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The new life of complete integrability
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Abstract. We briefly review new trends in how the notion of
complete integrability of dynamical systems and their quantum
versions have developed over the last four decades. We describe
a new technique for working with integrable models and outline
its main applications.

This review is based on my talks at the Symposium for foreign
members of the Royal Swedish Academy of Sciences
(November 2011), the winter school “Nonlinear Waves”
(Nizhnii Novgorod, March 2012), and the Ginzburg Con-
ference on Physics (Lebedev Physical Institute, Russian
Academy of Sciences, May 2012). My aim was to introduce
a broad audience of theoretical physicists to the rapidly
developing domain of mathematical physics concentrating
on the idea of complete integrability. Of course, the presenta-
tion is largely based on my personal experience and does not
cover all the aspects of this development.

The notion of complete integrability in Hamiltonian
mechanics was created and developed in the 19th century by
famous mathematicians and mechanicists Jacobi, Poisson,
Liouville, Hamilton, and others. In modern terms (see, e.g.,
Arnold’s book [1]), this notion can be formulated as follows.
An antisymmetric matrix Q""(¢) defined on a phase space I"
with coordinates (¢) = (¢!,...,¢") determines the Poisson
brackets of the coordinates,

{ém7 611} — Ql’ﬂn(i)’

and of functions on the phase space,

{fig} =Q"0, fO,g.
The Poisson bracket satisfies the Jacobi identity

{{rghny+{{nf} ¢} +{{g.h}, [} =0,
which is ensured by the relation
akaanl + akQ/kan + aanlem =0.

Evolution is governed by the Hamilton equation

d n __ n
Eé _[Hvé ]7

with a selected function H(£) on the phase space, called the
energy.
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The triplet {T", Q, H } is called a Hamiltonian structure. In
textbooks on mechanics, the phase space is even-dimensional,
N = 2L, and the &¢" are taken as the canonical coordinates ¢;
and momenta p’, i = 1, ..., L, with the brackets

{p',ar} = 8.
The celebrated Darboux theorem states that whenever the

matrix Q™" is nondegenerate, it can be brought (at least
locally) to the form

o= (9 7

by a coordinate transformation, and hence, the correspond-
ing coordinates ¢ are canonical. In general, the coordinates &
can be chosen as {¢} = {1, 1}, where the 1 have zero brackets
with all the coordinates, and the bracket for the # coordinates
isnondegenerate. Functions of A give rise to trivial integrals of
motion, and the entire dynamics occurs in the # variables.

A nondegenerate Hamiltonian structure {I'z;,Q, H} is
called completely integrable ! if there exist L — 1 functions
0i(&), i=1,...,L—1, such that they are functionally
independent of H and functionally independent among
themselves, and

{H,Qi} =0, {00} =0.

The functions Q; are called commuting integrals of motion.
For an integrable system, a change of variables

(") — (' o)

exists such that the 7 and o coordinates are canonical,
{1 =0, {o,uy=0, {Iu}=3,,

and the energy depends only on the / variables:
H=H(I).

The equations of motion then have the form

d d oH
@!=0 g =g

and hence, I'(¢) = I', oy () = a(0) + cwyt, and oy = OH/OI*.
In typical examples, the variables oy take values in a torus,
and are therefore called angles. The total set of variables (7, o)
is called the action—angle-type variables.

In the late 19th—early 20th centuries, the search for
action—angle-type variables for specific dynamical systems
(typically, exotic pendulums) was a fascinating occupation
for experts in classical mechanics. It suffices to mention the
Kovalevskaya top or the Chaplygin pendulum. But the
interest in this subject phased out gradually.

A new development came from an unexpected angle. In
1967, a group of American experts— Gardner, Greene,

! With the “completely” part to be omitted in what follows.
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Kruskal, and Miura (GGKM)—invented a remarkable
construction for the solution of the Korteweg—de Vries
(KdV) equation [2]

VU + 60Uy + Uy = 0.

