
Abstract. Experimental and theoretical research on the integer
quantum Hall effect is reviewed, together with other transport
phenomena in a two-dimensional electron gas in a quantizing
magnetic field. Particular emphasis is placed on primary ex-
perimental data, on the comparison of experimental and theo-
retical results, and on the analysis of theoretical predictions
from the point of view of their experimental verification.
Among experiments conducted in recent years, those that have
raised questions to be resolved are highlighted. Possible direc-
tions of further research are suggested.

1. Introduction

The quantum Hall effect (QHE), discovered in 1980 by
K von Klitzing [1], still remains a subject for experimental
studies and as before stimulates the work of theorists. The
history of research on this effect has developed in such a way
that, on average, every five years either new theoretical ideas
or experimental breakthroughs have been presented. The
diminishing interest in the quantum Hall effect gave way

again to rising, so there is no reason for this quasiperiodic
process to stop.

During the considerable period of time since its discovery,
the integer quantumHall effect not only has become a topic of
modern literature reviews (see, for example, Refs [2±6]), but
also has been described in textbooks [7±10]. This poses a
question: does one need another review on this topical
problem?

The present review was motivated by the fact that the
scientific literature mostly shows theoretical aspects and not
the experimental state of the art. In the case of the quantum
Hall effect, this leads to a curious occurrence: the constructed
theories are so attractive that even experimentally unverifi-
able predictions are treated in textbooks as real ones. The
author of this review had the goal to first describe, as broadly
and explicitly as possible, the primary experimental results,
and second, to highlight those theoretical constructions that
lead to unobservable predictions.

2. The subject of discovery

The quantum Hall effect was first observed on a silicon field-
effect structure, which is described in a large number of books
(see, for example, Ref. [11]). At this stage of the discussion,
neither details of the device nor the electron spectrum of the
semiconductor is important. The only significant fact is that a
two-dimensional electron gas (2DEG) resides at the interface
between the semiconductor (Si(100)) and the insulator (SiO2).
The term `two-dimensional' means that the motion of the
electrons is free only in the plane, being quantized in the
direction perpendicular to the interface, and all electrons
occupy the ground quantum level. The electron system is
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shaped into a Hall bar with ohmic contacts to conduct the
measurement current I, and potential contacts to measure
voltagesVxx andVxy (see inset to Fig. 1). The most important
fact is that one can smoothly change the electron concentra-
tion in silicon field-effect structures and control it with an
accuracy of up to 1%.

Figure 1 shows the experimental results obtained in a
silicon field-effect structure similar to the one studied in
Ref. [1] but having a higher quality. The experiment was
performed at a temperature (30mK) lower than in Ref. [1]. As
seen from the figure, both components Rxx � Vxx=I and
Rxy � Vxy=I of the magnetoresistance tensor show quite
extraordinary behavior in a magnetic field perpendicular to
the plane of the two-dimensional electron gas. Indeed, for an
ideal sample in a homogeneous electric field E, all electrons
drift in the direction perpendicular to the magnetic and
electric fields with a speed of cE=B; in such a system,
therefore, one should expect that Rxx�ns� � 0 and Rxy �
B=nsec, where ns is the electron density, e is the electron
charge, and c is the speed of light in a vacuum. The expectant
dependence for Rxy is plotted in Fig. 1 by a dashed line.

In fact, the Hall component of the resistance tensor shows
not a smooth but a stepwise dependence, with wide plateaus
and abrupt steps between them. The dissipative component
of themagnetoresistance tensor is close to zero on the plateau,
but in transition regions it is finite. It was discovered already
in the first precise experiments that the resistance at the
midpoint of the plateau is given by the relation

R n
xy �

h

e 2n
; n � 1; 2; . . . ; �1�

with an accuracy of not less than six significant digits.
Moreover, the Hall resistance on the plateau depended
neither on the quality or size of the sample nor on the
position of the potential contacts.

Thereby, the discovery of the integer quantum Hall effect
turned out to be the discovery of a physical representation of
a number h=e 2, a combination of universal physical con-
stants. Currently, this combination is known with an

accuracy of more than 11 decimal digits, and the value of
the Hall resistance on the plateau is adopted as the resistance
standard.

Since the appearance of a plateau in the Rxy�ns�-depen-
dence is impossible in a pure electron system, one is obliged
to relate the observed effect with a chaotic potential in which
the electron system dwells. On the other hand, the remark-
able accuracy of measurements of universal physical con-
stants in `dirty' systems is not accidental and has to be linked
to some fundamental principle. The search for this principle
is one of the main issues in understanding the physical
grounds of the integer quantum Hall effect. Another
important question is the determination of the physical
parameters that limit the accuracy of reproduction of the
Hall resistance on the plateaus for different samples. While
the first issue was at least partially solved [12], the second
one remains unsolved.

3. Ideal electron system
in a quantizing magnetic field

3.1 Energy spectrum
The electron gas spectrum in a quantizing magnetic field has
been discussed in many textbooks (see, for example,
Ref. [13]); therefore, we will restrict ourselves to a short
review. It is assumed that the electron gas is situated in the
plane �xy�, and the magnetic field H is directed along the
z-axis. To simplify further discussion, we will introduce a
static electric potential depending on a single coordinate
V�x�. In the Landau gauge, the vector potential has the
form A � �0; xH; 0�. In terms of A, we can express the
magnetic field B � H � rot A and the kinetic part of the
Hamiltonian, Ĥ � �pÿ �e=c�A�2=2m, where p � ÿi�hH, and
m is the electron effective mass. This leads to the Schr�odinger
equation in the form�

p 2
x �

�
py ÿ x

eB

c

�2

� 2mV�x�
�
c�x; y��2mec�x; y� : �2�

It is convenient to search for the solution of equation (2) in
the form of a plane wave propagating along the y-axisÐ
that is, an exponential exp �iky� multiplied by a function
depending only on x. Substituting such a solution into
equation (2) yields the one-dimensional Schr�odinger equa-
tion�

ÿ �h 2

2m

q2

qx 2
�mo 2

c

2
�xÿ x0�2 � V�x�

�
c�x��ec�x� ; �3�

where oc � eB=mc is the cyclotron frequency, x0 � kl 2 �
k c�h=�eB� is the guiding center coordinate, and l is the
magnetic length.

For every value of k, equation (3) corresponds to a discrete
set of quantum energy levels. The number of different k values
per unit area can be derived in the following way. Let us pick
out a rectangle with sides Lx and Ly. The guiding center
coordinate falls in the interval 0 < x0 < Lx. Consequently,
one has 0 < k < Lx=l

2. At the same time, periodic boundary
conditions have to be fulfilled along the y-axis: ki � 2pi=Ly,
where i is an integer. Hence, Dk � 2p=Ly, and we obtain
n0 � 1=2pl 2.

Classification of quantum states based on a quasi-contin-
uous set of wave vectors ky is valid for any one-dimensional
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Figure 1. The dependence of the Hall (Rxy) and the diagonal (Rxx)

components of the magnetoresistance tensor on the concentration of a

two-dimensional electron gas in a sample based on the silicon field-effect

transistor Si-MOSFET(100) (MOSFET: Metal-Oxide-Semiconductor

Field-Effect Transistor), at B � 14 T, T � 30 mK. The sample and the

potentials being measured are schematically shown in the inset.
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potential V�x�. Further, we will discuss the three potentials
most important from the experimental viewpoint.

3.2 The case of V(x)=0. Quantization condition
As follows from equation (3), at V�x� � 0 the electron moves
in a parabolic potential well, its energy spectrum being
determined by the condition

en �
�
n� 1

2

�
�hoc ; �4�

while a set of the wave functions is given by a set of harmonic
oscillator eigenfunctions. Every energy level splits into two
spin sublevels with the energies described in the simplest case
by the relation�mB gB, where mB is the Bohr magneton, and g
is the Land�e factor.

The electron density in two-dimensional electron systems
is determined, with a high degree of accuracy, by the
compensating charge. Therefore, the chemical potential is
not fixed but shows sawtooth behavior, as illustrated in Fig. 2.
The jumps of the chemical potential occur under the
condition ns � Nn0, where N � 1; 2; :::, i.e., for integer filling
factor n � N. Precisely this condition, setting the periodicity
in the reciprocal magnetic field 1=B, determines the period of
any quantum oscillations and corresponds approximately to
the midpoint of a Hall plateau (see Fig. 1).

3.3 Homogeneous electric field
The electric potential in a homogeneous electric field has the
form V�x� � ÿeEx. Adding a linear term to a parabolic
potential only shifts its centerÐ that is, x0 in Eqn (3) is
replaced by x1 � x0 � xE, where xE � eE=�mo 2

c �. The set of
quantum energy levels is still described by relation (4), but the
whole ladder of energy levels is shifted by a value of
ÿeE�x0 � xE=2�. This leads to two consequences. First, an
ideal electron system can screen long-period potentials, even
when the filling factor is an integer: n � N. The screening
turns out to be peculiar: the change in the electron density is
determined by the second spatial derivative of the potential.
Second, every electron in a homogeneous field acquires a
group velocity that is perpendicular to the electric and

magnetic field directions:

v � qe
qky
� l 2

qe
qx0
� cE

B
; �5�

and for an integer filling factor, one finds sxx�0, and
sxy�Nn0ev=E � Ne 2=h. The Hall resistance changes with
the electron concentration monotonically and takes quan-
tized values when the filling factor is an integer, as shown in
Fig. 1 by a dashed line.

3.4 Sample bounded by an infinitely high vertical potential
barrier
Let us consider now a two-dimensional electron gas that
occupies a half-plane x > 0, bounded by an infinitely high
potential barrier at x � 0 (Fig. 3). The effective potential well
that is present in Eqn (3) is shown in the inset to Fig. 3. The
well is formed by a part of the magnetic parabola cut by a
vertical potential wall. The resulting well confines the motion
of the electron more strongly than the initial parabola;
therefore, the quantum energy levels inside it are higher than
the ones determined by relation (4). Moreover, the energy
spectrum becomes nonequidistant.

Figure 3 qualitatively illustrates the behavior of the first
two lower levels of the energy spectrum as the guiding center
changes its position. As the guiding center approaches the
vertical barrier, starting from distances comparable to the
magnetic length, the energies of both levels increase rapidly
compared to the energy in the depth of the two-dimensional
electron system. The guiding center, as shown in Fig. 3, can be
located outside of the half-plane x > 0, but the corresponding
electron wave function is limited by the boundaries of this
half-plane.

