
Abstract. We review the mechanism of electroweak baryogen-
esis. Our focus is on the derivation of quantum transport equa-
tions from first principles within the Schwinger±Keldysh
formalism. We emphasize the importance of the semiclassical
force approach, which provides reliable predictions in most
models. In light of recent electric dipole moment measurements
and given the results on new physics searches from collider
experiments, the status of electroweak baryogenesis is dis-
cussed in a variety of models.

1. Introduction

The goal of any baryogenesis mechanism is to explain the
observed asymmetry between matter and antimatter,

Z � nB ÿ �nB
ng

' 10ÿ10 ; �1�

where nB, �nB, and ng are the respective concentrations
of baryons, antibaryons, and relic photons. To produce
such an asymmetry dynamically, several symmetries have
to be broken, which is summarized by the Sakharov
conditions [1]: Baryon number �B� must not be conserved.
Charge conjugation �C� and charge conjugation in combina-
tion with parity conjugation �CP� must not be a symmetry.
Time reversal must not be a symmetry, which in the early

Universe implies a nonequilibrium state of plasma. Owing to
the Sakharov conditions, baryogenesis is only possible in
extensions of the Standard Model (SM). In particular, new
sources of CP violation and sizable deviation from thermal
equilibrium are essential for a viable baryogenesis mechan-
ism.

The special appeal of electroweak baryogenesis [2]
(EWBG) is that only the physics of electroweak scales is
involved. This makes the scenario testable in principle. The
basic picture of electroweak baryogenesis is as follows: at
temperatures above the electroweak scale, the electroweak
gauge symmetry is unbroken and the Universe is filled with a
hot plasma of particles with no net baryon number. The
Universe expands and cools, and eventually the electroweak
gauge symmetry is spontaneously broken via the Higgs
mechanism. Electroweak baryogenesis can be realized if this
change of phase proceeds by a first-order phase transition. In
this case, bubbles that contain a plasma with broken
electroweak symmetry nucleate and subsequently expand in
the surrounding plasma with unbroken symmetry. Individual
particles in the plasma experience the passing bubble interface
because of their couplings to the Higgs field. This leads to the
reflection of particles and drives the plasma out of equili-
brium. Eventually, this reflection process entails CP viola-
tion, and an asymmetry between particles and antiparticles
accumulates over time in front of the expanding bubble walls.
Since the baryon number is conserved up to this point, the
opposite CP asymmetry accumulates inside the bubbles of
broken plasma. Finally, the baryon number is violated due to
the sphaleron process, which is only active in the unbroken
phase. The sphaleron also provides the C violation because it
couples only to left-handed particles. This mechanism is most
efficient when the particle asymmetries diffuse deep into the
unbroken phase, where the sphaleron rate is unsuppressed [3].
The mechanism is sketched in Fig. 1.
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Among all models that provide the necessary ingredients
for electroweak baryogenesis, the minimal supersymmetric
standard model (MSSM) has a prominent role. This is mostly
because the MSSM overcomes (or alleviates) many short-
comings of the SM in some regions of the parameter space:
the hierarchy problem of the SM, unification of gauge
couplings, the anomaly in the gyromagnetic moment of the
muon, viable dark matter candidates, and so on. For these
reasons, the MSSM is also the most studied framework for
electroweak baryogenesis.

Unfortunately, electroweak baryogenesis is not so easily
realized in the MSSM. The main reasons are that the Higgs
sector is rather constrained and that CP violation arises in a
special form. Even though a strong enough phase transition is
possible in a small region of the parameter space (the so-called
light stop scenario), the observed baryon asymmetry can only
be explained by nearly mass-degenerate charginos and/or
neutralinos. Therefore, a reliable analysis of the produced
baryon asymmetry has to account for flavor effects, e.g.,
flavor oscillations, resonant enhancements, and transport
phenomena that are specific to the multi-flavor case. A large
part of the literature deals with these complications, which are
responsible for the large discrepancies in the baryogenesis
analysis among the different approaches. Recently, the
available parameter space for viable MSSMs shrunk signifi-
cantly with the LHC results, in particular, the Higgs searches.
All in all, electroweak baryogenesis in the MSSM is
technically not ruled out yet, but is only possible under
rather contrived assumptions and at the cost of additional
cancelations and tunings (a more detailed analysis is given in
Section 4.4).

The main purpose of this review is to turn the spotlight on
electroweak baryogenesis in models other than the MSSM.
The emphasis is thus on the following aspects:
�With the Schwinger±Keldysh formalism [4, 5] (also see

[5a]), quantum transport equations have been derived in
recent years from first principles in the context of electro-
weak baryogenesis. Especially when the CP violation opera-
tive in baryogenesis results from the semiclassical force and is
not based on flavor mixing, all applied approximations are
well justified and allow robust quantitative predictions.
� Recent LHC results marked the discovery of a Higgs-

like particle with the mass mh ' 125 GeV. If this particle is
identified with the Higgs particle, this is highly relevant for
electroweak baryogenesis. The strength of the electroweak
phase transition is tightly linked to the Higgs mass. Larger
Higgs masses tend to weaken the phase transition and
suppress the produced baryon asymmetry. In all models, we
assume a Higgs mass at the above-mentioned value.

� The main motivation for new physics at the electroweak
scale (and supersymmetry in particular) comes from the
hierarchy problem. The discovery of the Higgs boson high-
lights this fact and rules out Higgsless models like Technico-
lor. In recent years, much progress has been made concerning
alternative solutions to the hierarchy problem, such as
composite Higgs models. These models typically allow
electroweak baryogenesis without much tuning in the Higgs
sector.

The plan of this review is as follows. In Section 2,
semiclassical transport equations are derived from first
principles in the Schwinger±Keldysh formalism [4, 5]. The
main result in this section is Boltzmann equation (48), which
includes a CP-violating semiclassical force at the order �h.
Subsequently, in Section 3, we describe how to pass from
Boltzmann-type transport equations to diffusion equations
using the flow ansatz, and a complete analysis of the produced
baryon asymmetry is illustrated. Finally, in Section 4, an
analysis of the baryon asymmetry and its correlation with
collider phenomenology is discussed in specific models. The
appendices contain the remaining ingredients of the baryo-
genesis calculation. This includes the characteristics of the
phase transition and the sphaleron rate.

2. Quantum kinetic equations

In this section, we discuss the derivation of quantum
transport equations from first principles in a QFT setting
and their application to electroweak baryogenesis. The main
aim of this section is to sketch the Schwinger±Keldysh
formalism [4, 5] (also known as the closed time path
formalism or in-in formalism) rather than to discuss it in
complete depth. The discussion closely follows the derivation
in Ref. [6] and the technical review in Refs [7, 8]. More details
can be found inRefs [9±11]; the thermal field theory is covered
in books [12, 13].

2.1 Schwinger±Keldysh formalism
The starting point of the Schwinger±Keldysh formalism is the
observation that scattering amplitudes allow not only a
representation in terms of path integrals but also the time
evolution of expectation values of operators [4, 5]. We
consider a quantum mechanical system with coordinate q, a
basis jni, and some operator Ô that at the initial time t0 leads
to the matrix elements

Omn�t0� �


mjÔjn� : �2�

Matrix elements evaluated at a later time can be related to
Omn�t0� as

Oab�t1� �
X
n;m



a
��exp �iĤ�t1 ÿ t0�

���m�
�Omn�t0�



n
��exp �ÿiĤ�t1 ÿ t0�

���b� : �3�

Hence, unlike scattering amplitudes, the time evolution of a
matrix element involves the evolution of states back and forth
in time.

In the path integral formulation, the evolution of the basis
states can be expressed as


n
��exp �ÿiĤ�t1 ÿ t0�

���b� � �Dq exp�i � t1

t0

dtL�q; _q�
�
; �4�

hfi 6� 0

hfi � 0

wL wL
�wL

�wL

B

CP

Sphaleron

Figure 1. Sketch of the electroweak baryogenesis mechanism: Higgs

bubble walls separate the symmetric from the broken phase. If the

reflection of left-handed electroweak particles entails CP violation, the

sphaleron process (which is active only in the symmetric phase) generates a

net baryon number.
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with the Lagrangian L and appropriate boundary condi-
tions. The time evolution of an operator can then be
represented as

Oab�t1� �
�
DqO�t1� exp

�
i

�
P
dtL�q; _q�

�
; �5�

using a closed time path P that goes from t0 to late times and
back (see Fig. 2). It is important to remember that the two
branches of integration are independent, such that in the
Hamiltonian picture, operators are path ordered and not time
ordered.

In QFT, the same route can be followed, leading to path
integrals along a closed time path. As in the quantum
mechanical example above, the evaluation of operators then
leads to path-ordered expectation values. This, in turn, leads
to the fact that the Dyson series of the time-dependent
perturbation theory involves not only the time-ordered
Green's function but also the anti-time-ordered and unor-
dered ones. This can be expressed efficiently by giving the
two-point functions an additional 2� 2 structure, e.g., in the
case of a scalar field f, we define

D���u; v� � D t�u; v� � ÿi
O��T �f�u�f y�v����O� ;
D�ÿ�u; v� � D<�u; v� � ÿi
O��f y�v�f�u���O� ; �6�
Dÿ��u; v� � D>�u; v� � ÿi
O��f�u�f y�v���O� ;
Dÿÿ�u; v� � D�t�u; v� � ÿi
O�� �T �f�u�f y�v����O� ;

where T and �T respectively denote time and anti-time
ordering. Obviously, only two of the functions in (6) are
independent and the matrix D in this � notation is anti-
Hermitian in the sense that

D y�u; v� � ÿD�v; u� : �7�

In many cases, it is advantageous to express the two-point
functions in terms of the spectral functionA � i�D> ÿ D<�=2
and the symmetric propagator F � �D> � D<�=2. For
canonically normalized fields, the spectral function satisfies
the relation

2qu0 A�u; v�
���
u0!v0

� d�uÿ v� ; �8�

which follows immediately from the equal-time commutation
relations of the field f.

Ultimately, matrix elements (2) can be used to deter-
mine the properties of a statistical system using the density

matrix r̂:

Tr
ÿ
r̂ Ô
� � rmnOnm : �9�

If the density matrix is known at the initial time, the operators
can be evaluated at later times using the path integral
representation of Omn as outlined above. In principle, all
information about the system can then be inferred from the
density matrix.

An alternative way to proceed is to consider a closed
system of n-point functions and to impose the initial
conditions on the n-point functions rather than the density
matrix. In complete analogy to QFT calculations, the
Schwinger±Dyson equations can be derived from the 2PI
effective action [14] in the nonequilibrium setup. Formally,
the equation is the same, namely,�

d4w
ÿ
&�m 2 �P�u;w��D�w; v� � d�uÿ v� ; �10�

whereP denotes the self-energy. In a specific model, the self-
energy P can be expressed perturbatively in terms of the
interactions and the two-point functions of the system. This
allows determining the two-point functions at all times
consistently without resorting to initial conditions in terms
of a density matrix.1

However, even though these equations are formally the
same as the Schwinger±Dyson equations, the two-point
functions are understood to have the additional 2� 2
structure mentioned above. Moreover, in many cases,
statistical systems are not isotropic or homogeneous, and
hence the two-point functionsD and the self-energyP depend
not on the relative coordinate uÿ v but explicitly on both
coordinates u and v separately. This feature is particularly
bothersome if the two-point functions are transformed into
Fourier space. Usually, the Feynman calculus is particularly
simple in Fourier space, since the convolutions in coordinate
space turn into conventional products:�

dyA�xÿ y�B�yÿ z�!FTA�p�B�p� : �11�

But if a dependence on the average coordinate remains,
convolutions turn into Moyal star products:�

dyA�x; y�B�y; z�!FTA�p;X � ? B�p;X � : �12�

Here, A�p;X � denotes the Fourier transform with respect to
the relative coordinate r � xÿ y for a fixed central coordi-
nate X � �x� y�=2:

A�p;X � �
�
d4r A

�
X� r

2
; Xÿ r

2

�
exp �irp� ; �13�

and the Moyal star product is defined using the diamond
operator

� � 1

2

�
q
 

p q
!

X ÿ q
 

X q
!

p

�
�14�

t0 C�

Cÿ Out-of-equilibrium

a

C�

ÿib

t0

Cÿ
Thermal

b

Figure 2.The closed time path contour for (a) a general out-of-equilibrium

system and (b) a system in equilibrium at finite temperature.

1 Strictly speaking, the Schwinger±Dyson equation in the 2PI formalism

allows only Gaussian initial conditions. More general initial conditions

require the use of the nPI formalism or similar techniques [9, 15±18]. In the

present context, this problem is not relevant because we take the limit

t0 ! ÿ1 and hence thermal initial conditions.
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by

A�p;X � ? B�p;X � � A�p;X � exp �ÿi��B�p;X � : �15�

This representation of two-point functions is called the
Wigner space and allows an interpretation in terms of a
semiclassical phase space. One particularly simple applica-
tion of this formalism is QFT at a finite temperature, which
we discuss next.

2.1.1 Quantum field theory at finite temperature. The density
matrix at a finite temperature is given by the Hamiltonian Ĥ
and the temperature T � bÿ1 as

r̂ � exp �ÿĤb� : �16�

The partition function of this system

Z � Tr r̂ �
�
dq


q
��exp �ÿĤb���q� �17�

can be represented by extending the closed time path into the
imaginary time direction (see Fig. 2) and imposing periodic
(antiperiodic) boundary conditions for bosonic (fermionic)
fields. For the two-point functions, the periodic boundary
conditions turn into the Kubo±Martin±Schwinger (KMS)
relation

D>�u; v���
u0ÿv0�t

� D<�u; v���
u0ÿv0�t�ib!