In the original work [3], this equation occurred in the
hydrodynamical problem of a shallow water flow, but
GGKM found its applications to the theory of plasma. The

KdV equation has the remarkable solution
A
v, )= ———
(x:1) cosh? (a(x — vr))

describing a solitary wave of the type that can be observed on
a gently sloping beach (see Photo 1).
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Photo 1. Solitons on the water surface in the Gulf of Finland, Komarovo.

Kruskal and Zabusky dubbed this solution a “soliton,”
following the current fashion in the theory of elementary
particles. Their intuitive idea was justified, when the theory of
solitons established itself within quantum field theory.

The GGKM method consists in a change of variables that
involves spectral characteristics of the Schrodinger equation

d2
Ll//:ka7 L:—E-FU(X), (])

where the potential v(x) is given by the initial conditions for
the KdV equation. In the simplest case where the spatial
variable ranges the entire axis —oo < x < oo and the potential
v(x) is assumed to vanish at infinity,

v(x) =0,

x| — o0,

Eqn (1) with positive k& has a solution Y(x,k) with the
asymptotic forms

Y(x, k) — exp (ikx) + r(k) exp (—ikx), x — —o0,

Y (x, k) — t(k) exp (ikx), x — o0,

where the transmission and reflection coefficients 7(k) and
r(k) satisfy the unitarity condition

t() [ + [r ()

=1.

If v(x) takes negative values in some interval, then there exists
a discrete spectrum k*> = —x?, [=1,...,n, with exponen-

tially decreasing wave functions
Yy(x) —exp (kx), x— —00;

Yi(x) = crexp(=rix), x—o0.

The coefficient #(k) is uniquely determined by r(k) and ;
based on the analyticity property. The independent scattering
data {r(k), %, ¢;} uniquely define the potential v(x). The
subject of reconstructing the potential from spectral data
was vigorously developed in the 1950s by Gelfand, Levitan,
Krein, Marchenko, Jost, Kohn, Moses, and others (see the
references in [4]). Its version applicable to the Schrodinger
operator on the entire real axis, which was required for the
GGKM method, was discussed in my PhD thesis in 1959 [5].

It was shown by GGKM that the transformation from a
potential v(x) to the scattering data linearizes the KdV
equation:

v(x, )

! l

(r(k), K, c;) — (r(k, 1), K1, c/(l)) ,
where

r(k,t) = exp (—ik>1) r(k,0), ¢/(t) = exp (k}t) ;.

Lax [6] gave an important interpretation of the role played by
linear problem (1) in describing the dynamics governed by the
KdV equation; the L(¢) operator with the potential v(x,?)
satisfies the equation

d

4 L0 = [0, 40).

where A(?) is a third-order linear differential operator that
can also be constructed in terms of v(x,#). Hence, the KdV
dynamics is an isospectral deformation of the operator L.

For some time, the GGKM trick was regarded as a
remarkable but isolated stroke of luck, not suggestive of any
generalization. But Zakharov and Shabat showed in 1979 [7]
that the nonlinear Schrodinger equation (NLSE)

i, =~ + gl

is also solvable by a similar method. The role of the spectral
problem is, in this case, taken over by the Dirac equation

(¢ )3 %))

It then became clear that the method of the inverse scattering
problem has a wider applicability.

In early 1971, I met with V Zakharov at a conference on
inverse problems in Novosibirsk and only then learned about
the GGKM method. Discussing explicit formulas, we noticed
that in the system of spectral variables, half of them evolve
linearly with time,

argr(k) — argr(k) +k*t, Inc,—Inc + &},
and the other half (|r(k)| and x;) are independent of time.

Similarity with the action—angle variables was evident. Based
on that idea and some known results on the spectral
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characteristics of the Schrodinger operator, we showed that
passing to the spectral data is indeed a canonical transforma-
tion to action—angle-type variables. Our paper [8], with the
title “Korteweg—De Vries equation as a completely integrable
Hamiltonian system,” open a new development in the theory
of integrable models.

