1

2
Q�&p&pÿ qnqmp q

nq mp� :

Hence, there again remains one term,

L�2� � K2�p;X ��qnqnp qmq mpÿ qnqmp qnq
mp� :

It is now straightforward to verify that the third-order terms
in the field equation also cancel: the terms with
�qK2=qpl� ql�qnqnp qmq mpÿ qnqmp qnq

mp� cancel automat-
ically in the same way as in Eqns (16) and (17), while the
remaining terms like

qnK2�p;X ��qnqmq mpÿ qmqnq
mp�

also vanish.
The story repeats itself in cubic and higher orders in the

second derivatives. The only exceptional nth-order term in D
dimensions is [50, 63]

L�n� � Kn�p;X � q m1q�m1p . . . q mnqmn�p : �22�

That the corresponding field equation is of the second order is
verified trivially; the proof that no other terms exist is not so
simple [63]. We note that L�n� can be written as

L�n� � 1

�Dÿ n�!
� Kn�p;X �E n1...nDÿn m1 ...mn En1 ...nDÿnl1...lnqm1q

l1p . . . qmnq
lnp : �23�

Indeed, any antisymmetric tensor Am1...mn can be written as

Am1...mn � En1...nDÿn m1;...;mnB
n1...nDÿn ; �24�

where

B n1...nDÿn � 1

n!�Dÿ n�! E
n1 ...nDÿn m1;...;mnAm1...mn �25�

is the dual tensor. The expression in the right-hand side of
Eqn (22) is antisymmetric in both upper and lower indices.
Applying transformations (24) and (25) to the upper indices
and lower indices separately, we arrives at the form in (23).

We note that there are D� 1 allowed classes of Lagran-
gians, if we count the class without second derivatives,

L�0� � K0�p;X � : �26�

In particular, there are five classes in four dimensions. A
general Galileon Lagrangian is a sum of all these terms.

This completes the discussion of the exceptional theories
of one scalar field, Galileon, in Minkowski space. Theories
with multiple scalar fields are considered in Refs [64, 65] (see
also Refs [85±88]). The minimal generalization of L�1� to a
curved space±time is simple:

L�1� � K1�p;X �HmHmp ;

where X � g mnqmp qnp; it is straightforward to verify that the
resulting field equation is still of the second order. The
energy±momentum tensor, and hence the Einstein equa-
tions, are also of the second order in derivatives. The
generalizations of L�2� and higher-order Lagrangians are, on
the other hand, nontrivial [43, 51, 63]. Finally, we note that
someGalileon Lagrangians have an interesting interpretation
as describing a three-brane evolving in five-dimensional
space±time [52, 53].

4. Examples of NEC-violation

In this section, we consider an example of a simple NEC-
violating solution and its use for constructing rather non-
trivial cosmological scenarios. We also discuss the possibility
of creating a universe in the laboratory by using the Galileon
models in Section 3. Our set of illustrations is, of course,
personal and by no means complete.

4.1 Rolling background
The analysis is particularly simple in models exhibiting scale
invariance

p�x� ! p 0�x� � p�lx� � ln l : �27�

It is sufficient for our purposes to consider the Lagrangian
involving only the terms L�0� andL�1� [see Eqns (26) and (18)].
In the scale-invariant case and in Minkowski space, we write

Lp � F�Y� e 4p � K�Y �&p e 2p ; �28�
where

Y � eÿ2p�qp�2 ; �qp�2 � qmp q
mp ; �29�

and the functionsF andK are not yet specified. Assuming that
K is analytic near the origin, we set

K�Y � 0� � 0 : �30�
Indeed, upon integrating by parts, the constant part of K can
be absorbed into the F-term in Eqn (28). We need the
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expression for the energy±momentum tensor. For this, we
consider minimal coupling to the metric, i.e., set
Y � eÿ2pg mnqmp qnp and &p � HmHmp in a curved space±
time. To calculate the energy±momentum tensor, we note
that in a curved space±time, the K-term in

�������ÿgp
Lp can be

written, by integrating by parts, as
�������ÿgp

g mn qmp qn�Ke 2p�.
Then the variation with respect to g mn is straightforward,
and we obtain

Tmn � 2F 0e2pqmp qnpÿ gmnFe
4p

� 2&pK 0qmp qnpÿ qmp qn
ÿ
Ke2p

�
ÿ qnp qm

ÿ
Ke 2p

�� gmng
lrqlp qr

ÿ
Ke 2p

�
:

This expression is also valid in curved space±times.
In what follows, we consider homogeneous backgrounds

in Minkowski space, p � p�t�. For a homogeneous field, the
field equation is

4e4pF� F 0e 2p�ÿ6 _p 2 ÿ 2�p� ÿ 2e2p _pF 00 _Y

� Ke2p�4 _p2 � 4�p� � 4e2p _pK 0 _Y

� K 00 _Y�ÿ2 _p3� � K 0�ÿ12 _p2�p� 4 _p4� � 0 ; �31�
while the energy density and pressure are

r � e4pZ ; �32a�
p � e 4p

ÿ
Fÿ 2YKÿ eÿ2pK 0 _p _Y

�
; �32b�

where

Z � ÿF� 2YF 0 ÿ 2YK� 2Y 2K 0 :

It is easy to see that for _p 6� 0, Eqn (31) is equivalent to the
energy conservation condition _r � 0.