FT
D>�k� � exp �k0b�D<�k� : �18�

In combination with spectral sum rule (8),�
dp0
2p

2p0A�p� � 1 ; �19�

this yields

A�p� � pd�p 2 ÿm 2� sign �p0� ; �20�
F�p� � ÿpi d�p 2 ÿm 2�ÿ2nj p0j � 1

�
for a free field in equilibrium or, equivalently,

D< � ÿpid�p 2 ÿm 2� sign �p0� n�p0� ; �21�
D> � ÿpid�p 2 ÿm 2� sign �p0�

ÿ
n�p0� � 1

�
:

Here, we recover the Bose±Einstein particle distribution
function

n�E � � 1

exp �Eb� ÿ 1
: �22�

For particle species that are weakly interacting and close to
equilibrium, the spectral function A is approximately still
given by a d-function, and the corresponding component of
the plasma can be described by quasiparticles. The particle
distribution function n�X; p� is then encoded in the symmetric
propagator F or the Wightman functions D< ;>.

2.1.2 Kadanoff±Baym equations. It is not surprising that the
Wightman functions D< and D> encode the particle densities
in the plasma. After all, they represent the particle number

operators. This indicates a way to derive quantum transport
equations from first principles: Schwinger±Dyson equations
(10) in Wigner space (that are also called Kadanoff±Baym
(KB) equations [19]),ÿ

p 2 ÿm 2 �P�p;X �� ? D�p;X � � 1 ; �23�

have to be solved with appropriate boundary conditions. In
components, this equation can be brought to the form [7, 8]

�p 2 ÿm 2 ÿP h� ? D< ;> ÿP< ;> ? D h � coll:; �24�

where we introduce the collision term

coll: � 1

2

ÿ
P> ? D< ÿP< ? D>

�
; �25�

the Hermitian part of the Green's function,

D h � D t ÿ 1

2
�D< � D>� ; �26�

and analogous definitions for the self-energy P. Once the
Wightman functions are known, the particle distribution
functions can be obtained at later times, when the system is
again close to equilibrium. According to (21), we find

n�X m; p� � 4i

�
p0>0

dp0
2p

D< ; �27�

1� �n�X m; p� � 4i

�
p0<0

dp0
2p

D< : �28�

Using appropriate boundary conditions, Eqns (24) can be
readily applied to the problem of electroweak baryogenesis.
The system is initially close to equilibrium and driven out of
equilibrium during baryogenesis. In the case of electroweak
baryogenesis, this stems from the bubbles of the Higgs
vacuum expectation value (vev) that give rise to a space±
time-dependent mass term m�X �. The terms in the left-hand
side describe forces that act on the particles and also the
diffusion of the particle densities away from the wall. The
term in the right-hand side (called the collision term)
represents the interactions that drive the system to kinematic
and chemical equilibrium. The particle densities of the species
under consideration can then be obtained from theWightman
functions at later times, after the phase transition is
completed.

2.2 Approximation schemes
In order to make system of equations (24) more manageable,
several approximations can be applied, which we discuss in
this subsection. In the context of electroweak baryogenesis,
the following approximations are usually employed: 2

� Gradient expansion. If the background depends only
weakly on space and time coordinates, an expansion of the
Moyal star products in the diamond operator can be
performed. At first glance, this is a good expansion for
electroweak baryogenesis, because the background only
slowly varies in units of the typical momentum scale. To be
specific, in the MSSM, the thickness of the Higgs bubble wall
is typically lw � 20ÿ30Tÿ1. At the same time, a typical
particle in the plasma has a momentum p � T. Hence, the
diamond operator reduces to a factor � � �lwT �ÿ1 5 1.

2 See Ref. [20] for a similar discussion.
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� Fluid approximation. The plasma is assumed to be close
to equilibrium. In particular, it is assumed that two-to-two
scatterings (or other interactions that do not change particle
numbers) are fast enough, such that the plasma is well
described by the local velocity of the different plasma
components, the local temperatures, and the chemical
potentials. The particle distribution functions can then be
parameterized as

n ' 1

exp
��um p m � m�b�� 1

; �29�

where u m, b, and m are space±time dependent and denote the
four-velocity, the inverse temperature, and the chemical
potential of the plasma components. Taking different
moments of the transport equations, we can then derive the
equation of motion for these quantities (this is exemplified in
Section 3).
�Weak coupling. Far away from the source of non-

equilibrium, the system reaches its chemical equilibrium via
interactions that change the particle numbers. These interac-
tions are assumed to be slow enough for an expansion in the
corresponding coupling constants to be performed.

In light of these assumptions, we can then simplify the
Kadanoff±Baym equations. As a word of caution, we note
that the validity of these approximations is not always
guaranteed. The prime example is flavor oscillations, where
the fluid approximation can fail [20]. We comment on this
issue in Section 2.5.

We see shortly that the main source that drives the
system out of equilibrium and induces CP violation arises
from a kinematic effect that even persists in the limit of
vanishing interactions. The deviations from equilibrium are
then suppressed by Ew ' �lwT �ÿ1, while the self-energy is
suppressed by coupling constants and loop factors, Ecoll '
g 2=4p. In particular, the collision term vanishes in equili-
brium but also has an explicit factor Ecoll from the self-energy.
Hence, we can neglect the higher gradients in the Moyal star
product of the collision term and write

coll: ' P>�p;X �D<�p;X � ÿP<�p;X �D>�p;X � : �30�

Furthermore, the terms involving the self-energy in the left-
hand side of Kadanoff±Baym equation (24) mostly affect the
shape of the spectral function. The term involving P h

renormalizes the mass term, while the term involving P< ;>

leads to a broadening of the spectral function [7, 8]. These
terms are also neglected in what follows, and hence the
Kadanoff±Baym equations become

�p 2 ÿm 2� ? D< ;>

� P>�p;X �D<�p;X � ÿP<�p;X �D>�p;X � : �31�

2.3 One bosonic flavor
For a system with only one bosonic degree of freedom, the
Wightman functions are purely imaginary, and we can
immediately split the Kadanoff±Baym equations into a real
part,

�p 2 ÿm 2� cos ���D< ;>�p;X � � 0 ; �32�
and an imaginary part:

�p 2 ÿm 2� sin ���D< ;>�p;X � � coll: �33�

The real part determines the spectral function and is usually
called the constraint equation, while the imaginary part
describes the variation of the particle distribution functions
due to the background and is called the kinetic equation.

To the order O��2�, these equations are solved by the
ansatz

D< � 2pd�p 2 ÿm 2� sign �p0� n�p;X � ; �34�

where the particle distribution function now satisfies the
equation

2pd�p 2 ÿm 2�ÿ2p mqmn�p;X � � qmm 2�X �qpmn�p;X �
� � coll:

�35�

This equation allows a simple semiclassical interpretation.
We imagine a particle with a space-dependent mass m 2�z�
arising from a Higgs bubble and a fixed four-momentum p m

in front on the bubble wall. If the particle passes through the
wall, its mass changes. If the semiclassical particle is on-shell
on both sides of the wall, it has to change its four-momentum,
and the symmetries of the problem dictate that this change
arises in pz. This reasoning leads to the relation p2z; in �m 2

in �
p 2
z; out �m 2

out, and the approaching particle perceives a change
in mass, similarly to the case of a potential barrier. In
particular, very soft particles cannot fulfill the on-shell
condition inside the bubble and are reflected by the bubble
wall. If this picture is generalized to a distribution of particles
n�p;X � and a smoothly changing mass profile m�X �, this
leads to the statement

p m qmn�p;X � � ÿqm m 2�X � qpmn�p;X � ; �36�

which is Eqn (35) in the absence of interactions. In the
language of Boltzmann equations, the change in mass leads
to a kinematic effect that exerts a force on the particles in the
plasma. This effect is purely classical in the sense that it is not
suppressed in the limit �h! 0. For electroweak baryogenesis,
this effect is interesting since, as we see in what follows, in the
case of fermions and/or several êavors, the kinematic forces
can entail CP violation (to the érst order in �h).

Before we do so, we comment on some additional features
of Eqn (35) and its solution. First, if the wall is at rest relative
to the plasma, the force is absent. In the wall frame, the mass
depends only on the spatial coordinates m�z�, while in the
plasma frame, the equilibrium distribution function depends
only on the energy n�p0�. If these two frames coincide, the
force term qmm 2�X � qpmn�p� vanishes, and the equilibrium
solution (with the space±time-dependent mass) solves
Eqn (35) everywhere. In terms of particles, soft particles are
reflected, n�p� � n�ÿp�, while hard particles replace hard
particles on the other side of the bubble wall. During
electroweak baryogenesis, deviations from equilibrium are
hence additionally suppressed by the wall velocity vw if it is
substantially less than the speed of light.

Next, we note that the effect persists even in the limit of
vanishing interactions. Once the wall is moving, the soft
particles are still reflected, n�p� � n�ÿp�, but this is not
consistent with the boundary conditions of a plasma moving
toward the bubble wall. Also, behind the wall, the plasma is
not in equilibrium. Hence, interactions are essential to
establish equilibrium far from the wall but are not so
important for generating the out-of-equilibrium situation in
the present context.
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Finally, we note that as long as the effect from the wall can
be expressed as a force,

p m qmn�p;X � d�p 2 ÿm 2�
� m�X �Fm�X � qpmn�p;X � d�p 2 ÿm 2� ; �37�

the four-current

J m �
�
d4p p mn�X; p� d�p 2 ÿm 2� �38�

is conserved:

qm J m � 0 : �39�

This supports the picture that the effect is kinematic and
particles are neither created nor destroyed in the process. Of
course, including particle-number-changing interactions
from the collision term modifies this conservation law. On
the other hand, the energy±momentum

T mn �
�
d4p p mp n n�X; p� d�p 2 ÿm 2� �40�

is not conserved,

qmT mn �
�
d4pmF nn�X; p� d�p 2 ÿm 2� 6� 0 ; �41�

due to the latent heat that is released during the phase
transition from the Higgs sector to the plasma. But interac-
tions preserve the (total) energy±momentum tensor�

d4p

�2p�4 p m coll: � 0 ; �42�

and do not modify this relation (when summed over all
species). Ideally, any approximation for the transport equa-
tions that is applied subsequently should respect these laws.

2.4 One fermionic flavor
In a system with one fermionic flavor, the derivation of the
Kadanoff±Baym equation parallels the bosonic case. The
equation corresponding to (31) in this case yieldsÿ

p=ÿ PL m�X � ÿ PR m ��X �� ? S<�p;X � � coll: ; �43�

where S< denotes the fermionic Wightman function. All
subleading terms are already neglected, and we introduced a
complex, space±time-dependent mass. In contrast to the
bosonic case, this equation cannot be simply split into
constraint and kinetic equations, because the Dirac operator
as well as the Green's function S< contain a spinor structure.
In what follows, we assume that the change in mass is aligned
with the momentum of the particle (both in the z-direction in
what follows), which makes the problem effectively �1� 1�-
dimensional. If these two directions are not aligned, this
situation can be achieved by a suitable Lorentz boost [21].

The spinor structure can then be partially decoupled by
observing that the Dirac operator commutes with the spin
operator

Sz � g0g3g5 / g1g2 : �44�

Using the projectors Ps � 1
2
�1� sSz�, the Dirac operator can

be brought to a block-diagonal form. The block that encodes

the vector and axial currents can then be parameterized as

S< �
X
s��

PsS
<
s ; S<

s � Ps

�
g0g

s
0 � g3g

s
3 � g s

1 � g5g
s
2

�
: �45�

In this notation, the s-even (odd) parts of g0 encode the
vector density (axial z-current), those of g3 encode the vector
z-current (axial density), and those of g1=2 encode the scalar/
pseudoscalar (z-spin densities).

In the gradient expansion, the spinor structure of the
Kadanoff±Baym equations can be decoupled [6], leading to
the following constraint and kinetic equations for g0:�

k 2 ÿ jmj2 ÿ s

k0
jmj2y 0

�
g s
0 � 0 ;

�46��
kzqz ÿ 1

2
jm 2j 0 qkz ÿ

s

2k0

ÿjmj2y 0�0 qkz�g s
0 � coll:;

where the mass term is parameterized as m�z� �
jm�z�j exp �iy�z��. Thus, the function gs

0 again allows the
ansatz

g s
0 / d�k 2

0 ÿ o 2
s �n s

0 ; o2
s � k 2

z � jmj2 �
s

k0
jmj2y 0 ; �47�

with�
kzqz ÿ 1

2
jm2j 0 qkz ÿ

s

2k0

ÿjmj2y 0�0qkz�n s
0 � coll: �48�

The additional CP-violating force in this equation leads
to CP-violating deviations from equilibrium in the axial
z-current. The analogous equation for g3 shows no depen-
dence on the shift in the phase y 0. In total, no particles are
produced or destroyed. Still, particles with different spins
perceive different potential barriers and are reflected differ-
ently by the wall. The spin of the particles is therefore
conserved, but the chirality is not.

If the wall is at rest, n0 does not depend on kz, and the
particle distribution functions away from the wall are in their
local equilibrium form. The on-shell condition is still different
for particles with different spins, such that the two-point
functions and the axial current J 5

z depend on the change in the
phase y 0 in the wall. Since the solution is consistent with the
KMS relation, including interactions does not change this
picture [8]. Only if the wall velocity is nonzero can the CP
violation diffuse into the symmetric phase and give rise to
sizable baryogenesis.

Equation (48) is the central relation for electroweak
baryogenesis with one flavor. The forces in the left-hand
side of the equation encode how the plasma is driven out of
equilibrium and how CP violation manifests itself in the
particle densities. The kinetic term, in combination with the
collision terms, dictates how the particle densities diffuse
away from the wall. The collision terms also determine how
the asymmetries are communicated to the other particle
species and finally to the weak sphaleron. The complete
electroweak baryogenesis calculation in a toy model is
sketched in Section 3.