Briefly, our results are as follows: the KdV equation is a
Hamiltonian system on an infinite-dimensional phase space
whose coordinates are given by functions v(x), where x can be
regarded as the “coordinate number” of v(x). The Poisson
bracket of the coordinates is given by

{v(x),0()} =0"(x—).

The right-hand side is here antisymmetric and is independent
of the coordinates, and therefore the Jacobi identity is
satisfied trivially. The functional

N= Jv(x) dx

commutes with all v(x) and is, therefore, a central element. In
the subspace N = const, the bracket is invertible and
canonical coordinates can be chosen as the even and odd
components of the Fourier transform

ve(k) = J v(x) cos 2nxkdx,
© in 2ntxk
Vo = Jioo v(x) SH;% dx

For k > 0, we then have
{ve(k),ve(k")} =0, {wo(k),vo(k")} =0,
{ve(k),vo(k')} =6(k—k').

The Hamilton function is
~ /1
H:J (Evf—f—zﬁ(x)) dx,
—00
and is easily seen to give rise to the KdV equation. The
quantity
1
P= JE v?(x) dx

generates the equation
v, +v, =0

and plays the role of momentum.

We evaluated the Poisson brackets of scattering data and
showed that the role of ““action”-type variables was played by
the function

p() =5 (1= ()

and the eigenvalues k. The argument (k) and the constants ¢
are ‘“‘angle”-type variables. The Hamiltonian H and the
momentum P can be explicitly expressed in terms of the
actions:

P= Zn,+r kp(k)dk (2)
/ 0

H= —an3+J:Ck3p(k)dk. (3)
/

The higher odd-degree moments of the density p(k) are also
local functionals:
&, (v, vy, ...)dx,

0.~ | K pwak |

0 —00

whose densities @, depend on v and its first derivatives.

Formulas (2) and (3) are reminiscent of the formulas in
many-body quantum theory in a mixed representation of
fields and particles. The first terms produce the contribution
of particles (solitons) with the dispersion

p)=-p>,

and the second terms produce the contribution of a secondary
quantized field with the dispersion

(k) =k*.

In this way, Kruskal and Zabusky’s intuition was satisfacto-
rily substantiated.

As an expert in quantum field theory, I found this
especially appealing. It opened a new possibility for the
mechanism of interpreting particles beyond the perturbation
theory paradigm “one field, one particle.” But the nonrelati-
vistic nature of the KdV theory and the unusual dispersion
law w(k) = k3 did not invite quantization.

A remarkable relativistic example was produced by
another equation solvable by the inverse scattering method:

2
m= .
¢tt _d)xx—"_T smy(j) = 07

bearing the jargony name sine-Gordon (SG).?> The action—
angle variables for this, evidently Hamiltonian, system were
obtained by Takhtajan and myself [12]. In addition to solitons
of two types, differing by the sign of their topological charge,
that equation also had a periodic solution: breathers. The
phase space of a soliton is two-dimensional, as in the KdV
case, and the space of a breather has dimension 4, which
comprises one degree of freedom for the center-of-mass
motion and another degree of freedom for internal oscilla-
tions. The part of the phase space corresponding to the second
degree of freedom is compact, and under semiclassical
quantization gives finitely many states, which can be inter-
preted as soliton—antisoliton bound states. As a result, in
addition to the contribution of a scalar particle with mass m,
the semiclassical spectrum consists of solitons and antisoli-
tons with the mass 8m/y and their bound states with the
masses

Independently, this spectrum was also obtained by Dashen,
Hasslacher, and Neveu [13]; our paper was sent for publica-
tion to Physics Letters, but the correspondence was lost in the
mail to Italy and was published only later.

The SG model has demonstrated a number of remarkable
properties.

2 The rhyme sine-Klein is of somewhat doubtful taste, but is addictive.
What we call the Klein—-Gordon equation, however, should instead be
called the Klein—Fock equation (see [9-11]).
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1. Solitons have the topological charge

o=,

which takes integer values.