It is instructive to calculate the quadratic Lagrangian for
perturbations near the homogeneous background. It has the
form (6) with

1

2
U � e 2pc�F 0 � 2YF 00 ÿ 2K� 2YK 0 � 2Y 2K 00� � e2pcZ 0 ;

�33a�
1

2
V � e 2pc�F 0ÿ 2K� 2YK 0ÿ 2Y 2K 00� � �2K 0� 2YK 00��pc :

�33b�
We do not need the general expression forW. We note thatU
is proportional to the derivative with respect to Y of the same
function Z that determines the energy density [Eqn (32a)].

With F�0� � 0, the theory has the constant solution
pc � const, Y � 0, and Tmn � 0. In the absence of other
forms of energy, this solution corresponds to Minkowski
space. Equations (33a) and (33b) show that the Minkowski
background is stable for F 0�0� > 0 and that perturbations
travel with the speed of light [we recall that we set K�0� � 0].
This is easy to understand: it follows from Eqn (28) that
perturbations with respect to a constant pc are governed by
the first term there, and L�2� � e 2pcF 0�0��qw�2, which is the
Lagrangian for amassless scalar field. In the neighborhood of
the Minkowski background, i.e., for small qpc, perturbations
are not superluminal [70] if K 0�0� � 0, F 00�0� > 0.

In a wide range of the functions F andK, Eqn (31) also has
a rolling solution,

e p � 1������
Y�
p �t� ÿ t� ; �34�

where t� is an arbitrary constant. For this solution,
Y � Y� � const, and Y� is determined from the equation

Z�Y�� � ÿF� 2Y�F 0 ÿ 2Y�K� 2Y 2
�K
0 � 0 ; �35�

where F, F 0, etc., are evaluated at Y � Y�. For this solution,
we have T00 � r � 0 and

p � 1

Y 2� �t� ÿ t�4 �Fÿ 2Y�K � : �36�

Thus, the rolling background violates the NEC if

NEC violation : 2Y�Kÿ F > 0 : �37�

The quadratic Lagrangian for perturbations (6) reduces in
this background to

L�2� � A

Y��t� ÿ t�2
�
_w 2 ÿ �qiw�2

�� B

Y��t� ÿ t�2
_w 2

� C

Y 2� �t� ÿ t�4 w 2 ; �38�

where

A � 1

2
eÿ2pcV � F 0 ÿ 2K� 4Y�K 0 ;

B � 1

2
eÿ2pc�Uÿ V� � 2Y�F 00 ÿ 2Y�K 0 � 2Y 2

�K
00 ;

C � 8Fÿ 12Y�F 0 � 8Y 2
�F
00 � 8Y�Kÿ 8Y 2

�K
0 � 8Y 3

�K
00

are time-independent coefficients. As a cross check, we can
derive the equation for a homogeneous perturbation w�t� near
the rolling background from the last Lagrangian and see that
w � qtpc � �t� ÿ t�ÿ1 obeys this equation, as it should.
Indeed, using Eqn (35), we find that the coefficients of _w 2

and w 2 in Eqn (38) are related in a simple way:

4�A� B� � C

Y�
:

Hence, the homogeneous perturbation obeys a universal
equation,

ÿ d

dt

�
_w

�t� ÿ t�2
�
� 4

w

�t� ÿ t�4 � 0 ;

whose solutions are w � �t� ÿ t�ÿ1 and w � �t� ÿ t�4. This
shows that the rolling background is an attractor and that it
is stable against low-momentum perturbations: the growing
perturbation w � �t� ÿ t�ÿ1 w0�x� with a slowly varying w0�x�
can be absorbed into a slightly inhomogeneous time shift.

We consider the stability of the rolling background and
subluminality of the perturbations on it. The spatial gradient
term in (38) has the correct (negative) sign if

No gradient instability: A � F 0 ÿ 2K� 4Y�K 0 > 0 : �39�

The speed of perturbations with respect to the rolling
background is less than the speed of light if the coefficient of
_w 2 is greater than that of ÿ�qiw�2, i.e.,
Subluminality : B � 2Y�F 00 ÿ 2Y�K 0 � 2Y 2

�K
00 > 0 : �40�
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We require that this inequality hold in the strong sense; then
the perturbations with respect to the rolling solution are
strictly subluminal and hence the perturbations with respect
to backgrounds neighboring the rolling solution are also
subluminal. When both inequalities (39) and (40) are
satisfied, there are no ghosts either. Conditions (37), (39),
and (40), together with Eqn (35), can be satisfied atY � Y� by
a judicious choice of the functions F and K in the neighbor-
hood of this point, such that the NEC violation is stable and
subluminal. This can be seen as follows. Equation (35) can be
used to express F�Y�� in terms of F 0�Y��, K�Y��, and K 0�Y��,
namely, F � 2Y�F 0 ÿ 2Y�K� 2Y 2

� K
0. Then inequalities (37)

and (39) are satisfied if 2Kÿ 4Y�K 0 < F 0 < 2Kÿ Y�K 0,
which is possible for positive K 0. Condition (40) can be
satisfied by an appropriate choice of F 00 and K 00.

