
Abstract. We discuss the holographic duality consisting in the
functional coincidence of the spectra of the mean number of
photons (or scalar quanta) emitted by a point-like electric
(scalar) charge in (3� 1)-space with the spectra of the mean
number of pairs of scalar (spinor) quanta emitted by a point
mirror in (1� 1)-space. Being functions of two variables and
functionals of the common trajectory of the charge and the
mirror, the spectra differ only by the factor e 2=�h�hc (in Heaviside
units). The requirement e 2=�h�hc � 1 leads to unique values of the

point-like charge and its fine structure constant, e0 � �
�����
�h�hc
p

,
a0 � 1=4p, all their properties being as stated by Gell-Mann
and Low for a finite bare charge. This requirement follows from
the holographic bare charge quantization principle we propose
here, according to which the charge and mirror radiations
respectively located in four-dimensional space and on its inter-
nal two-dimensional surface must have identically coincident
spectra. The duality is due to the integral connection of the
causal Green's functions for (3� 1)- and (1� 1)-spaces and to
connections of the current and charge densities in (3� 1)-space
with the scalar products of scalar and spinor massless fields in
(1 � 1)-space. We discuss the closeness of the values of the
point-like bare charge e0 �

�����
�h�hc
p

, the `charges' eB � 1:077
�����
�h�hc
p

and eL � 1:073
�����
�h�hc
p

characterizing the shifts e 2B;L=8pa of the
energy of zero-point electromagnetic oscillations in the vacuum
by neutral ideally conducting surfaces of a sphere of radius a
and a cube of side 2a, and the electron charge e times

������
4p
p

. The
approximate equality eL �

������
4p
p

e means that a0aL � a is the
fine structure constant.
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1. Introduction

1.1 Introductory remarks
Hawking's mechanism of particle emission in the process of
black hole formation is analogous to the emission of an ideal
`mirror' accelerated in the vacuum [1, 2]. In turn, there is a
close analogy between the emission of photons (in another
variant, of scalar quanta) by an accelerated point-like electric
(scalar) charge in �3� 1�-space and the emission of pairs of
scalar (spinor) quanta by an accelerated point-like mirror in
�1� 1�-space [3, 4]. All these processes prove to be inter-
connected. A point-like mirror moving in a �1� 1�-space
implies points of a time-like curve in the �x; t� plane on which
the scalar or spinor field satisfies a boundary condition free of
any dimensional parameters.

In 1995, Nikishov and the author discovered that the
spectrum of photons emitted by a uniformly accelerated
charge in �3� 1�-space, up to the factor e 2=�hc (in Heavi-
side units), coincides with the spectrum of pairs of scalar
quanta emitted by a uniformly accelerating mirror in
�1� 1�-space [3]. This correspondence proved to be valid
for any other common motion of the charge and mirror. It
was shown in [4] that the spectrum of scalar quanta emitted by
an accelerated scalar charge in �3� 1�-space coincides with
the spectrum of pairs of spinor quanta emitted by a mirror
accelerated analogously in �1� 1�-space (once again, up to
the factor e 2=�hc, where e is the scalar charge).

Subsequent work by the author was devoted to studying
this duality between the emission of individual quanta by a
charge accelerated in �3� 1�-space and pair creation by a
mirror accelerated in �1� 1�-space, and to the causes of why
the respective spectra of quanta and pairs coincide. It
essentially relied on the interpretation of the Bogoliubov
b-coefficient as the amplitude of the source of a pair of
particles directed oppositely. It turned out that the boson
and fermion pairs emitted by the mirror have the same spins 1
and 0 as photons and scalar quanta emitted by the electric and
scalar charges [5].

With quantum exchange effects taken into account, the
vacuum±vacuum amplitudes for an accelerated charge and a
mirror in �3� 1�- and �1� 1�-spaces differ not only by the
factor e 2=�hc in the charge action functional. The exchange
effects, however, do not influence the functionally coincident
spectra of mean numbers of quanta and pairs emitted by the
charge and mirror [6].

An essential role in the duality of the spectra is played by
the connection between causal Green's functions in �3� 1�-
and �1� 1�-spaces [7, 8]. The requirement that the spectra of
the charge and the mirror fully coincide leads to the
quantization of electric and scalar charges with the common
value e0 �

�����
�hc
p

. This value exhibits all the properties of a
finite bare charge formulated by Gell-Mann and Low [9].
Being small �a0 � 1=4p5 1�, it leaves the electromagnetic
interaction weak for all transferred momenta. The duality
was generalized to the interactions of a charge and a mirror
with fields accompanying them and carrying space-like
momenta. These fields define the Bogoliubov a-coefficients
and shifts in real parts of actions, i.e., phases of the vacuum±
vacuum amplitudes.

The structure of this review is as follows. Section 1
presents the basic results demonstrating the holographic
connection between the emission spectra of a charge and a
mirror; Sections 2 and 3 deal with computational methods

and elaborate on the links between the Bogoliubov coeffi-
cients and the current and charge densities; Section 4
discusses most basic physical quantities and connections
between them that underlie the duality discussed; Sections 5
and 6 present a brief exposition of the Schwinger source
theory and the Bogoliubov coefficient theory. Finally,
Section 7 is devoted to the discussion of principal issues and
the expression e0 �

�����
�hc
p

for the bare charge.
In this paper, we assume the metric gab� diag �1; 1; 1;ÿ1�,

the notation k a � �k; k 0� for 4-vectors, and the Heaviside
units for the charge and the natural system of units �h � c � 1,
except when we need to emphasize the quantum and
relativistic meaning of a quantity. We understand `the charge
quantization principle' as the basic physical postulate leading
to a specific connection between the charge value and the
Planck constant, i.e., the `charge quantization'. It is the
relation e 20 � �hc for the bare charge.

1.2 Holographic duality of the emission spectra
of a point-like charge and mirror and the bare charge
A �1� 1�-space can be regarded as an internal boundary of a
�3� 1�-space, the outer boundary of which is at infinity. It is
assumed that the �1� 1�-space is endowed with scalar and
spinor massless fields, and the emission of pairs of quanta of
these fields induced by the boundary condition on a point-like
`mirror' moving with acceleration in this �1� 1�-space is
considered within quantum theory.

The method of research is the Bogoliubov transforma-
tions [10] and the corresponding coefficients ao 0o and bo 0o
connecting the complete in- and out-systems of wave
equation solutions. For a mirror moving with acceleration,
the coefficient bo 0o 6� 0, in- and out-systems are not equiva-
lent, and the mirror emits pairs of quanta with frequencies o
and o 0 and the spectrum

d�nB;F
o 0o �

��bB;F
o 0o

��2 do do 0

�2p�2 �1:1�

for the mean number of pairs. The indices B and F label
quantities pertaining to boson (scalar) and fermion (spinor)
fields, their quanta forming boson and fermion pairs.

In �3� 1�-space, with point-like electric and scalar charges
moving along its internal one-dimensional boundary, the
emission of massless quanta by these charges are considered
within the semiclassical Schwinger source theory [11]; its main
tool is the vacuum±vacuum amplitude exp �iW=�h� in the
presence of a source. The action W is therefore a functional
of the electric current density or the scalar charge density.

For a chargemovingwith acceleration, the imaginary part
of the action differs from zero, is positive, and, being divided
by the Planck constant �h, defines the mean number of quanta
�N emitted by the charge over the entire time:

2

�h
ImW �s� � �N �s� �

�
d�n
�s�
k : �1:2�

The spectrum d�n
�s�
k of the mean number of quanta with spin s

and the wave vector k a � �k; k 0� is defined by Fourier
components of the electric current or scalar charge densities,

d�n
�1�
k �

�� ja�k���2
�hc

d3k

�2p�32k 0
; d�n

�0�
k �

��r�k���2
�hc

d3k

�2p�32k 0
:

�1:3�
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For charge trajectories lying in the �x; t� plane of the
Minkowski �3� 1�-space, the spectral densities j ja�k�j2 and
jr�k�j2 depend only on two components k� � k 0 � k 1 of the
wave vector but do not depend on the azimuthal angle j of
the projection k? of the vector k � k1 � k? on the plane
perpendicular to the motion axis.

Writing the invariant number of quantum states as

d3k

�2p�32k 0
� dk� dkÿ
�4p�2

dj
2p

and integrating spectra (1.3) over j, we obtain

d�n
�1�
k�kÿ �

�� ja�k�; kÿ���2
�hc

dk� dkÿ
�4p�2 ;

�1:4�

d�n
�0�
k�kÿ �

��r�k�; kÿ���2
�hc

dk� dkÿ
�4p�2 :

The duality considered here confirms that spectra (1.4) of
photons and scalar quanta emitted by charges in �3� 1�-
space coincide up to the factor e 2=�hc with spectrum (1.1) of
boson and fermion pairs emitted by a mirror in �1� 1�-space,

d�n
�1�
k�kÿ �

e 2

�hc
d�nB

o 0o ; d�n
�0�
k�kÿ �

e 2

�hc
d�nF

o 0o ; �1:5�

under the condition that the charge and mirror trajectories
are identical and the components k� � k 0 � k 1 of the wave
4-vector k a of the quantum emitted by the charge are
identified with the doubled frequencies o and o 0 of the
quanta of the pair emitted by the mirror:

k� � 2o ; kÿ � 2o 0 : �1:6�
In other words, the holographic duality states that the
number of quantum states in �3� 1�-space coincides, after
integration over j, with the number of states for a pair of
quanta in �1� 1�-space,

dk� dkÿ
�4p�2 �

do do 0

�2p�2 ; �1:7�

while the spectral densities differ only by the factor e 2=�hc:�� ja�k�; kÿ���2 � e 2

�hc

��bB
o 0o

��2 ; ��r�k�; kÿ���2 � e 2

�hc

��bF
o 0o

��2 :
�1:8�

Because the quanta of the pair are massless, they have the
two-dimensional wave vectors �o;o� and �ÿo 0;o 0�. Then 2o
and 2o 0 in formula (1.6) are the only nonzero `plus'- and
`minus' components of these vectors and, simultaneously,
they are the plus and minus components of the two-
dimensional time-like wave vector �k 1; k 0� of the pair as a
whole:

k 1 � oÿ o 0 ; k 0 � o� o 0 ; �1:9�
k� � k 0 � k 1 � 2o ; kÿ � k 0 ÿ k 1 � 2o 0 :

In turn, these last coincide with the plus and minus
components of the four-dimensional vector k a of a quantum
emitted by the charge in �3� 1�-space. Thus, formulas (1.6),
(1.9), and (1.7), relating the 4-vector of a quantum in �3� 1�-
space to the wave 2-vectors of the pair and its particles in

�1� 1�-space, have a very transparent physical meaning. We
return to them later.

For large values ofo ando 0, the spectral densities jbB
o 0oj2

and jbF
o 0oj2 cease to be different, i.e., cease to depend on the

spin of particles forming the pair,

jbB
o 0oj2 � jbF

o 0oj2 ; o;o 0 ! 1 : �1:10�

This is demonstrated in Section 3. Hence, the spin of the
particles of the pair does not influence the probability of pair
emission in this domain of o and o 0. Nevertheless, as
previously, the spectral densities remain functionals (which
now become coincident) of the mirror trajectory and
functions of o and o 0. By virtue of Eqns (1.5) and (1.8), it is
then natural to assume that the spectral densities j ja�k�; kÿ�j2
and jr�k�; kÿ�j2 are also independent of the spin of emitted
quanta for large k�, i.e., they are the same. This in turn
implies that the values of the electric and scalar charge are
identical. Just for this reason, they are denoted by the same
letter in Eqns (1.5) and (1.8).

Because d�n
�s�
k�kÿ and d�nB;F

o 0o are the mean values of integer-
valued observablesÐ the number of quanta in �3� 1�-space
and the number of quantum pairs in �1� 1�-space, which,
according to Eqn (1.6), are in the quantum states closely
related to each otherÐ it is of interest to trace this relation in
more detail for an individual quantum and a pair.

Relation (1.6) between the components k� of the wave
4-vector k a � �k; k 0� of a quantum and the frequencieso and
o 0 of quanta in the pair implies that

k 0 � o� o 0 ; k 1 � oÿ o 0 : �1:11�

In other words, the time and longitudinal components of the
wave 4-vector of the quantum are simultaneously the time
and space components of the wave 2-vector of the pair
consisting of two massless quanta with wave 2-vectors
�o;o� and �ÿo 0;o 0�. Such a pair has the mass

m �
����������������
k 2
0 ÿ k 2

1

q
� k? � 2

���������
oo 0
p

; �1:12�

coinciding with the transverse momentum k? of the quantum
in �3� 1�-space. Although the terms of mass and momentum
are convenient, the parameters m and k? are purely geome-
trical, with the dimension of inverse length. For eachmassless
quantum with a wave 4-vector k a � �k1 � k?; k 0�, k 0 �
�k 2

1 � k 2
?�1=2 emitted in �3� 1�-space, we can therefore relate

amassive pair emitted in �1� 1�-space with the wave 2-vector
�k1; k 0� and the mass m � k? equal to the transverse
momentum of the quantum in �3� 1�-space.

This correspondence consists, first of all, in the fact that,
independent of the quantity e 2=�hc, for any coincident
trajectories of the charge and the mirror, the probability of
emitting a quantum in a state k�, kÿ by the charge equals the
probability of emitting a pair of quanta in the state o, o 0 by
the mirror:

d�n
�1; 0�
k�kÿ�

d�n
�1; 0�
k�kÿ

� d�nB;F
o 0o�

d�nB;F
o 0o

; if k� � 2o ; kÿ � 2o 0 : �1:13�

It should be kept inmind that the components k� ofmomenta
of the quantum and the pair are identical. The parameter
e 2=�hc in the left-hand side has dropped out and the
probabilities of emitting quanta with spins 1 and 0 and of
emitting boson and fermion pairs have become identical as
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functions of two variables k� � 2o and kÿ � 2o 0 and the
functionals of identical trajectories of the charge and mirror.

But the mean values d�n
�1; 0�
k�kÿ and d�nB;F

o 0o of integer-valued
observablesÐthe number of quanta in the state k�; kÿ and
the number of pairs of quanta in the state o;o 0, contained in
equal-phase volumes (1.7)Ðare equal only if e 2=�hc � 1.

In this case, a one-to-one correspondence exists between
the quanta with components k�, kÿ in the phase volume
dk� dkÿ=�4p�2 emitted by the charge and quantum pairs with
frequencies o and o 0 in the phase volume do do 0=�2p�2
emitted by the mirror. This correspondence can be consid-
ered holographic, because the one-dimensional spatial x axis
along which the mirror and charge move and the pairs
propagate, can be viewed as an internal boundary of the
three-dimensional space hosting the propagating quanta
emitted by the charge.

Naturally, the total mean number of emitted quanta in the
case e 2=�hc � 1 is equal to that for emitted pairs,

�N �1; 0� � e 2

�hc
�NB;F

����
e 2=�hc�1

� �NB;F : �1:14�

For any other value of e 2=�hc, equality (1.14) would be
violated despite the coincidence in the geometrical mechan-
isms of creation of quanta and pairs of quanta, manifested in
the coincidence of probability distributions (1.13) for any
shared trajectory of the charge and the mirror.