In a spatially bounded ideal two-dimensional electron
system, the density of states in every energy gap, although
small, is finite due to the upward bending of the quantum
levels. As a result, the chemical potential can be fixed at any
energy exceeding the lowest quantum level in the bulk of the
system (Fig. 3). The dependence of the energy on the guiding
center coordinate implies its dependence on ky, and the fact
that an electron has a group velocity v in the y-direction. This
means that a nondissipative electric current flows along the
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Figure 2. Energy levels (with spin splitting taken into account) of the

electron system in a homogeneous quantizing magnetic field. The bold

solid line represents the dependence of the system's chemical potential on

the magnetic field; n � ns=n0 is the filling factor.
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Figure 3. Schematic dependence of the energies e0 and e1 of the first two

lower quantum levels on the coordinate x0 of the guiding center. The

vertical dashed-dotted arrow indicates the position of the edge channel on

the abscissa. The effective potential well for the electron is shown in the

inset.
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edge. Let us calculate its value for the case demonstrated in
Fig. 3:

Ileft � e

2p

�1
ky�left�

v dky � e

2p�h

�1
ky�left�

qe
qky

dky

� e

h

�e0
m

de � e

h
�e0 ÿ mleft� : �6�

If the electron system has the form of a stripe, a reversed
current will flow along its right-hand side. The total current
through the cross section of the stripe is given by

I � e

h
� mright ÿ mleft� : �7�

As long as the electron system is in equilibrium, one has
mright � mleft � m. The currents flowing along different sides of
the sample compensate each other. There remains only the
nondissipative diamagnetic current flowing along the edge. In
the absence of equilibrium, mright ÿ mleft � eV, and relation
(7) generalized to the case of a few number of quantum energy
levels below the level of the chemical potential coincides with
relation (1).

The additional charge required to support the chemical
potential difference in an ideal sample can be placed only on
the edge of the stripe; therefore, the Hall electric field and the
resulting Hall current will unavoidably be inhomogeneous
[14]. Nevertheless, the total current, according to Eqn (7),
does not depend on the field distribution inside the sample,
which can be easily derived from Eqn (6) by interpreting e0 as
the minimal energy of the corresponding quantum energy
level in the stripe.

A new opportunity in understanding the integer quantum
Hall effect emerges if one considers the nondissipative edge

current carried by one or several one-dimensional edge
channels, each one carrying the current In � mne=h. A
detailed consideration, first introduced in Ref. [15], became
widespread due to the implementation of the Landauer
technique for the integer quantum Hall effect [16] (Fig. 4).
Edge channels are visualized for clarity as the intersection
lines between the chemical potential level and the bent energy
level in the plane assigning the position of the guiding center.
Notice explicitly that, in the case of a sufficiently steep wall
(vertical, for example), the image of the edge channel defined
in such a way can be located outside of the sample.

Another problem regarding the edge channels in an ideal
sample was solved experimentally. This problem is connected
with the energy dissipation. Indeed, the existence of a current
in the presence of a finite chemical potential difference Dm
leads to the power dissipation �n=h��Dm�2. Experiments have
been performed in Ref. [17] on visualizing the hot spot on the
Hall bar in order to find the area where the energy dissipation
occurs. It turned out that the dissipation occurs in the corner
of the bar (it was shown later that the dissipation is present in
two corners on a single diagonal [18]), and the corner changes
for a different magnetic field direction (Fig. 5). The choice of
the corner depends on the condition that the group velocity of
the electrons leaving the electrode be directed along the
contact, so that the chemical potentials of the electrons in
the edge channel and in the contact coincide along the
propagation path of the electrons.

a
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d

G
at
e

GateGate

Figure 4.One of the sample's geometries, in which the Landauer±B�uttiker
formalism is convenient for calculation. Potential contacts a, b, c, d have

different chemical potential values. The gate voltages are chosen in such a

way that one of the edge channels connects neighboring contacts, and the

second one has a controlled transmission coefficient in every narrow area.

By setting the transmission coefficients and the chemical potentials of two

of the four contacts, one can calculate all the currents and chemical

potentials of the other two.

B B

Figure 5.Visualization of the hot spot on theHall bar under the conditions

of the quantum Hall effect. Bright lines mark the boundaries of the two-

dimensional electron gas and the electric current contacts. (Data taken

from Ref. [17].)
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3.5 Compressible and incompressible stripes
on an edge of an ideal two-dimensional electron gas
In this section, we will consider an ideal two-dimensional
electron gas that is spatially boundedwith a smooth potential.
The word `smooth' means that the change of the electron
energy on the magnetic length scale is small in comparison to
the cyclotron energy. In real semiconductor two-dimensional
systems, the potentials often fall into this type.

The terminology used below is not commonly known. Let
us explain it. In addition to the usual single-particle density of
states qn=qe, one can introduce a thermodynamic density of
states qns=qm proportional to the compressibility of the
electron system (see, for example, Ref. [19]). The thermo-
dynamic density of states depends on the temperature and can
be nonzero in energy intervals where the single-particle
density of states is exactly zero. If the chemical potential, as
in Fig. 3, is located between the quantum energy levels, the
thermodynamic density of states at zero temperature is close
to zero and the electron system is incompressible.

Let us first consider the behavior of the bottom of the
electron subband in the absence of a magnetic field (Fig. 6a).
In this case, the bottom of the conduction band below the
chemical potential level follows the profile of the screened
potential. In the case of a parabolic dispersion relation, it also
follows the profile of the electron density up to a numerical
factor, because in the system under consideration the
relationships qn=qe � qns=qm0 � const are valid.

Let us turn now to the case of a quantizing magnetic field.
The coordinate dependence of the profile of the conduction-
band bottom cannot remain unchanged in the presence of the
quantizing magnetic field [20]. Indeed, the electron density at
every quantum energy level remains the same, as long as the
quantum level is placed below the chemical potential level.
The conservation of the profile of the conduction-band
bottom would induce uncompensated electrical charges and
fields, which are energetically unfavorable.

Figure 6b depicts the real profile of the conduction-band
bottom as a function of the guiding-center coordinate for two

Landau levels completely filled in the bulk. As already
mentioned, the main condition determining the electron
density is the electroneutrality condition. In a quantizing
magnetic field, therefore, the electron density dependence on
the coordinate should be roughly the same as the one in the
absence of the field. The electron density is zero at the
intersection point of the band bottom with the chemical
potential and starts increasing along the positive direction of
the coordinate until it reaches the n0 value. In the region
where the electron density increases, the lowest Landau level
is `pinned' to the chemical potential, because we assume that
the density of states in an ideal system has a d-behavior, i.e., is
similar to the behavior of the delta-function. This region is
called the compressible liquid. The stripe of the incompres-
sible electron liquid is located to the right of it. The chemical
potential crosses there the spectral gap between the Landau
levels, and the bottom of the conduction band drops down by
�hoc. The electron concentration is fixed at the density n0;
therefore, the electroneutrality condition is violated. After
that, everything repeats: the next Landau level becomes
pinned to the chemical potential, and the electron density
increases until it reaches the value of 2n0, and so forth.

It is easy to estimate the width of the stripe of the
incompressible electron liquid. This stripe constitutes a one-
dimensional charged object with the excess charge density:

edn � e
ÿ
n�x� ÿ n0

� � e
qn
qx

����
x�x0
�xÿ x0� ;

where n�x� is the electron concentration in the absence of a
magnetic field, and n0 the fixed electron density within the
stripe. The electric field induced in the plane is estimated by
�ea=EL� �qn=qx�jx�x0 , where a is the stripe width, and EL is the
permittivity of the semiconductor. The width of the stripe can
be evaluated from the condition that the drop of the electric
potential equals the cyclotron energy:

a 2 � �hocEL

�
e 2

qn
qx

����
x�x0

�ÿ1
: �8�

e

m

m0
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x

m
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Figure 6. (a) Energy of the conduction-band bottom as a function of the coordinate in the case of a smooth potential and in the absence of amagnetic field;

m0 is the chemical potential level counted from the bottom of the conduction band. (b) The energies of two Landau levels (completely filled in the bulk) as

functions of the coordinate. Solid lines correspond to the part of the quantum level that is completely or partly filled, dashed lines mark nonfilled parts of

the quantum energy levels. The dotted line shows the behavior of the electron-subband bottom.
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The characteristic width of the incompressible electron liquid
stripe in real samples amounts to 100 nm, and compressible-
liquid stripes are an order of magnitude wider. The stripe
system has been visualized in a number of experiments (see,
for example, Ref. [21]). Electron states on a smooth edge
significantly differ from the ones expected in the case of a
sharp edge. Nevertheless the one-dimensional character of
electron motion is preserved, and formula (7) together with
the B�uttiker technique [16] hold true.

3.6 Charge transport under the chemical potential level
In the physics of ordinary metals, we are used to the fact that
the linear transport properties of a degenerate electron system
can be expressed through the small perturbations of the
distribution function in the vicinity of the chemical potential
(see, for example, Ref. [22]). In an ideal two-dimensional
electron system placed in a quantizing magnetic field, the
charge transport on the chemical-potential level is possible
only along the edge; however, this fact does not forbid a
dissipativeless charge transport between the edges of the
electron system below the chemical potential level. Attention
to this fact was first drawn in Ref. [12].

The experiment can be performed using the structure
shown in Fig. 7a. A two-dimensional electron gas has the
shape of a ring (the Corbino geometry) that has its inner and
outer radii in contact with the regions of an ordinary metal
(not shown in the figure). A long thin solenoid with a
controllable magnetic flux is placed inside the ring. A
capacitor (C0) and a voltmeter (V1) are connected in parallel
to the metallic contacts, and the whole system is placed in a
quantizing magnetic field.

Variation of the magnetic flux DF in the long thin
solenoid causes a variation of the vector-potential azimuthal
component at a radius r by a value of DF=�2pr�. The wave-
function phase changes by eDF=�c�h� per round trip along the
azimuth of the ring. Providing

DF � ch

e
; �9�

the acquired phase equals 2p regardless of the radius;
therefore, the electron system transforms into itself.

Meanwhile, a single electron is brought into the electron
system from one edge and is taken out of it from the
other one at every quantum level, which is easy to verify
by considering the quantized value of the Hall conductiv-
ity. The charge DQ crossing the radius r does not depend
on the radius:

DQ � ne 2

h

�2p
0

df
�1
0

dt E�r� 2pr

� ÿ ne 2

hc

�2p
0

df
�1
0

dt
qDF
qt
� DFe

c�h
ne : �10�

Because the change in themagnetic fluxDF is not limited, any
number of electrons can be transferred from one edge to the
other below the chemical potential level.