To tie in with existing studies, we note that a particular
Lagrangian like (28) considered in Ref. [67] is

Lp � ÿf 2e 2p�qp�2 � f 2

2L3
�1� a��qp�4 � f 3

L3
�qp�2&p ; �41�

which corresponds to

F � ÿf 2Y� f 2

2L3
�1� a�Y 2 ; K � f 3

L3
Y :

Here, the parameters f andL have the dimension of mass, and
the parameter a is dimensionless. The solution of Eqn (35) is

Y� � 2

3�1� a�
L3

f
:

The energy scale
������
Y�
p

associated with this solution is required
to be lower thanL, which is interpreted as theUV cutoff scale.
This gives

f 4L : �42�

From Eqn (37), we find that the background Y � Y� violates
the NEC if

2Y�Kÿ F � 2 f 2Y�
3� a
1� a

> 0 ;

while the stability and subluminality conditions, Eqns (39)
and (40), give

A � 3ÿ a
3�1� a� f

2 > 0 ; B � 4a
3�1� a� f

2 > 0 :

All these conditions are satisfied for [67]

0 < a < 3 :

The case a � 0 corresponds to luminal propagation of
perturbations around the background solution Y � Y�. In
fact, in this case, theory (41) is invariant under conformal
symmetry [50, 66]. However, the case a � 0 is problematic
because there are backgrounds in the neighborhood of
Y � Y� on which the propagation of perturbations is super-
luminal [67]. We also note that Lagrangian (41) does not
allow a stable Minkowski background, since F 0�0� < 0. A
conformally invariant theory with a stable Minkowski back-
ground and subluminal propagation in the rolling solution
Y � Y� and in its neighborhood was constructed in Ref. [69]
building upon Ref. [52], and is known as the DBI conformal
Galileon theory.

To end this section, we consider, following [70], the
structure of the configuration space �p; _p� of spatially
homogeneous Galileons in an arbitrary Galileon theory with
scale invariance (27). The Lagrangian can contain all terms
discussed in Section 3. We noted above that for _p 6� 0, the
field equation is equivalent to the energy conservation
condition _r � 0. This is not accidental. The Noether theorem
states that the Noether energy±momentum tensor (which
coincides with the metric energy±momentum tensor for a
scalar field minimally coupled to gravity) obeys

qmT m
n � ÿ�E:O:M:� qnp ;

where �E:O:M:� stands for the equation ofmotion. Therefore,
the equation of motion for a spatially homogeneous p � p�t�
is

�E:O:M:� � ÿ 1

_p
_r : �43�

Because the field equation is of the second order, r � r�p; _p�
does not contain �p or higher derivatives, and by scale
invariance it has the form

r � e4p Z�Y � ;

where Y � _p2 exp �ÿ2p� [cf. Eqn (29)] and Z is a model-
dependent function. Now we can understand in more general
terms that the rolling background with Z � 0 and _p > 0 is an
attractor in the class of homogeneous solutions. For this, we
use the energy conservation condition _r � 0 and, for any
homogeneous solution, write

e 4pZ � const : �44�

As p increases, jZj decreases, and hence the solution tends to a
configuration with Z! 0. The configuration space of
homogeneous Galileons with _p > 0 is thus divided into
basins of attraction of solutions with Z � 0.

We also noted above that the coefficient U entering the
quadratic action for perturbations is proportional to Z 0.
This is not accidental either. To see this, we again use
Eqn (43), valid for any homogeneous Galileon. It follows
from this equation that the equation of motion for a
homogeneous perturbation about the background pc�t� has
the form

ÿ 1

_pc

qr
q _pc

�w� . . . � 0 ;

where the omitted terms do not contain �w. Hence, the
Lagrangian for the perturbations has the form

L�2� � 1

2 _pc

qr
q _pc

_w 2 � . . . � e 2pc Z 0�Y � _w 2 � . . . ;

where the omitted terms do not contain _p. We conclude that
r � e4pc Z�Yc� and U � e 2pcZ 0�Yc� for any point �pc; _pc� in
the configuration space of a homogeneous Galileon in any
scale-invariant Galileon theory.

We finally recall that a configuration space point �pc; _pc�
at whichU < 0 is unstable: there is either a ghost or a gradient
instability among perturbations about this point. The above
results therefore mean that any path in the space of
homogeneous configurations �p; _p� that connects two zero-
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energy attractor solutions, Z � 0, passes through an unstable
region: indeed, Z 0 is negative somewhere on this path. This
property creates difficulties in using scale-invariant Gali-
leons, as we discuss in what follows. Here, we note that it
implies that there is no evolution without pathologies that
connects theMinkowski and rolling backgrounds, even if this
evolution is driven by a source (as long as this source does not
couple to _p).

The above analysis heavily uses scale invariance. Once one
gives up scale invariance, this analysis and its conclusions are
no longer valid. In particular, evolution from a nearly
Minkowski regime to the rolling regime can occur without
pathologies [71].

4.2 Genesis scenario
As the first example of using the solution discussed in
Section 4.1, we consider Galilean Genesis [66]Ða cosmolo-
gical scenario alternative to inflation.4 We assume that at
early times t! ÿ1, the space±time is Minkowskian, the
energy and pressure vanish, and the Universe is empty. At
that time, the only relevant form ofmatter is theGalileon field
p described by Lagrangian (28) (other Galileon Lagrangians
are considered in Refs [69, 89] with similar results). Once
conditions (37), (39), and (40) are satisfied, the solution
Y � Y� is stable and violates the NEC. At the initial stage of
the evolution, i.e., at large enough t� ÿ t, the energy density
and pressure are small, and we can use the perturbation
theory in G �Mÿ2

Pl . Equation (4) with k � 0 determines the
Hubble parameter, and to the lowest nontrivial order inMÿ2

Pl ,
we use the Minkowski expressions for the energy density,
r � 0, and pressure, Eqn (36),

p � ÿ P

�t� ÿ t�4 ; �45�

where P � �2Y�Kÿ F�Yÿ2� . It then follows that

H � 4pP

3M 2
Pl�t� ÿ t�3 :

Equation (3a) is then used to find the energy density in the
first order inMÿ2

Pl :

r � 3

8p
M 2

PlH
2 � 3p

8

P 2

M 2
Pl�t� ÿ t�6 :

We see that as the field pc evolves, the energy density
increases, and the cosmological expansion is accelerated.
The weak gravity approximation (the expansion in Mÿ2

Pl ) is
valid when r5 p, i.e.,

�t� ÿ t�2 4 P

M 2
Pl

: �46�

The parameter P can be large: in the example with
Lagrangian (41), we have P � f 3=L3 4 1 in view of
Eqn (42). Still, if P is not exceedingly large, the weak gravity
regime holds almost to the Planck scale.