2. The soliton mass and scattering phases are inversely
proportional to the coupling constant y. Hence, the original
theory with weakly interacting particles acquires new,
strongly interacting particles. I was vigorously advertising
this standpoint in lectures given at Harvard and Princeton in
1975. Tt is also reflected in my erroneous paper [14], with the
ambitious title ““Hadrons from leptons?”’; the legacy of that
paper, however, is the model of a three-dimensional soliton
with the Hopf invariant playing the role of topological
charge.

In the first half of the 1970s, the list of integrable models
was expanding rapidly; it included systems such as the
Heisenberg magnet (HM) and the nonlinear chiral field; in
these models, the respective dynamical variables take values
in the nonlinear manifold §2 and in a compact group G. The
list also embraced some discrete-space problems, for example,
the Toda chain. The number of people investigating the
theory was growing, and groups soon appeared in the USA,
Japan, and France. In Leningrad (Saint Petersburg), Takhta-
jan and I were joined by Kulish, Korepin, Sklyanin, Semenov-
Tyan-Shansky, Reiman, Matveev, and Its. At the Landau
Institute, together with Zakharov and Shabat, S P Novikov’s
group formed, including young researchers Manakov, Krich-
ever, and others. In the book “Hamiltonian methods in the
theory of solitons,” written by Takhtajan and myself [15], a
detailed account of the events and an exhaustive list of
references are given.

But the principal aim of our group was to construct the
quantum theory of solitons. It became clear by the late 1970s
that quantizing them is possible by starting with the auxiliary
linear problem with noncommutative dynamical variables
and developing an analog of spectral theory for it. As a result,
the quantum inverse scattering method (QISM) was devel-
oped, which naturally involved the Bethe-ansatz technique
developed by Bethe in [16], with the example of a spin chain of
spins 1/2. This led to the formulation of the algebraic Bethe
ansatz (ABA) in [17,18]. The team mentioned above was
gradually joined by others, including Izergin, Smirnov,
Tarasov, and Bogoliubov.

I describe the key points of the ABA with the simplest
example of the Heisenberg spin chain of spins 1/2, following
[19].

The dynamical variables are the spin operators s¢,
n=1,...,N,a=1,2,3, where N is the length of the chain,
with the periodicity condition N + 1 = 1. The operators s,
satisfy the commutation relations

Jodx, J():a(/),

a Sb] = 18, c‘”""s,f7

[S’n 'Yn

where € is the unit antisymmetric tensor. The total Hilbert
space H of the system is the tensor product of C? spaces for
each spin:

N
H:H®©2.
n=1

Spin operators with a subscript # act nontrivially only in the
space at the nth position in this product and are expressed in

terms of the Pauli matrices

1 _ 0 1 2 0 —i 3 1 0
A=(Ta) = (0 7)) 2=(0 4)

as

The Hamiltonian has the form

N
H=17Y sisi
n=1
with s, ; = s{. The ABA is based on the use of the auxiliary

linear problem

¢n+l = LnU-) @/1 3 (4)

with the matrix L,(A) of the form

3 -
Ats) s,

ot 3
is,, A—s;

L) = ( :

+ 1452
), s, =S, £is;.

We can say that L,(/) is a block matrix in the tensor product
space C2® C?; spin operators act in the first C2, and the
second is explicitly given by the matrix L,(4). The first space
can be naturally referred to as quantum and the second as
auxiliary. With the matrix L, (1), it is convenient to associate
the graph

Ln()“) ~ _I_ )

where the vertical line specifies the action in the quantum
space and the horizontal line shows the action in the auxiliary
space.