2.5 Several flavors
If several flavors are considered, additional complications
arise. The diamond operator comes with a factor �h, and for
one flavor, the constraint equation is algebraic in the leading
order. Moreover, the kinetic equation has an overall factor �h
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and is a classical transport equation in the leading order. For
several flavors, the leading order of the kinetic equation (in
the case of bosons) becomes

2k mqmD< � i�m 2;D<� ÿ 1

2

�
m 2 0; qkzD

<
	 � coll: �49�

The first two terms of this equation describe flavor oscilla-
tions with a frequency o ' Dm 2=kz / 1=�h, while the third
term gives forces similar to what was found in the one-flavor
case. In the case of several flavors, the Wightman function
encodes not only semiclassical particle distribution functions
but also coherent superpositions of differentmass eigenstates.
Even though the Wightman function is diagonal in the mass
eigenbasis far away from the wall, the forces induce off-
diagonal entries that participate in flavor oscillations. This
mechanism gives rise to new sources of CP violation. In
particular, this effect arises already in the leading order in the
kinetic equation. In comparison, the semiclassical force found
for one flavor contains one more gradient (and hence one
more factor �h). On the one hand, this indicates that the flavor-
mixing effects can be enhanced compared with the semiclassi-
cal force. On the other hand, if the oscillation is rather fast,
this suppresses the efficient population of any off-diagonal
densities. Hence, it is not a priori clear if the CP violation
stemming frommixing or the one from the semiclassical force
dominates the produced baryon asymmetry.

For completeness, we quote the kinetic equation for
fermions with several flavors as derived in [22] up to the
second order in gradients. In this case, it is more appropriate
to parameterize the two-point functions in terms of left-
handed and right-handed densities. The equation for the
right-handed density is given by

kzqzgR � i

2

�
m ym; gR

�ÿ 1

4

��m ym�0; qkzgR	
� 1

4kz

ÿ
m y 0mgR � gRm

ym 0
�ÿ 1

4kz

ÿ
m y 0gLm�m ygLm 0

�
ÿ i

16

��m ym�00; q2kzgR�� i

8kz

�
m y 0m 0; qkzgR

�
� i

8

�
m y 00m qkz

�
gR
kz

�
ÿ qkz

�
gR
kz

�
m ym 00

�
ÿ i

8

�
m y 00 qkz

�
gL
kz

�
mÿm y qkz

�
gL
kz

�
m 00
�
� coll: �50�

The corresponding equation for the left-handed density is
obtained by the replacements

gR $ gL ; m$ my : �51�
We note that this equation does not explicitly depend on the
spin quantum number s, and we dropped the superscript. The
dependence on s appears again when the functions are
rewritten in the previous notation via

g s
L � g s

0 ÿ s g s
3 ; g s

R � g s
0 � s g s

3 ; �52�

and the lowest-order relation kzg3 � k0g0. We also note that
this kinetic equation does not explicitly depend on the
energy k0. Hence, the transport equations for particle
distribution functions can be obtained by integration with-
out knowledge of the spectral function.

The second term in (50) induces flavor oscillations, while
the remaining term of first order in gradients is analogous to

classical forces in the one-flavor case. These terms source the
off-diagonal entries (in flavor space) of the Wightman
function and contain new sources of CP violation, as in a
bosonic system with several flavors. The last two terms
reproduce the semiclassical force known from the one-flavor
case.

2.5.1 Application to the MSSM. The main application of
Eqn (50) is chargino (or neutralino) driven electroweak
baryogenesis in the MSSM. In this framework, the semiclas-
sical force that drives electroweak baryogenesis in the one-
flavor scheme is insufficient to account for the observed
baryon asymmetry. This is mainly due to a weak phase
transition and rather strict constraints from EDM measure-
ments. Hence, electroweak baryogenesis in the MSSM has to
rely on flavor mixing effects that are nominally suppressed by
one fewer order in the gradient expansion.

Unfortunately, some of the standard assumptions used in
electroweak baryogenesis calculations potentially break
down in the case of CP violation stemming from flavor
mixing, as is discussed in detail in [20]. The oscillation
frequency is tÿ1osc � Dm 2=p, where Dm 2 denotes the difference
between the mass eigenvalues squared. For soft particles, this
leads to fast oscillatory behavior, and numerically this fast
oscillation suppresses the relevance of the off-diagonal
entries. On the other hand, flavor oscillations are important
for newCP-violating terms that arise in kinetic equations (50)
beyond the semiclassical force [22].

If the oscillations are generally assumed to be faster than
the background gradients, tosc 5 lw, then the system is in the
adiabatic regime [20, 23]. For the MSSM, this seems reason-
able, since the bubble wall is rather thick, lwT � 10ÿ20, and
the charginos are never mass degenerate in the wall. Hence,
the assumption that tosc 5 lw should be valid for a typical
particle in a plasma with p � T. In this regime, flow ansatz
(29) (including a collective oscillation) seems reasonable.
Furthermore, back reactions from the off-diagonal densities
on the diagonal ones are small 3 and can be neglected. This is
the route followed in [24]. Unfortunately, the resulting
baryon asymmetry is too small to be simultaneously in
accord with EDM constraints and the observed baryon
asymmetry (a more extensive account of these results is
given in Section 4.4).

The first study that does not rely on the assumption of
fast oscillations was presented in [20, 23] for a toy model. In
this regime, the interplay of off-diagonal and diagonal parts
in the flavor space is more involved, which can lead to a
parametric enhancement of CP violation in diagonal
particle densities. In a bosonic toy model, the modes that
are most affected by CP violation are the ones where the
oscillation frequency is comparable to the background
gradients, tosc � lw. In the MSSM, as argued above, these
particles are rather hard, and this leads potentially to
suppression, since these hard modes are not very abundant
in the plasma. Still, it might turn out that these modes
contribute to the CP-violating particle densities more than
the bulk of particles in the adiabatic regime. Settling this
issue would require an analysis along the lines of [20, 23] in
a fermionic system (namely, the chargino sector of the
MSSM), which is a daunting task.

3 Nominally, they are of the second order in gradients and compatible with

the semiclassical force terms.
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2.6 Other approaches
In this section, we briefly discuss to what extent the approach
presented in the last section is consistent with other methods
found in the literature. In particular, we discuss the
semiclassical force in the WKB approximation and the mass
insertion formalism.

2.6.1 Semiclassical force in the WKB approximation. Histori-
cally, the semiclassical force was initially found in the WKB
approximation [25±28] and subsequently applied to the
MSSM [29±32]. The derivation is a little less clean than the
one in the Kadanoff±Baym framework. For example, it relies
on the quasiparticle picture, which is a stronger requirement
than the mere gradient expansion used in the KB approach.

The derivation goes as follows: we again assume one
fermionic particle species with a space±time-dependent
complex mass term m � jmj exp �iy�. The corresponding
Lagrangian is

L � �c�iq=ÿ PLmÿ PRm
��c : �53�

Using a local axial transformation, the Lagrangian can be
brought to a form where the mass term is real, but an axial
gauge field appears:

L � �c�iq=� g5Z=ÿm�c ; �54�

where Zm � �1=2�qmy. Solving the Dirac equation then leads
to the dispersion relation of quasiparticles. In the wall frame,
we find [26, 27]

E 2 � p 2
? �

� �����������������
p 2
z �m 2

q
� Zz

�2
: �55�

The different signs denote the spin in the z-direction in the
frame with vanishing p?, similarly to the construction in the
Kadanoff±Baym approach [see formula (44)]). The group
velocity of the particle is given by

vg � _z � qE
qpz

; �56�

and energy conservation gives the constraint

_E � 0 � _z
qE
qz
� _pz

qE
qpz

; �57�

hence, _pz � ÿqzE. From these relations, the Boltzmann
equation can be derived:

dn

dt
� qtn� _z qzn� _pzqpzn � coll: �58�

We note that the relation _pz � ÿqzE ensures that for a static
wall, the equilibrium particle distribution function (which in
this case only depends on energy in the wall frame) is a
solution of the Boltzmann equation.

We compare this result with our findings in theKadanoff±
Baym approach. In the �1� 1�-dimensional case and for
small gradients, we find

E 2 �
� �����������������

p 2
z �m 2

q
� Zz

�2
' p 2

z �m 2 � 2EZz : �59�

Comparing this with (46), we see that the force in the WKB
approximation is smaller by the factor m 2=E 2, which is
close to unity for nonrelativistic particles. Therefore, the
result is in rough agreement with the ones obtained later in

the Kadanoff±Baym framework. However, the CP-violating
term arises via an (axial) gauge transformation, which
initially led to some discussion in the literature about
whether this effect is physical. This issue can be resolved by
distinguishing between canonical and physical momenta [31].
This careful analysis also recovers the factor m 2=E 2 and is
then in full agreement with the result from the Kadanoff±
Baym framework.

In conclusion, the derivation of the leading-order effect in
the Kadanoff±Baym framework agrees with the one in the
WKB approximation for one fermionic flavor. Nevertheless,
the Kadanoff±Baym framework overcame some shortcom-
ings of the semiclassical analysis. First, the above ambiguity
involving the canonical and physical momenta never arises.
Second, the Kadanoff±Baym framework does not assume
quasiparticle states from the start. The quasiparticle proper-
ties are rather a consequence of the constraint equations in the
lowest orders in the gradient expansion.

2.6.2 Mass insertion formalism. Another approach to CP-
violating sources in transport equations is the mass insertion
formalism [33±44]. Compared to the full-fledged Kadanoff±
Baym treatment, the formalism has the advantage that it is
perturbative, making even calculations with several flavors
straightforward. The main application of this formalism is
electroweak baryogenesis in the MSSM.

The main idea is to treat the mass term as an interaction
and expand the Kadanoff±Baym equations around a plasma
with vanishing mass. Formally, the fermionic equivalent of
Eqn (23),ÿ

p=ÿ PLmÿ PRm
y ÿ S�p;X �� ? S�p;X � � 1 ; �60�

is solved perturbatively (neglecting the terms S arising from
`real' interactions):

p= ? S �1� � �PLm� PRm
y� ? S �0� ; �61�

where S 0 denotes the equilibrium solution of a massless
particle.

On general grounds, this formalism gives rise to several
objections [45].
� In the case of one flavor, the main effect comes from a

shift in the dispersion relation. This effect can be taken into
account correctly only if the Kadanoff±Baym equations are
solved. In the perturbative picture, the Kadanoff±Baym
equations give rise to an infinite set of diagrams. Even
worse, if the operator p= ? in (61) is inverted, we encounter
divergences that have to be dealt with. As a simple example,
we consider the following equation that mimics the constraint
equation:

�xÿ aÿ Da� f �x� � 0 ; �62�
with the solution f �a� / d�xÿ aÿ Da�. If the equation is
expanded in Da, we find f �0��a� / d�xÿ a� and
f �1��a� � Da f �0�=�xÿ a�, which is not well defined. The
correct behavior can in principle be recovered if we identify
d�xÿ a�=�xÿ a� ! ÿd 0�xÿ a�. But in the literature on
electroweak baryogenesis, the problem is usually avoided by
introducing a finite width in the spectral function. Potentially,
this leads to an overestimation of the effect. Without
expanding in Da, the result is manifestly finite.
� By construction, the resulting Wightman function is

local and does not therefore contain any transport. To
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overcome this problem, the resulting deviation from equili-
brium is interpreted as a source term and subsequently
inserted into the transport equation to make diffusion
possible. In the literature, different proposals exist regarding
how this has to be done, the most plausible being the use of
Fick's law [42].
� Flavor oscillations are not correctly reproduced in

studies based on the mass insertion formalism.
� Once the source is inserted into the (classical) transport

equations, a basis choice has to be made. The observation is
that the CP-violating source vanishes in the mass eigenbasis,
and the interaction eigenbasis is used. On the other hand,
semiclassical quasiparticles propagate as mass eigenstates,
making this choice questionable. The transport equations
obtained in the Kadanoff±Baym framework are, in principle,
basis independent.4

In Ref. [42], a refined version of the mass insertion
formalism was presented. The mass was expanded around a
fixed point:

m�X � � m�X 0� � �Xm ÿ X 0
m � qmm : �63�

The derivative term was again treated as an interaction, while
the mass term was incorporated into the lowest-order
solution S �0�. This overcame some of the problems listed
above, but also reduced the predicted baryon asymmetry by
one order of magnitude. In this partially resummed form, the
main differences between the mass insertion formalism and
the Kadanoff±Baym equations seem to be the implementa-
tion of transport and the neglect of flavor oscillations. While
Boltzmann-type equations arise naturally in the Kadanoff±
Baym equations, the mass insertion formalism still requires
the use of Fick's law or some other classical input to describe
transport.

A quantitative comparison between the different
approaches in the MSSM is given in Section 4.4.

3. Electroweak baryogenesis: a toy model

In this section, we connect the analysis of CP-violating
particle densities with an explicit calculation of the baryon
asymmetry. Namely, we discuss how to pass from Boltzmann
to diffusion equations (mostly in the cases without flavor
mixing). Finally, we exemplify the complete calculation in a
toy model. Some ingredients, such as the weak sphaleron rate
and the characteristics of the phase transition, are covered in
the appendices.

3.1 From Boltzmann to diffusion equations
Solving partial differential equations (48) or (50) is rather
demanding without further approximations. In what follows,
we discuss only the diffusion equations in models without
flavor mixing, where the semiclassical force is the dominant
source of CP violation.