As a cross check, we consider the field equation for a
homogeneous p in an expanding spatially flat Universe. It is

given by

4e4pF� F 0e 2p�ÿ6 _p 2 ÿ 2�p� � 4F 00�ÿ _p 2�p� _p 4�
� 4Ke 2p� _p 2 � �p� ÿ 4K 0� _p 2�p� _p 4�
� 4eÿ2pK 00�ÿ _p 4�p� _p 6� ÿ 6He 2p _pF 0 � 12He2p _pK

ÿ 6K 0�2H _p 3 � 2H _p�p� _H _p 2 � 3H 2 _p 2�
� 12eÿ2pHK 00�ÿ _p 3�p� _p 5� � 0 : �47�

We see that gravitational corrections here are small ifH5 _p,
which again gives condition (46). Discussing the weak gravity
regime is sufficient for our purposes, but of course one can
follow the evolution after the end of this regime, with gravity
effects fully accounted for. This is done in Ref. [66] in model
(41) with a � 0.

So far, we have seen that the theory allows a cosmological
scenario inwhich theUniverse is initially empty andMinkow-
skian and evolves into the stage of rapid expansion and high
energy density. This evolution is precisely the Genesis epoch.
There are two other ingredients in the Genesis scenario. First,
at some late stage, the Galileon energy density should be
converted into heat, and the standard hot epoch should begin.
A possible mechanism of `defrosting' is suggested in Ref. [90].
At the end of the defrosting stage, whatever it is, the Galileon
should settle to its Minkowski value, _p � 0. In a scale-
invariant Galileon theory, this is problematic, because of
our observations at the end of Section 4.1. The violation of
scale invariance at defrosting can probably cure this problem.

The second ingredient is a mechanism of the generation of
density perturbations, eventually responsible for CMB
anisotropies and structure formation. These perturbations
areGaussian (or nearlyGaussian) random fields with a nearly
flat power spectrum. Perturbations in the Galileon field itself
cannot do the job [66]. A simple extension of the Galileon
theory can work quite well, however [66]. We assume that the
theory is scale invariant in the Genesis epoch and add a new
field y that transforms trivially under scale transformations,
y�x� ! y�lx�. By scale invariance, the kinetic term in its
Lagrangian is

Ly � 1

2
e2p�qy�2 :

If other interactions of the new field are negligible in the
Genesis epoch, the Lagrangian in rolling background (34) is

Ly � 1

2

1

Y��t� ÿ t�2 �qy�
2 :

This coincides with the Lagrangian of a scalar field minimally
coupled to gravity, evolving in the inflationary epoch with the
Hubble parameter

������
Y�
p

, if we identify t with the conformal
time at inflation. Thus, we borrow the well-known result of
the inflationary theory: vacuum fluctuations of the field y
develop into a Gaussian random field with the power
spectrum

Pdy � Y�
�2p�2 : �48�

The field perturbations dy, which are entropy fluctuations in
the Genesis epoch, are assumed to be reprocessed into
adiabatic perturbations some time after the Genesis epoch,
e.g., by a curvaton [91±95] or modulated decay [96±98]

4 The termGenesis, corresponding to the English name of the first book of

the Old Testament, was introduced by the authors of [66].
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mechanism. The adiabatic perturbations z inherit the proper-
ties of perturbations dy (modulo non-Gaussianities that may
be produced in the process of conversion of entropy to the
adiabatic perturbation); in particular, their power spectrum is
Pz � const � Py. Spectrum (48) is flat; a small tilt, required by
observations [99, 100], can emerge due to weak explicit
breaking of scale invariance (cf. Ref. [101]).

To conclude this section, we note that the Genesis
scenario, especially its version with the conformal Galileon,
is an example of what is now called (pseudo-)conformal
cosmology [66, 68, 102±104]. In general terms, this class of
scenarios assumes that the Universe is initially effectively
Minkowskian, and matter is in a conformally invariant state.
Conformal invariance is then spontaneously broken by a
rolling background, similar to (34). The mechanism of the
generation of density perturbations is similar to the one just
discussed. The conformal scenario makes a number of model-
independent predictions that potentially distinguish it from
inflation. These include non-Gaussianities and a statistical
anisotropy of scalar perturbations [105±109]. Another prop-
erty is the absence of tensor perturbations.