The spectrum of pairs of quanta d�nB;Fo 0o is purely geome-
trical, i.e., defined by a dimensionless function of quantities
with dimensions of powers of length and time, but the
spectrum of quanta d�n

�1; 0�
k�kÿ differs from it by the extra

dimensionless factor e 2=�hc containing quantities e 2 and �h of
nongeometrical dimension. For e 2=�hc � 1, the spectrum
d�n
�1; 0�
k�kÿ coincides with d�nB;F

o 0o , i.e., contains the same informa-
tion and becomes geometrical. For e 2=�hc 6� 1, this factor and
the spectrum d�n

�1; 0�
k�kÿ contain information of a nongeometrical

character that is lacking in the spectrum d�nB;F
o 0o ; the holo-

graphic principle is violated. Thus, a value e 2=�hc < 1 would
imply screening of the bare charge.

The holographic principle demands that the information
contained in the spectra d�n

�1; 0�
k�kÿ and d�nB;F

o 0o be coincident,
which is equivalent to quantizing the bare charge, i.e., fixing
its relation to the Planck constant. Such a coincidence is
possible owing to the holographic duality of the semiclassical
description of the emission of quanta by a point-like charge in
�3� 1�-space and the quantum description of the emission of
pairs of quanta by a point-like mirror in �1� 1�-space.

Because the charges and the mirror are supposed to be
point-like, the quantized value of the charge obtained in this
manner must be related to the bare charge, not screened by
the vacuum polarization, which we denote by e0. Therefore,
e 20 � �hc, e0 � �

�����
�hc
p

, while the value of the corresponding fine
structure constant is

a0 � e 20
4p�hc

� 1

4p
: �1:15�

It is identical for the bare electric and scalar charges and is
small compared to unity.

1.3 Gell-Mann and Low on a point-like bare charge
The result obtained above agrees with the asymptotic
behavior of the effective coupling constant a�k 2=m 2; a�
described in the well-known work of Gell-Mann and Low
[9] as variant (b).

This work shows that the effective parameter of interac-
tion (`running constant', effective charge, ...), defined by the
product

adR

�
k 2

m 2
; a
�

�1:16�

of the fine structure constant a � e 2=4p�hc and the renorma-
lized photon propagator dR, for large values of transferred
momenta, becomes a function of a single argument:

a
�
k 2

m 2
; a
�
� ad as

R

�
k 2

m 2
; a
�
� F

�
k 2

m 2
f�a�

�
; k 2 4m 2 :

�1:17�

This implies that for k 2 4m 2, the functional form of
a�k 2=m 2; a� ceases to depend on the value of the fine
structure constant, which, in this case, only enters the scale
factor f�a� that sets the scale of momenta.

This result is obtained by exploring the function
dR�k 2=m 2; a� by the perturbation method. In the asymptotic
domain x � k 2=m 2 !1, the function dR�x; a� is a double
series in powers of a and ln x with finite numerical coeffi-
cients. The convergence of this series remains unknown. But it
is assumed that the series for dR�x; a� defines a function that
also satisfies the same functional relations as derived by the
authors for this series.

The authors discuss two possible behavior variants for the
function F��k 2=m 2�f�a�� as k 2=m 2 !1.

(a) If F��k 2=m 2�f� ! 1 as k 2=m 2 !1, then e 20 (the
square of the bare, unscreened charge) is infinite and the
singularity at the center of the charge distribution is stronger
than d�x�, which would correspond to a finite point-like
charge. The perturbation theory points to this result.

(b) If F��k 2=m 2�f� tends to a finite value a0 � e 20 =4p�hc as
k 2=m 2 !1, then this quantity should not depend on the fine
structure constant a and should exceed a. In this case, at very
small distances, the charge distribution is described by a
spatial delta-function e0d�x� with a finite value of the
unscreened bare charge e0.

To facilitate the comparison of Eqn (1.17) with a
perturbative series, the authors used its alternative form,

ln
k 2

m 2
�
� a�x;a�

a�1;a�

dz

c�z� ; x � k 2

m 2
4 1 ; �1:18�

in which the main role is delegated to the Gell-Mann±Low
function c�z�. It is invariant under a multiplicative change of
the argument of F in representation (1.17). The function f�a�
is defined up to a multiplicative constant, which does not
affect the effective charge ad as

R , but does affect the function
F�xf�. Expressing its argument in terms of the inverse
function,

xf�a� � ~F
ÿ
a�x; a�� ; �1:19�

and differentiating the logarithm of the expression obtained
over x, we eliminate the multiplicative arbitrariness in f�a�
and ~F�z� and arrive at the differential form of theGell-Mann±
Low equation

x
qa�x; a�

qx
� c

ÿ
a�x; a�� ; �1:20�
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where

1

c�z� �
d

dz

�
ln ~F�z�� : �1:21�

According to the perturbation theory, the function c�z�
behaves at small z as [12]

c�z� � z 2

3p
� z 3

4p2
�
�
z�3�ÿ 101

96

�
z 4

3p3
� . . . ; z�3�� 1:202 . . . :

�1:22�
If c�z� is positive for all z > a�1; a�, then the effective
coupling parameter a�x; a� tends to infinity, either at
x!1, if the integral

� 1
a�1;a� dz=c�z� diverges at its upper

limit, or at x! x0 � exp �� 1a�1;a� dz=c�z��, if the integral
converges. In the latter case, a�x; a� has a Landau pole at
x � x0 � exp �3p=a� [13].

In both cases, the singularity of a�x; a� lies in the far
asymptotic domain where all the terms in the perturbative
series for adR�x; a� are comparable. A rigorous analysis of the
full expression for adR�x; a� in this domain is lacking. For this
reason, the behavior of c�z� at large z leading to large values
of a�x; a� does not find sufficient support in the framework of
the existing theory. This is the conclusion in Refs [14±17].

If the function c�z� nevertheless makes sense, then the
other possibility is that c�z� vanishes at some finite point
z � a0 > a�1; a�. In this case, if the integral

� z
a�1;a� dz=c�z�

diverges at z! a0, then a�x; a� ! a0 as x!1. Here, a0 is
the bare fine structure constant.

Being a root of the equationc�z� � 0, a0 has the following
properties, formulated by Gell-Mann and Low for a finite
bare charge:

(1) a0 is independent of a,
(2) a0 > a,
(3) a0 defines the quantity e0 � �

��������������
4pa0�hc
p

of the
unscreened point-like charge distributed as e0d�x� in space.

In our approach, we assume a point-like charge moving
with acceleration along a time-like trajectory and, for a0,
derive the finite value a0 � 1=4p that satisfies properties (1)
and (2) and, additionally, remains small: a0 � 0:08. This
implies that the electromagnetic interaction remains weak
for all transferred momenta, up to the unification with other,
comparably weak interactions.

The relation to the analysis of Gell-Mann and Low is not
accidental. In essence, Gell-Mann and Low consider the
interaction between two ultrarelativistic charges in their
head-on collision, when in the region of their closest
proximity they exchange a quantum with a giant space-like
momentum and change velocities to opposite ones. In this
region, the interaction between charges is described by the
function adR�x; a�, which accounts for all radiation correc-
tions as x � k 2=m 2 !1, while the charges proper, in
agreement with variant (b), become point-like. This implies
that each of them moves along a time-like trajectory with a
very large acceleration and has the unscreened charge e0.

The radiation spectrum of one of such charges is described
by the Schwinger source theory. It is contained in the
imaginary part of the self-action W defining the vacuum±
vacuum amplitude exp �iW=�h� due to a classical source. This
spectrum shows a holographic link to the spectrum of pairs of
quanta emitted in �1� 1�-space by a point-likemirrormoving
along the same trajectory as the charge. With its dimension
less by two, this space is internal to the �3� 1�-space hosting
the charge radiation, which is the rationale to call the relation
between the spectra holographic.

2. Bogoliubov coefficients
for fields with spin 0 and 1/2 in (1+1)-space
with a mirror boundary

2.1 Bogoliubov coefficients
for a scalar field and boundary conditions
In problems with moving mirrors, the complete in-system
ffino 0 ;f

�
ino 0 g and the complete out-system ffouto;f

�
outog of

wave equation solutions are standardly used [18, 19]. For a
massless scalar fieldf satisfying the wave equation in �1� 1�-
space,

q2f
qu qv

� 0 ; u � tÿ x ; v � t� x ; �2:1�

they are given by

fino 0 �u; v� �
1��������
2o 0
p

h
exp �ÿio 0v� ÿ exp

ÿÿio 0 f �u�i ; �2:2�

fouto�u; v� �
1������
2o
p

h
exp

ÿÿio g�v��ÿ exp �ÿiou�
i
: �2:3�

Each consists of waves incident on and reflected from the
mirror. In agreement with the `in' and `out' indices, it is
assumed that the analysis is carried out in the half-plane �x; t�
to the right of the mirror. The in- and out-solutions are taken
to be monochromatic with respective frequencies o 0 and o in
the remote past and future. These solutions satisfy the zero
boundary condition

f�u; v�
���
traj
� 0 �2:4�

on the trajectory of a point-like mirror. In the �u; v� plane, the
trajectory is described by any of the mutually inverse
functions

vtraj � f �u� ; utraj � g�v�; f
ÿ
g�v�� � v : �2:5�

Accordingly, the subscript traj in Eqn (2.4) implies that the
variables u and v are related by (2.5).

We note that the foregoing is also valid for the field to the
left of the mirror on exchanging the indices in and out, but we
limit ourself to processes in the field on the right of themirror.

Any solution of the wave equation with the zero boundary
condition on the mirror can be expanded in both in- and out-
systems. The Bogoliubov coefficients a and b arise in the
expansion of one of these system with respect to the other:

fouto �
�1
0

do 0

2p
�ao 0o fino 0 � bo 0o f �ino 0 � ; �2:6�

fino 0 �
�1
0

do
2p
�a �o 0o fouto ÿ bo 0o f �outo� : �2:7�

They are given by the scalar products

aB
o 0o � i

�
f �ino 0

q
$

qt
fouto dx ; �2:8�

bB�
o 0o � i

�
f �ino 0

q
$

qt
f �outo dx : �2:9�
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The superscript B indicates the coefficients belonging to a
scalar (boson) field. From the orthogonality and normal-
ization conditions for both sets, it follows that�1

0

do 0

2p
�ao 0oa �o 0o 00 ÿ bo 0o b �o 0o 00 � � 2pd�oÿ o 00� ;

�2:10��1
0

do 0

2p
�ao 0o bo 0o 00 ÿ bo 0oao 0o 00 � � 0 :

The explicit expressions for functions in the in- and out-sets
allow writing the Bogoliubov coefficients in terms of the
Fourier transforms:

aB
o 0o; b

B�
o 0o� �

�������
o
o 0

r �1
ÿ1

du exp
ÿ�iou� io 0 f �u�� �2:11�

�
�������
o 0

o

r �1
ÿ1

dv exp
ÿ
io 0v� iog�v�� : �2:12�

Here, the upper sign is related to a and the lower to b �. It can
be easily seen that these expressions are Lorentz-invariant, as
it should be for scalar products of wave equation solutions.

When the mirror speed b is constant, the in- and out-
systems are still different, but in this case

bo 0o � 0 ; ao 0o � 2pd
ÿ
D�b�o 0 ÿD�ÿb�o� ;

�2:13�

D�b� �
������������
1� b
1ÿ b

s
� e a ; b � tanh a :

TheDoppler factorsD��b� relate the frequencieso 0 ando of
the incident and reflected waves to the frequencies of these
waves D�b�o 0 and D�ÿb�o in the system comoving with the
mirror. For b � 0, the in- and out-systems coincide.

Scalar products (2.8) and (2.9) for functions of only in- or
only out-sets reduce to expressions (2.13) taken at b � 0, i.e.,
transform to the orthogonality and normalization conditions
for the set. In this case, the frequencies o 0 and o acquire the
same covariance.

We note that if the boundary condition on the mirror
fjtraj � 0 is replaced with the condition that the derivative of
field f along the normal n a to the mirror world line vanish,

n a qf
qx a

����
traj

�
�����������
f 0�u�

p qf
qv
ÿ

�����������
g 0�v�

p qf
qu

����
traj

� 0 ; �2:14�

then the signs of the second terms in the in- and out-solutions
(2.2) and (2.3), describing waves propagating to the right,
would change to the opposite. But the Bogoliubov coeffi-
cients remain the same, implying that the emitted spectrum is
insensitive to the change in the mirror boundary condition of
that kind. We can assert that the Bogoliubov coefficient is
degenerate with respect to replacing Dirichlet boundary
condition (2.4) with the Neumann one in (2.14).

B M Barbashov1 has drawn our attention to the fact that
the general solution of the wave equation satisfying boundary
condition (2.4) can be written in the form

f�u; v� � F�v� ÿ F
ÿ
f �u�� or G

ÿ
g�v��ÿ G�u� ; �2:15�

where F�v� and G�u� are arbitrary functions of their
arguments. They can be associated with the incident and

reflected waves in the in- and out-solutions. Monochromatic
plane waves are used in Eqns (2.2) and (2.3) as F and G.

It can easily be shown that the general solution of thewave
equation satisfying boundary condition (2.14) is

f�u; v� � F�v� � F
ÿ
f �u�� or G

ÿ
g�v��� G�u� : �2:16�

2.2 Bogoliubov coefficients for a spinor field
and the boundary condition
The complete in- and out-systems fcino 0 ;c

�
ino 0 g and

fcouto;c
�
outog of solutions of the massless Dirac equation�

g 0
q
qt
� g 3

q
qx

�
c � 0 ;

�2:17�
g 0 � 0 1

1 0

� �
; g 3 � 0 ÿs3

s3 0

� �
;

were obtained in Ref. [4]. In the so-called spinor representa-
tion [20], solutions with spin projections on the x axis equal to
s � �1=2 are given by

cino 0�1=2

� 0
Z1

� �
exp �ÿio 0v� � x1

0

� � �����������
f 0�u�

p
exp

ÿÿio 0 f �u�� ;
�2:18a�

cino 0ÿ1=2

� x2
0

� �
exp �ÿio 0v� � 0

Z2

� � �����������
f 0�u�

p
exp

ÿÿio 0 f �u�� ;
�2:18b�

couto�1=2

� 0
Z1

� � �����������
g 0�v�

p
exp

ÿÿiog�v��� x1
0

� �
exp �ÿiou� ;

�2:19a�
coutoÿ1=2

� x2
0

� � �����������
g 0�v�

p
exp

ÿÿiog�v��� 0
Z2

� �
exp �ÿiou� :

�2:19b�

Here,

x1 � Z1 � 1
0

� �
; x2 � Z2 � 0

1

� �
�2:20�

are two-component spinors corresponding to spin projections
�1=2. The bispinors cos are eigenfunctions of the matrix S3,

S3cs � 2scs ; S3 � s3 0
0 s3

� �
: �2:21�

The operator S3 is conserved: it does not depend on time and
commutes with the Hamiltonian of the Dirac equation in
�1� 1�-space.