We consider a Boltzmann-type equation in the wall frame
of the form

pzqzn�p� �mFz qpzn�p� � coll: �64�
To simplify these partial differential equations further, the so-
called flow ansatz is often used. The underlying assumption is

that equilibration involves different time scales [46, 47].When
out of equilibrium, the system establishes kinetic equilibrium
after a short time by decoherence effects and scattering
processes. After this phase, the particle distribution func-
tions of individual species are approximately of the form

n�p� � 1

exp �um p m � m�=T� 1

����
p0�o

; �65�

where u m denotes the plasma four-velocity, T is the tempera-
ture, and m is the chemical potential. At intermediate times,
these quantities are still space±time dependent. Only at later
times do the temperature and the four-velocity of the different
species equilibrate to each other and the chemical potentials
approach an equilibrium consistent with the conserved
charges of the system. Similarly, in electroweak baryogen-
esis, the flow ansatz is fulfilled reasonably well everywhere,
while the correct equilibrium is only attained away from the
wall. Furthermore, it is usually also a good assumption in
electroweak baryogenesis to use the same temperature for
different species. This is owing to the special structure of the
CP-violating source.5

Before we solve the Boltzmann equations using this
ansatz, we discuss the connection to the Kadanoff±Baym
equations in Section 2 in more detail. In the Kadanoff±Baym
equations, the distribution functions for antiparticles are
given by the negative-frequency part using the identification

�n�p 0� � ÿn�ÿp 0� � 1 : �66�

Hence, antiparticles come in flow ansatz (65) with the same
four-velocity and temperature but opposite chemical poten-
tial, as it should be. Of course, in the presence ofCP violation,
small deviations between the chemical potentials and velo-
cities of particles and antiparticles can arise. Another
important point is how to relate the CP-violating force to
the system of Boltzmann equations. The Boltzmann equa-
tions do not contain the full Dirac structure of the Kadanoff±
Baym approach but only parameterize the system by four
densities of (pseudo) particles. Typically, these are chosen to
be left-/right-chiral particles/antiparticles. By contrast, in the
Kadanoff±Baym approach, spin is a conserved quantum
number. To translate semiclassical force (48) into the
chirality basis, the force is transformed into

mFz ' 1

2
jm 2j 0 � sign pz

2o

ÿjm 2jy 0�0 ; �67�

where opposite signs respectively apply for left/right-chiral
densities and particles/antiparticles. Strictly speaking, this
identification is only true for highly relativistic particles, but
we see below that it reproduces (in the leading order in wall
velocity) the correct deviation from equilibrium in terms of
vector and axial currents.

Using the flow ansatz, different moments of transport
equation (64) can then be taken in order to reduce the
Boltzmann-type equation to a diffusion-type equation. This
leads to the relations

h pzim 0 � h p 2
z iu 0z � hmFziuz � hcoll:i ; �68�

h p 2
z im 0 � h p 3

z iu 0z � h pzmFziuz � h pz coll:i ;
4 However, in practice, a basis choice is also often made in the Kadanoff±

Baym framework when the particle densities are coupled to other species

(see, e.g., [24]). Therefore, the problem is in fact only postponed.

5 In the calculation of the wall velocity, this would be a poor approxima-

tion [48].
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where uz is in the leading order given by the flow of the
background (that equals the wall velocity far away from the
wall). We used the fact that the flow term and the force satisfy
the relations do=dpz � pz=o and do=dz � mFz=o, which
ensures that the two derivative terms acting on the energy o
cancel each other.6

The moments are usually defined as

hX i � 1

N

�
d3p

1

o
dn

dm
X ; �69�

with the normalization to a fermionic massless degree of
freedom in equilibrium:

N �
�
d3p

dnf
dm

����
m�m�uz�0

: �70�

In what follows, we linearize the system in the chemical
potentials and the flow velocities. In the leading order,
certain moments are then related by Lorentz boosts, e.g.,
h pzi ' ÿuzk, where k � hoi denotes the statistical factor that
is 1 (2) for massless fermions (bosons) for a plasma at rest.
Furthermore, h p 2

z i is in the leading order 1=3 of the pressure
in the plasma and h p 3

z i ' ÿ3uzh p 2
z oi.

Next, we consider the collision terms. The collision
integral in the second equation is dominated by elastic
scatterings:

h pz coll:i ' ÿG ela�uÿ �u� �71�

(note that G ela has dimension three according to this
definition). The function �u denotes the flow velocity of the
background with which the species mostly scatters, and it is
often assumed that this is given by the wall velocity that
describes the flow far away from the wall, �u ' vw. We note
that this approximation is in general consistent with the
arguments of energy±momentum conservation discussed in
Section 2.3. Still, as long as the background represents a large
number of degrees of freedom, this approximation is reason-
able.

The collision term in the first equation encodes the
particle-changing interactions. These have the form

hcoll:i ' G inela
X
i

ci mi ; �72�

where ci are some integer constants and the subscript i
labels the species of the chemical potentials mi. One of these
interactions constitutes the sphaleron rate that eventually
leads to the formation of baryon asymmetry. Both sphaleron
rates, strong and electroweak, are nonperturbative, and
neither can be recovered from the collision term as given
in (25). They have to be added by hand to the network of
transport equations.

Finally, we consider the forces in the diffusion equation.
The CP-conserving force drives the flow of particles and
antiparticles equally away from equilibrium,

hmFziuz ' 1

2
jm 2j 0h1ivw � Sm ; �73�

but does not have a large impact on chemical potentials. The
CP-violating force, on the other hand, contributes mostly to

the equation involving the chemical potential:

h pzmFziuz ' 1

2

ÿjm 2jy 0�0
�j pzj

o

�
vw � Su : �74�

In particular, the CP-violating force comes with different
signs for the left- and right-chiral fields, and it therefore has
an impact only on the axial current, as found in the
Kadanoff±Baym approach. Moreover, it explicitly vanishes
for static walls.

This system of equations can be brought to the form of a
diffusion equation by neglecting terms that are of the second
order in the velocities in the second equation. This gives

uÿ �u ' 1

G ela

ÿh p 2
z i m 0 � Su

�
: �75�

Neglecting derivatives acting on the averages and using this in
(68) yields

Dm 00 � vwkm 0 � Sm � SD � hcoll:i ; �76�

where we define the diffusion constant

D � h p
2
z i2

G ela
; �77�

and the CP-violating source of the form SD � S 0u=G
ela.

However, there is no need for these additional approxima-
tions, and linear differential equations (68) can be easily
solved numerically.

In conclusion, after linearization in the velocities and the
chemical potentials, the system of transport equations can be
brought to the form

qzDJ z
a �

X
A;b

G inela
A cAa c

A
b mb � 0 ; �78�

qzDT zz
a � G ela

a �ua ÿ vw� � Sa ; �79�

where the indices a and b range all particle species and
chiralities and the index A ranges all interactions. The term
DJz denotes the current of particles minus antiparticles, and
the expression qzDJz represents all three terms in the left-
hand side of the first equation in (68). Likewise, the term
DTzz denotes the zz component of the energy±momentum
tensor of particles minus antiparticles, and the expression
qzDTzz

a represents the first two terms of the second equation
in (68). On the other hand, the CP-violating contribution of
the force is treated as a source, Sa. G ela

a represents elastic
scattering rates while G inela

A stands for the interaction rates
that change the particle number and involve the chemical
potentials mb. The vectors cAa specify which particles
participate in a specific interaction.

A conserved current can be represented by a vector da. In
this case, all interactions have to preserve the current,P

a cada � 0, and the current should have no source,P
a daSa � 0. An example of conserved quantities are the

electric charge in the broken phase or the baryon number if
the weak sphaleron process is neglected.

3.2 Simple diffusion network
To determine the final baryon asymmetry, we have to set up a
set of transport equations that contains all relevant degrees of

6 Generally, an additional term arises from derivatives acting on the term

sign pz, but these turn out to be negligible [49].
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freedom. The sphaleron rate is one of the smallest interaction
rates in this system, and it therefore suffices to neglect back
reactions and determine the net baryon number from the left-
handed particle density, as is described at the beginning of
Appendix A.

In our toy model, the CP-violating source is in the top
sector, andwe first consider all fast interaction rates involving
top quarks. These are the Yukawa interactions with theHiggs
boson, the electroweak interactions with W bosons, and the
strong sphaleron rate that involves all quarks. In the broken
phase, the Higgs vev induces chiral flips between left- and
right-handed tops, and the Higgs bosons decay into
W bosons. The relevant particle-changing interaction rates
are [34, 50]

tL $ tR � h : Gy ' 4:2� 10ÿ3T ;

tL $ tR : Gm ' m 2
t

63T
;

�80�
tL � bL � 4uL $ tR � bR � 4uR : Gss ' 4:9� 10ÿ4T ;

h$ 2W : Gh ' m 2
W

50T
;

where uL and uR collectively denote the left- and right-handed
light quarks.

Next, the elastic scattering rates of the Higgs boson and
the top quark have to be specified. These are usually given in
terms of the diffusion constants defined in (77) and calculated
in [26, 27, 31, 51±53]:

Dq � 6

T
; Dh � 20

T
: �81�

The Higgs and W bosons decay quickly in the broken
phase, and hence neglecting their chemical potential does not
have a large impact on the final baryon asymmetry. A detailed
analysis concerning this point can be found in [49]. Further-
more, the interactions with the W bosons are rather fast, and
hence left-handed up and down quarks have similar chemical
potentials. The right-handed bottom quark and the light
quarks are only sourced by the strong sphaleron rate and
otherwise interact only with very small Yukawa interactions.
Hence, the chemical potential of the light right-handed
quarks equals that of the right-handed bottom quark, while
the light left-handed quarks have the opposite chemical
potential.

Up to this point, the remaining degrees of freedom are the
left-handed top and bottom quarks with the chemical
potential mq, and the right-handed top and bottom quarks
with the respective chemical potentials mt and mb. The light
right-handed quarks have the same chemical potential as the
right-handed bottom quark, mb, and the light left-handed
quarks have the opposite chemical potentials.

The baryon number conservation then relates these
chemical potentials as

�kt � 1�mq � mb � ktmt � 0 : �82�

The light quarks cancel in this equation, since left- and right-
handed particles have opposite chemical potentials. We also
neglect the bottom masses, kb � k0 � 1. The chemical
potential of the right-handed bottom quark can then be
eliminated in the remaining network. For example, the

strong sphaleron couples to the combination

2mq ÿ mt ÿ 9mb � �9kt � 11�mq � �9kt ÿ 1�mt : �83�

Here, the term ÿ9mb represents the nine light quark
chiralities, including the right-handed bottom quark. Ulti-
mately, the left-handed baryon chemical potential entering
the sphaleron process [see Eqn (122) in Appendix A] is given
by

mL � mq ÿ 2mb � �3� 2kt�mq � 2ktmt : �84�

The contribution ÿ2mb represents the left-handed quarks
of the two light families. We note that if the top quark is
assumed to be light, kt � 1, then the combination of the
chemical potentials that enters the weak sphaleron process,
Eqn (83), is proportional to the combination of chemical
potentials that enters the strong sphaleron process, Eqn (84).
Hence, in this limit, the final baryon asymmetry is suppressed
by the strong sphaleron rate [54].

We do not quote the full set of equations here. The explicit
equations for a network including the Higgs and W-boson
fields can be found, for example, in Ref. [49]. A reduced
networkwithout aHiggs field has been used inRefs [55, 56]. A
generalization to the two-Higgs-doublet model is given in
Ref. [57]. Also, the generalization to supersymmetric exten-
sions is extensively discussed in the literature. This includes
new damping rates [58] but also much more complicated
diffusion networks. In many cases, it is assumed that super-
gauge interactions are in equilibrium, such that particle
species and their superpartners share the same chemical
potential. If this assumption is relaxed, the outcome of the
diffusion network depends onmanymore parameters, such as
the mass spectrum of all the superpartners. This can lead to
very large correction and even to a change of sign in the final
baryon asymmetry [59±61].

In what follows, we present some results from [56]. To
provide as model-independent results as possible, the source
in the top sector is parameterized via the mass term as

mt � yt f�z� exp
ÿ
iYt�z�

�
;

using

f�z� � fc

2

�
1� tanh

z

lw

�
;

�85�
Yt�z� � DYt

2

�
1� tanh

z

lw

�
:

The final asymmetry is then proportional to the change in the
top-quark mass phase during the phase transition, DYt.
Otherwise, it only depends on the dimensionless quantities
fc=Tc and lwTc.

Figure 3 shows the change DYt in the top-quark mass
phase during the phase transition required in order to
reproduce the observed baryon asymmetry. The baryon
asymmetry is very sensitive to the strength of the phase
transition, fc=Tc. Furthermore, as expected, a larger wall
thickness reduces the produced asymmetry. For phase
transitions that barely satisfy the baryon wash-out criterion
fc ' Tc, a change of phase DYt 0 0:3ÿ 0:6 is required for
realistic wall thicknesses lwTc ' 2ÿ8.
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4. Models

The crucial ingredients of electroweak baryogenesis are a
strongly first-order phase transition and an appropriate
source of CP violation.

A strong electroweak phase transition is needed for
several reasons. First, the nucleated bubbles during the first-
order phase transition are the source that drives the plasma
locally out of equilibrium and facilitates the establishment of
sizable CP-violating currents. Second, the baryon-number-
violating sphaleron processes have to be sufficiently sup-
pressed after the phase transition in order to avoid the wash-
out of the baryon asymmetry just produced. This leads to a
constraint on the Higgs vev fc and the phase transition
temperature Tc of the form

fc

Tc
> 1:1 �86�

(see Appendix A for a short derivation of this bound). It is
well known that in the SM, a first-order phase transition is
excluded for Higgs masses beyond roughly theW-bosonmass
[62]. To fulfill wash-out criterion (86), a Higgs mass below
� 40 GeV would even be necessary. This is in contrast to the
Higgs mass bound mH > 114 GeV from LEP. Generally, a
strong phase transition satisfying (86) requires either an
extended scalar sector or at least new degrees of freedom
that are strongly coupled to the Higgs boson.

