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Abstract. In many space plasma systems, especially when the
magnetic field is weak, characteristic scales of the magnetic
field inhomogeneity are much smaller than the Larmor radius
of the ions. Over the last two decades, quasiadiabatic models of
the dynamics of charged particles in such systems have been
actively developed. In this paper, we systematically review the
quasiadiabatic approximation and illustrate how it can be used
to describe various phenomena in Earth’s magnetosphere and to
explain many effects observed by satellites.

Seek not the unity in the totality
but rather segregation in uniformity
Koz'ma Prutkov

1. Introduction

The theory of adiabatic invariants has a long history (the
original work, published by Paul Ehrenfest in 1910-1920, is
collected in book [1] (see also the article “On one of
Boltzmann’s mechanical theorems and its relationship with
the theory of quanta’ in [2, p. 51])).

In the classic textbook by Landau and Lifshitz, Mechanics
[3], adiabatic invariants are introduced for systems character-
ized by fast and slow time scales. In solving such a problem, a
small parameter emerges, which immediately permits obtain-
ing a simplified solution by the introduction of a quantity that
is nearly conserved, namely, an adiabatic invariant represent-
ing the action integral over the fast variables, with the slow
variables ‘frozen’.

Adiabatic theories are used in solving many problems in
physics and mechanics, but in this review we concentrate on
the dynamics of charged particles in magnetic fields of
complex geometry (for simplicity, we restrict ourselves to
considering nonrelativistic theory). The issue of energetic
charged particles moving in the magnetic field of Earth’s
dipole was considered in detail by Stormer [4] in order to
explain penetration into Earth’s atmosphere of cosmic rays
accelerated by the Sun or other stars of our Galaxy. No
general solution of this problem has yet been found, but many
important particular solutions have been successfully con-
structed.

In the 1930s, the future Nobel prize winner Hans Alfvén
set about to solve the problem, as applied to cosmic physics
issues, of electrons and ions moving in inhomogeneous
magnetic fields. He constructed an approximate theory of
the motion of charged particles in a dipole magnetic field
based on three adiabatic invariants that he introduced, which
corresponded to three different-scale periods of the motion of
charged particles (see Ref. [5] and the references to original
work in book [6] and review [7]).

The first invariant coincides precisely with the particle
magnetic moment. This invariant corresponds to the rapid
periodic rotation of a particle about the magnetic field
vector. We note that the proof that this quantity is
conserved and is indeed an invariant of motion was obtained
independently of Alfvén by Bogoliubov and Zubarev (sce
Ref. [8] and the references to original work presented in
book [9]).

The second invariant, § vy dry, corresponds to averaging
over periodic longitudinal oscillations of a particle between
two magnetic mirrors (here, vy and r| are the velocity and
coordinate components parallel to the magnetic field). The
third invariant, v, de, corresponds to averaging over the
azimuthal drift of particles around Earth.

For each of these invariants to be conserved, conditions
must be satisfied restricting variations of the magnetic field in
time and space. The characteristic period of quasiperiodic
motions must be much smaller than the characteristic time of
magnetic field variations, while the scale of magnetic field
variations in space must be much larger than the spatial scale
related to periodic motion.

The 1950s turned out to be a ‘golden age’ for the
development of the theory of charged particle motion in
magnetic fields. This was due to two events: the discovery of
Earth’s radiation belts by Van Allen [10] and Vernov [11] and
the beginning of work on controlled nuclear fusion, i.e., on
magnetic confinement of hot collisionless plasma. Several
groups in the USSR and the USA were simultaneously
involved in the development of the theory. ‘Thermonuclear’
work turned out to have much in common with work in space
physics. By the mid-1960s, construction of the theory of
charged particle motion in laboratory and space conditions
was, on the whole, completed (reviews written in those times
on problems of particle dynamics can be found in books [12,
13]). An important role in developing this theory in the USSR
was played by groups at the Kurchatov Institute, the Institute
of Nuclear Physics of the Siberian Branch of the Academy of
Sciences, and the Skobel’tsyn Institute of Nuclear Physics of
Moscow State University (SINP MSU).