The monodromy matrix of system (4), which is expressed
as

O OR

plays the role of “‘scattering data.” Its graph has the form

iy~ L 1L ||
ERER

and corresponds to an operator in C? ® H. The commutation
relations for matrix elements can be derived from the local
relations for spins s¢ as follows. For matrices L} (1) and L?(u)
associated with the same quantum space » and two auxiliary
spaces 1 and 2, we verify the relation

RP(4 = p) L, (2) Li(w) = L) Ly, (2) R (4= p)

where R'2(1) is a matrix in the tensor product of auxiliary
spaces. Its graph is similar to the graph for L,:

R~ X

where both lines correspond to auxiliary spaces. Commuta-
tion relations for the L, can be depicted as

SR
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The local relation immediately implies a similar relation for
the monodromy:

R (i) M (2) M2 ()= M>(u) M (2) R (i) . (5)

The laborious calculations of Poisson brackets in papers of
the 1970s have been wonderfully replaced with elementary
algebra.

It follows from (5) that the family of operators

T(A) =tr M(2) = A(A) + D(A)

is commutative:
[T(2), T(w)] =0.

It can be shown that this family contains the Hamiltonian

dT(2) ._,
H:TT ()v)’j.:l./2.
Evidently, T(7) is a polynomial in 4 of degree N with N — 1
nontrivial coefficients — functions of the dynamical variables

a.
S,

N—1
T(2) =2+ 0u(s) 4"
n=1

The operators Q,, n=1,..., N — 1, together with the third
component of the total spin

3 3
S:E o, ,
n

make up a family of N commuting integrals of motion. It is
natural to assume that the spin chain defines a system with N
degrees of freedom (in the semiclassical case, the phase space
of a single spin is the two-dimensional sphere S, and its
quantized counterpart is the finite-dimensional Hilbert space
C?). Hence, the system under consideration is completely
integrable and the role of action variables is played by
operators from the 7(A) family. The role of angle-type
variables is played by off-diagonal elements of the mono-
dromy matrix.
In the space H, we consider a highest-spin vector Q:

SrQ=0.

It is annihilated by the operator C(4):

C(A)Q=0.
The state
/
Q... ) =[] B(4)Q

is an eigenvector of H,

/

HQ({2}) =13 () Q({4})

i=1

if the A; satisfy a system of algebraic equations that first
appeared in Bethe’s work. I do not give it here and refer the
reader to [19], only noting that the dispersion ¢(Z) is negative
for all A.

The discovery of a relation between natural quantization
of the inverse scattering method and Bethe-ansatz formulas
originating in entirely different ideas is a remarkable example
of the development of modern mathematical physics. This
discovery has become the starting point for generalizations
going far beyond the initial trick by Bethe.

Bethe equations allow passing to the limit as N— oo.
Evidently, this requires strict control over the selection of
allowed states, because a naive limit leads to an infinite tensor
product with a nondenumerable basis. The relevant selection
depends on the sign of the constant J.

For J < 0, excitations over the state Q have positive
energy, and we have to consider states for which the operator
0=S3 — N/2 has finite positive values. The operators S* are
ill-defined in the limit N — oo. Therefore, the SU(2) symme-
try is violated and the states are magnons with the charge
Q = 1 and their bound states with Q = 2, 3,.... We deal here
with a ferromagnet.

For J >0, the picture is much more interesting.
Constructing the vacuum requires filling the Dirac sea of
negative-energy states. This is possible because the spectrum
that follows from the Bethe ansatz has a Fermi nature: the
roots 4; cannot coincide. The vacuum was constructed by
Hulthén [20] in 1937, but the correct construction of
excitations has long been erroneous. In [21], Takhtajan
and I showed that one-particle excitations have spin 1/2
(and not 1, as had long been assumed). Therefore, the SU(2)
symmetry is not violated for J > 0, all three components of
the total spin are meaningful, and the excitation is a single
particle with spin 1/2. We deal here with an antiferro-
magnet.

The theory of spin chains can be considered a remarkable
example in the theory of many-body systems: it features
symmetry breaking, the occurrence of new charges, the
construction of a nontrivial vacuum, and so on. I believe
that my collaborators mentioned above have gone through
very stimulating training with the relevant mathematics.

In the 1990s, the subject of the ABA was developing
rapidly and led to major generalizations.