Considering the real experiment [23], we will note in the
first place that the long thin solenoid is in fact not needed at
all, because one can vary the magnetic fieldB. In this case, the
number of electrons entering the two-dimensional system will
not be already equal to the number of electrons leaving it
through the opposite contact. As shown in Ref. [23], if the
initial electron filling factor is an integer, i.e., ns�nn0�B�
(where n�1; 2; :::), then it will remain an integer even after the
magnetic field changes. The voltage measured with the
voltmeter in this case equals

V1 � DB
p
2
�r 21 � r 22 �

sxy
cC0

: �11�

The results of the experiment for an increase and a
decrease in the magnetic field are shown in Fig. 7b. One can
see that the Hall conductivity demonstrates quantized values,
although the quantizing accuracy (� 1%) is not comparable
to the accuracy of the Hall-resistance quantization. Straight
lines corresponding to relation (11) are limited by the
breakdown region related to the reverse tunneling of the
electrons from the contact into the bulk of the sample [23]. It
should be emphasized that the number of electrons trans-
ferred from one edge to the other in the real experiment
indeed exceeded the initial number of electrons in the two-
dimensional layer.
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Figure 7. (a) Setup of the gedanken experiment on the observation of charge transport below the chemical potential level. (b) The results of a real

experiment: T � 30 mK, C0 � 0:65 mF, 2r1 � 2:02 mm, and 2r2 � 3:9 mm. Straight segments show the expected slopes.
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3.7 Minimal width of the plateau
If the externally controlled parameter were the electron
density, it would be impossible to observe the integer
quantum Hall effect in an ideal (homogeneous and without
scattering) electron system. Indeed, the dissipative compo-
nent of the resistivity tensor would be zero, and the plateau
for the Hall component would shrink into a point. In reality,
we can control either the magnetic field or the gate voltage of
the field-effect transistor.

As an example, let us consider the three-electrode system
[24] shown in the inset to Fig. 8. Besides the gate separated
from the two-dimensional electron system with a blocking
barrier, the three-electrode system comprises a back elec-
trode, tunnel connected with the two-dimensional electron
gas having, therefore, the same value of the electrochemical
potential. The number of electrons in the two-dimensional
electron system is not fixed, because the system can exchange
electrons with the back electrode, while the electroneutrality
condition requires that the sum of the electron charges in the
two-dimensional gas and in the back electrode be equal to the
positive charge on the gate.

Figure 8 depicts the experimentally obtained dependence
of the electron density of the two-dimensional electron gas
on the gate voltage in the presence of the quantizing
magnetic field. The dependence noticeably differs from the
linear one observed in the case of a zero magnetic field. The
experimental curve shows a barely visible plateau for the
filling factor equal to unity and a well-pronounced plateau
for the filling factor equal to two. These plateaus emerge
because an ideal electron system has no states in the gap
between the quantum energy levels. As long as the chemical
potential level is crossing the gap, the electrons compensat-
ing for the variation of the positive charge on the gate are
transferred to the back electrode. Correspondingly, the
plateau width is expressed as

DVg � xg
xw

Dm�n�
e

; �12�

where Dm is the jump of the chemical potential for the
corresponding value of the filling factor (see Fig. 2). In a

two-dimensional system, one can assume with a good
accuracy that the distance between an electron layer and the
back electrode is infinite (xg, xw !1) and the plateau width
in the gate voltage equals the jump of the chemical potential
divided by the electron charge. This is the minimal width of
the plateau.

It does not take great effort to calculate theminimal width
of the plateau in the same model for the case of the scanning
magnetic field:

DB�n� � c�hEL
2e 2n�xg ÿ xw�

Dm�n�
e

: �13�

4. Electron system in a chaotic potential

4.1 Two limiting forms of a random potential
The experimental verifications of the predictions for an ideal
electron system hold true whenever it is possible, in every
specific case of a real sample, to neglect the existence of a
random potential. On the other hand, as mentioned in
Section 3, the presence of the random potential not only is
no bar to the occurrence of the integer quantumHall effect (as
long as the characteristic time t of the electron scattering is
large: oct4 1) but also plays a key role in the formation of a
broad quantum plateau.

The characteristic spatial scale with which one should
compare the scale of the random potential variation is
determined by the magnetic length l, while the characteristic
energy is specified by the cyclotron energy. Therefore, two
limiting forms of a random potential are possible: the short-
range one, if the variation of the electron potential energy on
the magnetic length is comparable to the cyclotron energy or
exceeds it, and the smooth one in the opposite case. In the first
experiments (see, for example, Fig. 1), the investigated
structures had the short-range random potential formed by
impurities located close to the two-dimensional electrons and
by surface roughnesses. Later on, structures with a smooth
potential were also produced. It turned out that the integer
quantum Hall effect is remarkably robust to the form of a
random potential.

4.2 Density of states in a short-range potential
As an example, consider the influence of a small number of
short-range impurities on the energy spectrum of the two-
dimensional electrons in the vicinity of the lowest Landau
level. We assume the density ni of the impurities to be small in
comparison with the density ns of the electrons. We also
assume the range of action of the impurity to be b5 l, and its
potential to be u. The appearance of the impurities causes two
effects [25]: first, the localized states split from the quantum
energy level, and second, the nonsplit states merge into a
band. The total density of split and nonsplit states still equals
�2pl 2�ÿ1.

The maximal energy for the splitting of a localized state
can easily be estimated using the first-order perturbation
theory:

D � u
b 2

l 2
: �14�

Localized states with smaller splitting energies will also
emerge up to the boundary with the delocalized states on the
energy level separated from the quantum energy level of an
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ideal system by a value on the order of [25]

d � D
�
b

l

�1=�pl 2ni�
5D : �15�

It is interesting to note that introducing a single impurity with
a small interaction radius leads to the localization of all the
electrons in the two-dimensional system, although the shift in
energy quickly decreases with increasing a distance between
an electron and the impurity.

In the limit of a delta-like impurity potential, every
impurity splits off only a single state of the quantum level.
Such impurities, distributed chaotically over the plane, are
used in the numerical modeling of a random short-range
potential. It is assumed that the potential corresponds to
white noise with the correlator


V �r�V �r 0�� � V 2
0 d�rÿ r 0� : �16�

Here, the angle brackets stand for spatial averaging. A system
of delta-like impurities with a relatively small concentration
ni < �2pl 2�ÿ1 cannot simulate such a potential at all, because
the number �2pl 2�ÿ1 ÿ ni of single-electron states can be
represented as a linear combination of initial wave functions
in such away that every impurity will be occupied by a node of
the wave function. Correspondingly, the center of every
quantum level would be taken up by a delta-like peak of the
density of states. For modeling a potential with correlator
(16), one would need an impurity concentration exceeding
the number of states on a single quantum level by 40-fold [26].

Assuming the set of the short-range impurities to be
electroneutral (that is, with equal number of impurities for
u < 0 and u > 0) and distributed in u, we obtain the well-
known textbook image of the density of states displayed in
Fig. 9a. In the case of a potential with correlator (16), only a
single extended state will remain on every quantum energy
level.

If the level of the chemical potential is located in the band
of localized states (Fig. 9a), the dissipative conductivity
component exhibits an activation behavior that is replaced
by the variable range hopping as the distance from the center
of the quantum level increases. If the chemical potential is
located in the band of delocalized states, the dissipative
conductivity component takes values typical for metals.
Therefore, the variation in the chemical potential position

over a broad range results in a chain of metal±insulator
transitions.

Thewidth and thepositionof thebandof delocalized states
can be derived, for example, from activation energy measure-
ments (Fig. 9b). From the data shown in the figure, it follows
immediately that the chaotic potential in the investigated
sample is not symmetric, and the band of delocalized states
does not correspond to a half-filled quantum energy level.

The presence of a broad band of localized states (the
mobility gap) was utilized in Ref. [12] to prove the connection
between the quantization of the Hall conductivity and the
gauge invariance in a system with disorder. Indeed, because
an adiabatic variation of the magnetic flux through the thin
solenoid (Fig. 7a) cannot give birth to delocalized electron±
hole pairs, the change in the magnetic flux by a value given by
relation (9) must lead, as in the ideal case, to a transfer
between the edges of an integer (or zero) number of electrons.

4.3 Floating up of extended states
in a short-range potential
The idea that the extended states in a weak magnetic field
would shift upwards in energy andmove to infinity as the field
decreases [28] is based on a prediction that follows from the
scaling hypothesis [29]. This prediction states that in a zero
magnetic field even a weakly disordered two-dimensional
system of noninteracting electrons has to be an insulator at
a zero temperature regardless of the electron density. On the
other hand, according to Ref. [30], delocalized states have a
topological protection and cannot disappear with a decrease
of the magnetic field. A picture appears, schematically shown
in Fig. 10a, where the bright stripes represent the extended
states, and the dark ones represent the localized states.
Plateaus are expected to form in the conductivity sxy, whose
center positions are marked in Fig. 10a by arrows. The
numbers alongside the arrows indicate the values of the Hall
conductivity in normalized units. In weak magnetic fields,
oct < 1, the plateau sequence is reversed with respect to the
case of a strong quantizing magnetic field.

The attractiveness of the picture described led to a series of
attempts went into experimental observation of the floating
up of the delocalized states (see, for example, Refs [31±34]). It
is firmly established that the extended states do not follow the
line in the plane �B; ns� along which the maximum of the
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density of states should move in an ideal sample. This
statement is illustrated in Fig. 10b. One can clearly see that
the extended states do not go below some boundary where
oscillations take place, and merge, as they approach B � 0,
into a metallic state typical for a large electron density. The
disappearance of the bands of localized states in a weak
magnetic field did not allow the observation of additional
plateaus in the Hall conductivity. In several studies (see, for
example, Ref. [32]) a weak increase in the electron concentra-
tion, corresponding to amaximum of sxy, was observed as the
magnetic field weakened, but it remained unclear whether this
effect is related to the oscillation of the boundary between the
metallic and insulating phases.

In fact, the absence of clearly pronounced effects related
to the floating up of the delocalized states is not surprising.
Indeed, the presence of the chaotic potential leads, in the case
of a small electron density, to the localization of the charge
carriers and to the Anderson metal±insulator transition at
some critical electron concentration. In the region of the
metallic conductivity there is a temperature-dependent
correction related to the electron interference, which
decreases the conductance by a value on the order of
�e 2=h� j lnT j. It is supposed that, as the temperature tends
to zero, the correction reaches the scale of the initial
conductance of the two-dimensional electron system, and
the electrons localize at this temperature. A typical value of
the dimensionless conductance of an average-quality electron
system reaches � 100 in a metallic state; therefore, localiza-
tion requires a temperature of about exp�ÿ100� and a linear
size of the system of � exp 100. Neither of these conditions is
realizable; therefore, all one can have in a real situation is a
weak logarithmic shift of the Anderson-transition point to
higher electron density. In other words, under real conditions
there is no significantly wide region for the observation of the
floating up of the states.