4.3 Bouncing Universe
Galileon theories can also be used to construct models of a
bouncing universe [66, 110±114]. Before we discuss a concrete
model of this sort, we make the following comment. A
contracting universe can easily become strongly inhomoge-
neous and anisotropic because of the Belinsky±Lifshitz±
Khalatnikov phenomenon [115±119]. This creates a consis-
tency problem for the entire bouncing scenario. A way to
solve this problem is to assume that the dominant matter at
the contracting stage has a super-stiff equation of state, p > r
[120]. This is what is generically called the ekpyrotic Universe
[83, 84].We discuss this point in Appendix B.We note that for
matter with the equation of state p � wr, w � const, Eqn (5)
gives r / aÿ3�1�w�, and we then find fromEqn (3a) with k � 0
that the scale factor evolves as

a�t� / jt ja ; t < 0 ;

where

a � 2

3�1� w� :

The super-stiff equation of state, w > 1, hence corresponds to

a <
1

3
: �49�

An example of super-stiff matter is a scalar field with a
negative exponential potential,

Lf � 1

2
qmf qmfÿ V�f� ; V�f� � ÿV0 e

f=M ; �50�

whereV0 andM are positive parameters. The equation for the
homogeneous field f�t� and Friedmann equation (3a) have
the solution

a�t� � jt ja ; f�t� � constÿ 2M ln jt j ;
�51�

V
�
f�t�� � ÿ 2M 2�1ÿ 3a�

t 2
; t < 0 ;

where

a � 16p
M 2

M 2
Pl

: �52�

This is an attractor in the case of collapse. According to (49)
and (50), the effective equation of state is indeed super-stiff,
w4 1, for M5MPl. We note that the energy density is
positive and increases as the Universe collapses,

r � 1

2
_f 2 � V�f� � 6M 2a

t 2
:

This leaves open the possibility that the potential V�f�
becomes positive at large f, and the field moves out of the
negative potential at some late epoch.

It is worth noting that for M5MPl, this solution is
always in the weak gravity regime similar to that studied in
Section 4.2. In the weak gravity limit, we neglect gravity in
the field equation for f and obtain the solution in
Minkowski space:

f�t� �M ln

�
2M 2

t 2V0

�
; V�t� � ÿ 2M 2

t 2
: �53�

The energy density vanishes in this limit, while the pressure is

p � 1

2
_f 2 ÿ V � 4M 2

t 2
: �54�

The weak gravity approximation is valid at all times for
M5MPl.

To construct models where the ekpyrotic epoch ends with
a bounce, it suffices in principle to restrict to theories with a
single scalar field [112, 114]. But it is much simpler [113] to
extend the model in (50) by adding a new Galileon field with
Lagrangian (28), such that the total matter Lagrangian
becomes

L � Lp � Lf : �55�

In the weak gravity limit, the fields f and p do not interact
with each other, the Galileon rolls as in Eqn (34), while f�t� is
given by (53). The energy density is zero, and the pressure is
the sum of (45) and (54):

p � 4M 2

t 2
ÿ P

�t� ÿ t�4 : �56�

The Hubble parameter is found from Eqn (4):

H � ÿ 16pM 2

M 2
Pljt j

� 4pP

3M 2
Pl�t� ÿ t�3 : �57�

At early times, the field f dominates and the universe
contracts �H < 0�; later, the Galileon takes over, at least for
t� < 0, the contraction terminates (H � 0, bounce), and the
expansion epoch begins and proceeds as in the Genesis
scenario �H > 0�. It is not difficult to see that the bounce
indeed occurs in the weak gravity regime H5 _p if the
following mild inequality holds: jt�j4P 1=2M 2=M 3

Pl, t� < 0
(the case t� > 0 is considered in Ref. [113] with the result that
the bounce always occurs, but not necessarily in the weak
gravity regime).

To make this toy model more realistic, one modifies the
potential V�f� at large f and adds the potential to the
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Galileon to ensure that the cosmological constant vanishes at
late times. Depending on the parameters, the system may or
may not enter the late time inflationary regime [113]. The
ingredients discussed at the end of Section 4.2 have to be
present in this model as well.

4.4 Creating a universe in the laboratory
Our last example is an attempt to design a model for the
creation of a universe in the laboratory [70]. The idea is to
construct the initial condition in a Galileon-type theory such
that inside some large sphere, the field p is nearly homo-
geneous and behaves as it does at the initial stage of Genesis,
whereas outside this sphere, this field tends to a constant and
the space±time is asymptotically Minkowskian. For this
initial data, the energy density and pressure are initially
small everywhere, and the entire space±time is nearly
Minkowskian, and hence the required field configuration
can in principle be prepared in the laboratory. As the field
p�t; x� evolves from this initial state according to its equation
ofmotion, the energy density inside the large sphere increases,
the space undergoes accelerated expansion there, and the
region inside the sphere eventually becomes a human-made
universe. Outside this sphere, the energy density remains
small and asymptotically tends to zero at large distances; the
space±time is always asymptotically Minkowskian.

It is tempting to implement this idea in a simple way, by
considering the initial field p�t; x� that slowly varies in space
and interpolates between the rolling solution (34) inside the
large sphere and the Minkowski vacuum qp � 0 at spatial
infinity. By slow variation in space, we mean that the spatial
derivatives of p are negligible compared to temporal ones,
such that at each point in space, p evolves in the same way as
in the homogeneous case.

An advantage of this quasi-homogeneous approach is its
simplicity; a disadvantage is that it does not actually work in
the class of scale-invariant models in Section 4.1. The
obstruction comes from the property discussed at the end of
Section 4.1: if the evolution of p is effectively homogeneous
everywhere, then the analysis in Section 4.1 applies, and
because Z�Y � vanishes both inside the large sphere (Genesis
region) and far away from it (Minkowski region), there is a
region in between where Z 0 < 0 and the system is unstable.