In electroweak baryogenesis, an appropriate source of
CP violation has to be in the form of a complex mass matrix
that changes during the phase transition, such that a chiral
flux is generated close to the bubble wall. This is achieved by
coupling the corresponding particles to a vev that constitutes
the nucleating bubbles of the phase transition. In many
cases, this vev arises from the physical Higgs field, but
more complicated scalar sectors tend to increase the
prospects of electroweak baryogenesis, because the masses
of the SM fermions are proportional to the Higgs vev. A
comparison with the sources in (48) then shows that CP
violation is absent. Hence, either the masses of the SM
fermions need to be modified, or a new fermionic particle is
responsible for the CP-violating flux. In the latter case, the
CP-violating flux has to ultimately influence the sphaleron
rate. Hence, this new degree of freedom is in many models
charged under SU�2�L.

At the same time, these new features can leave traces in
collider and low-energy probes. One major constraint comes
from electric dipole moments that constrain new sources of
CP violation. Often, the induced electric dipole moments
arise only in the second loop. Still, current bounds on the
electron EDM, de < 1:05� 10ÿ27 e cm [63], and neutron
EDM, dn < 2:9� 10ÿ26 e cm [64], heavily constrain realistic
models of electroweak baryogenesis. Also, the new degrees of
freedom responsible for a strong phase transition can have
measurable implications. The prime example of this is the
MSSM, where only light right-handed stops can yield a
sufficiently strong phase transition. Such light stops would
be copiously produced at the LHC, which leads to additional
constraints.

In what follows, we discuss several models in which
electroweak baryogenesis is feasible. We start with relatively
simple models with higher-dimension operators and the
two-Higgs-doublet model in which the semiclassical force
is operative. Then we discuss the MSSM and its extensions,
which requires a more sophisticated treatment of CP
violation from flavor mixing.

4.1 Standard Model with a low cutoff
From the bottom-up perspective, the minimal approach to
extensions of the SM is to insist on the particle content of the
SM and only extend the Lagrangian by higher-dimension
operators. Since electroweak baryogenesis requires sizable
deviations from the SM at around the weak scale, the
suppression of higher-dimension operators and the physical
cutoff of the theory cannot be much larger in this framework.
Still, the higher-dimension operators can have an important
impact on the phase transition, provide new sources of CP
violation, and make electroweak baryogenesis a viable
option.

4.1.1 Phase transition. The leading operator that modifies the
Higgs potential has the form �F yF�3, and the scalar potential
of the Higgs vev f is then given by

V�f� � m 2f 2 � lf 4 � 1

L2
f 6 : �87�

The new scaleL is the cutoff of the theory, where new degrees
of freedom become relevant, or at least strong-coupling
phenomena occur. This form of the potential can lead to a
strong phase transition already in the mean-field approxima-
tion, where temperature effects only contribute to the
quadratic Higgs term, DVT ' c T 2f 2. The barrier is then
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Figure 3. The change DYt in the top-quark mass phase during the phase

transition needed to reproduce the observed baryon asymmetry. In the

upper plot, the wall thickness in terms of the temperature is kept constant,

while in the bottom plot, the wall thickness in terms of the critical vev is

kept constant. The plots are adapted from Ref. [56].
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produced by balancing a negative quartic term, l < 0, with
the positive f 6 operator [65, 66]. The critical temperature is
then

T 2
c �

L4m 4
H � 2L2m 2

Hf
4
0 ÿ 3f 8

0

16cL2f 4
0

; �88�

where the parameters m and l are expressed in terms of the
physical Higgs mass mH and the observed Higgs vev
f0 ' 246 GeV. The critical vev is given by

f 2
c �

3

2
f 2
0 ÿ

m 2
HL

2

2f 2
0

: �89�

There is also an upper limit on L where the phase transition
becomes a second-order one and a lower bound from the fact
that the broken phase is the global minimum at T � 0. As
usual, an increase in the Higgs mass makes the phase
transition weaker. Wash-out criterion (86) translates into
an upper bound on L. In the full one-loop analysis, the
values are [66]

L9 800 GeV ; mH � 125 GeV ; �90�
L9 900 GeV ; mH � 115 GeV :

Apeculiar feature of themodel seems to be that the coefficient
of the quartic l is negative. However, a negative quartic can
arise quite naturally in effective actions, for example, when a
heavy scalar is integrated out [65].

4.1.2 Electroweak baryogenesis. Electroweak baryogenesis
was considered for this model in [55]. As an additional
efficient source of CP violation, a dimension-six coupling
between the Higgs field F and the up quarks,

L 3 xi j

L2
CP

�F yF��qiFuj � h:c:; �91�

was used in combination with the usual Yukawa coupling,

L 3 yi j �qiFuj � h:c: �92�

The resulting fermion masses during the phase transition are
given by

mi j � yi j
f���
2
p � xi j

f 3���
8
p

L2
CP

; �93�

which leads to a CP-violating semiclassical force if there are
relative complex phases between yi j and xi j. The most
important effect is in the top sector, since the other quarks
are too light to yield a sizable CP-violating flux along the
bubble wall. The change in the phase is hence

Dy ' Im �xt� f 2

L2
CP

; �94�

where xt denotes the 33 element of the xi j coupling in themass
eigenbasis of the quarks.

The system of transport equations is the one discussed in
Section 3.2. The only degrees of freedom are those from the
Standard Model, and the dominant source of CP violation
is the semiclassical force in the top sector. The only missing
ingredient in the present context is the wall thickness. A
numerical analysis of all the characteristics of the phase

transition (Fig. 4) and the analysis of the produced baryon
asymmetry is given in Ref. [55]. The final baryon asymmetry
is very sensitive to the scale L. The main influence comes
from the relation between L and the critical Higgs vev fc.
Semiclassical force (67) is proportional to f 2

c via the top-
quark mass and another factor f 2

c comes from the change in
the phase (94). In addition, the wall thickness lw tends to be
smaller for stronger phase transitions, and hence lower
values of L. The calculated baryon asymmetry is consistent
with the observed values Im �xt�9 1 and the bound LCP '
L < 650 GeV.

4.1.3 Collider and low-energy probes of the model. Since the
model does not contain any new degrees of freedom, no
spectacular signatures are expected in colliders. Still, higher-
dimension operators can lead to measurable deviations from
the SM.

In connection with the phase transition, the new operator
f6 is an essential ingredient. The main collider trace of this
new operator is a deviation of the self-couplings of the Higgs
field in terms of the Higgs mass [65]. The deviations from the
SM couplings are

m � 3
m 2

H

f0

� 6
f 3
0

L2
; Z � 3

m 2
H

f2
0

� 36
f2
0

L2
; �95�

where m �Z� denotes the cubic (quartic) self-coupling of the
Higgs field. The deviations are pronounced for small Higgs
masses, e.g., m ' 2mSM formH � 125 GeV and L � 650 GeV.
Still, the discovery of a deviation of this size requires a linear
collider [65]. However, in combination with EDM bounds,
viable baryogenesis requires an even stronger phase transition
that makes even larger deviations in the Higgs sector
necessary. This is discussed next.

The new source of CP violation gives potentially much
stronger bounds in light of the observed limits on flavor-
changing neutral currents. However, these bounds are more
model dependent and notably hinge on the flavor structure xi j
of the new operator (91). Flavor-changing neutral currents
potentially arise, because mass term (93) is not proportional
to the coupling between the Higgs field and the fermions:

Yi j � yi j
1���
2
p � xi j

3v 2���
8
p

L2
CP

: �96�
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Figure 4. The wall thickness lw as a function of the Higgs mass. The plot

also shows the corresponding values of the new physics scale L and the

ratio x � fc=Tc. Plot adapted from [55].
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If the xi j couplings were random numbers of the order of
unity, large deviations in the first two quark families could be
observed. For example, operator (91) would affect the Kÿ �K
mixing [55], which implies a boundLCP 0 107 GeV. If, on the
other hand, xi j has a flavor structure similar to yi j, the model
is consistent with these constraints as long asLCP > 500GeV.
Such a setting agrees well with the hypothesis of minimal
flavor violation [67] and can be achieved in Froggatt±Nielsen
classes of models.

Constraints from the electric dipole moments are more
robust, since they occur even in a one-flavor scheme with a
relative phase between the couplings yt and xt. Because this
phase is also essential for the formation of baryon asymmetry,
this provides a direct link between low-energy observables
and baryogenesis. The dominant constraints [68] come from
the Barr±Zee contributions to the neutron and electron
EDMs (Fig. 5). For the Higgs mass mH � 125 GeV, this
constraint is LCP 0

���������������
Im �xt�

p � 750 GeV, and it becomes
slightly weaker for larger Higgs masses.

4.1.4 Summary. Electroweak baryogenesis is a viable possibi-
lity in the Standard Model with a low cutoff. The strongest
constraints on the model come from the cubic Higgs self-
coupling and the upper bounds on the neutron EDM. On
general grounds, we expect that the new operator in (87) that
makes the phase transition strong and operators (91) that
provide CP violation are of a similar size, L � LCP. This is
indeed possible for L somewhat smaller than LCP. A possible
set of parameters is, for example,

L ' 500 GeV; LCP ' 1000 GeV; Im �xt� ' 1 : �97�

If the Higgs boson is rather light (mH ' 125 GeV), this
particular set of parameters will be tested in the near future.
The cubic coupling is enhanced by a factor of � 3 compared
to the SM, which could even be in reach of the high-
luminosity LHC. Furthermore, the next generation of
neutron EDM measurements (assuming an improvement in
sensitivity by a factor of 10) can rule out this model of
electroweak baryogenesis.

4.2 Low cutoff: singlet extension
The best motivation for extensions of the SM with a low
cutoff comes from composite Higgs models, in which the light
spectrum of the scalar sector depends on the co-set structure
of the strongly coupled sector. The degrees of freedom below
the scale of strong coupling arise as bound states with a
pseudo-Goldstone nature. In the minimal model [69±71], the

Higgs boson is a pseudo-Goldstone boson of the breaking
pattern SO�5� ! SO�4�, where SO�4� represents the custo-
dial symmetry of the Higgs sector. In nonminimal models, an
extended scalar sector appears at low temperatures. In what
follows, we discuss the model with the breaking pattern
SO�6� ! SO�5� that serves as a UV completion of the singlet
extension of the SM with a low cutoff [72].

From a phenomenological standpoint, electroweak
baryogenesis can be more easily realized in this model than
in the SM with a low cutoff. First, the phase transition can
already be strong with a renormalizable scalar potential and
in the mean-field approximation and does not rely on higher-
dimension operators at all. Second, the leading source of CP
violation already arises at dimension five. This allows pushing
the cutoff to a few TeV, which is advantageous in view of
flavor physics. Last, the dominant contribution to the EDM
constraints comes from a mixing between the Higgs field and
the additional singlet degree of freedom. As long as this
mixing is small, current constraints from low-energy probes
are easily satisfied.

4.2.1 Phase transition. As mentioned above, the phase
transition can already be strong in the mean-field approxima-
tion with only renormalizable operators in the scalar
potential. Interestingly, this is even true if a Z2 symmetry is
imposed on the singlet, s! ÿs. We consider the following
potential at the critical temperature:

V
���
T�Tc

� l
4

�
f 2 � s 2f2

c

s 2c
ÿ f 2

c

�2

� k
4
f 2s 2 : �98�

The variablesf and s denote theHiggs and singlet vevs andfc

and sc the corresponding values of the vevs in the SU�2�L and
Z2-breaking phases at the critical temperature. The first term
constitutes a Mexican-hat potential with a flat direction that
connects the SU�2�L-breaking with the Z2-breaking phase.
The second term lifts this flat direction and creates a barrier
between the two degenerate minima of the potential.

Thermal corrections in the mean-field approximation can
be added to this potential via

DVT � 1

2
�cf f 2 � css

2��T 2 ÿ T 2
c � ; �99�

where the two coefficients cf and cs are [73]

cf � 1

48

�
9g 2 � 3g 0 2 � 12y 2

t � 24l� 4
�������
lls

p
� 2k

�
;
�100�

cs � 1

12

�
3ls � 4

�������
lls

p
� 2k

�
and we define ls � lf 4

c =s
4
c . In total, the model has four free

parameters that can be fixed using the observed Higgs vev
f � 246 GeV, the Higgs mass, the singlet mass, and the
critical temperature. A lower bound on the singlet mass
results from the requirement of a first-order phase transition
�k > 0�, while an upper bound on the singlet mass arises
from the requirement that the SU�2�L-broken phase be the
global minimum at T � 0. Detailed plots are given in [73]
(also see [74]). For fixed Higgs and singlet masses, the critical
temperature can always be reduced to the point where the
system becomes very strong: fc=Tc � a few units.

In fact, the phase transition proceeds in two stages in this
model: at very high temperatures, the singlet vev, as well as
the Higgs vev, vanishes and neither the electroweak SU�2�L

g

t t

t

ee e

g f

Figure 5. Two-loop contribution to the Barr±Zee electron EDM.

760 T Konstandin Physics ±Uspekhi 56 (8)



nor the Z2 symmetry is broken. At lower temperatures, the
singlet develops a vev that breaks the Z2 symmetry. Depend-
ing on the parameters, this process can occur at several
hundred GeV and is probably rather a crossover than a
phase transition. At this stage, domain walls are generated.
However, the domain walls are harmless to big bang
nucleosynthesis, because they disappear in the next stage
when the system transits from the Z2-breaking phase to the
electroweak breaking one.