Another problem is the disappearance of the bands of
localized states in weak magnetic fields, which is revealed in
almost all experimental work but so far has elicited no
comments on it in theory. 1

4.4 Two-parameter scaling
As we discussed in Section 4.3, part of the electrons in an
infinite electron system is localized in the presence of short-
range scatterers. It is natural to pose a question: how will the
dimensionless conductances sxx and sxy behave themselves in
finite-sizes samples? This problem was considered within the
framework of the scaling hypothesis. It is assumed that the
state of the system is uniquely defined by two components sxy
and sxy of the conductivity tensor; therefore, the variation of
these components with a change in the electron system size is
assigned by the conductance components themselves [35, 37,
38]:

qsxx
q lnL

� bxx�sxx; sxy� ;
qsxy
q lnL

� bxy�sxx; sxy� : �17�

In the case of a chaotic short-range potential with the
correlator (16) in the region sxx > 1, the following expres-
sions for the functions bxx and bxy have been obtained [38]:{

bxx � ÿ
1

2p 2sxx
ÿDsxx exp �ÿ2psxx� cos �2psxy�;

bxy � ÿDsxx exp �ÿ2psxx� sin �2psxy� ; �18�

where D is an unknown constant.
Excluding the parameter L from the solutions of the

system of equations (17), (18), it is convenient to depict these
solutions as flow lines in the �sxy; sxx� plane (Fig. 11a). First,
let us discuss the formal consequences from equations (18).
For large values of sxx, the Hall component of the
conductance does not renormalize, and all flow lines in this
region are parallel to the y-axis. Significant deviations from
such behavior occur at sxx � 1. The flow lines corresponding
to integer values of sxy remain vertical in this region as well,
reaching the zero value of sxx, and for half-integer values of
the Hall conductance they go vertically down to some value
s c
xx, at which point bxx turns to zero. For other values of the

Hall conductance, as the dissipative component of the
conductance decreases, the flow lines tend to get to one of

0

hoc=4p

3hoc=4p

5hoc=4p

B

m

e a

1 2 3 2

0

0

1
2

5

1

2

3

10 15
B, T

n
s,
10

1
1
cm
ÿ2

Si-MOSFET (100)

b

Figure 10. (a) Schematic drawing illustrating the floating up of the delocalized states of the three lowest quantum levels. (b) The phase diagram in the

�B; ns� plane obtained experimentally for an electron gas in Si-MOSFET (100) at T � 30 mK. The numbers 0, 1, and 2 indicate the number of the

extended states below the Fermi level if this level is located within the boundaries of the corresponding shaded area.

{ Equation (18) is written out here in the form adopted in paper [38].

Recently (see the paper by Pruisken AMM, Burmistrov I S JETP Lett. 87

252 (2008)), a misprint was revealed in Ref. [38]. Upon correction, the

sxx-dependences of the terms involving sxy in both formulas of Eqn (18)

became identical to those in Eqn (19). Moreover, the coefficient D was

calculated as equal to � 16:5. (Author's note added in English proof.)

1 Recently, numerical simulations have appeared that possibly point to the

completely opposite behavior of the quantum levels with a magnetic field

weakening: antilevitation (see Ref. [36]). There is no experimental evidence

so far of antilevitation.
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the points �i; 0�, where i is an integer. At every critical point
�i� 1=2; s0xx�, the flow lines split into pairs with different
directions, asymptotically approaching some limiting curve
(bold bow-shaped curve in Fig. 11a). Let us stress that the
picture proposed is partially based on the extrapolation of
rigorous solution (18) to the region where this solution is not
valid.

Theoretical treatment of the problem [35, 37, 38] and the
above-devised equations refer to a gas of noninteracting spin-
polarized electrons. Two natural questions arise in this
connection: why is a variation in the conductance with a
change in the size expected at all for large dissipative
conductances, and why is the corresponding correction to
sxx negative and proportional to lnL? The answer sounds a
bit paradoxical: the correction is related to the weak
localization. The leading weak-localized term, often
explained by `hand-waving arguments', is known to be
suppressed with the introduction of a weak magnetic field
normal to the plane of the two-dimensional gas. This term is
related to the interference of the electron waves returning to
the initial point in a loop path as a result of multiple
scattering. Besides this simplest path, one can specify other
ones, for example, paths in the form of a figure eight that are
more stable under magnetic field suppression.

In real two-dimensional electron systems, it is impossible
to neglect the electron-electron interaction. In this case [40],
the two-parameter scaling holds true if the functions bxx and
bxy are modified:

bxx � ÿ
2

p
ÿD1s 2

xx exp �ÿ2psxx� cos �2psxy� ;

bxy � ÿD1s 2
xx exp �ÿ2psxx� sin �2psxy� ; �19�

whereD1 � 64p=e � 74:0.{ All the discussions above, includ-
ing the one referring to the logarithmic correction to sxx for
large dissipative conductances and to the structure of flow
lines, remain valid for equations (19).

The choice of the flow diagram line in the experiment can
bemade by selecting three parameters: the electron density ns,
themagnetic fieldB, and the amplitudeV0 (or t) of the chaotic

potential. It seems that one can proceed from any point of the
�sxy; sxx� plane. Let us consider this problem in detail. For
this purpose, we will fix the electron concentration and for a
start we will restrict ourselves to the case ofoct4 1. Classical
expressions for the conductivity components limit us under
these conditions to the upper quadrant of a circle:

�s 0
xy�2 �

�
s 0
xx ÿ

s0
2

�2

� �s0�
2

4
; �20�

where s0 is the value of the conductivity in a zero magnetic
field, s0 5s 0

xx 5s0=2, and 04s 0
xy 4s0=2. For the reasons

discussed above (see also Sections 4.2, 4.3), the choice of large
initial values s 0

xx will not lead to a considerable shift down
along the flow line; therefore, a very limited area s 0

xx,
s 0
xy 4 2; 3 of the plane is available under such conditions at

the beginning.
In the opposite limiting case of oct4 1, the initial choice

of the point in the (sxy; sxx) plane is determined by the
applicability limit of the self-consistent Born approximation,
in which the initial area is determined by the relations

�s 0
xx�max � 2e 2

ph

�
i� 1

2

�
; i � 0; 1; 2; ::: ; s 0

xy 4s0 : �21�

In the experiment, it is not the size dependence of the
conductivity but the temperature one that is investigated. It is
assumed that the size of the interference area is determined by
the dephasing length Lf�T � or by the linear size Lee of the
electron±electron interaction region. The macroscopic sam-
ple has much bigger sizes, and the conductance is automati-
cally averaged over many samples with the size L�T �. Both
characteristic sizes have a power dependence on temperature.
The flow line diagrams are presented in a series of publica-
tions (see, for example, Refs [3, 39, 41±43]).

An example of an experimentally plotted flow diagram is
given in Fig. 11b. Every line in the diagram corresponds to a
fixed filling factor at a constant electron density, whichmeans
that the quantities ns and B are fixed. The chaotic potential is
also assumed not to depend on the temperature in the interval
from 0.3 K to 1.2 K, where the measurements were
performed. The main experimental conclusion is that there
is a qualitative correspondence between the observed flow
diagrams and their theoretical predictions: above all, one can
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Figure 11. (a) Expected diagram of the flow lines in the (sxy; sxx) plane. (b) The experimentally obtained diagram of the magnetic flow lines for a two-

dimensional electron gas in Si-MOSFET(100), ns � 4:2� 1011 cmÿ2. (Adopted from Ref. [39].)

{ D1 � 13:5 in the case of the Coulomb interaction (see Pruisken A MM,

Burmistrov I S JETP Lett. 87 252 (2008)). (Author's note added in English

proof.)
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indeed see the motion of the flow lines from top to bottom,
part of the flow lines is directed to the points (i� 1=2; 0), a
limiting bell-shaped curve can be traced along which the
experimental points approach the abscissa, and, finally, on
every bell-shaped curve one can find a point separating the
right- and left-directed flow lines.

There are also significant deviations from the theoretical
predictions. Above all, these comprise the nonuniversality of
the vertical size of the bell-shaped curves measured both on a
single sample and on different samples, the unexpected
bending of the flow lines near the half-integer values of the
Hall conductance, and the absence of symmetry with respect
to the half-integer sxy. The last circumstance significantly
differs from one sample to another and can actually be related
to the chaotic potential asymmetry.

The only obvious exception to the overall series of
experimental results are those of Ref. [44], where almost
complete coincidence of the bell-shaped curves is observed
for two intervals in sxy: (0, 1) and (1, 2). Based on the results of
this work, it was assumed in further theoretical models [45]
that the limiting bell-shaped structure represents a semicircle,
although in the original data the points do not approach the
semicircle but move away from it as the temperature
decreases.

Apparently, the result of Ref. [44] should be treated as
accidental, because in all experiments where a sharp increase
in rxx was evidenced on some rxy plateau [46±48] the observed
bell-shaped curves had the form of a semicircle with a non-
universal radius depending on the plateau number. The
accidental nature of the semicircle observation was also
confirmed by the results of recent simulations [49].

Another method for processing experimental results
allows one to estimate the degree of applicability of the
scaling theory predictions to the real situation in the two-
dimensional electron systems investigated. This method is
based on a set of assumptions, namely:

(1) as in the theory, the chaotic potential appears as a
white noise;

(2) in an infinite-sized sample, unlike in the picture
depicted in Fig. 9, at zero temperature there is only one
delocalized state on every quantum level at energy ei;

(3) the measurement domain is chosen in such a way that
the flow lines adjoin the bell-shaped curve;

(4) the measurements are performed in the region where
the density of states can be assumed to be constant.

Measurements of one of the conductance components
have been performed, 2 for example, sxx, on identical samples
of different size L at such a low temperature that the
temperature dependence of the conductance becomes satu-
rated [50]. According to the above assumption 3, sxx is the
function of only one variable, the ratio L=x, where x /
jeÿ eijÿn is the localization length of an electron with the
energy e. The width of the peak in the conductance dissipative
component at a fixed height DB�L� is also measured. Taking
into account assumption 4, one obtains DB / Lÿ1=n.