The difference between the spinors x and Z is that under
the Lorentz transformation with the speed v � tanhj along
the x axis, they are transformed by mutually inverse matrices,

B � exp

�
ÿj

2
s3

�
; Bÿ1 � exp

�
j
2
s3

�
: �2:22�

1 A remark at a seminar in Dubna.
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This implies that

Bx1; 2 � exp

�
�j

2

�
x1; 2 ; Bÿ1Z1; 2 � exp

�
�j

2

�
Z1; 2 ;

�2:23�

and that the bispinors cs are transformed by the 4� 4 matrix

B 0
0 Bÿ1

� �
:

Under the spatial reflection, the spinors x and Z transform
into each other, preserving the spin projections,

x1; 2 >Z1; 2 ;

whereas bispinors are transformed by the matrix g 0 (see
Ref. [20], ææ 19ë21). As a result, under a reêection in space
(which amounts to the change

u> v ; f �u�> g�v� ; o>o 0 ; x1; 2 >Z1; 2 ;

and the action of g 0), the in and out bispinor solutions
transform into each other,

cino 0�1=2 >couto�1=2 ;

without a change in the spin projection.
Each of the above in (out)-solutions in the �x; t� plane to

the right of the mirror world line describes a spinor field with
a definite spin projection, consisting of a monochromatic
(nonmonochromatic) wave incident on the mirror and
nonmonochromatic (monochromatic) wave reflected from it.

Such solutions are uniquely defined by prescribing a
monochromatic wave on the characteristic u � uÿR ! ÿ1 in
the remote past (on the characteristic v � v�R !1 in the far
future), the phase coincidence for the incident and reflected
waves on themirror, and the relation j 1 � _x�t� j 0 between the
space and time components of the current density, where _x�t�
is the mirror speed. This implies that on the mirror trajectory,
the current is present only along the trajectory, and its
component in the direction perpendicular to the trajectory
vanishes:

na�cgac
���
traj
� 0 : �2:24�

The in- and out-solutions satisfy the orthogonality and
normalization conditions�

dxc�ino 00s 00 �x; t�cinos�x; t� � 2pd�o 00 ÿ o�ds 00s ;
�2:25��

dxc�ino 00s 00 �x; t�c �inos�x; t� � 0 ;

and similarly for the out-solutions.
The Bogoliubov coefficients are defined by the scalar

products

aF
o 0s 0;os �

�
dxc�ino 0s 0 �x; t�coutos�x; t� ; �2:26�

bF�
o 0s 0;os �

�
dxc�ino 0s 0 �x; t�c �outos�x; t� : �2:27�

It can be easily shown that they reduce to the expressions

aF
o 0o; b

F�
o 0o�

�1
ÿ1

du
�����������
f 0�u�

p
exp

ÿ�iou� io 0 f �u�� �2:28�

�
�1
ÿ1

dv
�����������
g 0�v�

p
exp

ÿ
io 0v� iog�v�� ; �2:29�

diagonal with respect to the spin projection and independent
of it. For this reason, in the final expressions (2.28) and
(2.29), the spin projection indices are dropped. However, to
stress the difference between the Bogoliubov coefficients for
Bose and Fermi fields, we have supplied them with super-
scripts B and F. It follows from comparing Eqns (2.28) and
(2.29) with (2.11) and (2.12) that this difference amounts to
replacing the functions

�����������
f 0�u�p

and
�����������
g 0�v�p

by the factors
� ������������

o=o 0
p

and
������������
o 0=o

p
, which behave similarly under

Lorentz transformations.
We note that instead of solutions cos with a definite

projection s � �1=2 of spin 1=2, we could use solutions col
with a definite chirality l � �1, which are eigenfunctions of
the matrix g 5. The operator g 5 is conserved: it does not
depend on time and commutes with the Hamiltonian of the
massless Dirac equation. The solutions col are related to cos
as

c�1 �
1

2
�1� g 5��c�1=2 � cÿ1=2� ; �2:30�

g 5c�1 � �c�1 ; g 5 � ÿ1 0
0 1

� �
:

They satisfy the same conditions of orthogonality and
normalization, satisfy the same boundary condition (2.24),
and lead to the same Bogoliubov coefficients.

We write the in- and out-solutions with definite chirality:

cino 0� � 0
Z1

� �
exp �ÿio 0v� � 0

Z2

� � �����������
f 0�u�

p
exp

ÿÿio 0 f �u�� ;
�2:31a�

cino 0ÿ � x2
0

� �
exp �ÿio 0v� � x1

0

� � �����������
f 0�u�

p
exp

ÿÿio 0 f �u�� ;
�2:31b�

couto� � 0
Z1

� � �����������
g 0�v�

p
exp

ÿÿiog�v��� 0
Z2

� �
exp �ÿiou� ;

�2:32a�
coutoÿ � x2

0

� � �����������
g 0�v�

p
exp

ÿÿiog�v��� x1
0

� �
exp �ÿiou� :

�2:32b�

It follows from these solutions that for waves of positive
chirality, the spin of incident and reflected waves is directed
oppositely to the momentum, and is directed along it for
waves with negative chirality. Such chiralities and respective
helicities are called left and right, with g 5cL;R � �cL;R.
Accordingly, the sign of helicity (the spin projection on the
momentum direction) is opposite to the sign of chirality.

Passing to the coordinate system with a positive
velocity v � tanhj along the x axis amplifies the wave
incident on the mirror by the factor ej=2 and reduces the
reflected wave by the same factor, irrespective of whether
it is an in- or out-solution. But this transformation does
not change the Lorentz-invariant Bogoliubov coefficients,
which are defined by scalar products of solutions.
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2.3 Behavior of the spin of a wave under reflection from
a mirror and the invariance of the Bogoliubov coefficients
It can be readily seen that in (out)-solutions c� with chirality
�1 differ from in (out)-solutions c�1=2 with the spin
projection �1=2 by the permutation of reflected waves, i.e.,
by the permutation

0
Z2

� �
> x1

0

� �
of bispinor coefficients at these waves. Such a permutation
changes the sign of the spin projection for the reflected
waves, preserving their transformation properties under
Lorentz transformations [see Eqns (2.22) and (2.23)]. It
can be argued that the system of solutions (2.18) and
(2.19) serves as a mirror preserving the wave spin projec-
tion under reflection, whereas systems (2.31) and (2.32)
serve as a mirror preserving helicity under reflection, i.e.,
inverting the spin projection. In both cases, the transforma-
tion properties of the reflected wave under Lorentz
transformations are preserved and are opposite to those of
the incident wave.

Spatial reflection of helical solutions is equivalent to the
permutation

cino 0�>couto� ;

with the change of helicity to the opposite value.
As follows from the explicit expressions for the Bogoliu-

bov coefficients, they are defined by products of waves
incident on the mirror or reflected by the mirror, which
enter the in- or out-solutions. Such products are identical
for the in- and out-solutions characterized by the spin
projection, as well as for solutions characterized by helicity
[cf. Eqns (2.18) and (2.19) with (2.31) and (2.32)]. This
explains the invariance of the Bogoliubov coefficients in
passing from a system of solutions characterized by the spin
projection to the one characterized by helicity. In other
words, the Bogoliubov coefficients are degenerate with
respect to the spin behavior under wave reflection from the
mirror. They are diagonal with respect to both the spin
projection and helicity, and do not depend on their values.

3. Relation of current and charge densities
to the Bogoliubov coefficients
of scalar and spinor fields

3.1 Actions and spectra of the number of quanta
of charged sources in (3+1)-space
The action W defining the vacuum±vacuum amplitude
exp �iW=�h� in the presence of a source, albeit considered
a classical quantity, nevertheless has a direct relation to
quantum theory, similarly to the amplitude. In particular,
its doubled imaginary part divided by the Planck constant
is equal to the total number of quanta emitted by the
source over the entire time. We discuss the information
contained in the amplitude exp �iW=�h� in Section 5 in
more detail.

For a real-valued vector source with the current density
j a�x�, the action is

W �1� � 1

2c

�
d4x d4x 0 ja�x�D f

4 �xÿ x 0; m� j a�x 0� : �3:1�

Accordingly, the total number of emitted quanta is given by

�N �1� � 2

�h
ImW �1�

� 1

�hc

�
d4x d4x 0 ja�x� ImD f

4 �xÿ x 0; m� j a�x 0�

� 1

�hc

�
dok

�� ja�k���2 : �3:2�

This relativistically invariant and positive result follows
directly from the invariant representation of the causal
function

D f
4 �z; m� � i

�
dok exp

ÿ
ikzÿ ik 0jz 0j� ; z � xÿ x 0 ; �3:3�

dok � d3k

�2p�32k 0
; k 0 �

����������������
k2 � m2

q
:

Indeed, the symbol of the imaginary part allows removing the
modulus of the coordinate z 0 in representation (3.3), whence

ImD f
4 �z; m� � Re

�
dok exp �ikaz a� ; z � xÿ x 0 ; �3:4�

and the subsequent integration over x and x 0 leads to the
expression above. The spectral density�� ja�k���2 � �� j�k���2 ÿ �� j0�k���2 > 0 ; �3:5�

is Lorentz invariant and positive because, for a time-like or
isotropic k a, the 4-vector

ja�k� �
�
d4x ja�x� exp �ÿikx� �3:6�

is space-like owing to the conservation of the current:

k a ja�k� � 0 : �3:7�

Therefore, ImW �1� > 0.
The parameter m with the dimension of inverse length is

kept to remove the infrared divergence if it occurs, and is
assumed to be infinitesimal.

For a real-valued scalar source with the charge density
r�x�, we must replace ja�x� ! r�x� in the formulas presented
above. Then the total number of emitted scalar quanta is

�N �0� � 2

�h
ImW �0�

� 1

�hc

�
d4x d4x 0 r�x� ImD f

4 �xÿ x 0; m� r�x 0�

� 1

�hc

�
dok

��r�k���2 : �3:8�

Here, too, ImW �0� > 0. Hence, the vacuum persistence
probabilities exp �ÿ2 ImW �1; 0�=�h� in the presence of a
radiating vector or scalar source are less than unity.

The integrands in Eqns (3.2) and (3.8) are the spectra of
themean numbers of quanta with spin s � 1 and 0 given in the
Introduction [formula (1.3)].
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For point-like electric and scalar sources moving along a
trajectory xa�t� in the Minkowski �3� 1�-space, the current
and charge densities and their Fourier components are
defined by the formulas

ja�x�; r�x� � e

�1
ÿ1

dt
�

_xa�t�; 1
	
d4
ÿ
xÿ x�t�� ; �3:9�

ja�k�; r�k� � e

�1
ÿ1

dt
�

_xa�t�; 1
	
exp

ÿÿikx�t�� : �3:10�

In agreement with the adopted expressions for the action W
and propagator D f

4 , it is assumed that e is the electric and the
scalar charge in Heaviside units. In this case, the mean
number of quanta emitted by the charge over the entire
trajectory can be written as

�N �1; 0� � 2 ImW �1; 0�

�h

� e 2

�hc

��
dt dt 0

�
_xa�t� _x a�t 0�; 1	 ImD f

4 �z; m� ; �3:11�
z a � x a�t� ÿ x a�t 0� :

If the charge trajectory lies in the �x; t� plane, i.e., in
�1� 1�-space, integral (3.10) involves only the zeroth and first
components of the vectors x a�t� and k a. However, k a remains
a 4-vector because the quantum propagates in the �3� 1�-
space. Accordingly, ja�k� and r�k� depend only on two
independent variables, and k� � k 0 � k 1, where k 0 �����������������
k2 � m2

p
, can be conveniently taken as these. For �N �1; 0�

and the spectra d�n
�1; 0�
k�kÿ , writing the invariant measure dok in

terms of k� and the azimuthal angle j, as was done in the
Introduction, we obtain the expressions

�N �1; 0� �
�
d�n
�1; 0�
k�kÿ ;

�3:12�
d�n
�1; 0�
k�kÿ �

n�� ja�k�; kÿ���2; �� r�k�; kÿ���2o dk� dkÿ
�4p�2 ;

given in the Introduction [formula (1.4)].

3.2 Symmetry of linear relations
between the Bogoliubov coefficients
and densities of current and charge
From the secondary-quantized theory, it follows that the
absolute amplitude houto 00ojini of pair creation and the
amplitude houto 00jo 0 ini of single-particle scattering by a
point-like mirror in �1� 1�-space are related as

houto 00ojini � ÿ
X
o 0
houto 00jo 0 ini b �o 0o : �3:13�

This formula allows interpreting b �o 0o as the amplitude of a
source of a pair of massless particles potentially emitted to the
right and to the left with respective frequencies o and o 0 [5].
The particle with the frequency o freely moves to the right,
and the particle with frequency o 0 propagates to the left only
for a certain time interval, being then reflected by the mirror
and emitted in the right direction with a changed frequency
o 00 (see Fig. 1). In this case, in the time interval between the
creation of the pair and reflection of the left particle, we are
dealing with a virtual pair with the energy k 0, momentum k 1,

and mass m:

k 0 � o� o 0 ; k 1 � oÿ o 0 ; m �
���������
ÿk 2
p

� 2
���������
oo 0
p

:

�3:14�

In addition to this time-like polar 2-vector k a, a space-like
axial 2-vector q a constructed using the antisymmetric unit
tensor eab and the vector kb is also very important:

qa � eab k b ; q 0 � ÿk 1 � ÿo� o 0 ; �3:15�
q 1 � ÿk 0 � ÿoÿ o 0 < 0 :

In terms of the vectors k a and q a and the current and charge
densities in (3.10), the duality discussed here between the
descriptions of processes in �3� 1�- and �1� 1�-spaces, as
well as the symmetry between the coefficients ao 0o and b �o 0o, is
expressed in the most compact way.

The radiation of a boson pair in �1� 1�-space and a
quantum with spin s � 1 in �3� 1�-space are

ebB�
o 0o � ÿ

qa j
a�k������������

k�kÿ
p ; eaB

o 0o � ÿ
ka j

a�q������������
k�kÿ
p : �3:16�

The radiation of a fermion pair in �1� 1�-space and a
quantum with the spin s � 0 in �3� 1�-space are

ebF�
o 0o � r�k� ; eaF

o 0o � r�q� : �3:17�

The current densities j a�k� and j a�q� and charge densities
r�k� and r�q� involved here are defined by formula (3.10) as
functionals of the trajectory x a�t� on the �x; t� plane, i.e., in
the �1� 1�-space, where they become functions of the two-
dimensional vectors k a and q a with components (3.14) and
(3.15). It can be shown that j a�k� and j a�q� are space-like and
time-like polar 2-vectors in �1� 1�-space if k a and q a are
respectively time-like and space-like 2-vectors.

In the vacuum of massless scalar or spinor fields, the
boundary condition on the mirror triggers the appearance of
vector or scalar perturbation waves bilinear inmassless fields.
There are two types of such waves:

t

u

x

o0

o00
v

o

Figure 1. Creation of a pair of massless oppositely moving particles with

frequencies o and o 0 by an accelerated mirror.
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(1) waves of the amplitude b �o 0o with the time-like
momentum k a and a positive frequency, carrying energy
away from the mirror;

(2) waves of the amplitude ao 0o with the space-like
momentum q a directed to the left, toward the mirror, and
accompanying it as it moves.

The waves with space-likemomenta appear even when the
mirror is at rest or moves uniformly (the Casimir effect),
whereas waves with time-like momenta appear only for an
accelerated mirror.

The pairs of Bose (Fermi) particles have spin 1 (0) because
their source is the current density vector (scalar of charge
density) (see Eqns (3.16) and (3.17) and also Ref. [11] or
problem 12.15 in Ref. [21]).