4.2.2 Electroweak baryogenesis. In contrast to the Standard
Model with a low cutoff, its singlet extension already has a
powerful source of CP violation at dimension five:

L 3 xi j
LCP

s�qiFuj � h:c: �101�

The resulting fermion masses during the phase transition are

mi j � yi j
f���
2
p � xi j

sf���
2
p

LCP

; �102�

which again leads to aCP-violating semiclassical force if there
are relative complex phases between yi j and xi j. Following the
rationale of the SM with low cutoff, we focus on the top-
quark sector. The change in the phase of the top-quarkmass is
of the order

DYt ' Im �xt� s

LCP
; �103�

where xt again denotes the coupling in the mass eigenbasis of
the quarks. The singlet extension has several advantages over
the minimal model with cutoff from the standpoint of
baryogenesis. First, the phase transition can be rather strong
without coming into conflict with a low cutoff. Next, the
change in phase (103) is only suppressed by one power of L,
making baryogenesis in this model possible with a cutoff
L � 2ÿ3 TeV. With such a high cutoff, it is possible to solve
the flavor problem using the 5DGlashow±Iliopoulos±Maiani
(GIM) mechanism in specific realizations of the composite
Higgs mechanism [75]. Furthermore, the singlet vev is
expected7 to be larger than the Higgs one, which further
increases the source in (103). Some numerical results are
shown in Fig. 6. Electroweak baryogenesis can be viable for
DYt 0 1, translating into the bound LCP < a few TeV.

We note that if the scalar potential is completely Z2

symmetric, the baryon asymmetry is suppressed. As men-
tioned above, domain walls are generated at intermediate
scales where the singlet vev breaks the Z2 symmetry
spontaneously. At this stage, the Universe is divided into
regions with positive/negative singlet vevs. These regions
produce opposite baryon numbers during the electroweak
phase transition. To avoid this problem, theZ2 symmetry has
to be slightly broken. Even a very small breaking leads to the
disappearance of domain walls and preserves the baryon
asymmetry [56].

4.2.3 Collider and low-energy probes of the model. Unlike the
SM case, the additional CP-violating operator does not give
rise to dangerous flavor observables. First, if the model is
approximately Z2-symmetric, operator (101) is absent after

the electroweak phase transition. Even if the scalar field has a
(small) vev after the electroweak phase transition, the
Yukawa interactions with the fermions can be diagonalized
simultaneously with fermionic mass terms (102), which
suppresses flavor-changing neutral currents to a higher-loop
order.

In terms of collider traces and electric dipole moments,
deviations from the SM arise mostly from a singlet-Higgs
mixing. As mentioned above, a very small Z2 breaking is
required for viable baryogenesis, but it is easily compatible
with bounds from electroweak precision tests or EDMs, as
seen in Fig. 7.

Another characteristic signal of the model would be a
Higgs boson decay into four fermions via two singlets.
Whether this process can be tested depends, however, on the

7 5D realizations of the composite Higgs field require a slight tuning to

make the electroweak scale and hence the Higgs vev small [70].
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coupling of the singlet to the (non-top) fermions and on the
mass of the singlet.

4.2.4 Summary. Electroweak baryogenesis can be very easily
realized in singlet extensions of the SM with a low cutoff.
Since efficient sources of CP violation are present with
dimension-five operators, the cutoff scale can be slightly
larger than in the case of its minimal cousin, L < a few TeV.
Also, collider bounds and low-energy probes can be easily
avoided if theZ2 symmetry of the singlet sector is only weakly
broken. This makes the model compatible with phenomenol-
ogy and insensitive to EDM constraints. However, we must
note that this is somewhat against the philosophy of
electroweak baryogenesis, which has falsifiability at its core.

4.3 Two-Higgs-doublet model
In the two-Higgs-doublet (THD) model, all necessary
ingredients of electroweak baryogenesis are present, even if
only renormalizable operators are considered. The most
general scalar potential is given by

V�F1;F2�� ÿm 2
1F
y
1F1ÿ m 2

2F
y
2F2ÿ m 2

3

�
exp �ia�F y1F2� h:c:

�
� 1

2
l1�F y1F1�2�

1

2
l2�F y2F2�2�

1

2
l3�F y2F2��F y1F1�

� l4jF y1F2j2�
1

2
l5
ÿ�F y1F2�2 � h:c:

�
: �104�

The potential contains two complex (potentially CP-violat-
ing) couplings m3 exp �ia� and l5. Following the conventions
in [57], we choose l5 to be real, such that a parameterizes CP
violation in the scalar sector. As we see in the next section, the
complexity of the scalar potential is also high enough to
provide a strong first-order phase transition.

4.3.1 Phase transition. In principle, there are two regimes in
the parameter space with a strong first-order phase transition.
The first one is similar to the case discussed in the singlet
extension in Section 4.2. The phase transition again proceeds
in two steps, but unlike in the singlet extension, this first phase
transition already breaks the electroweak symmetry in the
THD model. This implies that for viable electroweak
baryogenesis, this first phase transition has to be a strongly
first-order one, which is not so easily achieved. We dismiss
this possibility of a two-stage phase transition in what
follows.

The reason that the phase transition can be much stronger
than in the SM is two-fold. The first is that both Higgs
doublets acquire a vev after the phase transition, and the form
of the potential implies that the ratio tan b of these two vevs,

hF1i �
ÿ
0; h1 exp �iY1�

�
; hF2i �

ÿ
0; h2 exp �iY2�

�
;

tanb � h1
h2
;

�105�

is not constant during the phase transition. The potential in
terms of the vev f 2 � h 2

1 � h 2
2 is hence not necessarily

polynomial and eventually develops a barrier between the
two minima at the critical temperature. The second reason is
that the scalar potential has enough free parameters to
decouple the Higgs mass from the quartic coupling, which in
the SM are related asm 2

h � 2lf 2
0 . It is thus possible to obtain

a strong phase transition from thermal cubic contributions to

the effective potential and at the same time to satisfy the LEP
bound mh > 114 GeV.

Overall, relatively strong phase transitions x� fc=Tc01:5,
lwTc 9 10 are possible for aHiggsmass above the LEP bound
[57, 76±78]. Some examples are shown in Fig. 8.

4.3.2 Electroweak baryogenesis. The most general THD
model with Yukawa couplings of fermions to both Higgs
fields suffers from flavor-changing neutral currents already at
the tree level. To avoid this problem, an additional Z2

symmetry is usually invoked that allows coupling the
fermions to only one of the two doublets,

F1 ! ÿF1 ; d! �d ; �106�

where, depending on the sign in the down sector, type I and
type II THDmodels result. We note that the complex phase a
in potential (104) breaks this symmetry explicitly, and
therefore electroweak baryogenesis is not possible if this
symmetry is also imposed on the scalar sector.

As before, the main source of baryogenesis comes from
the top sector, and the corresponding Yukawa coupling has
the form

L 3 yt �Q3F2t : �107�

The CP-violating source in this model comes not from the
interplay of two operators that both contribute to the top
mass but from the change of the complex phase Y2 in the
Higgs field that couples to the top quark:

mt � yt���
2
p h2 exp �iY2� : �108�

The change in Y2 during the phase transition is induced by
the dependence of the scalar potential on the relative phase
DY � �Y1 ÿY2�=2 that arises in the contributions involv-
ing a.

In [57], a part of the parameter space of the THDmodel is
analyzed under the assumption that tan b does not change
during the phase transition. However, using this assumption
can lead to over-estimating the present CP violation, as is
detailed in [79]. The reason is as follows: in the effective action
for the vevs, the kinetic terms of the Higgs fields coming from
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the phases yield the contributions

S 3 1

2
�Y 01�2h 2

1 �
1

2
�Y 02�2h 2

2 �
1

2
�Y 0�2�h 2

1 � h 2
2 �

� 1

2
�DY 0�2�h 2

1 � h 2
2 � � DY 0Y 0�h 2

1 ÿ h 2
2 � ; �109�

where we define the average phaseY � �Y1 �Y2�=2 and the
relative phase DY � �Y1 ÿY2�=2. Since the effective poten-
tial does not depend on the average phase Y, we find (using
the equations of motion)

Y 0 � ÿ h 2
1 ÿ h 2

2

h 2
1 � h 2

2

DY 0 : �110�

Reinserting this into the kinetic term gives

S 3 �DY 0�2 h 2
1 h

2
2

h 2
1 � h 2

2

; �111�

and for the individual phases,

Y 01 �
2h 2

2

h 2
1 � h 2

2

DY 0 ; Y 02 �
ÿ2h 2

1

h 2
1 � h 2

2

DY 0 : �112�

It hence follows thatCP violation in the top sector vanishes if
one of the vevs vanishes on the trajectory during the phase
transition (for h2 � 0, the topmass vanishes, while for h1 � 0,
the phaseY2 is constant and no semiclassical force is present).
On the other hand, we can always choose a basis where only
one of the Higgs fields has a vev in the broken phase. If a
constant tanb was imposed in this basis, CP violation would
be absent. Therefore, the assumption of constant tanb is not
only a basis-dependent statement but also of major impor-
tance for CP violation. Furthermore, this argument shows
that the baryon asymmetry should be suppressed in the limit
of very large or very small tan b.

Numerically, study [57] found that a baryon asymmetry a
few times larger than the observed one is possible in this setup.
By contrast, the analysis in [79] additionally implemented
(very strict) constraints on Z! b�b and generically found a
smaller baryon asymmetry.

4.3.3 Collider and low-energy probes of the model. The THD
model and its collider phenomenology are widely studied in
the literature (see [80] for a recent review). In the context of
electroweak baryogenesis, the main signatures are again the
electron and neutron EDMs, but also the masses of the
additional Higgs bosons, which have a large impact on the
strength of the electroweak phase transition.

In agreement with [57], study [76] found that for a fixed
Higgs mass mh, stronger phase transitions can be obtained,
especially if the additional Higgs bosons are rather heavy. As
explained in [57], this arises from the fact that the larger
masses stem from larger quartic couplings and, hence, it does
not correspond to a decoupling of the additional Higgs
bosons. On the other hand, the quartic couplings are not so
essential for collider searches and EDM constraints, and
therefore electroweak baryogenesis is rather unconstrained
in this limit in the THD model. The limiting factor in this
regime is the requirement that the perturbativity of the
quartic couplings be preserved.

As mentioned above, additional constraints come from
Z! b�b. The main deviation from the SM stems from the

loop contributions of the charged Higgs bosons to this
process. In general, this drives the model to larger masses of
the charged Higgs bosons and to larger tanb. This is
problematic for electroweak baryogenesis, since large values
of tan b suppress the CP-violating semiclassical force. In [79],
very strict bounds on this process (66% C.L.) have been
implemented, which has a large impact on the final baryon
asymmetry. If this constraint is treated more permissively
(e.g., with 95% C.L.), the corresponding bound is not so
relevant, and tanb is relatively unconstrained.

4.3.4 Summary. Electroweak baryogenesis is a viable option
in the THD model. Without tuning the model, it allows a
strong first-order phase transition and sufficientCP violation
in the scalar sector, consistent with EDMs and collider
probes. The main disadvantage of the model is that it does
not have many benefits beyond electroweak baryogenesis. In
particular, the hierarchy problem remains unsolved, and
flavor issues cannot be solved by a discrete symmetry in
those cases where electroweak baryogenesis is possible.

Overall, an improvement in the measurement of the
neutron EDM by a factor of around ten can exclude
electroweak baryogenesis in the THD model.

4.4 Minimal supersymmetric standard model
The minimal supersymmetric standard model (MSSM) is one
of the most widely studied models today and one of the
biggest contenders for resolving the question of how the large
hierarchy between the electroweak and the Planck scales can
be explained.

In the MSSM, the analysis of electroweak baryogenesis is
very different from that in other models. First of all, there is
no CP violation in the scalar potential or the top sector
(beyond the Cabibbo ±Kobayashi ±Maskawa (CKM) CP
violation of the SM), and hence the CP violation has to arise
from a different source than in the cases discussed so far. In
addition, it is not easy to obtain a strongly first-order phase
transition in this setup. In particular, the ratio fc=Tc, even in
the most optimistic scenarios, barely fulfills the wash-out
bound (86), and the wall thickness is rather large, lwTc ' 20.
This leads to a situation where the semiclassical force falls
short in explaining the observed baryon asymmetry. Hence,
electroweak baryogenesis in the MSSM has to be based on a
different source of CP violation, e.g., the mixing between
different charginos (and eventually neutralinos), which can be
resonantly enhanced. A more extensive recent review of
electroweak baryogenesis in the MSSM is given in Ref. [81],
and we just present a short overview of the main points here.