The most convincing and, as the authors of the publica-
tion believe, the most accurate results were obtained by Koch
et al. [50], where the above-described program was realized.
The experimental points from that work are presented in
Fig. 12a. If one utilizes only the experimental points, the
multitude of different lines with a cut-off on the ordinate can
be drawn as fitting curves, the simplest one being the straight
line shown in Fig. 12a. In analyzing their results, the authors
of Ref. [50] have added, without informing the readers, the
point (0, 0) to the experimental points, in compliance with the
above assumption 2, and used as the optimal fit the curve
corresponding to n � 2:3� 0:1 (dashed line in Fig. 12a). The
last value agreed wonderfully with the theory [52] existing at
the time of the publication, as well as with the results of
numerical simulations [53]. However, the theory did not refer
to the short-range potential, and the numerical modeling was
later corrected in such a way that within the limits of the
specified accuracy the experimental results did not coincide
with the theoretical ones any more [54].

Similar measurements of the characteristic width of the
sxx peak or the steepness of the slope of rxy at the transition
between the plateaus as the functions of temperature have
been performed in many experimental studies (a detailed
description of the experiments can be found in review [55]).
The interpretation of such measurements is additionally
complicated by the fact that the temperature dependence of
the length LT, playing the role of the sample size, is itself
known only tentatively. Nevertheless, the available experi-
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2 The components of the resistivity tensor are often used in processing the

experimental results.
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mental data rather point to the presence of a band of
delocalized states in the samples investigated (Fig. 12b). This
conclusion is also supported by the measurements of the peak
width of the dissipative conductance as a function of
frequency [56].

As evidenced by the foregoing, many predictions of the
theory are either not confirmed by experimental results at all
or confirmed qualitatively. Nevertheless, it certainly follows
from both the theory and experiment that in a quantizing
magnetic field in the presence of the short-range chaotic
potential, as a result of interference effects and electron±
electron interactions the electrons localize within regions
significantly exceeding the magnetic length (up to 104l in
experiments [50]), and the size of a localization region
increases dramatically as the electron energy approaches the
energy of the delocalized states.

4.5 Smooth potential
The motion of every electron in a smooth potential can be
treated as the motion of its guiding center along the
equipotential line. (This statement follows from the fact that
the work done by Lorentz force is zero.) In a symmetrical
smooth potential (Fig. 13a) there is a set of minima and
maxima separated by saddle points. Equipotential lines
passing through the saddle points form a grid with the cells
determining the spatial scale of the potential and composing
an infinite cluster. All other equipotential lines surrounding
the minima and maxima are enclosed and correspond to
localized electrons.

In a fixed magnetic field, as the electron concentration
increases, first the minima of the potential are filled and the
chemical potential level finds itself in the band of localized
states, then the chemical potential crosses the energy level of
the infinite cluster and again goes to the band of localized
states, whose paths surround the potential maxima.

The reason behind the emergence of the quantized values
of the Hall conductance was revealed in Ref. [57]. In an
electric field parallel to the plane, the picture of the
equipotential lines significantly changes (Fig. 13b), because
the saddle points acquire the energy difference DW � eER,
where R is the radius vector connecting the neighboring
saddle points. Strips of the extended states emerge (dark
regions in Fig. 13b) directed on average normally to the
electric field. According to the consideration of Section 3.4,

the current DI � DW�e=h� is carried along the stripe of the
extended states if they are filled. Summing all the currents
within a unit length and over all filled quantum levels, we
obtain the expression sxy � ne 2=h, where, as in formula (1), n
is the number of occupied quantum levels.

This model has an obvious disadvantage: the transition
region between the plateaus depends on the electric field
strength. Moreover, using the local relation between the
current and the electric field is possible only on scales
significantly exceeding the size of the percolation grid.

4.6 Screening of a chaotic potential
The chaotic potentials discussed in Sections 4.1±4.4, generally
speaking, do not coincide with the initial potential that
existed in the absence of the two-dimensional electron gas.
In the long-wave limit (q! 0), linear screening by the
electron system is determined by the effective permittivity

E�q� � eL

�
1� qs

q

�
; �22�

where qs is the inverse screening radius:

qs � 2pe 2
qns
qm

1

eL
;

Dth � qns=qm is the thermodynamic density of states, and the
chemical potential m is counted off from the bottom of the
two-dimensional subband.

One can conclude from Eqn (22) that, if the density of
states on the chemical potential level is zero, then under the
conditions of the quantumHall effect at zero temperature, the
emergence of the two-dimensional electron gas will not
modify the smooth potentials with a small amplitude. This
conclusion is not correct though [58]. Indeed, the electric field
shifts theminimumof themagnetic parabola (see Section 3.1).
Consequently, the second derivative of the potential with
respect to the coordinate determines the variation of the
electron density, which leads to the peculiar potential screen-
ing.

At a finite temperature, occupied electron states appear
on the upper quantum level and, correspondingly, empty ones
on the lower level. The number of the former and the latter
depends on both the temperature and the chemical potential
position; therefore, the thermodynamic density of states
happens to be finite even in the ranges where it was initially
zero. An additional temperature-dependent screening shows
its worth.

Especially interesting and practically important is the case
of nonlinear screening, where the characteristic amplitude of
the smooth chaotic potential is comparable to or even exceeds
the energy gap between the neighboring quantum energy
levels [59]. We will start with a potential having a relatively
small amplitude, jUj4Ee ÿ Ef, where Ee and Ef are,
respectively, the energies of the empty and filled neighboring
quantum levels in an electron system without disorder. The
thermodynamic density of states defined on a spatial scale
significantly exceeding the characteristic scale of the chaotic
potential is a function of the quantum level width, the latter
depending on the screening and, consequently, on the
thermodynamic density of states. To derive these quantities,
one has to solve the set of equations [60]

Dth � Dth�G; m� ; G � G
�
Sq

Uq

Eq

�
; �23�
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Figure 13. (a) Schematic image of a smooth chaotic potential in the
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where Dth is the thermodynamic density of states, G is the
width of the quantum level, and Eq is the dielectric
constant.

The solution is qualitatively illustrated in Fig. 14a. As the
chemical potential moves away from the midpoint of the level
Ef, the width G of the quantum level increases proportionally
to jEf ÿ mj. Already in the first experiments [61, 62], this
dependence manifested itself (Fig. 14b) as the disappearance
of the influence of the chemical potential position on the value
of the measured thermodynamic density of states in the
vicinity of an integer filling factor. It should be noted that
the thermodynamic density of states was replaced in the
processing of the results of these experiments by the quantity
qEa=qns, which is correct only if the boundary between the
localized and delocalized states does not itself depend on the
width of the quantum level. More detailed measurements of
the thermodynamic density of states with the help of the
experimental technique discussed in Section 5 and a compar-
ison of the experimental and theoretical results were per-
formed in Ref. [60].

Let us proceed now to the consideration of the case where
the amplitude of the smooth potential significantly exceeds
the energy gap. We will assume that the short-range
components of the potential are completely absent, so that
without a smooth potential the electron spectrum would be
given by a set of delta-functions. In the regions of electron
integer filling, as discussed above, the screening of the seeding
potential by the electron system is weak and can be neglected.
But, wherever the quantum level reaches the chemical
potential (in the regions of partial filling), electrons or holes
fully screen all the gradients of the potential, and the quantum
energy level becomes flat. The spatial behavior of the electron
spectrum is qualitatively demonstrated in this case in Fig. 15a,
and the single-particle density of states is shown in Fig. 15b.
The maxima of the single-particle density of states do not
coincide anymore with the ones expected for an ideal electron
system and, being linked to the chemical potential level, move
together with it [63].

The picture introduced above has not been directly
proved so far, but there is indirect evidence of its validity
[64].

5. Effects caused by electron±electron
interactions

5.1 Negative thermodynamic density of states
Far better opportunities for the investigation of the thermo-
dynamic density of states are given by three-electrode
systems, such as those shown in the inset to Fig. 8. Besides
the gate and the two-dimensional electron gas, these systems
contain a metallic built-in electrode (back electrode), with the
electrochemical potential coinciding with the electrochemical
potential of the two-dimensional electrons (Fig. 16).

Let a positive chargeDQ be added to a unit area of the gate
in such a three-electrode system which was initially in the
equilibrium state. The additional charge DQ2DEG having
appeared in the two-dimensional electron gas can be found
from the solution of a standard electrostatic problem:

DQ2DEG � ÿ DQ

1� �Dthxw4pe 2=EL�ÿ1
; �24�

where EL is the static permittivity.
If the thermodynamic density of states is positive and

finite, the two-dimensional electron gas does not completely
screen the normal component of the electric field
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Figure 14. (a) Illustration of the solution to the set of equations (23) for two values of the chemical potential, m1 and m2, m2 > m1, andD�e� � �qn=qe�m being
the one-particle density of states. (b) Thermodynamic density of states Dth as a function of energy, according to activation-energy measurements in

Si-MOSFET (100) in the vicinity of the filling factor n � 8 forB � 6:7 T, andD0 being the thermodynamic density of states in a zeromagnetic field (taken
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(DQ2DEG < DQ), and the electric field penetrates through it
(Fig. 16a). At a zero thermodynamic density of states one has
DQ2DEG � 0 (Fig. 16b), while at infinitely large value of Dth,
complete screening takes place (Fig. 16c).

All three cases are presented in Fig. 17a. In a zero
magnetic field, the capacity of the three-electrode system is
less than the geometrical capacity determined by the
distance between the gate and the two-dimensional electron
gas. In a quantizing magnetic field, the capacity at the
maxima of the density of states coincides with the geome-
trical one, while at the deepest minima it decreases to the
values determined by the distance between the gate and the
back electrode.

A closer look at Fig. 17a gives evidence that in some
regions the measured capacity exceeds the geometrical one.
This effect is more pronounced in Fig. 17b (taken from
Ref. [66]), where the authors measured the derivative of the
electric field penetrating through the two-dimensional layer
with respect to the electric field in the space between the gate
and the electron gas. It was discovered that these fields are
oppositely directed, as shown in Fig. 16d. The results of these

and similar experiments [67] should be interpreted as the
discovery of the negative thermodynamic density of states
depending on the filling factor.

A question immediately arises: how can an electron
system with a negative thermodynamic density of states, i.e.,
with a negative compressibility, be stable? The answer is that
the electron system considered here is not closed. Indeed, it
interacts with the compensating charge, the electric field of
which is responsible for maintaining the stability.

There are no doubts that the negative thermodynamic
density of states is caused by the interaction between the
electrons. The main contribution is made by the electron
exchange interaction. Indeed, the exchange energy in a fully
spin-polarized system per electron on the lowest quantum
level has the scale determined by the average distance between
the electrons [68].