3.3 Coincidence of the spin of pairs emitted
by mirrors and the spin of quanta emitted by charges
We consider the relation of expressions (3.16) and (3.17) to
the initial formulas (2.11), (2.12), (2.28), and (2.29) for the
Bogoliubov coefficients, making the transformation in the
latter from the integration variables u and v to the
coordinates of points on the mirror trajectory at proper-
time instants t and t 0:

u � xÿ�t� ; f �u� � x��t�; �3:18�
v � x��t 0�; g�v� � xÿ�t 0� :

The pairs of expressions for bB�
o 0o and aB

o 0o are then written in
terms of � components of 2-vectors u a�k� and u a�q�,
differing only in the physical meaning of their vector
arguments k a and q a:

bB�
o 0o �

kÿ�����������
k�kÿ
p u��k� � ÿ k������������

k�kÿ
p uÿ�k� ; �3:19�

aB
o 0o �

qÿ�����������
k�kÿ
p u��q� � ÿ q������������

k�kÿ
p uÿ�q� : �3:20�

The vectors

u a�k� �
�
dt _x a�t� exp ÿÿikx�t�� ;

�3:21�
u a�q� �

�
dt _x a�t� exp ÿÿiqx�t��

differ only by the absence of the factor e (the charge in
Heaviside units) from the current densities

j a�k� � eu a�k� ; j a�q� � eu a�q� �3:22�

of a point-like source moving along the same trajectory as the
mirror. For the b coefficient, the argument of the current is
the time-like polar vector k a with components (3.14), and for
the a coefficient, it is the space-like axial vector q a with
components (3.15).

We note that double representations (3.19) and (3.20) for
the coefficients b � and a are related by the current conserva-
tion law

kÿu��k� � k�uÿ�k� � ÿ2kau a�k� � 0 ; �3:23�

and similarly for u a�q�:
qÿu��q� � q�uÿ�q� � ÿ2qau a�q� � 0 : �3:24�

Hence, the terms compensating each other in these conserva-
tion laws have the physical meaning of the Bogoliubov
coefficients �bB�

o 0o and �aB
o 0o.

Because k� � �q�, half the sums of the two expressions
for the Bogoliubov coefficients in Eqns (3.19) and (3.20)
(times the charge) are the products of unit vectors

ÿ qa�����������
k�kÿ
p ; ÿ ka�����������

k�kÿ
p �3:25�

and respective current density vectors j a�k� and j a�q� [see
Eqn (3.16)].

Because j a�k� and j a�q� are space-like and time-like polar
vectors in �1� 1�-space and their arguments k a and q a are
time-like and space-like vectors, bB�

o 0o is a pseudoscalar
contracted from space-like polar and axial vectors and aB

o 0o
a scalar contracted from time-like polar vectors.

Expressions (2.28)and(2.29) forthebF� andaF coefficients
of a fermion field with the same change of variables (3.18)
reduce to scalars u�k� and u�q�, differing only in the physical
meaning of their arguments k a and q a:

bF�
o 0o � u�k� �

�
dt exp

ÿÿikx�t�� ;
�3:26�

aF
o 0o � u�q� �

�
dt exp

ÿÿiqx�t�� :
They differ only by the absence of the factor e from the
Fourier transforms

r�k� � eu�k� ; r�q� � eu�q� �3:27�

of the density of the scalar charge moving along the same
trajectory as the mirror [see Eqn (3.17)].

The fact that the amplitude bB�
o 0o of the source of the

virtual boson pair is defined by the current j a�k�; kÿ� and the
amplitude bF�

o 0o of the virtual fermion pair by the scalar
r�k�; kÿ� implies that the spin of the boson pair is 1, whereas
it is 0 for the fermion pair. Thus, the coincidence of spectra of
mirror radiation in �1� 1�-space and charge radiation in
�3� 1�-space can be explained by the coincidence of the spin
of the pair emitted by the mirror with the spin of a quantum
emitted by the charge [5]. In this respect, we note that in scalar
product (3.16) defining bB�

o 0o, the space-like pseudovector
ÿqa=

�����������
k�kÿ
p

is orthogonal to the pair 2-momentum, has
unit length, and, in the proper system of the pair, has only a
space-like component, the same as the current vector j a�k�.
It can be treated as the polarization vector or the spin of the
boson pair.

To conclude Sections 3.2 and 3.3, we note that on the level
of linear relations, formulas (3.16), (3.17) and (3.19), (3.20),
(3.26), (3.27) demonstrate the duality of the semiclassical
description of the radiation of quanta by a point-like charge
in �3� 1�-space and the quantum description of the radiation
of pairs of quanta by a point-like mirror in �1� 1�-space.

3.4 Functional coincidence
of the spectra of boson and fermion pairs
emitted by mirrors with the spectra of quanta
emitted by electric and scalar charges
The mean number of Bose or Fermi quanta emitted by the
mirror at a frequency o in the interval do is given by

d�nB;F
o � do

2p

�1
0

do 0

2p

��bB;F
o 0o

��2 ; �3:28�
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where the integral is the mean value of the operator
Nouto � a�outoaouto for the number of out-particles of the
frequency o in the vacuum of in-particles:

hinja�outoaoutojini �
�1
0

do 0

2p
jbo 0oj2 : �3:29�

Because particles appear in pairs, the number of pairs is that
of the particles if the particle and the antiparticle are different,
and half of that if the particle and the antiparticle are
identical. We consider the first case, where the total mean
number of emitted pairs is

�NB;F �
��1

0

do do 0

�2p�2
��bB;F

o 0o

��2 : �3:30�

Such a physical interpretation of d�nB;F
o and �NB;F follows

from the secondary quantization of the fields f and c, when
the coefficients of the field expansion in plane waves with
positive and negative frequencies are interpreted as the
operators of particle absorption and antiparticle creation.
The secondary-quantized theory allows constructing all
possible amplitudes of many-particle creation, annihilation,
and scattering with the help of the Bogoliubov coefficients
[5, 19, 22].

The Bogoliubov coefficients and the number of states
do do 0=�2p�2 are Lorentz invariant. Accordingly, the spec-
trum d�no of the mean number of emitted quanta and the total
mean number of quanta are relativistically invariant.

We now demonstrate that the expressions for �N �1� and
�N �0� in Eqns (3.12) and (1.4) differ only by the factors e 2=�hc
from the total mean numbers of boson and fermion pairs

�NB;F �
��1

0

do do 0

�2p�2
��bB;F

o 0o

��2 �3:31�

emitted by a point-like mirror in �1� 1�-space. We first
consider the squared modulus��bB

o 0o

��2 � bB
o 0o bB�

o 0o ;

using both expressions given in Eqn (3.19) for the factors.
Then��bB

o 0o

��2 � ÿ 1

2
�u�u �ÿ � uÿu ��� � ua�k� u a��k� � ��ua�k���2 :

�3:32�

According Eqn (3.26), the squared modulus of the Bogoliu-
bov coefficient for the Fermi field is just��bF

o 0o

��2 � ��u�k���2 : �3:33�

The time-like 2-vector �k 1; k 0� in Eqns (3.32) and (3.33) is
related to o and o 0 by formulas (3.14), i.e.,

k 0 � o� o 0 ; k 1 � oÿ o 0 ;

or, equivalently,

k� � 2o ; kÿ � 2o 0 :

Then

do do 0

�2p�2 �
dk� dkÿ
�4p�2

and

�NB;F �
��1

0

dk� dkÿ
�4p�2

n��ua�k���2; ��u�k���2o : �3:34�

Because ja�k� � eua�k� and r�k� � eu�k�, in accordance with
Eqn (3.12), we find the relation

�N �1; 0� � e 2

�hc
�NB;F ; d�n

�1; 0�
k�kÿ �

e 2

�hc
d�nB;F

k�kÿ �3:35�

between the total mean numbers of quanta with spin 1 and 0
emitted by charges in �3� 1�-space and the boson and
fermion pairs emitted by the mirror in �1� 1�-space, as well
as between their spectra.

3.5 Coincidence of the spectra
of boson and fermion pairs at high frequencies
We consider the spectra of boson and fermion pairs using
the original representations (2.11) and (2.28) for bB�

o 0o and
bF�
o 0o:

d�nB
k�kÿ �

�����
�������
k�
kÿ

s �1
ÿ1

du exp

�
i

2

ÿ
k�u� kÿ f �u�

�������
2
dk� dkÿ
�4p�2 ;

�3:36�

d�nF
k�kÿ �

�����
�1
ÿ1

du
�����������
f 0�u�

p
exp

�
i

2

ÿ
k�u� kÿ f �u�

�������
2
dk� dkÿ
�4p�2 :

�3:37�

As can be seen, these expressions are essentially different. But
for a sufficiently smooth mirror trajectory and large values of
k�, when the integrals in Eqns (3.36) and (3.37) can be
computed by the steepest descent method, these spectra do
coincide. Indeed, in this case, the stationary point u � u0
satisfies the equation

f 0�u0� � ÿ k�
kÿ

and lies in the complex plane u because f 0�u� > 0 on the real
axis due to the time-like character of the trajectory. There-
fore, for large k�, the spectra have the common exponential
asymptotic behavior

d�nB
k�kÿ � d�nF

k�kÿ

� k�
k 2ÿ
�� f 00�u0��� exp

h
ÿIm ÿk�u0 � kÿ f �u0�

�i dk� dkÿ
4p

:

�3:38�
This asymptotic behavior agrees with the theorem according
to which the Fourier component of a smooth function in the
high-frequency domain decays faster than any negative
integer power of frequency [23]. (For high-frequency spec-
trum asymptotic expressions in electrodynamics, see
Ref. [24].)

Additionally, the coincidence of the spectra of boson and
fermion pairs in the range of high frequencies o and o 0 of
quanta with spin 0 and 1=2 can be viewed as a manifestation
of a peculiar supersymmetry. The spectra coincide, remaining
functionals (which are now identical) of the mirror trajectory
and functions of two variables.
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Because the spectra d�nB
k�kÿ and d�nF

k�kÿ of boson and
fermion pairs emitted by the mirror are purely geometrical
quantities and coincide at k� ! 1, it follows by virtue of the
discovered symmetry that

d�n
�1�
k�kÿ �

e 2

�hc
d�nB

k�kÿ ; d�n
�0�
k�kÿ �

e 2

�hc
d�nF

k�kÿ ;

and hence it is natural to suppose that the spectra d�n
�1�
k�kÿ and

d�n
�0�
k�kÿ for large values of k� are independent of the spin of the

emitted quanta, i.e., are identical. This means that the electric
and scalar charge values are also equal.

4. Holographic principle
of bare charge quantization

4.1 Relation between causal Green's functions
in d- and (dÿ 2)-dimensional spaces
The principal basis for the duality discussed here is the
relation between causal functions in d- and �dÿ 2�-dimen-
sional Minkowski spaces:

D f
d �x; m� �

1

4p

�1
m 2

dm 2 D f
dÿ2�x;m� : �4:1�

Because D f
d �x; m� satisfies the inhomogeneous wave equation

�ÿq2a � m 2�D f
d �x; m� � dd�x� ; �4:2�

where q2a is the Lorentz square of the d-dimensional vector
qa � q=qx a and dd�x� is the d-dimensional Dirac delta
function, relation (4.1) involves not only integration over m 2

but also an analytic continuation of the right-hand side in the
argument x 2 from the �dÿ 2�-dimensional domain into the
d-dimensional one.

The solution of Eqn (4.2) can be written in terms of the
MacDonald function

D f
d �x; m� �

i
ÿ
m
������
x 2
p �n

�2p�n�1x 2n
Kn
ÿ
m
������
x 2
p �

; n � dÿ 2

2
; �4:3�

if x 2 � x 2 ÿ x 2
0 > 0, and analytically continued through the

upper half-plane of complex x 2 to the semiaxis x 2 < 0, where
it can be conveniently written in terms of theHankel function:

D f
d �x; m� �

exp �ÿipn�ÿm ������������������
ÿx 2 ÿ ie
p �n

4�2p�n�ÿx 2 ÿ ie�n H �2�n

ÿ
m
������������������
ÿx 2 ÿ ie
p �

:

�4:4�

It can be easily seen that integral relation (4.1) follows from
the well-known differential relation

ÿ�z nKn�z�
� 0 � z nKnÿ1�z� �4:5�

between MacDonald functions and from the vanishing of
z nKn�z� at infinity (see Ref. [25]).

Of relevance for us is the relation between the causal
function in four-dimensional �d � 4� and two-dimensional
�dÿ 2 � 2� spaces. We emphasize two points.

(1) The link between the propagation processes in the two
spaces of different dimensions is not arbitrary, but is uniquely
defined mathematically by formula (4.1).

(2) It is essential that the functionD f
4 �x; m� in the left-hand

side of Eqn (4.1) describes the propagation of a particle with a

mass m that takes one arbitrary, for example, infinitely small
value, while the function D f

2 �x;m� in the right-hand side of
Eqn (4.1) describes the propagation of a `particle' with the
mass m taking all possible values in the interval m4m <1.
The role of such a `particle' is played by the pair of two
massless oppositely moving particles, formed via the change
in the energy±momentum of the vacuum field fluctuations in
�1� 1�-space brought about by a mirror moving with
acceleration. These particles should be treated as massless,
otherwise Eqn (4.1) would not contain the only free para-
meter m.

Thus, Eqn (4.1) not only relates the propagators of a
quantum and a pair in spaces of dimensions d � 4 and d � 2
but also points to the massless character of particles forming
the pair. The masslessness of particles forming a massive pair
in �1� 1�-space is the principal, purely geometrical aspect of
the duality discussed here.

4.2 Once again on the functional coincidence
of the spectra of mean numbers of quanta
and pairs emitted by the charge
and mirror in spaces with d � 4 and d � 2
We consider the mean number of quanta emitted by the
charge over its entire trajectory that entirely lies in the �x; t�-
plane. For such trajectories, if we use the relation between the
causal functions in �3� 1�- and �1� 1�-spaces in Eqn (3.11),

D f
4 �z; m� �

1

4p

�1
m 2

dm 2 D f
2 �z;m� ; �4:6�

D f
2 �z;m� � i

�1
ÿ1

dy
4p

exp
h
im
ÿ
z 1 sinh yÿ jz 0j cosh y�i ;

and use the above representation for D f
2 with the two-

dimensional vector z a � x a�t� ÿ x a�t 0�, then we can replace
ImD f

4 in Eqn (3.11) with the expression

ImD f
4 �z; m� � Re

�1
m 2

dm 2

4p

�1
ÿ1

dy
4p

exp �ikz� �4:7�

and integrate over t, t 0. Then �N �1; 0� becomes

�N �1; 0� � e 2

�hc

�1
m 2

dm 2

4p

�1
ÿ1

dy
4p

n��ua�k���2; ��u�k���2o ; �4:8�

where the 2-vector ua�k� and the scalar u�k� are defined in
Eqns (3.21) and (3.26), and the wave 2-vector �k 1; k 0� of a
particle of mass m appearing in �1� 1�-space is related to the
wave 4-vector k a � �k1 � k?; k 0 � �k 2

1 � k 2
? � m 2�1=2� of the

quantum in �3� 1�-space by
k 1 � m sinh y ; k 0 � m cosh y ; m �

�����������������
k 2
? � m 2

q
: �4:9�

We note that ifm is the particle mass, then k 1=k 0 � tanh y
is its velocity and y is its rapidity. This physical meaning of the
parameters m and y is dictated by the relation of the
propagators in �3� 1�- and �1� 1�-spaces.