One way to bypass this obstruction would be to insist on
the slow spatial variation of the initial field configuration, but
give up the requirement that the field inside the large sphere
be in the Genesis regime (34). Instead, we could consider the
field with a nonzero energy density inside the sphere, such
that there would be a smooth and stable configuration that
interpolates, as r increases, between this field and the
asymptotic Minkowski vacuum. This can hardly lead to the
creation of a universe, however, since, as we discussed in
Section 4.1, the Minkowski point Y � 0 is an attractor, and
the field in the interior of the sphere would relax to it.

Other possibilities are to consider field configurations
with nonnegligible spatial gradients or give up scale invar-
iance of the action (the latter possibility has been successfully
explored in Ref. [71] in the cosmological context). In either
case, the above no-go argument would be irrelevant, but the
analysis would be more complicated. It is simpler to follow
another route, and complicate the model instead.

For this, the functions F and K are allowed to depend
explicitly on spatial coordinates. This can be the case if there
is another field, j, that determines the couplings entering
these functions, and this field acts as a time-independent

background, j � j�x�. In this case, we can consider a field
configuration p�t; x� that at any point in space is approxi-
mately given by the rolling solution (34), but with Y�
depending on x. The background j�x� is prepared in such a
way that Y��x� is constant inside the large sphere (to evolve
into a human-made universe) and gradually approaches zero
as r!1. It is straightforward to verify that with an
appropriate choice of the functions F�Y;j� and K�Y;j�,
this construction does not encounter pathologies anywhere.

We now sketch a concrete construction. We assume that
the field j is a usual scalar field and has two vacua, j � 0 and
j � j0. We prepare a spherical configuration of this field
withj � j0 inside a sphere of a sufficiently large radiusR and
j � 0 outside this sphere (Fig. 3). We assume for definiteness
that there is a source for the field j that keeps this
configuration static. Let L5R be the thickness of the wall
separating the two vacua; L is also kept time-independent by
the source. We require that the mass of this ball be small
enough, such that R4Rs, where Rs is the Schwarzschild
radius. The mass is of the order of m 4R 2L, where m is the mass
scale characteristic of the field j. Hence, the last requirement
becomes m 4RL5M 2

Pl. For small enough m, bothR and L can
be large.

Let the function Y��j� be such that Y��0� � 0 and
Y��j0� � Y0. We prepare the initial configuration of p at
t � 0 in such a way that it initially evolves as

e p � 1������
Y0

p
t��r� ÿ

�����������
Y��r�

p
t
; �58�

where we allow the parameter t� in (34) to vary in space, and
choose a convenient parameterization. We choose
t��r� � t�; in inside a somewhat smaller sphere of a radius
R1 < R (but R1 � R) and t��r� � t�;out 4 t�; in at r > R1

(hereafter, subscripts `in' and `out' refer to the respective
regions r < R1 and r > R1), as shown in Fig. 3, with the
transition region, e.g., of the same thickness L. We take
t�; out 5L; then the characteristic time scales are smaller
than the smallest length scale L inherent in the setup, and
therefore the spatial derivatives of p are indeed negligible
compared to the time derivatives. This ensures that the field p
is in the quasi-homogeneous regime. As r!1, we have
Y��r� ! 0 and t� ! const, and hence p tends to the
Minkowski vacuum p � const.

At the initial stage of evolution, the pressure inside the
radius-R1 sphere is

pin � M 4

Y 2
0 �t�; in ÿ t�4 ;

j0

j

t�; out

t�; in

t�

R1 R r

Figure 3. The setup. Dashed and solid lines respectively show t��r� and
j�r�. The behavior of the function Y��r� � Y��j�r�� is similar to that of

j�r�.
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where M is the mass scale characteristic of the field p. We
require that pinR

3=M 2
Pl 5R, then the gravitational potentials

are small everywhere, and gravity is initially in the linear
regime. Thus, we impose the constraint

M 4R 2

Y 2
0 t

4
�; in

5M 2
Pl ; �59�

which is consistent with the above conditions for M5MPl

and Y0 0M 2. In complete analogy with Section 4.2, the
Hubble parameter inside the sphere of the radius R1 shortly
after the beginning of evolution is

Hin � 4pM 4

3M 2
PlY

2
0 �t�; in ÿ t�3 : �60�

In view of (59) and t�; in 5R, the Hubble length scale is large
for some time, Hÿ1 4R. This is also true for r > R1, and
hence there are no anti-trapped surfaces initially.

As t approaches t�; in, the pressure in the Genesis region
r < R1 increases, and the Hubble length shrinks there to
R1 � R. The anti-trapped surfaces are formed inside the
sphere of the radius R1, and a new universe is created and
enters the Genesis regime there. This occurs whenHin � Rÿ1,
i.e., at a time t1 such that

�t�; in ÿ t1� �
�

M 4R

M 2
PlY

2
0

�1=3

:

We note that at that time, the energy density rin �M 2
PlH

2
in is

still relatively small,

rin
pin
�
�

M 4

Y 2
0R

2M 2
Pl

�1=3

5 1 :

This implies that at the time t1, space±time is locally nearly
Minkowskian. Another manifestation of this fact is that the
scale factor is close to unity:

ain�t1� � 1� 2pM 4

3M 2
PlY

2
0 �t�; in ÿ t1�2

; �61�

where the correction to unity is of the order of rin=pin. Hence,
our approximate solution (58), (60) is legitimate.