The variation of the chemical potential consists of two
components: the change in the energy of noninteracting
particles (which is close to zero at the maximum of the
density of states), and the change in the negative interaction
energy. Therefore, the thermodynamic density of states can
be estimated, taking into account the electron±hole symme-
try, as follows:�

qns
qm

�ÿ1
� ÿ e 2

lEL
n 1=2�1ÿ n�1=2 : �25�

Qualitatively, equation (25) is in good agreement with the
results given in Fig. 17b. A quantitative agreement [65] is
achieved by using the semiempirical expression [69] for the
electron interaction energy. The corresponding curve (dotted
curve in Fig. 17b) agrees very well with the experimental
results for filling factors of less than 0.5. This inference is not
very surprising, because it is discovered that for higher filling
factors the spin-polarization is not perfect (see, for example,
Ref. [70]).

5.2 Spin gap. Skyrmions
The most convenient objects for the study of the energy gap
caused by the flipping of the spin projection onto a magnetic
field turned out to be GaAs=AlGaAs heterojunctions and
quantum wells. Based on them, high-quality structures were
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Figure 17. (a) Capacity of a three-electrode structure (see the inset to Fig. 8) as a function of voltage at the gate in the magnetic fields B � 0 (curve 1),

B � 5 T (curve 2), andB � 9 T (curve 3). The temperature isT � 30 mK. The straight line indicates the high-frequency limit of the capacityChigh. (b) The

derivative of the electric field penetrating the two-dimensional layer with respect to the electric field in the space between the gate and the electron gas

versus the filling factor atB � 7:5 T, andT � 1:2 K. The dashed curve shows the result of calculations according toRef. [65]. (Data taken fromRef. [66].)
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created with a simple energy spectrum and weak spin-orbit
interaction. Already in the first experiments on the activation-
energy measurement for the filling factor n � 1 (Fig. 18a), it
was demonstrated that the observable energy gap signifi-
cantly exceeds mBgB, with g-factor values typical for a bulk
material.

This result is quite expected, because the spin-flip is
related to the change in the exchange energy, significantly
exceeding the Zeeman energy [72, 73]. Indeed, a thermal
excitation creates pairs consisting of an electron with a
negative magnetic moment projection onto the external
magnetic field and a vacancy on the initially filled quantum
level. Such formations can carry a current only if the electron
with the flipped spin projection and the vacancy move
independently, i.e., they are far away from each otherÐ in
the ideal case, infinitely far. The electron±vacancy pair (see
Section 3.1) has an infinitely large momentum; therefore, the
expected activation energy for the filling factor n � 1 is
defined as

DEa � 1

2
mBjgjB�

�
p
8

�1=2
e 2

ELl
: �26�

According to the last formula, the expected spin-energy gap
for the filling factor n � 1 in a magnetic field of 8 T is DEs �
2Ea � 190 K, which significantly exceeds the measured
values.

Similar data are also obtained applying other methods.
For example, Fig. 18b shows the results of the measurement
of the chemical potential jump using magneto-capacitive
methods. Although the results presented in Figs 18a and b
slightly differ quantitatively, they give the same scale of the
energy gap and the same shape of its functional dependence
on the magnetic field induction.

From Fig. 18b, one can make another important conclu-
sion. Because the straight line drawn through the points in the
inset to this figure corresponds, with a good accuracy, to the
cyclotronmass, one can state that there is no exchange energy
contribution to the spin splitting in the case of the filling
factor n � 2. This is not surprising, because the corresponding
contribution is proportional to the ratio [11]

n" ÿ n#
n" � n#

; �27�

where n" and n# correspond to the filling of two spin sublevels
of one Landau level.

Thus, it has been experimentally found beyond doubt
that, owing to the electron±electron interaction, the spin
energy gaps are much increased with respect to the Zeeman
splitting. According to the theoretical expectations, the
exchange increase of the spin spectral gap depends on the
filling factor: it is maximum for odd filling factors, and
vanishes for even ones.

The overall promising picture is disturbed by two facts.
First, the functional dependence of the spin splitting on the
magnetic field at odd filling factors contradicts the theoretical
expectations. It turned out to be much closer to a linear
function than to a square root one. A small deviation from the
linear dependence was observed only in Ref. [74]. Second, the
splitting is too small with respect to the expected one.

It was tempting to explain the `incorrect' functional
dependence by the influence of noncontrolled factors [75].
Indeed, there are plenty of such factors: the chaotic potential
remaining in the two-dimensional electron system; the finite
width of the electron wave function in the direction normal to
the interface, and the inhomogeneity of the electron concen-
tration. However, the reproducibility of the linear depen-
dence in different samples and for different measurement
methods makes such an assumption doubtful. Possibly, an
important point missing in the theory is the fact that in the
magnetic fields in which the measurements are performed the
exchange energy of an ideal electron system equals or even
exceeds the cyclotron energy.

Formally, equation (26) predicts the existence of a finite
energy gap for the filling factor n � 1, even when the Land�e
factor g � 0. Under these conditions, complete spin polariza-
tion is impossible, and the above-considered pairs of an
electron with a flipped spin projection and a vacancy cannot
be the current-carrying excitations. The corresponding
theoretical problem was considered in Ref. [76]. It is shown
that in this case at a finite temperature charge-carrying pairs
of spin structures emerge (one of which is schematically given
in Fig. 19a), known as skyrmions and antiskyrmions. One
should keep in mind that, although the picture in Fig. 19a
looks similar to the lattice model, the spin structure is realized
in the electron liquid and has an enhanced (for a skyrmion) or
reduced (for an antiskyrmion) electron density; hence, every
one of these structures carries a unit electric charge.

The activation energy of the skyrmion±antiskyrmion pair
is half as big as the one defined by formula (26) at the zero
Land�e factor. The spatial size of the skyrmion decreases with
an increase in the g-factor, and the activation energy increases

40

30

20

10

0 2 4 6 8

D
E
s,
K

B, T

a

4

2

4

8

12

0 5 10 15
B, T

D
E
s,
m
eV

D
E
c
,m

eV

0
0

5 10

b

Figure 18. (a) Spin energy gap found from the activation energy. Circles correspond to n � 1, and squares to n � 3. The dashed line shows the Zeeman

splitting. (Data taken from Ref. [71].) (b) The jump of the chemical potential at n � 1, measured using magneto-capacitive methods; T � 30 mK. The

inset shows similar measurements for the cyclotron gap. The dotted curve corresponds to the dependence DEs / B 1=2. (Data taken from Ref. [24].)
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with an increase in the Land�e factor up to its some critical
value gc, above which skyrmions do not exist.

So far, there is no direct proof of the existence of
skyrmions under the conditions of the quantum Hall effect.
Most convincing indirect evidence is presented in Refs [77,
78], where the nuclear magnetic resonance was investigated in
71Ga nuclei embedded in an Al0:1Ga0:9As barrier bounding a
GaAs quantum well with a high-mobility electron gas. The
authors measured the frequency variation of the nuclear
magnetic resonance caused by the influence of the spins in
the electron system (the so-called Knight shift) depending on
the filling factor in the vicinity of n � 1. The value of the shift
K is determined by the degree of polarization of the electron
system (Fig. 19b) equal to unity for integer filling and
dropping dramatically on both sides of the value correspond-
ing to the integer filling. The fit (dotted curve in Fig. 19b) of
the theoretical dependence to the experimental data gives
evidence that every spin-flipped electron also flips the spin of
three electrons, which can be interpreted as the emergence of
small-sized skyrmions, possibly embedded in the lattice [79].

5.3 Coulomb gap
Already in the early studies of tunneling into a two-
dimensional electron system, it was discovered on measure-
ments of samples of modest quality [80, 81] that the presence
of a quantizing magnetic field decreases the tunneling
probability. In these studies, tunneling into the two-dimen-
sional electron gas occurred from a three-dimensional
electrode, and the effect vanished with increasing the
temperature.

A more impressive result was obtained in Refs [82, 83],
which studied the tunneling between two identical quantum
wells, each containing a high-mobility two-dimensional
electron gas. The wells were separated by a tunnel-penetrated
barrier whose width varied for different samples within a
broad range from 175 to 340 A

�
.

Some of the experimental dependences obtained are
shown in Fig. 20. As predicted, the tunnel current is
antisymmetric depending on the voltage U across the
quantum wells (Fig. 20a). Unexpected is the fact that the
tunnel current was strongly suppressed within some interval
jUj < D near the zero voltage. As one can see from Fig. 20b,
the width of this interval increases as the magnetic field is
strengthened. The effect is observed at filling factors both
higher and lower than unity, but completely vanishes with
increasing temperature or in a zero magnetic field.

In all the studies [80±84], the suppression of the tunnel
current depended on the filling factor weakly and smoothly.
Most probably, the reason for the tunnel current suppression
is the presence of electrostatic interactions. Indeed, the charge
spreading in the electron system placed in a quantizing
magnetic field is slow and can be neglected during the
tunneling. The escape of an electron from the electroneutral
layer, as well as the embedding of an electron into an initially
electroneutral layer, require the expenditure of additional
energy, determining the scale of D.

The tunnel current suppression can be interpreted as the
emergence of the Coulomb gap (sometimes called the
pseudogap) in the tunnel density of states. Its weak depen-
dence on the filling factor means that the gap is linked to the
chemical potential level and shifts together with it. Theoreti-
cally, the Coulomb gap under quantumHall effect conditions
has been considered in a large number of publications within
a broad range of filling factors corresponding to the metallic
conductivity (see, for example, Refs [85±87]). The authors
demonstrated that an exponentially small tunnel density of
states can exist within the energy interval D which, however,
significantly exceeds the one observed in the experiment. The
most adequate theoretical description of the results obtained
in Refs [80, 81] can be found in Ref. [88].

Exceptionally informative is Fig. 21 which, in particular,
perfectly shows the Coulomb gap, as well as an increase in the
spin gap in the vicinity of odd filling factors and spin-splitting
oscillations. From Fig. 21 one can extract unique informa-
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tion, although without its theoretical explanation: the
Coulomb gap replicas, expected only on the Fermi level, can
also be observed at empty and fully filled quantum levels.

A Coulomb gap of another origin was discovered while
investigating a three-electrode system similar to the system
shown in the inset to Fig. 8 [91, 92]. One of the pairs of original
experimental curves analyzed in Refs [91, 92] are plotted in
Fig. 22a. One should notice that the real component of the
current flowing through the structure depends on both the
capacity and the tunnel resistance. A significant real part
exists, according to Refs [80±83], at all investigated filling
factors; however, in the vicinity of the filling factor n � 1,
where the sample is found in an insulating state, it is
increased. The real component of the current has a double-
humped shape, which is related to the dip in the capacity. The
effect shows a strong dependence on the filling factor, and it
has not been observed for other integer filling factors.