Moreover, according to Eqn (4.9), k 1 and k 0 are the
difference and the sum of two frequencies defined below in
Eqn (4.11), i.e., the particle with a massm can be considered a
pair of massless particles flying apart in opposite directions.
On the other hand, for the mean numbers

�NB;F �
��1

0

do do 0

�2p�2
��bB;F

o 0o

��2 �4:10�
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of boson and fermion pairs, changing the variables as

o � 1

2
m exp y ; o 0 � 1

2
m exp �ÿy� ; do do 0 � 1

4
dm 2 dy ;

�4:11�
we can obtain exactly the same expression as in Eqn (4.8), but
without the factor e 2=�hc:

�NB;F �
�1
0

dm 2

4p

�1
ÿ1

dy
4p

n��ua�k���2; ��u�k���2o ;
�4:12�

�N �1; 0� � e 2

�hc
�NB;F :

Here, the 2-vector �k 1; k 0� is related to the frequencies o and
o 0 of the quanta forming the pair by

k 1 � oÿ o 0 � m sinh y ; k 0 � o� o 0 � m cosh y ;

m � 2
���������
oo 0
p

�
����������������
k 2
0 ÿ k 2

1

q
: �4:13�

Expression (4.12) coincides with the previous expression for
�NB;F in Eqn (3.34); instead of o and o 0, that expression
involved the variables k� � 2o and kÿ � 2o 0, which are
equivalent to the variables m and y because k� � m exp ��y�
according to Eqn (4.13).

While formula (4.9) relates the wave 2-vector �k 1; k 0� of a
massive particle appearing in �1� 1�-space to the wave
4-vector of a quantum emitted by the charge in �3� 1�-space,
formula (4.13) gives it the interpretation of the wave vector of
a pair of massless particles with frequencies o and o 0 moving
oppositely. The pair has the mass m in the continuum
m4m <1 and the velocity tanh y in the interval �ÿ1; 1�
and owes its existence to a point-like accelerated mirror in
�1� 1�-space.

Thus, in formula (4.8) for �N �1; 0�, the variables m and y
appeared as the result of the transition from D f

4 to D f
2 and

have the physical meaning of the mass and rapidity of a
particle in �1� 1�-space. At the same time, the current density
ua�k� and the charge density u�k�, as well as the factor e 2=�hc,
entered this formula as the Fourier transforms of the sources
ja�x� and r�x� contained in the actionsW �1; 0�.

These same densities ua�k� and u�k� appeared in formula

(4.12) for �NB;F because they enter the relativistically invariant

structure of scalar productsì the Bogoliubov coefécients

bB
o 0o and bF

o 0o for scalar and spinor éelds [Eqns (2.8) with

(2.9) and (2.26) with (2.27)]. Roughly speaking, the presence

of the derivative q
$

t in scalar products (2.8) and (2.9) implies

their proportionality to the currents ua�k� and ua�q�, and its

absence in scalar products (2.26) and (2.27) relates them to the

scalars u�k� and u�q�. And the variables m and y emerged in

Eqn (4.12) owing to the replacement of the frequencies of

quanta in the pair by its mass and rapidity.

To summarize, at the core of the duality discussed here are
the geometrical links between

(a) the causal Green's functions in �3� 1�- and �1� 1�-
spaces;

(b) the current and charge densities and scalar products of
scalar and spinor fields in the same spaces.

It would be wrong to think that every time the charge and
mirror pass the same part of their common trajectory, the

radiation of a quantum with the 4-momentum k a � �k; k 0�,
k � k1� k?, k 0 � �k 2

1 � k 2
?�1=2, by the charge in �3� 1�-

space is accompanied by the radiation of a pair with the
2-momentum �k1; k 0� and mass m � k? by the mirror in
�1� 1�-space. It would be so if there had been a physical
relation combining the quantum radiation in �3� 1�-space
and pair radiation in �1� 1�-space into a single event, and if a
theory had existed comprising, in particular, the Schwinger
source theory and the theory of Bogoliubov transformations
for these spaces. In such a theory, the condition e 2=�hc � 1
would be maintained automatically.

However, if e 2=�hc � 1, then even in the absence of such a
physical link and a theory, given a large number of passes over
the trajectory, the mean numbers of quanta and pairs emitted
by the charge and the mirror from identical intervals of the
trajectory and having uniquely related quantum numbers are
arbitrarily close. In this case, there is an informational,
holographic link between the processes of radiation in
4- and 2-dimensional spaces. This link implies the coincidence
of the spectra ofmean numbers of quanta and pairs emitted by
the charge and the mirror from their entire common
trajectory. They coincide as functions of two variables and
functionals of the trajectory.

The duality addressed here, relating the classical and
quantum theories in the Minkowski spaces of 4 and
2 dimensions, in a certain sense resembles the duality of
classical and quantum descriptions in spaces of adjacent
dimensions announced by 't Hooft [26] and Susskind [27] as
the holographic principle. Such a duality was indeed
discovered by Gubser, Klebanov, and Polyakov [28] and
Maldacena [29] for various types of semiclassical super-
gravities in an anti-de Sitter space and quantum conformal
theories at the boundary of this space. It seems likely, at least
in our case, that the reason for such dualities can be the
correspondence between an individual particle in the higher-
dimensional space and a pair of particles in the lower-
dimensional space. Describing a larger number of particles
in the lower-dimensional space calls for accounting for
quantum mechanical interference effects.

5. Source theory and spectra of the mean
number of quanta emitted by charges

We trace how the quantum spectrum d�nk for the mean
number of emitted quanta and its relation dEk � �ho d�nk to
the classical spectrum dEk of mean radiated energy emerge
in the framework of the source theory developed by
Schwinger in monograph [11]. In this theory, the full
description of the particle emission and absorption pro-
cesses is furnished by the vacuum±vacuum amplitude in the
presence of a source S,

h0�j0ÿiS � exp

�
i

�h
W�S�

�
: �5:1�

In this case, the doubled imaginary part of the action W
divided by the Planck constant �h equals the mean number of
particles �N created by the source over the total time. In turn,
�N represents the integral of the spectrum d�nk of the mean
number of emitted quanta,

�N � 2 ImW

�h
�
�
d�nk ; �5:2�
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each carrying away the momentum �hk and energy �ho
determined by the wave vector k a� �k; k 0�, k 0� o=c.

This is a direct relation between the very important
semiclassical quantity and the most important object of
quantum physics, the quanta of a source field.

The semiclassical aspect of the vacuum amplitude resides
in the fact that the source motion is regarded as given, i.e., the
back reaction of emission or absorption of quanta on the
source as well as the interaction between the quanta are
neglected. This approximation resembles that used in com-
puting the black-body spectrum: the temperature of the
photon gas in a black-body cavity is regarded as given,
independent of radiation or absorption of quanta, and the
interaction between the quanta is neglected.

In the exposition below, the reader is advised to pay
attention to the appearance of integer numbers nk � 0;
1; 2; . . .Ðthe numbers of quanta filling the state with the
momentum k a � �k; k 0�Ðand to the procedure by which
they are converted to the average occupation numbers �nk and
the spectral distribution d�nk for the mean number of quanta.
The relation between the spectrum of the mean number of
emitted quanta and the spectrum of mean radiation energy,
mentioned above, relies on the idea that the energy �ho is
associated with a quantum.

5.1 Vacuum amplitude of a source of spin-0 particles
The actionW is quadratic in sources, and for spin-0 particles
is given by

W�r� � 1

2c

�
d4xd4x 0 r�x�D f�xÿ x 0; m� r�x 0� �5:3�

with the scalar function r�x�, the scalar charge density, as the
source. The dimension of r�x� is e cmÿ3. The dimension of the
scalar charge e coincides with that of the electric charge,
erg1=2 cm1=2.

The causal function for the propagation of a field radiated
by the source satisfies the equation

�ÿq2a � m 2�D f�xÿ x 0� � d�xÿ x 0� : �5:4�

It is relativistically invariant, symmetric,

D f�xÿ x 0� � i

�
dok exp

�
ik�xÿ x 0� ÿ ik 0jx 0 ÿ x 0 0j� ;

dok � d3k

�2p�32k 0
; k 0 � o

c
�

����������������
k2 � m 2

q
;

�5:5�

and contains the Planck constant only in the parameter
m � mc=�h with the meaning of the inverse Compton length
for the field quanta. The space and time components of the
wave vector k a � �k; k 0� have the dimension of inverse
length, and the 4-vector coordinates are x a � �x; x 0 � ct�.
The dimension of the invariant measure dok is the inverse
length squared.

We suppose that the source r�x� is composed of the
radiating r2�x� and absorbing r1�x� sources,

r�x� � r1�x� � r2�x� ;

occupying finite space±time domains in which the absorption
by the source r1�x� occurs after the radiation process by the
source r2�x� is completed. In this case, the amplitude

h0�j0ÿi r can be written in the form

h0�j0ÿi r � h0�j0ÿi r1

� exp

�
i

�hc

�
d4x d4x 0 r1�x�D f�xÿ x 0; m� r2�x 0�

�
h0�j0ÿi r2 ;

�5:6�

using the symmetry of the argument of the exponential under
the exchange r1�x�>r2�x� and the symmetry of the causal
function. In what follows, the factor 1=�hc in the argument of
the exponential function is typically set to unity, i.e., the
system of units with �h; c � 1 is used.

In accordance with the causal position of sources, the
argument can be written as a sum over discrete values of the
wave vector,

i

�
d4xd4x 0 r1�x�D f�xÿ x 0� r2�x 0�

� i

�
d4x d4x 0 r1�x�

�
i

�
dok exp

ÿ
ik�xÿ x 0��� r2�x 0�

�
X
k

ir �1k ir2k ; �5:7�

if we use the definitions

rk �
���������
dok

p
r�k� ; r�k� �

�
d4x r�x� exp �ÿikx� ; �5:8�

r ��k� � r�ÿk�

and suppose that each discrete value of the wave vector is
within the corresponding interval d3k. In that case, the
exponential in Eqn (5.6) can be rearranged into a product of
exponentials associated with individual values of k,

exp

�X
k

ir �1k ir2k

�
�
Y
k

exp
�
ir �1k ir2k

�
�
Y
k

X1
nk�0

�ir �1k�nk������
nk!
p �ir2k�nk������

nk!
p ; �5:9�

or into the product of the corresponding expansions of these
functions. We note that the dimension of rk is that of the
charge e, and hence the exponent in Eqn (5.6) containing the
factor 1=�hc is dimensionless.

Here, for the first time, each k becomes associated with an
integer nk � 0; 1; 2; . . . ;which can be treated as the number of
particles in a state with the wave number k lying in the interval
d3k. In other words, these integers are the occupation
numbers of different states k.

Expansion (5.9) derived above allows writing vacuum
amplitude (5.1) for the causally ordered source pair as

h0�j0ÿi r �
X
fnkg



0�
��fnkg� r1
fnkg��0ÿ�r2 ; �5:10�

with the following expressions for the many-particle creation
and absorption amplitudes:
fnkg��0ÿ� r � h0�j0ÿi rY

k

�irk�nk������
nk!
p ; �5:11�



0�
��fnkg� r � h0�j0ÿi rY

k

�ir �k �nk������
nk!
p : �5:12�
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The symbol fnkg denotes the set of integer occupation
numbers for all states k characterizing the many-particle
amplitudes. In other words, fnkg are nk1 ; nk2 ; nk3 ; . . . ; where
k1; k2; k3; . . . are the wave vectors involved in the product

Q
k.

Accordingly,
P
fnkg denotes the sum over integers nk1 ; nk2 ;

nk3 ; . . . ; each taking values 0; 1; 2; . . . .
The fact that the nk are occupation numbers of the

states with momentum k is confirmed by the transforma-
tion law of many-particle amplitudes under source transla-
tions in space±time. Namely, after replacing r�x� with
r�x� X �, the Fourier component of the source and
probability amplitudes of creation and absorption acquire
the phase factors

r�k� ! exp �ikX � r�k� ;
fnkg��0ÿ� r ! exp �iKX �
fnkg��0ÿ� r ; �5:13�

0�
��fnkg� r ! 


0�
��fnkg� r exp �ÿiKX � :

Their phase is proportional to the total wave 4-vector

Km �
X
k

nk k
m �5:14�

of the many-particle state fnkg. Each value of the momentum
in this sum is multiplied by the number of particles with this
momentum.

The sum of absolute probabilities of creating particles in
all possible states by the source r should be equal to unity. For
amplitude (5.11), this implies thatX
fnkg

��
fnkg��0ÿ� r��2 � ��h0�j0ÿi r��2 exp �X
k

jrkj2
�
� 1 : �5:15�

But according to the initial expression (5.1) for the vacuum
amplitude,��h0�j0ÿi r��2 � exp

�
ÿ 2

�h
ImW

�
� exp

�
ÿ
�
d4x d4x 0 r�x� ImD f�xÿ x 0� r�x 0�

�
� exp

�
ÿ
�
d4x d4x 0 r�x�

�
dok exp

ÿ
ik�xÿ x 0�� r�x 0��

� exp

�
ÿ
X
k

jrkj2
�
; �5:16�

and therefore completeness condition (5.15) is indeed satis-
fied. Hence, up to a phase factor,

h0�j0ÿi r � exp

�
ÿ 1

2

X
k

jrkj2
�
; �5:17�

and then, in agreement with Eqn (5.11),
fnkg��0ÿ� r �Y
k

�irk�nk������
nk!
p exp

�
ÿ 1

2
jrkj2

�
: �5:18�

This is the final expression for the probability amplitude for
the many-particle state fnkg created by the source r.

Obviously, each factor in this amplitude is the probability
amplitude of emitting nk quanta with momentum k in the

interval d3k:

hnkj0ÿi r � �irk�
nk������

nk!
p exp

�
ÿ 1

2
jrkj2

�
; �5:19�

and its modulus squared is the probability of radiating nk
quanta in the mode k:

��hnkj0ÿi r��2 � jrkj2nk
nk!

exp
ÿÿjrkj2� : �5:20�

This probability is in effect the Poisson distribution with the
mean number of quanta emitted in the mode k equal to
�nk � jrkj2.

5.2 Relation to the secondary quantization method
Wenow turn to themethod of secondary quantization [30, 31]
and to single-mode coherent states jai, which are eigenstates
of the absorption operator a with a complex eigenvalue a:
ajai � ajai [32±34]. The operator a and its adjoint a� act in
the space of occupation numbers, decreasing and increasing
the number of particles in states with a definite number by
unity,

ajni � ���
n
p jnÿ 1i ; a�jni � �����������

n� 1
p jn� 1i ; �5:21�

and commuting as

aa� ÿ a�a � 1 : �5:22�

The state jai can be expanded in n-quantum states,

jai � exp

�
ÿ 1

2
jaj2
�X1

n�0

a n����
n!
p jni ; �5:23�

which are eigenstates of the operator a�a of the number of
quanta with the eigenvalue n: a�ajni � njni. The probability
amplitude of finding n quanta in the state jai is

hnjai � exp

�
ÿ 1

2
jaj2
�

a n����
n!
p ; �5:24�

and the probability itself is given by the Poisson distribution

w�n� � �nn

n!
exp �ÿ�n� �5:25�

with the mean number of quanta

�n � haja�ajai � jaj2 �5:26�

in the mode.
The above relations demonstrate an interesting property

of coherent states. Because such a state is characterized by an
indefinite number of quanta, the disappearance of one of
them does not, in fact, change the state, and just multiplies it
by a factor.