Besides constructing theories of the motion of charged
particles based on the conservation of adiabatic invariants, it
was also very important to reveal the physical consequences
of the violation of such conservation, i.e., of the violation of
adiabaticity. Here, once again, an essential role was played by
the Soviet plasma school (see reviews Refs [14, 15]). It turned
out that adiabatic invariants are conserved with exponential
precision in a small parameter, which ensures reliability in
using adiabatic invariants for integrating equations of
charged particle motion in slowly varying magnetic fields
with large spatial inhomogeneity scales. Violation of the
conservation of adiabatic invariants results in particle
diffusion in the velocity space. As a rule, this process turns
out to be weaker than diffusion caused by the scattering of
particles on fluctuations of the electromagnetic field, which
are excited in plasma because the system is not in thermo-
dynamic equilibrium. In such cases, collective effects dom-
inate over single-particle ones.

The theories mentioned above have become classical; they
are expounded in a number of monographs [12, 13, 16] and
are relevant to the case of charged particles moving in quite a
strong magnetic field, when the spatial scales of its variations
are much greater than the spatial scales of quasiperiodic
particle motions. But, as it turned out, another, entirely
opposite case is possible. In 1965, the ‘tail’ of Earth’s
magnetosphere was discovered, with a neutral layer at its
center [17]. The magnetic field in this region is extremely small
(several nT) because the main component of the magnetic
field is ‘drawn out’ by the solar wind from Earth’s dipole field,
changing sign in the neutral layer.

In laboratory plasma, in devices for confining plasma in
Z- and O-pinch configurations, a similar situation arises:
there is quite a narrow region within which the magnetic field
reversal occurs [18-21]. In this limit, both space and
laboratory problems have been actively investigated in the
literature; however, the problem turned out to be much more
complex than the preceding one: in this case, the magnetic
field does not fully control the motion of particles and the
theory of adiabatic invariants is no longer applicable. After a
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series of useful, but empirical, studies based on numerical
integration of the equations of motion of particles, it became
clear that the description of motion in weak magnetic fields
required an alternative to the theory of a guiding center.

To construct such an alternative theory, it turned out to be
necessary to change the small parameter of the problem:
instead of the ratio of the Larmor radius and the scale of the
magnetic field spatial variation, the inverse ratio must be
used. In this case, success was achieved in constructing a
seemingly ‘mirror’ theory compared with the guiding center
theory. The theory is based on two adiabatic invariants that
result from averaging the momenta over fast oscillations in
the field, vanishing in the neutral layer and in the field
perpendicular to that layer. Everywhere below, we call these
invariants quasiadiabatic. This term is used not only for
stressing the difference of these invariants from the adiabatic
invariants introduced in the guiding center theory; the motion
of particles in the theory based on the quasiadiabatic
approximation differs strongly from their motion in classical
theory: instead of Larmor helixes, we obtain complex loop-
like trajectories.

The quasiadiabatic approximation allows representing
the motion of charged particles as piecewise-regular: at the
boundaries between regions of regular motion, where the
quasiadiabatic invariant is conserved, a jump in the quasia-
diabatic invariant occurs. The magnitudes of such jumps are
determined by the relations derived in Appendices A and B.
The magnitude of a jump depends on the small parameter and
the phase of fast motion in passing from one regular region to
another. The jump amplitudes can be calculated in many
problems for any given trajectories. However, the jumps are
extremely sensitive to the fast phase, which leads to
stochastization of individual trajectories and of the corre-
sponding systems consisting of particle ensembles, i.e.,
trajectories with close initial conditions diverge in phase
space. Therefore, deterministic chaos arises in the system at
long times. Thus, the theory of jumps of a quasiadiabatic
invariant also permits examining the diffusion limit imposed
on the description of particle motion.

Taking the approximate conservation of the quasiadia-
batic invariant into account yields an additional integral of
motion and permits integrating the equations of motion of
two-dimensional problems on the basis of energy conserva-
tion and of conservation of the generalized momentum and
the quasiadiabatic invariant. This is crucial for the construc-
tion of an equilibrium model in the case of weakly two-
dimensional plasma configurations with current sheets.

Having set the charged particle distribution function in
plasma sources at the boundary of the system under
consideration, we can use the Liouville theorem and project
this function along the regular phase trajectories to any point
in space and calculate moments of the distribution function at
that point. The assumption that quasiadiabatic invariants are
conserved is also very useful in resolving problems of particle
acceleration in plasma.