Because t�; out 4 t�; in, the field ep at the time t1 is still small
for r > R1, and the Hubble length scale exceeds R there.
Gravity is still weak at r > R1, and it is therefore consistent to
assume that the configuration of j is not modified by that
time. We also note that a black hole is not formed by then
either.

This completes the construction of the initial configura-
tion and the analysis of the early epoch of a human-made
universe. We verify in Appendix C that this analysis does not
contradict the general results in Ref. [13].

Of course, the construction discussed here is merely a
sketch. To make the scenario complete, one has to specify a
way to design the configuration of the fieldj and keep it static
(or consider an evolving field j instead). Also, one has to
understand the role of spatial gradients. Finally, one would
like to trace the dynamics of the system to longer times, with
gravity effects included, and see what geometry develops
towards the end of the Genesis epoch occuring at r < R1. In
particular, it is of interest to see whether a black hole is
formed.

5. Conclusion

The theories of (generalized) Galileons offer an interesting
possibility of consistent and controllableNEC violation. Still,
open issues remain. One of them is the danger of super-
luminality. While the background we consider in Section 4.1
may be safe in this respect, it is not impossible that other
backgrounds are not, especially when gravity generated by
some other matter is relevant. An example of this sort is given
inRef. [121]. The superluminality issue is closely related to the
possibility of UV completion [72]. Another issue is the
stability against radiative corrections. While the simplest
Galileon theories have enough symmetries to guarantee
stability, generic Galileon Lagrangians (22) do not. There
are also largely unexplored areas where NEC-violating
theories may lead to surprises, like black hole thermody-
namics [122] and the absence/existence of closed time-like
curves [123].

Of course, the most intriguing question is whether NEC-
violating fields exist in Nature. Needless to say, no such fields
have been discovered. The situation is not entirely hopeless,
however: we may learn at some point in the future that the
Universe went through the bounce orGenesis epoch, and that
would be an indication that NEC violation indeed took place
in the past.

The author is indebted to S Demidov, D Levkov,
M Libanov, I Tkachev, and M Voloshin for the helpful
discussions and S Deser, Y-S Piao, and A Vikman for the
useful correspondence. The work was supported in part by a
grant from the President of the Russian Federation, NS-
5590.2012.2, and the Ministry of Education and Science,
contract 8412.

Appendix A

We consider a general spherically symmetric metric, which we
choose in diagonal form,

ds 2 � N 2 dt 2 ÿ a 2 dr 2 ÿ R 2�dy 2 � sin2 y dj 2� ; �62�

whereN � N�t; r�, a � a�t; r�, andR � R�t; r�. Our purpose is
to show that a trapped sphere is such that R�t; r�t�� decreases
along an outgoing null geodesic for which r increases.

The formal definition of a trapped sphere is that

Hml
m < 0

for a vector l m � dxm=dl tangent to an outgoing radial null
geodesic, where l is the affine parameter. The vector l m is null,

gmnl
ml n � 0 ; �63�

and obeys the geodesic equation

dl m

dl
� Gm

nrl
nl r � 0 : �64�

For metric (62), Eqn (63) gives

l 0 � u�t� ; l r � u�t� N
ÿ
t; r�t��

a
ÿ
t; r�t�� ;

where we have chosen to parameterize the geodesic by the
time t, such that the null world line is �t; r�t�; 0; 0�; the sign of
l r corresponds to the outgoing geodesic. The normalization
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factor u�t� is to be determined from Eqn (64). To find this
factor, we write dl m=dl � dl m=dt � l 0 and, for the 0th
component of Eqn (64), obtain

du

dt
� G 0

00u� 2G 0
0ru

N

a
� G 0

rru

�
N

a

�2

� 0 : �65�

The relevant Christoffel symbols are

G 0
00 �

_N

N
; G 0

0r �
N 0

N
; G 0

rr �
a _a

N 2
;

where the dot and the prime denote partial derivatives, and
Christoffel symbols entering Eqn (65) are to be taken at
r � r�t�. Thus, the function u�t� obeys

_u�
� _N

N
� 2

N 0

a
� _a

a

�
u � 0 ; �66�

where, again, the terms in parenthesis are partial derivatives
evaluated at r � r�t�. As a cross check, we write the
r-component of geodesic equation (64),

d

dt

�
u
N
ÿ
t; r�t��

a
ÿ
t; r�t��

�
� G r

00u� 2G r
0ru

N

a
� G r

rru

�
N

a

�2

� 0 : �67�

Using the relations

G r
00 �

NN 0

a 2
; G 0

0r �
_a

a
; G 0

rr �
a 0

a
;

dr�t�
dt
� N

a
;

we find that Eqn (67) coincides with Eqn (66).
We now calculate

Hml
m � 1�������ÿgp qm

ÿ �������ÿgp
l m
�

� 1

aNR 2

�
q0�aNR 2u� � qr

�
aNR 2u

N

a

��
� _u�

�
_a

a
�

_N

N
� 2

_R

R
� 2

N 0

a
� 2

R 0

R

N

a

�
u :

Using Eqn (66) to eliminate _u, we arrive at

Hml
m � 2

� _R

R
u� R 0

R

N

a
u

�
� 2l m qmR : �68�

Therefore, the trapped surface is indeed such that R�t; r�t��
decreases along the outgoing null geodesic.

As an example, for a contracting spatially flat Universe,
we have a � a�t�, R � a�t�r, and the right-hand side of
Eqn (68) is negative for r > ÿ1= _a; a sphere of the radius
R � ar > jH jÿ1 is a trapped surface. By time reversal, a
sphere of a radius R > jH jÿ1 in the expanding Universe is
an anti-trapped surface.