Hence, the amplitude hnkj0ÿi r coincides with the ampli-
tude hnjai if we identify the complex number irk with a and
the integer number nk with n; in this case, jrkj2 acquires the
physical meaning of the mean number of particles created by
the source r in the state (mode) k:

�nk � jrkj2 �
d3k

�2p�32k 0

��r�k���2 � d�nk : �5:27�
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The mean number of particles created by the source in all
states is then equal, according to Eqn (5.16), to twice the
imaginary part of the action in units of �h,

�N �0� �
X
k

nk �
X
k

�nk � 1

�hc

X
k

jrkj2

� 1

�hc

�
dok

��r�k���2 � 2

�h
ImW �0� : �5:28�

The superscript appearing here at �N andW indicates the spin
of the emitted quanta.We have already used these formulas in
the Introduction.

Analogously, the mean value of the 4-momentum emitted
by the source is

�K m �
X
k

k mnk �
X
k

k m�nk �
�
dok

��r�k���2k m : �5:29�

5.3 Vacuum amplitude of the source of spin-1 particles
For massless spin-1 particlesÐphotonsÐ the source is a
conserved 4-vector of current density j a�x�, and the
vacuum±vacuum amplitude is given by

h0�j0ÿi j � exp

�
i

�h
W� j �

�
� exp

�
i

2�hc

�
d4x d4x 0 j a�x�D f�xÿ x 0; m� ja�x 0�

�
; �5:30�

qa j a�x� � 0 :

In D f, we keep the infinitesimal mass parameter, which is
convenient for eliminating the infrared divergence if it
appears. We note that the dimension of j a�x� coincides with
that of r�x�, since the electric and scalar charges have the
same dimension.

Similarly to the vacuum amplitude for a scalar source,
amplitude (5.30) describes the system of vector sources of an
arbitrary intensity, if there is no interaction between particles
and the radiation and absorption of individual particles do
not affect the source properties (classical sources).

The action for the vector source differs from its scalar
counterpart by the replacement of r�x� with j a�x�. Using,
instead of Eqn (5.8), the definitions

j ak �
���������
dok

p
j a�k� ; j a�k� �

�
d4x exp �ÿikx� j a�x� ;

j a ��k� � j a�ÿk� �5:31�

for the vacuum amplitude with the causal sequence of sources
j a1 and j a2 , we obtain

h0�j0ÿi j � h0�j0ÿi j1 exp
�X

k

i j a �1k gab i j
b
2k

�
h0�j0ÿi j2 :

�5:32�

We introduce a quadruple of mutually orthogonal unit
4-vectors e akl numbered by l � 0; 1; 2; 3 and directed along the
time and three spatial axes of a special coordinate systemwith
its axis 3 aligned with the vector k (i.e., e akl � da

l in this
system). In an arbitrary coordinate system, the metric tensor
g ab can then be represented in the form

gab �
X
l�1; 2

e akl e
b
kl � e ak3 e

b
k3 ÿ e ak0 e

b
k0 : �5:33�

From the current conservation condition ka j
a�k� � 0 and the

isotropy of the photon 4-momentum k 2 � 0, it follows that
j 3 � j 0 in the special coordinate system mentioned above.
Therefore, in an arbitrary system,

ek3a j
a�k� � ÿek0a j a�k�; ;

and thenX
k

j a �1k gab j b2k �
X

kl�1; 2
j �1kl j2kl ; �5:34�

where jkl �
���������
dok

p
j a�k�ekla, l � 1; 2.

As a result, we express the amplitudes of many-photon
creation and absorption by the current j as
fnklg��0ÿ� j � h0�j0ÿi jY

kl

�i jkl�nkl��������
nkl!
p ; �5:35�



0�
��fnklg� j � h0�j0ÿi jY

kl

�i j �kl�nkl��������
nkl!
p : �5:36�

These amplitudes for a vector source differ from the
respective expressions for a scalar source by the replacement
in the latter of r with j, rk with jkl, and nk with nkl, because
the state of a photon, in contrast to the state of a scalar
quantum, is characterized not only by its momentum but also
by the transverse polarization that takes two independent
values.

For the vacuum persistence probability in the presence of
a vector source, using the original expression (5.30), we obtain
the amplitude��h0�j0ÿi j��2 � exp

�
ÿ 2

�h
ImW �1�

�
; �5:37�

where, in analogy with Eqn (5.16),

2

�h
ImW �1� � 1

�hc

�
dok

�� ja�k���2
� 1

�hc

�
dok

X
l�1; 2

�� ja�k�e akl��2 �X
kl

�n
�1�
kl � �N �1� : �5:38�

The superscript at W and �N denotes the spin of the emitted
quanta. We stress that the doubled imaginary part of the
action contains the contribution from both polarizations. It is
given by the sum of mean occupation numbers of states kl,
not of integer numbers nkl involved in many-particle
amplitudes.

The mean value of the 4-momentum of radiation is,
obviously,

�Km � 1

�hc

�
dok

�� ja�k���2k m �
X
kl

�nkl k
m : �5:39�

It is also determined by the mean occupation numbers of
states kl, and therefore radically differs from the wave vector
of the many-particle state [see Eqn (5.14)].

To conclude this section, we stress certain aspects of the
semiclassical source theory.

(1) Despite the classical character of the action W, its
doubled imaginary part, divided by �h, in accordance with
Eqns (5.28) and (5.38), has the physical meaning of the mean
number of quanta emitted by a scalar or vector source. This
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establishes an instructive relation between the action and the
secondary-quantized field theory, in which the state occupa-
tion numbers play the role of independent variables. The
presence of a classical source in the vacuum makes the
vacuum state j0ÿi r or j0ÿi j an analog of the coherent state
jai, which is an eigenstate of the absorption operator in the
secondary quantization method.

(2) Themean value of the number of particles formed by a
source in the vacuum has no bounds and need not be small.

(3) The Poisson distribution implies that quanta are
emitted independently. Moreover, the particles are emitted
independently not only inside the same interval of momenta
D � d3k but also in two different momenta intervals
D1 � d3k1 and D2 � d3k2. Indeed, in the combined interval
D � D1 � D2, the mean number of quanta is �nD � �nD1

� �nD2
,

and the distribution over the number of emitted quanta, by
the addition theorem for Poisson distributions, is also
Poisson,

wD�n� �
Xn
m�0

wD1
�m�wD2

�nÿm� � ��nD�
n

n!
exp �ÿ�nD� ; n � nD :

�5:40�

The interval D can be expanded over the entire range of
momenta. Then nD � N and �nD � �N, and the probability of
radiation of N particles into all possible states by a source is

w�N� �
�NN

N!
exp �ÿ �N� : �5:41�

The Poisson distribution implies the following relation
between the mean squared fluctuation of the number of
particles and the mean number of particles:

�Nÿ �N�2 � N 2 ÿ �N 2 � �N : �5:42�

6. Bogoliubov transformation: the quantum
theory of point-like mirror radiation

6.1 Radiation of pairs
of identical particle and antiparticle
For a consistent description of the quantized wave field
existing both to the right and to the left from a point-like
mirror and satisfying a common boundary condition on the
mirror, it is convenient to use the two complete sets
ffouto;f

�
outog and ffino 0 ;f

�
ino 0 g of wave equation solu-

tions, written for Bose and Fermi fields in Section 2 (see also
Refs [3, 4]). In the right Minkowski half-plane, these two
solutions have the physical meaning of out- and in-sets and
satisfy the boundary conditions on the mirror; they can be
smoothly continued into the left half-plane without changing
their functional form. However, in the left half-plane, these
sets acquire the meaning of in- and out- sets, and have to be
denoted there as ffino;f

�
inog and ffouto 0 ;f

�
outo 0 g.

In reality, each such solution is uniquely characterized by
the frequency o or o 0 of its monochromatic component
propagating to the right or to the left and the condition on
the mirror. Under the Lorentz transformation with the
velocity b along the x axis, the frequencies o and o 0

transform into ~o and ~o 0 by mutually inverse laws,

~o � Dÿ1�b�o ; ~o 0 � D�b�o 0 ; D�b� �
������������
1� b
1ÿ b

s
; �6:1�

where D�b� is the Doppler factor. Therefore, o and o 0 have
opposite covariance. In what follows, the frequencies trans-
forming as o are labeled by an even number of primes, and
those transforming aso 0 by an odd number of primes. In this
case, the index `in' or `out', in addition to the frequency index,
simply points to the side of the Minkowski plane where the
solution is considered.

We write the expansion of solutions of the first set with
respect to the solutions of the second and the inverse
expansion (in the right half-plane) in the form

fouto � ao 0ofino 0 � bo 0of
�
ino 0 ; �6:2�

fino 0 � a �o 0ofouto � bo 0of
�
outo ; �6:3�

or, if we resort to matrix notation,

fout

f �out

� �
� ~a ~b

b� a�

� �
fin

f �in

� �
;

�6:4�
fin

f �in

� �
� a � �b
�b � a

� �
fout

f �out

� �
:

Here and below, the upper and lower signs correspond to
Bose and Fermi fields, which are now denoted by the same
letter f. Because of the orthogonality and normalization of
the solutions in both sets, the matrices in Eqns (6.4) are the
inverse of each other. This implies that the Bogoliubov
coefficients satisfy four independent matrix relations

a�a� b�b � 1 ; b�a � � a�b � � 0 ; �6:5�
aa� � b �~b � 1 ; ab� � b �~a � 0 :

In the left half-plane, relations (6.2)±(6.4) are preserved, but
the new physical interpretation requires exchanging the
indices in> out in the functions, which is equivalent to the
change

a! a�; b! �~b : �6:6�

For the quantized field in the right half-plane, the relation
between the in and out creation and absorption operators a�

and a is given by the Bogoliubov transformations

ain
a�in

� �
� a b �

b a �

� �
aout
a�out

� �
;

�6:7�
aout
a�out

� �
� a� �b�
�~b ~a

� �
ain
a�in

� �
:

For the field in the left half-plane, the subscripts at the
operators a and a� in transformations (6.7) should be
exchanged, in> out. This is once again equivalent to the
replacement in Eqn (6.6).

Following the work of DeWitt [19] and his notation, we
write the vector of the vacuum field state in the remote past as
the expansion with respect to vectors of n-particle field states
in the far future:

jini � exp �iW �
X1
n�0

i n=2

n!

X
i1i2...in

Vi1i2...in ji1i2 . . . in outi : �6:8�

In our case, the quantum numbers i1i2 . . . in of out-states of
individual particles should be understood as frequencies
transforming as o or as o 0, if we are respectively dealing
with the field to the right or to the left of the mirror.
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Using the equation ainjini � 0, transformations (6.7), and
expansion (6.8), it can be easily shown [19, 22] that the relative
amplitudesVi1i2 ...in of creating n particles vanish for odd n, and
can be expressed in terms of the particle pair creation
amplitude for even n:

Vi1i2...in �
X
p

dpVi1i2Vi3i4 . . .Vinÿ1in : �6:9�

Here,
P

p stands for the summation over n!=2 n=2�n=2�!
different pairings of indices i1i2 . . . in, and dp � 1 for bosons
and dp � �1 for fermions, for even or odd parity of the
permutation leading to a given pairing. The creation
amplitudes for a particle pair with frequencies o 00 and o in
the right domain and frequencies o 000 and o 0 in the left
domain are

Vo 00o � i�aÿ1b ��o 00o ; Vo 000o 0 � ÿi�baÿ1� �o 000o 0 : �6:10�

They are related to each other by transformation (6.6) and are
symmetric for a Bose field and antisymmetric for a Fermi
field, as follows from Eqn (6.5).

The above number of terms in amplitude (6.9) arises due
to its symmetrization (antisymmetrization) and equals the
number n! of permutations in its indices reduced by 2n=2 times
owing to the already existing symmetry (antisymmetry) of
two-particle amplitudes and by �n=2�! times because exchang-
ing these amplitudes does not matter.

The particle creation in pairs owes its existence to the
linearity of the Bogoliubov transformations in the operators a
and a�. The operator ain acting on an n-particle out-state
transforms it into a superposition of �nÿ 1�-particle and
�n� 1�-particle out-states. Therefore, in the expansion of
the zeroth vector ainjini in n-particle out-states, the zero
expansion coefficients express a linear dependence between
the amplitudes of �n� 1�- and �nÿ 1�-particle creation.
Because n5 0, the one-particle creation amplitude Vi1

vanishes, and together with it, all amplitudes of creation of
an odd number of particles also vanish.

The absolute n-particle creation amplitudes are defined
and related to the relative amplitudes by

hout i1i2 . . . injini � houtjaout in . . . aout i2aout i1 jini
� exp �iW � i n=2Vi1 i2...in : �6:11�

The vacuum±vacuum amplitude houtjini � exp �iW � is
defined up to a phase factor by the equality of the full
transition probability from the initial vacuum state to unity:

1 �
X1
n�0

1

n!

X
i1i2...in

��hout i1i2 . . . injini
��2

� exp �ÿ2 ImW�
X1
n�0

1

n!

X
i1i2...in

��Vi2 i2...in

��2 : �6:12�

The sum of relative probabilities

qn � 1

n!

X
i1i2...in

��Vi1i2 ...in

��2 �6:13�

of the creation of n particles (or n=2 pairs) in the left-hand side
of Eqn (6.12) is referred to as the partition function in what
follows. It can be shown that in the case considered, when
pairs consist of identical particles and antiparticles, the

partition function isX1
n�0

1

n!

X
i1 i2...in

��Vi1i2...in

��2 � det �1�M��1=2

� exp �� 1

2
tr ln �1�M�

�
; �6:14�

where M � VV� is the Hermitian positive semi-definite
matrix formed of matrices (6.10). In particular, the first four
terms in the partition function, defined by the relative
amplitudes

1; Vi1i2 ; Vi1i2Vi3i4 � Vi1 i3Vi2i4 � Vi1i4Vi2i3 ; �6:15�
Vi1i2Vi3i4Vi5i6 � Vi1i2Vi3i5Vi4 i6 � Vi1i2Vi3i6Vi4i5

� Vi1i3Vi2i4Vi5i6 � Vi1 i3Vi2i5Vi4i6 � Vi1i3Vi2i6Vi4i5

� Vi1i4Vi2i3Vi5i6 � Vi1 i4Vi2i5Vi3i6 � Vi1i4Vi2i6Vi3i5

� Vi1i5Vi2i3Vi4i6 � Vi1 i5Vi2i4Vi3i6 � Vi1i5Vi2i6Vi3i4

� Vi1i6Vi2i3Vi4i5 � Vi1 i6Vi2i4Vi3i5 � Vi1i6Vi2i5Vi3i4

and formula (6.13), are equal to

q0 � 1 ; q2 � 1

2
trM ; q4 � 1

8
�trM�2 � 1

4
trM 2 ;

�6:16�
q6 � 1

48
�trM�3 � 1

8
trM trM 2 � 1

6
trM 3 :

The first term in q6 describes the independent radiation of
three pairs, the second describes the interference of two pairs
and the independent radiation of one pair, and the third
describes the interference of three pairs.