From two known components of the current flowing
through the structure one can calculate both the tunnel
current and the voltage drop on the tunnel barrier. The
corresponding dependence is displayed in Fig. 22b. As one
can see, this dependence is close to parabolic.

According to the theory [93, 94], the tunnel density of
statesD�e� under the conditions considered here has the form

D�e� � Dm � ajeÿ mj ; �28�

which leads to the following dependence of the tunnel current
on voltage:

Itun � g
�1
ÿ1

DmD�e�
�
f �eÿ eVtun;T � ÿ f �e;T �� de : �29�

Here, Dm is the density of states in an electrode made of a
three-dimensional metal, and f �e;T � is the Fermi±Dirac
distribution function. A fit of relations (28), (29) at
Dm � const, using a single fitting parameter Dmag, shown in
Fig. 22b by the solid line, sufficiently well describes the
experimental results.

5.4 Stripe phases
Yet another effect caused by the interactions between
electrons has been discovered in the two-dimensional elec-
tron structures of a record-high quality with a mobility of
around 107 cm2 Vÿ1 sÿ1. In such structures, the unusual

behavior of Rxx was observed in the vicinity of its maxima at
filling factors n�M�1=255=2. An example of the experi-
mental record from Ref. [95] is given in Fig. 23a. As one can
see from the figure, either a complicated structure or a
growing peak of the conductivity is observed at low
temperatures, T4 150 mK, at the maxima of the dissipative
resistance as the temperature decreases. At filling factors
exceeding 7/2, the result depends on the direction of the
current: at the current flowing along the crystallographic
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direction [110], the resistance is relatively small (� 50 O), and
a much higher peak in the resistance (� 1000 O) is observed
for the orthogonal direction. These features of the dissipative
resistance are not followed by additional plateaus emerging in
the Hall component. A similar structure is also observed in
the vicinity of the maxima ofRxx at filling factors 5/2 and 7/2,
but in this case there is no anisotropy of the resistance
dissipative component.

The theoretical considerations explaining the discovered
effect appeared even before the experiment was performed
(see Refs [96, 97]). ForM4 1, a homogeneous system with a
half-integer filling factor n �M� 1=2 turns out to be
energetically unfavorable; therefore, the upper filled quan-
tum energy level in one part of the sample plane gains the
filling factor n �M� 1, and in the other n �M. The shape
and the size of areas with different filling factors are
determined by the competition between the exchange inter-
action, which lowers the energy of the ground state of the
electron system as the integer filling takes place, and the
Coulomb energy. For an average filling factor n �M� 1=2,
the optimal configuration in the Hartree±Fock approxima-
tion turns out to be a system of parallel stripes with a
characteristic width on the order of the cyclotron radius.
The electron system spontaneously breaks down its symmetry
with the formation of the charge-density wave. However, if
the filling factor is not closer to a half-integer value but to an
integer one, then it is possible that an isotropic inhomoge-
neous phase emerges from separate islands forming some-
thing similar to a crystal. Finally, the emergence of a Wigner
crystal is theoretically predicted in the vicinity of an integer
filling factorÐ that is, the spontaneous appearance of a
strong modulation of the electron density with the maxima
forming a regular (presumably triangular) lattice, and almost
a 100% probability of detecting an electron in the vicinity of
each maximum.

Such a picture agrees with the anisotropy of the
dissipative component of the resistivity tensor. It is interest-
ing to note that, within the framework of this picture, the
existence of the Coulomb gap is also predicted in the case of
tunneling to the chemical potential level at high filling factors.
The gap originates from the exchange interaction, and in the
case of half-integer filling its width equals

DEg � rs�hoc���
2
p

p
ln

�
1� 0:3

rs

�
� �hoc

ln �Mrs�
2M� 1

: �30�

At a fixed filling factor, the second termon the right-hand side
of formula (30) is proportional to the magnetic field. The gap
is well pronounced in the tunnel spectra taken in Ref. [90]
(Fig. 23b), although its field dependences have not been
properly studied yet.

The Hartree±Fock approximation gives only a rough
description of the situation. In the series of studies [98±101],
the spatial distribution of the areas with different filling
factors was considered in terms that are traditionally used
for the description of liquid crystals, and on going beyond the
Hartree±Fock approximation an even greater abundance of
realizable phases has been discovered. For example, the
above-considered structure of collinear stripes can be treated
as a smectic, but if the stripes are not strictly parallel and the
stripe structure contains disorder with the conservation of the
primary direction, then such a phase corresponds to a
nematic. The rupture of stripes is possible with the formation
of a stripe crystal, etc.

A version of the phase diagram, proposed in Ref. [96], is
illustrated in Fig. 24a. As the temperature decreases, an
ordinary isotropic liquid, depending on the filling factor, is
replaced either by nematic stripes or by a hexatic (the
intermediate phase between a crystal formed by islands and
the disordered distribution of the same islands). A further
temperature decrease leads to the formation of either a
Wigner crystal or a stripe crystal, and only in the vicinity of
a half-integer filling factor does the nematic phase remain.

Unfortunately, the experimental feasibilities for exploring
the stripe phases are strongly limited. So far there are no
methods that allow a detailed investigation of the spatial
structure of the phases. The main information was obtained
from the study of electroresistance anisotropy. It was
discovered (see Fig. 24b) that the emergence of the magnetic
field component that is primarily parallel to the initial
orientation of the stripes changes the anisotropyÐ that is,
changes their orientation. By introducing a magnetic field
component orthogonal to the stripe orientation, one can
stabilize the initial anisotropy. Finally, for filling factors 5/2
and 7/2, anisotropy can be achieved by tilting the magnetic
field [102]. Passing of a direct current on the order of 1 mA can
also influence the anisotropy and the stability boundaries of
different phases [103].

In the smectic phase, the passing of a current should cause
the drift of a charge-density wave in the direction perpendi-
cular to the orientation of the stripes and lead to nonsta-
tionary effects. Conceivably, it has been the drift of the
charge-density wave that was observed in Ref. [104],
although no link between the noise detected in this work and
themotion of the stripe phase has been reliably demonstrated.

6. Integer quantum Hall effect
in exotic two-dimensional electron systems

6.1 Graphene
The best known and most popular exotic two-dimensional
electron system is, undoubtedly, graphene, recently intro-
duced into research [105]. This material constitutes a
monolayer of graphite (Fig. 25a) with a crystal lattice that
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can be represented as two triangular sublattices. In a free
state, the monolayer folds into a roll; therefore, one should
deposit it on a dielectric substrate (for example, SiO2), which
allows one to make a field-effect transistor based on
graphene, and to control the electron density in the mono-
layer. Most experiments were performed using graphene with
a substrate made of oxidized silicon.

Initially, special attention to graphene was due to its
electron spectrum having the shape of two cones with a
single common point (Fig. 25b). It is important for us that
the spectrum greatly differ from a parabolic one and, hence,
in themagnetic field the quantum levels, unlike those given by
formula (4), are not equidistant. Another distinctive feature
of the graphene electron spectrum is related to the presence of
two equivalent crystal sublattices. In a fixed momentum
direction, the electron wave function can be represented as a
linear combination of the wave functions related to one of the
sublattices. Such a situation is usually described using an
additional quantum number (pseudospin s).

At the boundary of the first Brillouin zone, graphene has
two sets of points where e�p� � 0. In the extended-zone
scheme, there are two valleys with a dispersion relation that
corresponds to the energy spectrum schematically illustrated
in Fig. 25b.

In the case of a nonparabolic electron spectrum, it is
convenient to begin with the quasiclassical Bohr±Sommerfeld
quantization condition in defining the quantum level system
in amagnetic field, which requires [22] the quantization of the
electron orbit area in the momentum space to satisfy the
following relation

Sn �
�
n� 1

2

�
heB

c
: �31�

Applying relationship (31) to the graphene electron spectrum
e�p� � �c �jpj, we obtain

en � �
��

n� 1

2

�
heBc � 2

pc

�1=2
: �32�

Here, the plus sign is related to the electron quantum levels,
and the minus sign is related to the hole levels. The
corresponding spectrum is displayed on the left-hand side of
Fig. 26a. This is how the spectrum looks if we neglect valley

and spin splittings. However, the valley splitting in graphene
is comparable to the cyclotron one (see, for example,
Ref. [107]), and spectrum (32) has the form

en � �
��

n� 1

2
� 1

2

�
heBc � 2

pc

�1=2
; �33�

which corresponds to the right-hand side of Fig. 26a. The
quantum levels are four-fold degenerate (twice in the spin
index, and twice in the valley one). Each of them is composed
of two neighboring Landau levels. One of the quantum levels,
corresponding to zero energy, consists of a quantum sublevel
for the electrons and of the same sublevel for the holes.
Therefore, the quantization condition takes on the form

ns � �4n0
�
N� 1

2

�
: �34�

As one can see from Fig. 26b, the experimental curves agree
with equation (34).

The spin splitting of the levels, which we have been
neglecting up to this point, can significantly change the
dependences of the Hall and dissipative conductivities near
the point where the charge-carrier density turns to zero. An
additional plateau sxy � 0 emerges in the vicinity of this point
at a finite value of the dissipative conductance [108]. Another
specific feature of the graphene electron spectrum in a
quantizing magnetic field is the large energy gap between the
quantum levels with the smallest numbers. It was utilized in
Ref. [109], where an integer quantumHall effect was observed
at room temperature (T � 300 K) in a magnetic field of 29 T.

6.2 Two-dimensional semimetal
This section and next Section 6.3 are based on the results of
research into electron gas in quantumwells of one type (HgTe
in HgCdTe with the surface orientation (013)), but with
different widths. Let us begin by considering wide quantum
wells with a width of about 18±21 nm (Fig. 27a). The electron
spectrum in such a quantum well has the typical semimetal
behavior, 3 which is shown schematically for the �031�
direction in Fig. 27c. There is an electron minimum in the
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Figure 25. (Color online.) (a) Schematic of a graphene crystal lattice.

Different colors visualize two equivalent triangular sublattices. (b) The

graphene energy spectrum (one of two valleys); s is the pseudospin

projection.
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Figure 26. (Color online.) (a) Schematic picture of the density of states as a

function of energy (the left-hand side of the figure corresponds to Eqn (32),
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levels are shown in different colors. (b) The experimental results for the

Hall conductance component and the dissipative component of the

magnetoresistance tensor in graphene at B � 14 T and T � 4 K. (Data

taken from Ref. [106].)