Appendix B

We briefly discuss why a contracting universe becomes
strongly inhomogeneous and anisotropic if the dominant
matter obeys p < r, and why, on the contrary, it becomes
more isotropic in the course of contraction in the opposite
case. We consider a simplified version of the anisotropic

Universe described by the homogeneous anisotropic metric

ds 2 � dt 2 ÿ a 2�t�
X3
a�1

e 2ba�t� e �a�i e
�a�
j dx i dx j ;

where e
�a�
i are three linearly independent vectors that are

constant in time. We assume for simplicity that these vectors
are orthogonal to each other (the dynamics is much more
complicated in the general situation, but this turns out to be
largely irrelevant from our standpoint; see the comment
below). The function a�t� is chosen such thatX

a

ba � 0 ; �69�

in other words, det gi j � a 6. The Einstein equations give�
_a

a

�2

� 1

6

X
a

_b 2
a �

8p
3

Gr ; �70a�

�ba � 3
_a

a
_ba � 0 : �70b�

Equation (70b) gives

_ba �
da
a 3

; �71�

and in view of (69), the constants da obey
P

a da � 0.
Equation (70a) then becomes�

_a

a

�2

� 1

6a 6

X
a

d 2
a �

8p
3

Gr : �72�

This equation shows that the overall contraction rate (the rate
at which det gi j decreases) is determined at small a by the
anisotropy rather thanmatter, if r increases more slowly than
aÿ6. For metric (69), the covariant energy conservation
condition still gives Eqn (5) with H � _a=a, and hence the
above property holds for p < r. Therefore, we can set r � 0
late at the collapsing stage, and systems of equations (71) and
(72) have the Kasner solution:

a�t� � jt j1=3 ; ba � da ln jt j ;X
a

da � 0 ;
X
a

d 2
a �

2

3
:

Hence, the anisotropy increases as the Universe collapses. In
general, when the vectors e

�a�
i are not orthogonal to each

other, this regime continues for a finite time, and then the
values of the parameters da change in a rather abrupt
manner [124]. The vectors e

�a�
i also change. This change

occurs infinitely many times in the limit t! 0, which
corresponds to chaotic anisotropic collapse.

These results show that the Universe is very anisotropic
before the bounce. In fact, the processes we described occur
independently in Hubble-size regions and are very different in
each of them because of their chaotic properties, and there-
fore theUniverse also becomes strongly inhomogeneous. This
picture remains valid after the bounce, at least in the classical
theory framework. A strong inhomogeneity of the Universe
after the bounce is inconsistent with the smallness of the
primordial cosmological perturbations, and hence the entire
bounce scenario is up in the air.

To solve this problem, we invoke matter with a super-stiff
equation of state p � wr, w > 1. Its energy density behaves as
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r / aÿ3�1�w�, and hence increases faster than aÿ6. The second
term in the right-hand side of Eqn (72) dominates, and the
scale factor decreases as a�t� / jtja with a < 1=3 [see
Eqn (49)]. It then follows from Eqn (71) that the parameters
ba tend to constants as t! 0. If the Universe is nearly
homogeneous at the early stages of collapse, and anisotropy
is not strong, then the Universe becomes more and more
homogeneous in the process of contraction (see the details in
Ref. [120]).

Appendix C

We show in this appendix that the results in Section 4.4 are in
agreement with the general results in Ref. [13].

Definition [13]. Let the metric have form (62). The R-region
is a region where normal vectors Rm � qmR to the hypersurfaces
R � const are spacelike, g mnRmRn < 0. Since g mnRmRn �
Nÿ2 _R 2 ÿ aÿ2R 0 2 < 0, there is no place in an R-region where
R 0 � 0, and therefore the sign of R 0 is the same in the entire
R-region. An R-region where R 0 > 0 is called an R�-region,
while an R-region where R 0 < 0 is called an Rÿ-region. The
T-region is a region where normal vectors Rm to the hypersur-
faces R � const are timelike, g mnRmRn > 0. There, _R is
nonzero everywhere. Hence, the sign of _R is the same every-
where. A T-region where _R > 0 is called a T�-region, while a
T-region where _R < 0 is called a Tÿ-region. T�- and Tÿ-
regions are regions of expansion and contraction, respectively.

We consider the model in Section 4.4. In the above
nomenclature, the whole space is initially an R�-region. At
the time t1, a T�-region appears. One of its boundaries moves
toward smaller r, and another moves toward larger r. One of
the results in Ref. [13] is that for r� p < 0 (b < 0 in the
nomenclature of Ref. [13]), the boundary between the inner
R�-region and the T�-region is necessarily space-like. We
verify that our geometry is consistent with this result.

In our case, N � 1, a � 1 [see (61)]), and R � a�r; t�r. The
boundary between the left R�-region and the T�-region is
determined by _ar � a, i.e.,

rÿHÿ1 � 0 :

The normal to this hypersurface is the vector� _H

H 2
; 1 ; 0 ; 0

�
;

which is timelike because

_H

H 2
� ÿH�t�; in ÿ t��ÿ1 �M 2

PlY
2
0 �t�; in ÿ t�2
M 4

4 1 :

Hence, the hypersurface separating theR�- and T�-regions is
spacelike, in agreement with the general result in Ref. [13].

The outer boundary of the T�-region can in principle be
either spacelike or timelike [13]. For the same reason as above,
it is actually spacelike in our case.
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