Generally, trMk describes the interference of k pairs if
k5 2, and �trM�k describes the independent radiation of k
pairs.

The absolute probability for n pairs to form is p2n � p0q2n,
where p0 is the vacuum persistence probability,

p0 � exp �ÿ2 ImW� ; 2 ImW � � 1

2
tr ln �1�M� : �6:17�

Because the relative probability q2n�M� of the creation
of n pairs is a homogeneous function of degree n,
q2n�lM� � lnq2n�M�, the mean number of pairs can be
conveniently found from the formula

�n �
X1
n�0

np2n � p0l
q
ql

X1
n�0

lnq2n�M�
����
l�1

� l
q
ql

2 ImW�lM�
����
l�1
� 1

2
tr

M

1�M
: �6:18�

In the right and left domains, the matricesM are different,

M � VV� �
b�b�1� b�b�ÿ1 ; �6:19�
b �~b�1� b �~b�ÿ1 ; �6:20�

8<:
but are linked to each other by transformation (6.6).
However, the positive-definite quantities trMn, n � 1;
2; . . . ; are invariants of this transformation. Accordingly,
the above full probabilities p0 of vacuum persistence, the
creation of n pairs p2n, and the mean number of pairs �n are
identical for the right and left domains. In particular, the
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quantities

p0 � exp �ÿ2 ImW� ; 2 ImW � � 1

2
tr ln �1� b�b� ;

�6:21�
p2 � exp �ÿ2 ImW� 1

2
tr b�b�1� b�b�ÿ1 ; �6:22�

�n � 1

2
tr b�b �6:23�

are preserved under transformation (6.6) or b�b! bb�. We
note the simplicity of the formula for �n and its difference from
2 ImW. We discuss this at the end of this section.

Nevertheless, the frequency distributions of probabilities
and the mean particle number do not have the left±right
symmetry. For example, the creation probability of a pair
with one particle of definite frequency and the other of an
arbitrary frequency is

p2o � exp �ÿ2 ImW�
�

b�b
1� b�b

�
oo

�6:24�

for the right domain and

p2o 0 � exp �ÿ2 ImW�
�

bb�

1� bb�

�
o 0o 0

�6:25�

for the left domain. The frequency distributions of the mean
number of particles radiated by the mirror respectively to the
right and to the left are also functionally different:

No � �b�b�oo ; No 0 � �bb��o 0o 0 : �6:26�

Along with amplitudes (6.11) of particle formation by the
mirror from the vacuum, we need to consider the amplitudes
of one-particle scattering by the mirror,

houtojo 0 ini � houtjaoutoa�ino 0 jini � exp �iW�aÿ1oo 0 ; �6:27�

houto 0jo ini � houtjaouto 0a�inojini � exp �iW�aÿ1�oo 0 �6:28�

respectively for the right and left domains. These amplitudes
differ only by their phases. Needless to say, they are
connected with each other by transformations (6.6), but we
are interested in their connection with the corresponding pair
creation amplitudes

houto 00ojini � ÿ exp �iW��aÿ1b ��o 00o

� ÿ
X
o 0
houto 00jo 0 ini b �o 0o ; �6:29�

houto 0o 000jini � exp �iW��baÿ1��o 0o 000

�
X
o

b �o 0ohouto 000jo ini : �6:30�

Because the amplitudes of pair creation and amplitudes of
one-particle scattering are, in principle, experimentally
measurable by the respective probabilities, relations (6.29)
and (6.30) enable the quantity b �o 0o to be experimentally
measured. Moreover, these relationships allow considering
b �o 0o the amplitude of the source of a pair of particles

potentially emitted to the right and to the left with respective
frequencies o and o 0. While a particle with the frequency o
actually propagates to the right, a particle with the frequency
o 0 does not fly to the left, but experiences total internal
reflection and in reality is emitted to the right, but with the
modified frequency o 00. Conversely, if a particle with the
frequency o 0 is indeed flying to the left, the particle with the
frequency o cannot fly to the right, experiences total internal
reflection, and is actually emitted to the left with another
frequency o 000.

For fermions, the amplitude bF
o 0o is diagonal with respect

to spin projection of in- and out-waves (see Section 2 and
Ref. [4]). But one of the waves forming bF

o 0o has a negative
frequency and therefore describes an antiparticle with the
frequency and spin projection opposite in sign to the
frequency and spin of this wave (see æ 26 in Ref. [20] or æ 9 of
chapter 2 in Ref. [35]). Therefore, the spin of a pair of forming
fermions equals zero. This is conérmed by the scalar
character of two identical integrals in Eqns (2.28) and (2.29),
in which du

�����������
f 0�u�p

and dv
�����������
g 0�v�p

are elements of the proper
time dt, and their coincidence,

bF�
o 0o �

1

e
r�k�; kÿ� ; �6:31�

with the Fourier component of the scalar charge density in
�3� 1�-space.

The amplitude bB�
o 0o of the boson pair source, according to

Eqns (2.11) and (2.12), is expressed linearly in terms of the
Fourier components j��k� of the electric charge current
density in �3� 1�-space,

bB�
o 0o � ÿ

�������
k�
kÿ

s
jÿ
e
�

�������
kÿ
k�

s
j�
e
; �6:32�

jÿ � e

�1
ÿ1

du exp

�
i

2

ÿ
k�u� kÿ f �u�

��
;

�6:33�
j� � e

�1
ÿ1

dv exp

�
i

2

ÿ
kÿv� k�g�v�

��
(see also Eqn (3.19) and formulas (43) and (44) in Ref. [3]).
The last equality in Eqn (6.32) is nothing but the transvers-
ality condition for the current, k� jÿ � kÿ j� � 0. From
Eqn (6.32), it also follows that bB

o 0o is a pseudoscalar,
because under reflection, k� ! k�, j� ! j�, and bB changes
its sign. The vector ja�k� is space-like and in the system where
k� � kÿ (or o � o 0) has only a space-like component, equal
exactly to ebB

o 0o. In covariant form,

ebB�
o 0o �

eab k a j b�����������
k�kÿ
p :

Hence, the source of the boson pair is conserved current
vector (6.33), and this implies that its spin is 1 [11].

The fact that the spin of the boson pair is 1 and that of the
fermion pair is 0 is essential for understanding the coincidence
of the mirror and charge spectra.

If b �o 0o is small, i.e., the mean number of emitted quanta is
small, then, as can be easily obtained from formulas (2.11)
and (2.28),

ao 0o � 2pd�~o 0 ÿ ~o� ; aÿ1oo 0 � 2pd�~oÿ ~o 0� ; �6:34�

where ~o and ~o 0 are related to o and o 0 by transformation
(6.1) in which b is the mirror effective speed on the interval of
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radiation. In this approximation, amplitudes (6.29) and (6.30)
of the emission of a pair of particles with frequencies o and
o 00 to the right and a pair of particles with frequencieso 0 and
o 000 to the left are respectively given by

houto 00ojini � ÿ exp �iW�Dÿ1�b� b �o 0o ; o 0 � Dÿ2�b�o 00 ;
�6:35�

houto 0o 000jini � exp �iW�D�b� b �o 0o ; o � D 2�b�o 000 :
�6:36�

These formulas, with the relation between the frequencies of
waves incident on the mirror and reflected from it, confirm
the interpretation of b �o 0o given above.

We now discuss the interference effects accompanying the
creation of Bose and Fermi particles. These effects become
most pronounced when the matrices M for bosons and
fermions satisfy the conditions

� 1

2
tr ln �1�M� � � ln

�
1� 1

2
trM

�
;

i.e.,

1

2
trMn �

�
1

2
trM

�n

; n � 2; 3; . . . : �6:37�

Partition function (6.14) for Bose and Fermi particles then
reduces to the respective expressions

1

1ÿ �1=2� trM and 1� 1

2
trM : �6:38�

This implies that the creation probabilities of n boson pairs
form a geometric progression,

pB
2n � pB

0 q
Bn
2 ; pB

0 � 1ÿ 1

2
trM ; qB

2 �
1

2
trM ; �6:39�

and the probabilities of radiating two or more fermion pairs
vanish, i.e., only a single fermion pair can be created:

pF
0 �

�
1� 1

2
trM

�ÿ1
; pF

2 � p0
1

2
trM ; pF

2n � 0 ; n5 2 :

�6:40�
In other words, conditions (6.37) imply the most constructive
interference for bosons and the most destructive interference
for fermions. In these cases, the mean squared fluctuation of
the number of boson pairs is always larger than �nB, and that
of fermion pairs is less than �nF, being equal to �n�1� �n� for
fermion pairs, where

0 < �nB � �1=2� trM
1ÿ �1=2� trM �

1

2
tr �b�b�B <1 ;

�6:41�
0 < �nF � �1=2� trM

1� �1=2� trM �
1

2
tr �b�b�F < 1 :

Less interesting is the case where the interference effects
can be neglected:

trMk 5 trM; 1; k5 2 ; �6:42�

or, in the language of matrices b and b�,

tr �b�b�k 5 tr b�b; 1; k5 2 :

In this case, the probability distribution for the number of
created pairs coincides with the Poisson distribution

p2n � eÿ�n ��n�n
n!

; �n � 1

2
tr b�b : �6:43�

For this distribution, the squared fluctuation of the number
of pairs is

�nÿ �n�2 � �n ;

in contrast to �n�1� �n� for geometrical distribution (6.39) and
Bernoulli distribution (6.40).

6.2 Radiation of pairs
of nonidentical particle and antiparticle
When the particle and the antiparticle composing a pair are
not identical (ab-pairs), the direct and inverse Bogoliubov
transformations (6.7) are replaced with

ain
b�in

� �
� aaa b �ab

bba a �bb

� �
aout
b�out

� �
;

�6:44�
aout
b�out

� �
� a�aa �b�ba
�bab ~abb

� �
ain
b�in

� �
:

These transformations contain four matrices aaa, abb, bab, and
bba instead of two, which satisfy six relations instead of four
relations (6.5):

a�aaaaa � b�ba bba � 1 ; a�bbabb � b�ab bab � 1 ;

b�baa
�
bb � a�aa b

�
ab � 0 ; aaaa

�
aa � b �ab ~bab � 1 ; �6:45�

abba
�
bb � b �ba ~bba � 1 ; aaa b

�
ba � b �ab~abb � 0 :

We note that these relations can still be rewritten in form (6.5)
if a and b are regarded as 2� 2matrices composed of the four
matrices mentioned above:

a � aaa 0
0 abb

� �
; b � 0 bab

bba 0

� �
: �6:46�

As can be seen from Eqn (6.44), the in>out permutation is
now equivalent to the change

aaa ! a�aa ; abb ! a�bb ; �6:47�
bab ! �~bba ; bba ! �~bab ;

which can bewritten in form (6.6) if a and b are thematrices in
Eqn (6.46).

Using expansions like (6.8) for the in-vacuum state and
the equations ainjini � binjini � 0, it can be shown that all the
amplitudes of the emission of an odd number of particles are
equal to zero, while the creation amplitudes for an even
number of particles are given by the products of the creation
amplitudes for ab-pairs,

Vab
o 00o � i�aÿ1aa b �ab�o 00o ; �6:48�

Vab
o 000o 0 � ÿi�babaÿ1bb ��o 000o 0 ;

respectively for the right and left domains. As follows from
Eqns (6.45), amplitudes (6.48) have the property of Bose
symmetry or Fermi antisymmetry,

Vab
o 00o � �Vba

oo 00 � �i�aÿ1bb b
�
ba�oo 00 ; �6:49�

Vab
o 000o 0 � �Vba

o 0o 000 � �i�bbaaÿ1aa ��o 0o 000 :
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Therefore, the amplitude of ab-pair creation can be denoted
as Vi1i2 , where the index i1 characterizes the state of the
particle and i2 characterizes the state of the antiparticle. The
creation of two ab-pairs is described by the amplitude

Vi1i2i3i4 � Vi1i2Vi3i4 � Vi3 i2Vi1i4 ; �6:50�

which is symmetric (antisymmetric) with respect to the states
i1 and i3 of particles and, separately, with respect to the states
i2 and i4 of antiparticles. We also write the amplitude of the
creation of three pairs,

Vi1i2...i6 � Vi1i2Vi3 i4Vi5i6 � Vi3i2Vi1i4Vi5i6 � Vi3 i2Vi5i4Vi1i6

� Vi1 i2Vi5i4Vi3i6 � Vi5i2Vi1i4Vi3i6 � Vi5i2Vi3i4Vi1 i6 : �6:51�

In general, the amplitude for n=2 pairs to be created takes the
form

Vi1i2...in �
X
p

dpVi1i2Vi3i4 . . .Vinÿ1in ; �6:52�

where the sum is taken over all �n=2�! terms that differ by the
permutation in odd indices (or by the permutation of even
indices, which is equivalent), and, in the case of fermions,
dp � �1 for even and odd permutations, whereas dp � 1 for
bosons. The amplitude Vi1 i2...in is then symmetric (antisym-
metric) with respect to both the states of particles i1i3 . . . inÿ1
and the states of antiparticles i2i4 . . . in.

The relative probability

qn � 1

�n=2�!�n=2�!
X
i1i2...in

jVi1i2...in j2 �6:53�

of the creation of n=2 pairs composed of nonidentical
particles and antiparticles contains the factor 1=�n=2�!�n=2�!,
which, together with the symmetry (antisymmetry) of the
amplitude Vi1i2...in in even and odd indices separately, allows
summing over the states of particles and antiparticles by
assuming the ranges of the quantum numbers of these states
to be independent. Without this factor, the sum over
i1i2 . . . in would include only physically different states. In
our case, for example, this would imply that the frequencies
of particles satisfy the condition o1 5o3 5 . . . 5onÿ1,
and that the frequencies of antiparticles satisfy the condi-
tion o2 5o4 5 . . . 5on.

Based on the relative amplitudes written above, it is
straightforward to construct the first four terms of the
partition function:

q0 � 1 ; q2 � trM ; q4 � 1

2
�trM�2 � 1

2
trM 2 ;

q6 � 1

6
�trM�3 � 1

2
trM trM 2 � 1

3
trM 3 :

�6:54�

For the full partition function, we obtainX1
n�0

1

�n=2�!�n=2�!
X
i1i2...in

jVi1 i2...in j2

� det �1�M��1 � exp
ÿ�tr ln �1�M�� : �6:55�

Here, as in Eqn (6.14), M � VV� is a Hermitian positive-
semidefinite matrix. It is given by formulas (6.19) and (6.20),
in which b is respectively understood as bba and bab.

In the sameway as before, the absolute probabilities of the
creation of n pairs of nonidentical particles and antiparticles
are equal to p2n � p0q2n, where p0 is the vacuum persistence
probability:

p0 � exp �ÿ2 ImW� ; �6:56�
2 ImW � �tr ln �1�M� � �tr ln �1� b�b� :

The mean number of pairs, computed in agreement with rule
(6.18), is

�n � tr
M

1�M
� tr b�b : �6:57�

As is apparent, these formulas differ from formulas (6.17)
and (6.18) for the creation of pairs consisting of identical
particles by the appearance of tr instead of �1=2� tr. By virtue
of the a> b symmetry in thematrices under the trace, b can be
either bba or bab. It can be readily seen that this rule connects
all formulas for the integral characteristics related to the
creation of identical particles with formulas for correspond-
ing characteristics for the creation of ab-pairs. Therefore, in
order to obtain the corresponding expressions for the creation
of ab-pairs from formulas (6.21)±(6.23) and (6.37)±(6.43), it
suffices to replace �1=2� tr in these formulas by tr and treat b
as bba or bab.