4.4.1 Phase transition. The scalar potential in the MSSM is
much more constrained than the one in the general THD
model. At the tree level, it is given by

V0 � m 2
1 h

2
1 �m 2

2 h
2
2 � 2m 2

3 h1h2 �
g 2 � g 0 2

8
�h 2

1 ÿ h 2
2 �2 : �113�

With this potential, the mass of the lightest Higgs bosons is
constrained to below the Z-boson mass. This is not compa-
tible with the bounds from LEP and calls for large one-loop
contributions to the Higgs mass:

V1 �
X
i

ni
64p2

m 4
i

�
log

m 2
i

Q 2
ÿ 3

2

�
: �114�
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The dominant contributions to theHiggs mass come from the
tops and stops that have Yukawa couplings of the order of
unity and masses mt � yth2,

M 2
~t �

m 2
Q � y 2

t h
2
2 yt�Ath2 ÿ mh1�

yt�Ath2 ÿ mh1� m 2
U � y 2

t h
2
2

0@ 1A ; �115�

where mU, mQ, and At are soft supersymmetry breaking
terms, and m stems from a term in the superpotential of the
form W 3 mH1H2. In order to obtain the Higgs mass
mh � 125 GeV, at least one of the stops has to be rather
heavy: m~tL

> 30 TeV. This can be achieved by either a large
soft massmQ or a large off-diagonal contribution from theAt

term.
The second option is not compatible with a strongly

first-order phase transition, as we see in what follows. As in
the SM, the potential barrier that is responsible for the first-
order phase transition can only arise from thermal cubic
terms in the effective potential (see Appendix D). Besides
the degrees of freedom of the SM, only the stops can give
such a sizable cubic term [82±86]. This means, in turn, that
the right-handed stop (which is less constrained by electro-
weak precision tests than its left-handed partner) has to be
very light. In particular, a cubic term is only delivered if the
mixing between the stops is small and the thermal mass of
the right-handed stop is countered by a negative soft mass,
i.e.,

m 2
~tR
�T � � m 2

U � y 2
t h

2
2 �P�T �~tR ' y 2

t h
2
2 : �116�

Additional constraints arise from the requirement that tan b
not be too large and that the stop not develop a vev at low
temperatures, which would lead to a spontaneous breaking of
color. The results of this analysis from [87] are shown inFig. 9.
These results also have been qualitatively confirmed in lattice
calculations [88].

4.4.2 Electroweak baryogenesis. As alluded to in Section 2.5,
the determination of the baryon asymmetry in theMSSM is a
controversial topic. One difference from the other models
discussed so far is that CP violation does not arise in the top

sector. The dominant source of CP violation turns out to be
the charginos and neutralinos. For example, the chargino
mass can be written as

Mw� �
M2 gh2
gh1 m

� �
; �117�

whereM2 and m can contain a complex phase.
This mass matrix leads to a semiclassical force source

according to Eqn (50). But the phase transition in the MSSM
is relatively weak [89, 90], fc=Tc ' 1, lwTc ' 20, and there-
fore this source ofCP violation is not sufficient to explain the
observed baryon asymmetry once EDM constraints are
imposed.

Hence, baryogenesis has to be driven by mixing effects
in the MSSM. Parametrically, mixing effects are less
suppressed, because they already appear in the first order
in gradients, as can be seen in Eqn (50). The determination
of the baryon asymmetry based on these mixing effects is to
a certain extent still an open issue. The mass insertion
formalism yields very large baryon asymmetry [41] but
suffers from conceptual problems (see Section 2.6). Part of
these problems can be overcome by resumming Higgs
insertions [42], but some issues concerning finiteness of the
results and how transport is established also remain in this
framework. Conceptually, the cleanest way to tackle this
problem is to use the first-principle approach in the
Kadanoff±Baym framework. This was done in the analysis
in [24], which particularly highlighted the importance of
flavor oscillations. But also in this study, many simplifying
assumptions were used. Namely, the coherent off-diagonal
densities were assumed to be small. In particular, all
contributions that are nominally of the second order in
gradients were neglected. Whether these contributions are
actually small is not so clear, since resonant effects can
become important when the oscillation length is close to the
wall thickness [20]. At first glance, this resonance condition
is only satisfied for MSSM charginos for rather hard modes
(which are sparse in the plasma), but this does not
guarantee that the resonance can greatly enhance the
baryon asymmetry.

Nonetheless, there are also some features that are shared
by all approaches. For example, the baryon asymmetry is
suppressed when the charginos are not almost mass degen-
erate or have amass much larger than the temperature. This is
seen in Fig. 10, which shows the regions of viable baryogen-
esis as a function of the two chargino mass parameters. A
selection of quantitative results of chargino-driven baryogen-
esis in the MSSM is collected in Table 1.
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Figure 9.The window of a strong enough phase transition, fc=Tc > 1:0, in
the Higgs mass versus the light stop mass plane for the MSSM. A strong

phase transition and the Higgs mass mh ' 125 GeV can only be achieved

at the cost of a very heavy left-handed stop, mQ � 106 TeV. Plot adapted

from [87].

Table 1. The largest possible baryon asymmetry for almost mass-
degenerate charginos and a maximal CP-violating phase.

Method Z=Zobs References

Mass insertion formalism; no Higgs re-
summation

� 35 [41] (2000)

Mass insertion formalism; including
Higgs resummation

� 10 [42] (2002)

Mass insertion formalism; no Higgs re-
summation; more realistic diffusion net-
work

� 140 [43] (2004)

KadanoffëBaym formalism; êavor oscil-
lations; the adiabatic regime assumed

� 3:5 [24] (2005)
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Beyond theses studies, neutralino [91] or stop-driven [92]
baryogenesis has been considered for the MSSM in the
literature. Neutralinos have the advantage that they do not
suffer from EDM constraints as much as charginos do, but at
the same time are somewhat less efficient in producing baryon
asymmetry [91].

4.4.3 Collider and low-energy probes of the model. In the
context of electroweak baryogenesis, the MSSM provides
some special signatures. The first class of signals comes from
the new source of CP violation in the chargino sector. Since
the charginos cannot be much heavier than the electroweak
scale in electroweak baryogenesis, this leads to sizable Barr±
Zee contributions to the neutron and electron EDMs that can
already be in conflict with experimental bounds. Further-

more, the dependence of the electron EDM on tanb and the
chargino masses is quite similar to the dependence of the
baryon asymmetry [93±95] (Fig. 11). This implies that the
complex phase in the chargino sector cannot be larger than
arg �m�M2�9 0:05. This excludes chargino-driven electro-
weak baryogenesis in the MSSM in the most conservative
approaches (see Table 1).

The second class of constraints is related to the
requirement of a strong first-order phase transition. The
most severe is the occurrence of stops close to the LEP
bound [96±98]. Recent direct searches at the LHC are
sensitive to light stops, and therefore this is only viable if
stop decays are concealed through neutralino states with
similar masses or some alternative mechanism [87]. Still, the
light stops would have a large impact on the Higgs search.
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Figure 10. Contours of the regions with viable baryogenesis as a function of the two chargino mass parametersM2 and m. In the black region, the baryon

asymmetry is larger than observed. Plot adapted from [24].
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Notably, they increase the loop-induced Higgs production
rate by gluon fusion by a factor of 2 to 3. Moreover, light
stops lead to a reduced branching ratio for the Higgs to di-
photons due to a destructive interference with the dominant
W-boson loop. Overall, light stops lead to an enhancement
of the rate gg! H! VV and a slight reduction in the rate
gg! H! gg compared to the SM. This produces a tension
with the current data from Higgs searches [99±101], which
can be partially relaxed by further assumptions about the
particle spectrum [87].

4.4.4 Summary. Electroweak baryogenesis in theMSSM is an
appealing scenario because the MSSM is the minimal setup
that solves the hierarchy problem in a perturbative frame-
work. TheHiggs massmh � 125GeV produces a tension with
minimal supersymmetric models, particularly when a
strongly first-order phase transition is demanded. In addi-
tion, this requires very light stops right above the LEP bound.
That these states have been missed at the LHC so far is
possible, but only if the particles that appear in the decay
chain of the stops have peculiar masses [87]. The EDM
constraints are also generically in conflict with chargino-
driven electroweak baryogenesis. Hence, either other sources
of CP violation (e.g., neutralinos) have to be used or the
EDMs are small because of a cancellation of different
contributions.

In summary, there remains a region of the parameter
space in the MSSM in which electroweak baryogenesis is still
viable. However, this possibility appears rather contrived,
with several requirements arising in different sectors. The
most constraining requirements can be traced back to the fact
that Higgs massesmh � 125 GeV are not easily realized in the
MSSM. In extensions of the MSSM where the Higgs mass is
achieved more naturally, the prospects of electroweak
baryogenesis are much better. This is explicitly seen in the
next model.

4.5 Next-to-MSSM
The main aim of singlet extensions of the MSSM is twofold.
First, the m-problem of the MSSM is solved. This is
accomplished by adding a term lSH1H2 to the superpoten-
tial. When the singlet acquires a vev by spontaneous
symmetry breaking, this operator produces an effective m
term. Second, additional contributions to the lightest Higgs
mass improve the consistency with the current collider
constraints. In what follows, we discuss a variant with only
a trilinear coupling to the Higgs bosons and a linear term for
the singlet in the superpotential, as was done in [102±104].
More general models can lead to new phenomena, such as
transitional CP violation [106].

4.5.1 Phase transition. In this model, the scalar potential is
given by

V0 � m 2
1 h

2
1 �m 2

2 h
2
2 � 2m 2

3 h1h2 �
g 2 � g 0 2

8
�h 2

1 ÿ h 2
2 �2

�m 2
s s

2 � l
4
h 2
1 h

2
2 � al s h1h2 � tss exp �iYs� � h:c: ; �118�

where we define the scalar field vev as hS i � s exp �iYs�=
���
2
p

.
Here, the parameter l results from the term lSH1H2 in the
superpotential, and ts and al are soft supersymmetry-break-
ing terms. Of special importance is the contribution lh 2

1 h
2
2 =4,

which lifts the D-flat direction of the MSSM and can make a
sizable contribution to the lightest Higgs mass.

The phase transition can become strong due to the
interplay of the singlet and Higgs vevs and does not rely on
thermal loop corrections. Already at the tree level, the model
develops a first-order phase transition when [103]

m 2
s <

1

~l

���� l2tsms
ÿ sin �2b�

2
msal

���� ; �119�

where we define

~l2 � l2

4
sin2 �2b� � g 2 � g 0 2

8
cos2 �2b� : �120�

For moderate values of l, Higgs masses of the order of
mh � 125 GeV are possible and consistent with a strong
phase transition. However, the parameter l eventually
develops a Landau pole at scales that are not too high,
which implies the rough bound l < 0:7.

4.5.2 Electroweak baryogenesis. Electroweak baryogenesis is
easier to realize in the NMSSM (Next-to-Minimal Super-
symmetric Standard Model) than in the MSSM for several
reasons. First of all, the phase transition can be much
stronger. This makes a considerable enhancement in the
CP-violating source, which is very sensitive to fc=Tc, but
also due to a reduced wall thickness. Furthermore, addi-
tional complex phases in the parameters ts and al lead to
new sources of CP violation. In particular, the phases of the
singlet and the Higgs fields change during the phase
transition [104, 107]. The former leads to an additional
semiclassical source in the chargino sector via the modified
chargino mass matrix

Mw� �
M2 gh2 exp �iY2�

gh1 exp �iY1� ÿl s exp �iYs�
� �

; �121�

as well as to a source in the top sector due to a change in Y2

during the phase transition. These contributions arise in the
semiclassical force approach and do not rely on mixing.
Additional sources by mixing can be as large as in the
MSSM, but since the semiclassical forces do not require
almost-mass-degenerate charginos, these contributions are
typically much smaller. This allows a rather reliable
determination of the baryon asymmetry, in contrast to the
MSSM.

4.5.3 Collider and low-energy probes of the model. Compared
to the MSSM, collider and EDM constraints are easier to
satisfy in the NMSSM. As mentioned above, the lightest
Higgs can obtain sizable mass contributions from the
coupling to the singlet. But Higgs masses mh � 125 GeV
that rely solely on this coupling lead to a Landau pole in the
coupling l below the GUT scale. Hence, loop corrections
from the stops and tops still have to be sizable, and stops
heavier than a TeV are required. We note that light right-
handed stops are not essential for a first-order phase
transition, and they can therefore have masses similar to
their left-handed counterparts.

Constraints from EDM measurements are also easier to
avoid than in the MSSM. One reason is that the complex
phase in the effective m parameter is dynamic. Hence, it is
possible that the phase is relatively small in the broken phase,
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even though it varied significantly during the phase transi-
tion. Also, due to the stronger phase transition, electroweak
baryogenesis is more efficient, and the observed baryon
asymmetry can be reproduced with smaller complex phases
in the chargino sector.

4.5.4 Summary. In a probabilistic study, the collider andmass
constraints provide quite strong bounds on the parameters of
the scalar sector. However, once these constraints are
satisfied, a large portion of the remaining parameter space
leads to a strong first-order phase transition and viable
baryogenesis in the NMSSM [104]. In this sense, electroweak
baryogenesis is a generic feature of the NMSSM.

4.6 Other models
For completeness, we briefly mention other models in which
electroweak baryogenesis has been studied. This includes the
Beyond-MSSM scenario [108, 109], the MSSM with an
additional U�1� 0 gauge interaction [110±112], models with
R-symmetric supersymmetry [113, 114], the singlet Majoron
model [115], and left±right symmetric models [116].

5. Conclusions

The main ingredients of electroweak baryogenesis are a
strong first-order phase transition and new sources of CP
violation. For this reason, electroweak baryogenesis is ruled
out in the SM and heavily constrained in the MSSM.
Nevertheless, in models with a more general scalar sector, a
strong first-order phase transition and electroweak baryogen-
esis are quite common features.

From the perspective of electroweak baryogenesis, these
models have the added benefit that the determination of the
baryon asymmetry is much more robust than in the MSSM.
In most of these models, the dominant source of CP
violation arises from a semiclassical force that is sensitive
to the spin of a single particle species. By contrast, in the
MSSM, the CP violation operative during the phase
transition arises from flavor mixing in the chargino,
neutralino, or stop sectors. This complicates the analysis
through issues that are specific to systems with several
flavors, such as flavor oscillations and resonant enhance-
ments.