1. Higher-spin models. It was shown that naive general-
izations of the Heisenberg Hamiltonian to spins 1 and higher
are not integrable. But Kulish, Reshetikhin, and Sklyanin
showed that a local energy density exists for which the
integrability does hold [22]. For spin 1, this density, which
had been found previously by Zamolodchikov and Fateev
[23], has the form 6¢c?,, — (c2a?,,)".

2. Anisotropy. A magnet with spin 1/2 and the local
density

10,0, + 20,00, + T30, 00,
is called the XYZ model. The partly broken symmetry of the
XXZ model with J; = J; is amenable to the ABA formalism.
But as Kulish and Reshetikhin showed in [24], the auxiliary
linear problem retains its meaning for higher spins only if the
dynamical variables satisfy the relation

sin ps;

[S,fvsﬂ—wa

where y is the anisotropy parameter. This formula has led to
essential progress in mathematics: the creation of the theory
of quantum groups (Sklyanin [25], Drinfeld [26], Jimbo [27],
Reshetikhin—-Takhtajan—Faddeev [28]), which later returned
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to physics as a symmetry of conformal field theory (Faddeev—
Takhtajan [29], Gervais—Neveu [30]). The history of this
development can be found in my review [31].

3. Other groups. The BA formalism can be generalized to
higher-rank groups, with the BA equations formulated in
terms of Dynkin diagrams (Reshetikhin [32]).

4. Continuum limits, i.e., taking the limit as 4 — 0. For
example, the NLSE model can thus be obtained from a spin
chain.

5. Inhomogeneous problems. Important examples can be
obtained by choosing different values of the parameter A at
different lattice points. In particular, alternating as
Aow = A+ K, A1 = A — kK allows constructing a natural
discrete analog of the quantum SG model.

It has become clear, as a result, that spin chains are a
universal class of quantum integrable systems. More details
on the subject can be found in my review [33].

It is worth noting that numerous points of the ABA
permit an interpretation in the theory of classical statistical
physics models on a two-dimensional lattice. This subject,
traced back to Onsager [34], was further developed by Lieb
[35] and Baxter [36] and has a history of its own. In this
country, this direction was pursued by the group in Protvino,
organized by Stroganov and Bazhanov [37, 38]. The role of
the local L,(1) operator is played there by the statistical
weight. In this case, however, the quantum and auxiliary
spaces are identical, and hence, for example, spin chains with
higher spins have no statistical-physics interpretation.

Lastly, another source of relations of type (5) is given by
scattering theory, where the leading role was played by the
work of Yang [39] and Brezin—Zinn-Justin [40]. The work by
Yang [39] and Baxter [41] had heuristic significance for our
construction of the ABA. That was why Leon Takhtajan and
I called relations of type (5) Yang—Baxter equations in [18].

Within the theory of factored scattering, A B Zamolodchi-
kov and Al B Zamolodchikov obtained an exact solution of
the nonlinear o-model [N2].

As the reader would have noticed, I here discuss the
methods and results derived mainly in Leningrad. The
subject of quantum integrable models gained much popular-
ity in the 1980s—-1990s, however. This included establishing
remarkable relations to conformal field theory, whose
foundations were laid in [43]. In the work of A B Zamolodchi-
kov and his collaborators, integrable models were regarded as
deformations of conformal models by special local operators.
Interestingly, quantization of the KdV equation [44] turned
out to be important for quantization of conformal field
theory.

Yet another avenue, originating in the work of C N Yang
and C P Yang[45] and developed by Al B Zamolodchikov [46]
and Destri and de Vega [47], is associated with the construc-
tion of a thermodynamic Bethe ansatz.

The attractiveness of these methods notwithstanding, we
must not forget that their physical applications were until
recently restricted to problems in a one-dimensional space.
The turn of events was Lipatov’s discovery in the mid-1990s
[48] that high-energy scattering can be described in the
Reggeization framework by the formalism of spin chains.
The role of a lattice site is then taken by the operator number
in a correlation function. Korchemsky and I interpreted
Lipatov’s observation in terms of the ABA for an SL(2)
chain with spin —1 [49].