As regards the spectral characteristics, for example, given
by formulas (6.24)±(6.26), they do not experience transforma-
tions in the case considered if b is understood as bba �bab� for
the spectrum of particles (antiparticles) emitted to the right
and as bab �bba� for the spectrum of particles (antiparticles)
emitted to the left. Indeed, for the differential probability p2o
given by Eqn (6.24), the original integral

p2o �
�1
0

do 00

2p

��houtoo 00jini��2 �6:58�

represents it as the sum of probabilities of physically different
events, independent of whether the particles are identical. The
total probability of pair formation p2 as the sum of
probabilities of physically different events for identical
particles is given by the integral

p2 �
�1
0

do
2p

� o

0

do 00

2p

��houtoo 00jini��2 � 1

2

�1
0

do
2p

p2o �6:59�

because, in this case, the states differ only by values of largero
and smaller o 00 frequencies of two identical particles. But for
an ab-pair,

p2 �
�1
0

do
2p

�1
0

do 00

2p

��houtoo 00jini��2 � �1
0

do
2p

p2o �6:60�

because the states differ by mutually unrelated frequency
values o 00 and o of the particle and the antiparticle, which in
turn differ in the way they interact with counters.

Returning to the ab-pair creation amplitude,

houtjbouto 00aoutojini � houtoo 00jini
� ÿ exp �iW��aÿ1aa b

�
ab�oo 00 � � exp �iW��aÿ1bb b

�
ba�o 00o ;
�6:61�

we note that it reduces to the product of the amplitude b �ab or
b �ba of the source of oppositely directed a; b-particles and the
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backscattering amplitude aÿ1aa or aÿ1bb for one of them, as the
result of which both particles in the pair move in the same
direction. Symmetry (6.49) does not allow distinguishing
which particle of the ab-pair experiences backscattering.

7. Discussion

We concentrate our attention on several important points
underlying the observed duality that leads to quantization of
the bare charge.

(1) For charge quantization, the existence of physical
quantities (the spectra of the number of quanta emitted by a
charge and the number of pairs emitted by a neutral mirror)
with an identical quantum meaning of their observables
turned out to be of principal significance. For any common
trajectory of the charge and mirror, these spectra differ only
by the factor e 2=�hc,

d�n
�1; 0�
k�kÿ �

e 2

�hc
d�nB;F

oo 0 : �7:1�

The requirement that the spectra of mean values of integer
observablesÐquanta and pairsÐcoincide identically fixes
the relation between the charge squared and the Planck
constant, e 20 � �hc.

(2) The point-like character of the charge and mirror
implies that the charge is considered at very small distances
and is unscreened by vacuum polarization, such that e0 is its
unscreened value, and the mirror is characterized by a
boundary condition that does not contain dimensional
parameters.

(3) The relation between the radiation of quanta in
�3� 1�-space and pairs of quanta in �1� 1�-space is not
unexpected. It is dictated by the integral connection between
the causal Green's functions in these spaces, which underlies
the holographic principle of charge quantization.

(4) The relation between Green's functions implies the
relation between the wave 4-vector of a quantum emitted by
the charge and the wave 2-vector of a massive pair emitted by
the mirror. In turn, the 2-vector of the pair is defined by the
frequencies of massless quanta making up the pair.

(5) Quanta emitted in �3� 1�-space by the vector and
scalar sources ja�x� and r�x� have the respective spin 1 and 0.
The pairs of quanta of scalar and spinor fields emitted by the
mirror in �1� 1�-space have the respective spin 1 and 0,
because the amplitudes of their sources (bB;F, which are the
Bogoliubov coefficients) are proportional to the vector ua�k�
and scalar u�k� owing to the structure of corresponding scalar
products. The relation between the densities of the current
ja�k� and charge r�k� and the Bogoliubov coefficients bB

o 0o
and bF

o 0o is responsible for the functional coincidence of the
spectra of photons and scalar quanta emitted by charges with
the spectra of boson and fermion pairs emitted by mirrors.

(6) We draw attention to the difference between the action
W �1; 0�, which defines the vacuum±vacuum amplitude in the
presence of a charged source, and the action WB;F, which
defines the vacuum±vacuum amplitude in the presence of a
mirror. Twice the imaginary part of the first is directly related
to the mean number of emitted quanta,

2

�h
ImW �1; 0� � �N �1;0� � 1

�hc

�
d3k

�2p�32k 0

n�� ja�k���2; ��r�k���2o ;
�7:2�

while twice the imaginary part of the second differs from the
mean number of emitted pairs

�N B;F � tr �b�b�B;F �
��1

0

do do 0

�2p�2
��bB;F

o 0o

��2 �7:3�

and is directly related to it only for small tr �b�b�2 compared
with tr b�b,

2 ImWB;F � �tr ln �1� b�b�B;F
���
b�b5 1

� tr �b�b�B;F � 1

2
tr �b�bb�b�B;F � . . .9 �N B;F : �7:4�

Quantum mechanical exchange effects of attraction and
repulsion for respective Bose and Fermi particles lead to a
difference between 2 ImWB;F and �N B;F. And yet, the exact
expressions for �N �1; 0� and �N B;F are surprisingly simple, and
just they are linked with the duality discussed here [see
Eqns (7.1)±(7.3)].

Representation (7.4) is analogous to the virial expansion
of the pressure of an ideal Bose or Fermi gas in powers of the
degeneration parameterÐ the mean number of particles in
the 3-volume defined by the thermal de Broglie wavelength
(see æ 56 in Ref. [36]).

Another example, more tightly related to Eqn (7.4), is
furnished by the doubled imaginary part of the action
defining the vacuum±vacuum amplitude exp �iW=�h� in the
presence of a constant electric field e that creates pairs.
According to [37, 38],

2 ImW

�h
� �

X
r

�
d3pV

�2p�h�3 ln �1� �np� ;
�7:5�

�np � exp

�
ÿp m 2 � p 2

?
jeej

�
;

where �np is the mean number of pairs formed by the field
with a particle (or antiparticle) in a state with given
momentum and spin projections p � p; r; the upper and
lower signs respectively correspond to boson and fermion
pairs composed of oppositely charged massive particles
and antiparticles with spin s � 0 or s � 1=2. The distribu-
tion �np is degenerate with respect to the spin projection r
and the momentum component pk is directed along the
field with multiplicities 2s� 1 and LkDpk=2p�h, where
Dpk � eeT (see Refs [37±39]). Integration over p leads to
a series for the imaginary part of the Heisenberg±Euler
Lagrange function [40, 41]:

2 Iml � �2s� 1� �ee�
2

�2p�3
X1
n�1

��1�n�1
n 2

exp

�
ÿ pn

b

�
; b � jeej

m 2
:

�7:6�

Its first term is the mean number of pairs in a unit 4-volume.
The next terms are the quantum mechanical exchange
corrections describing the Bose attraction or Fermi repulsion
of particles for a given mean 4-density of their number. They
emerge because of the coherent creation of two or more pairs
in the same 4-volume of pair formation (see Refs [42, 43]).

In all the examples presented above, 2 ImWB;F has just
the same functional dependence on the mean occupation
numbers �nB;F

k as the thermodynamic potentials of Bose and
Fermi gases:

OB;F � �T
X
k

ln �1� �nB;F
k � :
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The value found for the bare charge e0 � �
�����
�hc
p

and the
corresponding value of the fine structure constant a0 � 1=4p
have the properties mentioned by Gell-Mann and Low for a
finite bare charge [see variant (b) in their work [9] and also
Section 1]. These properties are indicative of a purely
geometrical origin of the value of a0 obtained, which is
natural, because for computing spectra we used solutions of
wave equations for massless fields, and the trajectory of
point-like charges and mirrors was described by time-like
curves.

We note in passing that Dirac, discussing the value of the
fine structure constant a and the proton-to-electron mass
ratio at the University of New South Wales, remarked that
``One may expect these numbers to occur as being built up
from 4ps and other simple numbers like that'' [44]. One would
be startled by Dirac's amazing intuition had he meant not the
value of a but that of the bare fine structure constant a0,
which, in accordance with the discussed duality, is precisely
equal to 1=4p. The difference between these two quantities is
due to vacuum polarization by a point-like electric charge,
and their ratio a0=a � 10:90 . . . is the vacuum dielectric
permittivity.

The value e0 �
�����
�hc
p

is so significant that it is highly
desirable to find an alternative variant of substantiating and
computing it. In this respect, it seems natural to turn to the old
suggestion by Casimir on finding a.

As is well known, a purely electromagnetic classical model
of the electron is impossibleÐ stability of the charge
distribution requires adding the so-called Poincar�e tension.
In 1953, Casimir, having computed the attraction of two
ideally conducting parallel plates caused by a reduction in the
electromagnetic energy of zero-point oscillations between
them, proposed an electromagnetic model of the electron
[45] in which the PoincareÂ tension occurs at the expense of the
energy of zero-point oscillations.

According to this model, the electron is regarded as a
conducting spherical shell with the surface charge e. The
electrostatic energy of such a charge is

E � e 2

8pa
; �7:7�

if a is the sphere radius and the charge e is measured in
Heaviside units. Casimir supposed that this energy of
Coulomb repulsion can be compensated by a negative shift
in the energy of quantum fluctuations of the electromagnetic
field in the vacuum arising because of the interaction of
fluctuations with the conducting shell and leading to attract-
ing forces.

A concrete derivation of the change in the energy of zero-
point oscillations caused by the presence of a neutral ideally
conducting shell was carried out by Boyer [46]. He showed
that the energy shift is not negative, as for the plates, but
positive, and is

EB � 0:09�hc

2a
: �7:8�

Four years later, Davis [47] confirmed the sign of EB and
computed the numerical factor (0.09) to three significant
digits, as 0.0924. In 1978, Balian and Duplantier [48] also
obtained a positive coefficient with the same three significant
digits. In the same year, Milton, DeRaad, and Schwinger [49]
found a positive coefficient to five significant digits, 0.092353
(also see their work [50]). Therefore, the Casimir forces

cannot play the role of the Poincar�e tension, and the electron
does not have the exotic structure proposed by Casimir.

If the sign of the coefficient had been negative, the value of
the charge deduced from its stability condition

E� EB � 0 �7:9�

would have been defined by the corresponding `fine structure
constant'

aB � e 2B
4p�hc

� 0:0924 ; �7:10�

which is about 13 times larger than the actual fine structure
constant a � 1=137.

However, the energy EB found by Boyer is very important
in and of itself: it is the energy of the interaction of a neutral
ideally conducting spherical shell with electromagnetic field
fluctuations in the vacuum. It is defined by solutions of the
purely geometric Maxwell equations for the field inside and
outside an ideally conducting shell and boundary conditions
on the shell, which do not contain any dimensional parameters
except the shell radius.

A quantized electromagnetic field is represented as a
system of independent harmonic oscillators, whose frequen-
cies ok are defined by solutions of the Maxwell equations.
Such a system, even in its ground state, has the nonzero
energy

E �
X
k

1

2
�hok �7:11�

called the zero-point energy. In the absence of a conducting
sphere, the frequencies ok are determined by boundary
conditions on a sphere of a very large radius R4 a. The
presence of a conducting sphere of radius a inside that sphere
modifies the energyE by a finite amountEB in (7.8) as a result
of a substantial change in frequencies ok � c=a by the
boundary conditions on the conducting sphere. High fre-
quencies ok 4 c=a are not affected by these conditions and in
the limit R=a!1 do not contribute to the difference
EB � Esph ÿ E in the zero-point energies with or without a
sphere of radius a.

As a result, the energy EB coincides in form with the
Coulomb energy of a sphere of radius a and with the charge

eB �
�������������������������
4p 0:0924 �hc
p

� 1:077
�����
�hc
p

: �7:12�

Its value characterizes the strength of interaction between a
conducting sphere and quantum fluctuations of the electro-
magnetic field in the vacuum. It is defined by the product �hc of
world constants, being a result of purely geometrical
quantization, and does not depend on the radius of the sphere,
which can be arbitrarily small. It is close to the value of the
bare charge e0 �

�����
�hc
p

derived from the coincidence between
the spectra ofmean numbers of quanta emitted by a point-like
charge in �3� 1�-space and pairs emitted by a point-like
mirror in �1� 1�-space.

The difference between eB and e0 may stem from the
difference in geometry (and topology) of a conducting sphere
and a point-like mirror, while their closeness comes from the
fact that the interactions of a conducting sphere and a point-
like mirror with fluctuations of respective fields in the vacua
of �3� 1�- and �1� 1�-spaces do indeed define, albeit with
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different degrees of approximation, a very important quan-
tum quantity, the value of the bare charge.

The approach to quantization based on the coincidence of
the radiation spectra for a point-like charge and a mirror is
manifestly relativistically invariant, but the approach based
on the coincidence of the Coulomb and Casimir energies of
charged and neutral conducting shells depends on the
geometry of these shells. Therefore, if the sphere is replaced
with the surface of a cube with the edge 2a (equal to the
diameter of the sphere), the Casimir energy EB is replaced
with the energy

EL � 0:0916 �hc

2a
; aL � e 2L

4p�hc
� 0:0916 ; �7:13�

found by Lukosh [51]. It differs from EB by less than 1%. The
Casimir energy of other compact shells is considered in
Ref. [52].

Curiously, the products 2

a0aB � 1

136:069
and a0aL � 1

137:101
�7:14�

of purely geometrical constants differ only slightly from the
fine structure constant a � 1=137:036, which is bounded by
them, a0aL < a < a0aB. Could it imply that there is a regular
(or semiregular) polyhedron, whose ideally conducting sur-
face shifts the energy of electromagnetic vacuum fluctuations
by the amount

EG � aG�hc

2a
; �7:15�

where the parameter aG is just 4pa, i.e., a0aG � a, and a is the
radius of a sphere inscribed into the polyhedron? The
symmetry of such a surface would be of immense interest.

In that case, the quantity aG equal to the ratio a=a0 of
squares of physical and bare charges would be the inverse
value of the vacuum dielectric permittivity. The values aB and
aL obtained by Boyer and Lukosh could be considered
approximate reciprocals of the vacuum dielectric permittiv-
ity.

To conclude, wewrite the analytic expression for a0aL that
differs numerically from the experimental a by less than
0.05%:

a0aL � 1

4p
p
16

�
1ÿ 1

p3
X1

m1;m2;m3�ÿ1

0 �m 2
1�m 2

2�m 2
3 �ÿ2

�
: �7:16�

The value of the sum appearing here (Epstein's zeta function)
is 16.53231596... [51] .

The author is indebted to M A Vasiliev, B L Voronov,
L V Keldysh, A I Nikishov, and A E Shabad for the helpful
discussions and remarks.

This paper was supported by the program of the RAS
Presidium ``Experimental and theoretical research of funda-
mental interactions on CERN accelerators.''
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