3 The semimetal character of the two-dimensional electron spectrum can

also be realized in wide quantum wells produced from the same material

with a surface orientation (112) or (100).
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center of a two-dimensional Brillouin zone (related to the
minimum of the heavy-holes first zone (h1) at the point G)
and two hole maxima (related to the maxima of the heavy-
holes second zone (h2)) that are shifted in the k-space along
the �031� axis at a distance of the order of 0.3 nmÿ1 with
respect to the midpoint of the Brillouin zone. The experi-
mental values for the density of states masses are
mh � 0:15m0, me � 0:025m0, where m0 is the free electron
mass [110, 111].

As in three-dimensional semimetals, there is an energy
region D where the electron and hole bands overlap, and
both the electrons and holes are present in the two-
dimensional system, as long as the chemical potential is
located within this region. Their densities are equated at the
point of charge electroneutrality for the concentration
ne0 � ph0 � 5� 1010 cmÿ2. The overlap energy and the
chemical potential at the electroneutrality point are deter-
mined by the effective masses and the concentration of the
charge carriers. Counting off all the energies from the bottom
of the conduction band, we obtain

ne0 � ph0 � m0 gse me

2p�h 2
� �Dÿ m0� gsh gvh mh

2p�h 2
; �35�

where gs and gv are the degrees of the spin and valley
degeneracies, respectively. Let us point out that the gate
voltage does not determine the electron and hole concentra-
tions, but their difference, while the values proper of the
concentration, according to expression (33), are determined
by the electron spectrum.

In a quantizing magnetic field, the upper partly filled
electron quantum level and the lowest partly filled hole
quantum level do not generally coincide in energy. Such a
situation is impossible in the equilibrium state, and electron±
hole recombination takes place, until at least one of the partly
filled quantum levels becomes completely empty. During this

process, the chemical potential is oscillating, becoming either
pinned to the partly filled quantum level or located in the
midpoint between the fully filled level and the nearest empty
one. The electron±hole recombination has no influence on the
spectrum, because the quantum well, at least in the roughest
approximation, is hard [112]. The quantization conditions for
a nondegenerate spectrum are similar to those that are valid
for graphene:

ns � �n0N : �36�

As one can see from Fig. 27b, condition (36) is fully
confirmed by experiment, and every quantum level turns
out to be non-degenerate. Such a picture is in quite good
agreement with the result of electron spectrum calculations
[113], which turns out to depend on the magnetic field value
and to be significantly different from ordinary intersecting
Landau fans. The complicated behavior of the spectrum is
related to the strong spin±orbit interaction in the medium
under consideration. However, the peculiarities of the
spectrum are barely pronounced in the fan diagrams
similar to the ones shown in Fig. 10b, which are plotted
using the experimental results.

Despite the similarity of Figs 26b and 27b, there is a
significant difference between graphene and the two-dimen-
sional semimetal: the chemical potential level coincides with
the quantum level at the charge-electroneutrality point of the
graphene (with an accuracy up to the spin splitting), and in the
two-dimensional semimetal it is located in the energy gap.
The number of electrons and holes at the charge-electroneu-
trality point are not fixed and vary from the value which is
typical in a zero magnetic field to zero in the strong field.
Therefore, rxy � 0 in the latter case, and rxx has an activation
behavior [114] with an unexpectedly small value of activation
energy that indicates the complexity of the electron spectrum
[113].
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6.3 Quantum spin Hall insulator
Let us proceed now to the consideration of the properties of
the same quantum well, as in Section 6.2, but with a
significantly smaller width. As the width of the quantum
well decreases, first, the overlap of the heavy-hole zones
disappears, and then at the critical well width of 6.3 nm
zones e1 and h1 intersect at the point G of the Brillouin zone.
The zone intersection is related to the influence of HgCdTe,
which surrounds the quantum well and exhibits a sequence of
atomic zones that is different from the one in HgTe. Zone e1
itself contains two spin states of the atomic s-orbitals, while
zone h1 is formed from the p-orbitals with the spin projection
of �3=2.

Let us turn to an electron spectrum in some vicinity of the
point G for the case of the well width close to the critical one.
Far from the edge of the two-dimensional electron system, the
spectrum should be described in terms of the Hamiltonian
which takes into account the mixing of zones e1 and h1,
because of the strong spin±orbit interaction that is related to
the presence of p-orbitals. At the critical well width, the
electron spectrum is similar to the graphene spectrum, except
for the fact that it has one valley, because in the spectrum
considered the zones intersect at the point G. For well widths
both smaller (the noninverted spectrum) and larger (the
inverted spectrum) than the critical one, there is an energy
gap in the strongly nonparabolic spectrum. In the case of a
spectrumnoninverted at the pointG, the wave functions in the
conduction band are constructed from the s-orbitals, and in
the valence band from the p-orbitals, and the way they are
constructed does not change with an increase in the wave
vector value. Vice versa, for the spectrum inverted at the
point G the wave functions in the conduction band are
constructed from the p-orbitals, and in the valence band
from the s-orbitals, and the way they are constructed changes
with an increase in the wave vector value. It is clear that by
placing the chemical potential level within the energy gap, we
will have to do with an insulator in both considered cases, but
these insulators would be topologically nonequivalent. If the
first of them (the one with the noninverted spectrum) is well
known as an ordinary two-dimensional insulator, the proper-
ties of the second one (the two-dimensional topological
insulator) should be discussed in detail, because it demon-
strates the effect known as the quantum spin Hall effect.

The quantum spin Hall effect shows itself as the existence
of discrete conductance related to the emergence of spin-
polarized electrons on the side boundaries even in the absence
of a magnetic field.

Let us proceed to the consideration of a spatially limited
two-dimensional electron gas. For definiteness, let us place
the boundary at x � 0, so the gas occupies the half-plane with
x5 0. For the noninverted spectrum behavior, the breaking
of the translational symmetry along the x-axis does not itself
cause the emergence of the additional quantum states in the
bulk spectral gap. The situation is different for the inverted
spectrum. The absence of translational symmetry leads to a
necessity of changing the mixing of the zones e1 and h1 near
the boundary of the two-dimensional electron gas. As a result,
a one-dimensional gapless state emerges at the boundary with
the wave function being zero at x � 0, and with an amplitude
that is described by the sum of two exponents.

This kind of state can emerge only in the vicinity of the
point G in the Brillouin zone, where at k � 0 it is four-fold
degenerate: twice in the spin projection, and twice in the
atomic zones combination. We are interested in the depen-

dence of the edge-state energy on the momentum compo-
nent ky that remains a good quantum number near the
boundary.

The one-dimensional Hamiltonian describing the depen-
dence of interest assumes the form [115]

Hedge � Akys z : �37�

For an HgTe quantum well, the parameter A � 0:36 eV, and
the velocity v � A=�h � 5:5� 107 cm sÿ1. Already from the
form of theHamiltonian one can see that the group velocity of
the electrons with positive spin projections does not depend
on their energy and has an opposite sign with respect to the
group velocity of the electrons with the opposite spin
projections. The edge state has a one-dimensional graphene-
like spectrum. The direction of path tracing along the sample
boundary (clockwise or counter-clockwise) is controlled by
the parameters of the initial bulk Hamiltonian, and in
equation (37) by the sign of parameter A.

Thus, by fixing the chemical potential level in the gap of
the bulk spectrum, we will intersect it near every edge by two
one-dimensional edge channels that transport the electrons in
opposite directions and with opposite spin projections.

If the sample has a rectangular shape and an ohmic
contacts, the situation is even more similar to the one under
the integer quantum Hall effect conditions. Let us assume
that at the beginning we have only two contacts: the emitter,
and the collector with different chemical potentials. On every
side connecting the contacts of the sample, the charge and the
spin transfers appear. But the chemical potential levels for the
spin `up' (`down') will be different on different sides: there-
fore, a nonequilibrium spin population, proportional to the
current, will emerge. At the same time, the electric currents
flowing along the opposite sides of the sample have the same
values and directions. The two-contact conductance of
the sample, calculated using the B�uttiker formalism (see
Section 3.4), equals 2e 2=h.

More interesting is the situation when the sample also
possesses potential contacts. In this case, both the two-
contact resistance and the potential difference between the
contacts depend on the number and on the location of the
potential contacts. For example, if there is only one pair of
such contacts on every side, then the drop of potential,
measured between the two neighboring contacts, corre-
sponds to the resistance h=2e 2, and the two-contact resis-
tance between the collector and the emitter equals 3h=2e 2.
The given values are easily calculated using the B�uttiker
formalism as well.

The expected picture of the edge states has some similarity
with the one in the case of the integer quantum Hall effect,
which was the reason for introducing the term `quantum spin
Hall insulator'.

One has to point out that the above discussion is valid
only in the absence of electron back scattering, related to spin
flip. At low temperatures and in the absence of magnetic
impurities, such processes are assumed to have a small
probability.

In the experiment [116] (Fig. 28), the resistance behavior
similar to the predicted one (see above) was indeed observed.
For two potential contacts on every side of the rectangular
sample, the resistance between the contacts of one side indeed
was h=2e 2, not depending on the sample width. Such a
resistance value was only observed in the quantum well with
the inverted spectrum. Surprisingly, it turned out that for the
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observation one needs very short samples, with a length on
the order of 1 mm. The reason for the frequent scattering
processes that take place between the one-dimensional
channels remains unknown.

When applying a quantizing magnetic field to the two-
dimensional electron system in the state of the quantum spin
Hall insulator, such a state must be destroyed because the
initial symmetry of the edge channels differs from the edge
channel symmetry in the state of the integer quantum Hall
effect. Experiment [116] confirms this inference.

7. Conclusion

Let us formulate the unsolved problems and outline possible
avenues for further research in the field of the integer
quantum Hall effect.

(1) The determination of the theoretical limit of the
reproducible-digits number in the quantum Hall effect.

(2) The resolution of the conflict between the theory and
the experiment, related to the functional dependence of the
spin gap on the magnetic field at the fixed filling factor.

(3) The explanation of the existence of the Coulomb gap
replicas on the quantum levels above and below the chemical
potential level.

(4) The visualization of the stripe phases structure.
(5) The investigation of the quantum Hall effect in exotic

two-dimensional electron systems.
Of course, the above-introduced list represents the tastes

and interests of the author and is not universal, although it
can turn out to be useful as a reminder of the imperfection of
our knowledge in this field.
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