Ultimately, whether electroweak baryogenesis is a realis-
tic scenario hinges on the questions of whether and how the
hierarchy problem is solved by the new physics on the
electroweak scale. The LHC discovery of a Higgs-like
particle of the mass m � 125 GeV indicates that the MSSM
can only solve the hierarchy problem at the cost of introdu-
cing a small hierarchy problem. This makes models with
extended scalar sectors very attractive and, in turn, electro-
weak baryogenesis a promising mechanism for explaining the
observed baryon asymmetry of the Universe.
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6. Appendices

A. Weak sphaleron rate
One essential ingredient of electroweak baryogenesis is the
weak sphaleron rate.8 It couples to left-handed fermions and
antifermions of the SM and equally violates lepton and
baryon number. In the presence of an (eventually local) CP-
asymmetry in the left-handed particle densities, the sphaleron
is biased toward a net baryon number. At the same time, any
pre-existing baryon number diffuses as long as the baryon
minus lepton number is conserved, B � L. The baryon
asymmetry obeys the equation [29]

vw
dnB
dz
� 3

2
Gws

�
mL
T
ÿ 15

2

nB
T 3

�
; �122�

whereGws is the weak sphaleron diffusion rate and mL denotes
the chemical potential of the left-handed fermions. The final
baryon asymmetry is then given by the integral

Z � nB
s
� 405Gws

4p2vwg�T 4

�1
0

dz mL exp �ÿnz� ; �123�

with g� ' 106:75 being the effective number of degrees of
freedom at electroweak temperatures and n � 45Gws=4vwT

3.
The chemical potential mL falls off at least as exp �ÿDqz� in
the symmetric phase, where Dq is the quark diffusion
constant. Thus, for high wall velocities vw, the exponent ÿnz
is irrelevant and the dependence on the wall velocity is
inherited from the chemical potential mL, which is in the
leading order linear in vw. Hence, for n5Dq and vw 5 1, the
final baryon asymmetry depends only weakly on the wall
velocity. If vw approaches the speed of sound, cs � 1=

���
3
p

,
diffusion should become inefficient (which, however, is not
correctly reproduced in the analysis in Section 3, which
assumes small wall velocities). In the limit of very small wall
velocities, the exponent becomes important and leads to
further suppression. This indicates that the wall is so slow
that the sphaleron is saturated. In this regime, back reactions
on the left-handed chemical potential mL should not be
neglected.

On the one hand, the sphaleron rate has to be large during
the phase transition in the symmetric phase in front of the
wall. The CP violation in the reflection of particles leads to a
net CP-violating particle density in front of the wall. If this
particle density carries a (positive) lepton or (negative)
baryon number, the sphaleron process is biased toward a
positive net baryon number. To produce a baryon asymmetry
of the observed magnitude Z ' 10ÿ10, the sphaleron process
should be considerably larger than Z in electroweak units.

This sphaleron rate in the symmetric phase has been
controversially discussed for some time in the literature.9

The main problem is that the sphaleron rate is nonpertur-
bative due to the large occupation number of soft modes,
but is also sensitive to the dynamics of hard modes in the
plasma [119]. The system is successfully described by
BoÈ deker's effective theory [120±122], which can be easily
simulated on a lattice. In conclusion, the weak sphaleron
rate in the symmetric phase is given by

Gws � k
�
g 2
wT

2

m 2
D

�
a 5
wT

4 ; �124�

8 An early review on the sphaleron rate in the context of electroweak

baryogenesis is given in [117].
9 A nice summary of the status quo can be found in talk [118].
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wherem 2
D � �11=6�g 2

wT
2 is the Debyemass of the weak gauge

fields and gw is the gauge coupling of the weak interactions.
Numerically, the coefficient k is given by k ' 40. Including
the dynamics of the Higgs field slightly reduces this number,
and we find [123]

Gws ' 1:0� 10ÿ6 T 4 : �125�

This is, in theory, sufficiently fast for electroweak baryogen-
esis.

On the other hand, the sphaleron rate in the broken phase
should be smaller than in the symmetric one. For equal
sphaleron rates, no net baryon number would be generated
during the phase transition, since the plasma in the bubble
carries the opposite lepton and baryon number densities
compared to the plasma in front of the wall. In fact, the
sphaleron rate in the broken phase must be many orders of
magnitude smaller than the rate in the symmetric phase. After
the phase transition, the plasma components inside and
outside the Higgs bubbles mingle again. Even though a net
baryon (and equal lepton) number was generated during the
phase transition, the real equilibrium state of the system is still
B � L � 0. If the sphaleron process is still active after the
phase transition, the system returns to this equilibrium in a
time of the order of the Hubble scale. Hence, for electroweak
baryogenesis to work, the sphaleron rate must be slow
compared to the Hubble expansion.

The sphaleron rate in the broken phase is accessible to
semiclassical analysis [124, 125] and is exponentially sup-
pressed by the sphaleron energy:

Gws ' T 4 exp

�
ÿEsp

T

�
: �126�

The sphaleron energy is proportional to [124]

Esp ' 4pfc

gw
X ; �127�

and is numerically given by X ' 2:8. If we require that the
sphaleron rate be slow compared to the Hubble expansion,
Gws 5HT 3, then [125±128]

fc 0 1:1Tc : �128�

This is the so-called sphaleron wash-out criterion.10

In addition, the sphaleron rate in the broken phase has
been confirmed nonperturbatively on the lattice [131].
Recently, the first lattice calculations connecting the sym-
metric phase with the broken phase have been presented [132],
confirming the picture developed in the two different phases
in a unifying framework.

B. Semiclassical approach to phase transitions
The formalism to describe semiclassical tunneling was
pioneered in condensed matter systems by Langer [133], in
quantum field theory by Coleman [134, 135], and at finite
temperatures by Linde [136]. A review of the topic can be
found in [137].

In a tunneling problem, the effective potential has at least
two local minima that constitute the different phases in which
the physical system can reside. In what follows, we call these

two phases symmetric (before the phase transition) and
broken (after the phase transition), motivated by the electro-
weak phase transition (Fig. 12). In the semiclassical WKB
approximation, the tunnel probability per volume and time is
suppressed by the Euclidean action of the so-called tunneling
bounce �f,

P � A exp
ÿÿS� �f�� ; �129�

derived from the effective action expanded in gradients,

S '
�
d4x

1

2
q mf qmf� V�f� ; �130�

where V�f� denotes the corresponding effective potential,
which eventually depends on the temperature.

The coefficient A in (129) must, for dimensional reasons,
satisfy the condition A � T 4. The phase transition occurs
when the probability of nucleating a bubble of the broken
phase is of the order of unity in the Hubble volume and time,
leading to the condition

S ' log
A

H 4
' 140 : �131�

At zero temperature, the bounce �f is an O�4�-symmetric
solution of the Euclidean equations of motion, while at a
finite temperature, it is O�3� symmetric and periodic in
imaginary time. The equations of motion are then given by

d2 �f
dt 2
� �dÿ 1� d �f

t dt
� ÿ dV

d �f
; �132�

with d � 4 �d � 3� for tunneling at zero (finite) temperature.
The boundary conditions are such that �f initially rests close
to the broken phase and asymptotically approaches the
symmetric phase at a late `time':

�f�0� ' fb ;
�f 0�0� � 0 ; �f�1� � fs : �133�

In the limit of weak phase transitions, the thin-wall
approximation applies [134]. In this case, the field �f rests for
a rather long time tR close to the broken phase and then
quickly changes to the symmetric phase. Here, the tunnel
action can be reexpressed in terms of the wall tension

s �
�
df

�������������
2V�f�

p
�134�

10 For a more detailed discussion of this argument, see also [129, 130].

fs fd fb

V�f�

Figure 12. Example of a potential with a metastable minimum. The phase

transition proceeds from the symmetric phase fs to the broken phase fb.
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and the potential difference DV � V�fb� ÿ V�fs� as

S � 27p2s 4

2DV 3
; d � 4 ;

�135�
S � 16ps 3

3TDV 2
; d � 3 :

Otherwise, for one field and quite arbitrary conditions, the
tunneling action can easily be obtained numerically using the
shooting algorithms [134]. For several scalar fields, more
involved methods have to be used [138, 139].

Recently, the gauge independence of the above approach
was questioned [129, 140, 141], but an explicit calculation in
anAbelian toymodel shows that the dependence on the gauge
choice is actually quite small [142]. This is also supported by
the fact that the semiclassical approach agrees reasonably
well with nonperturbative methods on the lattice [143]. The
main corrections to the above procedure seem to come from
higher-order contributions to the kinetic term and the
effective potential in effective action (130).

C. Wall velocity and wall thickness
Several parameters of the phase transition enter the produced
baryon asymmetry quantitatively: the critical vev fc, the
critical temperature Tc, the wall thickness lw, and the wall
velocity vw.

The most important one is the ratio fc=Tc, which
determines the sphaleron wash-out and also the reflection of
particles by the Higgs wall, leading to CP violation in the
particle densities. Fortunately, in most models with viable
electroweak baryogenesis, these quantities can be rather
easilyobtainedusing thesemiclassicalmethodsofAppendixB.
Another important input is the wall thickness lw. The gradient
expansion can only be applied for thick walls, lwT4 1, and
the final baryon asymmetry is in the one-flavor case roughly
inversely proportional to the wall thickness. For wall
velocities that are not too high, the shape of the Higgs bubble
profile does not change much during expansion [144]. The
wall thickness can then be determined from the wall thickness
of the nucleated bubbles in the semiclassical tunneling
analysis.

Finally, the wall velocity vw enters the analysis. Viable
baryogenesis requires that the wall velocity be small enough
to allow particle diffusion in front of thewall, vw < 1=

���
3
p

. For
wall velocities less than that, the produced baryon asymmetry
is rather insensitive to the wall velocity, as was already
discussed in Appendix A. This results from the fact that the
CP violation accumulated in front of the wall is proportional
to the wall velocity. At the same time, the phase transition
proceeds longer and the sphaleron process can act longer on
CP-violating particle densities and convert them into a
baryon asymmetry. In this regime, the final baryon asymme-
try depends only weakly on the wall velocity. However, for
very slowwalls, the sphaleron process becomes saturated, and
the final asymmetry scales linearly with the wall velocity. Due
to the smallness of the sphaleron rate, this typically happens
for velocities vw 9 10ÿ3.

Therefore, the crucial question is whether the wall velocity
is in the regime 10ÿ3 5 vw < 1=

���
3
p

, where the above approx-
imations are reasonable and the final asymmetry is insensitive
to the wall velocity. Answering this question in a specific
model requires performing an out-of-equilibrium analysis,
which so far has only been performed in the SM [48, 145] and
theMSSM [146]. In both cases, the wall velocity turned out to

be in the desired vicinity. For othermodels, the wall velocity is
still unknown. A simple way of estimating the wall velocity is
to model friction in a phenomenological approach and to
extrapolate the results from the SMand theMSSM [144, 147±
150].

D. Electroweak phase transition in the Standard Model
In this section, we review the perturbative analysis of the
electroweak phase transition in the SM.We follow study [151]
but present a simplified analysis.

At the tree level, the effective potential of the Higgs field is

V 0 � l
4
�f 2 ÿ v 2�2 ; �136�

and at the one-loop order, the thermal corrections to the free
energy are

DV 1 � � T 4

2p2
X
i

�
dx x 2 log

"
1� exp

�
ÿ

�����������������������
x 2 �m 2

i b
2

q �#
;

�137�
where � respectively stand for fermions/bosons, T denotes
the temperature, b is the inverse temperature, and mi are the
different particle masses. As long as the masses do not exceed
the temperature, this can be expanded as

DV 1
fermions �

1

48
m 2T 2 �O�m 4� ;

�138�
DV 1

bosons �
1

24
m 2T 2 ÿ 1

12p
m 3T�O�m 4� :

Of special importance are the cubic terms contributed by
bosons. If the mass of a bosonic field is only generated by the
coupling to the Higgs vev (as is the case for weak gauge
bosons in the SM), this, in turn, gives rise to a term of the form
f 3T in the effective potential. This term is essential to
generate a potential barrier between the symmetric and the
broken phase.

We consider a potential of the form

V � m 2�T �f 2 ÿ ETf 3 � l
4
f 4 : �139�

At some temperature Tc, this polynomial potential has two
degenerate minima atf � 0 andf � fc > 0 and has the form

V � l
4
f 2�fÿ fc�2 : �140�

Comparison with (139) then shows that

m 2�Tc� � 1

4
lf 2

c ; ETc � 1

2
lfc : �141�

This immediately implies

fc

Tc
� 2E

l
; �142�

and larger Higgs masses lead to weaker phase transitions.
In the SM, the cubic coefficient arises only from the

(transverse) electroweak gauge bosons [152±154], E � 10ÿ2.
Accordingly, a phase transition strong enough for electro-
weak baryogenesis is only possible for Higgs masses below
40 GeV [155] in light of constraint (128). Moreover, for Higgs
masses mh 0 70 GeV, the perturbative analysis breaks down,
and a crossover replaces the phase transition.
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In the MSSM, additional contributions to the cubic term
come from the right-handed stops when their mass is below
the top mass. This can make the phase transition strong
enough for baryogenesis in some parts of the parameter
space, even when the Higgs mass mh ' 125 GeV is assumed
(see Section 4.4).

In general, if the potential barrier arises from a thermal
cubic contribution, relation (142), in combination with the
Higgs mass mh ' 125 GeV, implies that a strong first-order
phase transition requires E0 0:1 at least. Thus, a moderate
number of light bosons that couple strongly to the Higgs is
essential in this case. Yet, in many models, the strength of the
phase transition does not rely on thermal cubic contributions.
The prime example of this is provided by models with an
extended Higgs sector. When several scalar fields acquire a
vev at electroweak scales, potential barriers can arise, even in
the tree-level scalar potential (see Section 4.2).
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