I want to note that interest in spin chains in relation to
high-energy physics was expressed by Feynman toward the

end of his career. The World Scientific Publishers once sent
me a few lines from the abstract of his talk, which included the
phrase, “If someone gives me a Bethe ansatz for the number
of polarization greater than two, then I will be able to describe
high-energy scattering.”” Two polarizations, naturally, corre-
spond to spin 1/2, and he needed integrable chains of higher
spins — precisely what had been done by our group. Unfortu-
nately, I was unaware of Feynman’s words until after his
death, and had no chance to communicate our results to him.
But, when visiting Pasadena, I was there in time to enter
Feynman’s office before John Schwarz moved in. A large
blackboard showed some fragments of calculations and,
among them, a memo (as I remember it):

To learn:

1. Bethe Ansatz.

2. Quantum Hall effect.

3. Turbulence.

Curious as I was, I asked if any materials on the subject
remained, and the secretary was so nice as to bring me a pile of
paper with Feynman’s notes. The handwriting was very
accurate and each sheet had a number and a date. Already
on the first pages I found an outline of some of our papers,
with the names of Reshetikhin and Sklyanin mentioned in
particular. But because of a lack of time, I could not study
these sheets of paper in detail, and I had to leave. Attempts to
recover this material in the Caltech archive have so far been
unsuccessful.?

4 1

;"U1 ,;Um it }; s e ..-'-;.,z(:.-f

(© Caltech Archives

Photo 2. Part of the blackboard in Richard Feynman’s office in the
California Institute of Technology (Caltech), the last writings of Feynman
retained after his death. (Courtesy of the Archives, California Institute of
Technology.)

3 While this paper was being prepared for publication, the managing editor
of Physics—Uspekhi, M S Aksenteva, had a chance to familiarize herself
with some documents from Feynman’s archive deposited in Caltech. Here
is what she wrote to me when sending the copies of those documents:
“Your reminiscences were confirmed. As can be seen in the photo (see
Photo 2), Feynman did then indeed define the following problems as the
most interesting ones, requiring further study: the Bethe ansatz problem,
the two-dimensional Hall effect, and nonlinear classical hydrodynamics
(which, obviously, includes the turbulence problem). In addition, I was
pleased to see references to works by Faddeev, Takhtajan, Sklyanin, and
Zamolodchikov in Feynman’s notes to his talk on 22 January 1987 (Lunch
Talk on Bethe Ansatz [50]).” Now that I can see how Feynman’s
handwriting looks, I tend to think that the sheets shown to me in Caltech
were written by another hand, and that is why they may not be in
Feynman’s archive.
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© Ludwig Faddeev

Photo 3. Richard Feynman in front of his red car (1972).*

I had a chance to meet Feynman only once. It was in January
1972, during my first visit to the USA, which was organized by Peter
Lax and Luis Nirenberg of the Courant Institute of Mathematical
Sciences. Kip Thorn arranged my brief visit to Pasadena to meet
Feynman (after memorable skiing with Peter Lax in Aspen, halfway
from New York to California). We spent several hours together. He
already new about my work with Viktor Popov on the application
of Feynman integrals to the construction of a diagram technique in
the Yang-Mills field theory. I wanted to learn more about his
approach to the construction of the S-matrix in terms of asymptotic
fields without invoking Green’s functions, which in the Yang—Mills
theory did not allow a gauge-invariant treatment. But the discus-
sion gradually (via the asymptotic fields and the problem of mass in
the Yang—Mills theory) moved to the approach to infrared
divergences in quantum electrodynamics that had just been formu-
lated in my paper with Peter Kulish. To my surprise, Feynman
requested a detailed explanation and, insofar as I could see,
approved our method. But this discussion took all the time,
unfortunately, and we went for a beer in a strip bar. On the way, I
was given a chance to take a photo of Feynman in front of his red
car. In the bar, we resumed the discussion while a naked girl was
walking on the table above us. It seems Feynman decided to lure the
young Soviet colleague with the sweets of western life. But the girl
was freezing, and even turning livid with cold, and I felt she had to
be pitied. And that was the end of my contact with Feynman.

Recently, I was pleased to learn that the reprint of my paper with
Popov [51] that I then handed over with the dedication, “To prove
that younger generation knows and respects Feynman Integral,”
did not go into the wastebin and stayed in Feynman’s archive at
Caltech [52].

To continue with my recollections of my first visit to the USA, |
mention two more things. During my stay at the Massachusetts
Institute of Technology in February 1972, Victor Weisskopf took
me to the famous Oppenheimer Seminar at Princeton, and I could
witness how the American scientific community was united in
promoting Steven Weinberg’s nomination for a Nobel prize.
Nothing of the kind has existed in this country, even now. Also,
during my second visit to Princeton, on Arthur Wightman’s
invitation, I gave four talks in two days, and in particular spoke
about our paper with Zakharov, the one referred to above, at
Kruskal’s seminar.

I consider Richard Feynman my spiritual Teacher, along with
Hermann Weyl and Paul Dirac.

4 Two memorable anniversaries associated with Feynman occur in 2013:
May 11 is his 95th birthday, and February 15 marks 25 years after his
death. (Editor’s note.)

Soon after Lipatov’s breakthrough, aspects of integrabil-
ity occurred in the theory of supersymmetric gauge field
models. It was shown by Gorsky, Krichever, Marshakov,
Mironov, and Morozov (GKM?) [53] that the algebrogeo-
metric technique developed by Dubrovin, Krichever, and
Novikov [54] provides a suitable interpretation for the
Seiberg—Witten formula [55] for the superpotential in the
N = 2 gauge theory. Following the appearance of that work,
numerous papers started rapidly appearing with the keyword
“integrability’ in their titles. Unlike in the original story with
the KdV equation, the classical dynamical problem is
involved here in solving the quantum problem. But quantiza-
tion of the integrability technique provided by Nekrasov and
Shatashvili turned out to be also applicable to supersym-
metric gauge theory and was used in [56,57] in classifying
vacuum states. A quantum deformation of the GKM?
algebraic curve turned out to be related to the Bethe ansatz
for XXX, XXZ, and XYZ spin chains in the respective space—
time dimensions D = 2, 3, and 4.

Spin chains also occurred in the approach to anomalous
dimensions in the supersymmetric Yang—Mills field theory.
Minahan and Zarembo [58] considered correlation functions
of a chain of two local operators W(x) and Z(x), which were
set in correspondence with a spin chain, with the spin-up state
corresponding to W(x) and the spin-down state correspond-
ing to Z(x). The energy of that chain was interpreted as the
anomalous dimension of the product of operators. It was
shown that this chain coincides with the spin-1/2 XXX model.
Paper [58] gave rise to extensive studies, mainly in Europe
(Sweden, France, and Germany). The thermodynamic Bethe-
ansatz methods have become especially relevant. It is
impossible to fully describe the progress here, and I restrict
myself to referring to reviews [59, 60].

New applications to relativistic quantum field theory have
shown the power and universality of the notion of integra-
bility and the ABA formalism. We can say that the
integrability technique has made a breakthrough to the
frontier of modern theoretical high-energy physics (see, e.g.,
the introduction to [61]), and new remarkable results can be
expected to appear. I conclude with this optimistic note.

I am grateful to Leon Takhtajan for the important
remarks and M S Aksenteva for the fruitful research at the
Caltech Archive, and also to Shelley Erwin and Loma
Karklins from the archive for their help in selecting archived
documents and offering their copies for study.

This paper was supported in part by the Russian
Foundation for Basic Research, grant nos. 11-01-00570-a
and 11-01-12037-ofi-m, and the Russian Academy of Sciences
“Program Mathematical Problems of Nonlinear Dynamics.”
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