It is interesting to compare possible consequences of the
conservation of adiabatic and quasiadiabatic invariants. The
motion of particles in these two cases exhibits essentially
different symmetries. In the adiabatic case, there is a
cylindrical symmetry of an anisotropic (but gyrotropic)
system, but in the quasiadiabatic case this symmetry
vanishes and the system turns out to be nongyrotropic (the
directions perpendicular to the magnetic field are no longer
equivalent).

This review presents results of the theory based on the
quasiadiabatic approximation that have been obtained in
recent decades. We believe that the methods of nonlinear
dynamics and the solutions of plasma problems found with
their aid may be of interest to both the physical and
astrophysical communities.

2. General equations

The present review is devoted to problems of the dynamics of
charged particles in configurations involving the plane of
magnetic field reversal. One of the simplest examples of such
configurations is represented by a current sheet (see reviews
on current sheets in space [22, 23] and laboratory [18, 19, 24]
plasma). We mainly consider the current sheet of Earth’s
magnetotail [23, 25], which has been well studied owing to
numerous satellite measurements. In this section, we define
the geometry of the system: the main component of the
magnetic field B, changes sign in the z =0 plane, the
component B, is perpendicular to the given plane, and a
nonzero component B, can also exist (Fig. 1).

The components of the magnetic field in the current sheet,
B(x,z), B-(x,z), and By(x,z), are independent of the y
coordinate and are related by the divergence-free condition
0B, /0x + 0B./0z = 0. Then the corresponding configuration
has two components of the vector potential: A,(x,z) =
[ B.(x",z)dx" — [*By(x,z')dz’ and A= [ B,(x,z')dz".
The Hamiltonian of a particle of charge ¢ and mass m in
such a field has the form

1 q o,
H=— (ps—= Aulx, — p:
2m <p, c S Z)) Jr2m b

s (,, _E{A_‘,(X,ZQQ, (1)

2m

where p is the generalized momentum of the particle. In most
problems, it is possible to consider configurations with
B.(x) = B.(x/Ly), B,=const, and B.(z) = Bob.(z/L:),
where b,(z/L.) is a certain dimensionless function of the z
coordinate, L. is the thickness of the current sheet, L, is a
characteristic scale of the variation of B., and the parameter
By is determined from the condition b,(1) = 1. Moreover, the
problem can often be simplified by setting B, =0 and
B. = const.

We introduce the dimensionless variables p — p/my,
H — H/mvg, r —r/ly, and t — tvy/ly, where v, is a char-

8}

Figure 1. Geometry of the system considered in the review.
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acteristic particle velocity and / is a spatial scale to be defined
below. We also introduce the functions

xly/L- B. ! zly/L-
ay(x,z) = I Hj(gx ) dx’ —J b(z")dZ,
X()lo/L: 0 0
/L. p B. zl
a(z) = Yoy =22 0 ,
) L) By By L.

corresponding to components of the dimensionless vector
potential. The parameter xo is determined from the
condition that a,(x,z) vanishes at the point x = x( in the
neutral plane z =0. Then the Hamiltonian assumes the
form

1 L. 1,
H_§<x—p—0ax(z)) +50:

1 L ?
+= pA——a,x7Z> , 2
s (p - aw @
where p, = (mcvy)/(¢Bo) is the particle gyroradius in the

field By.

In typical conditions of Earth’s magnetotail, the energies
of ions are in the range 1-10 keV, while the amplitude of the
magnetic field By ~ 10—40 nT. The ratio B./B; depends
essentially on the conditions in which the current sheet
forms, and in the case of thin current sheets observed at
distances between 10 and 30 Earth radii on the night side, it
is in the range 1072 < B./By < 1 [26-28], and |B,| then
varies from 0 to 10B, [29]. As a result, the thickness of the
current sheet, L., turns out to be of the order of the Larmor
radius of ions, py, [30, 31]. The curvature radius of the field
line at the center of the current sheet for B, =0 can be
estimated as ~ B.L./By; consequently, B.L./(pyBy) <1 (a
system with a nonzero component B, has the curvature
radius ~ (B.L./By)(1 +Bz/32)3/2 [32]) Therefore, the
guiding center theory cannot be applied to describing the
system with Hamiltonian (2) (the scale of the magnetic field
inhomogeneity is much less than the scale of Larmor radii
of the particles), and investigating the dynamics of charged
particles requires finding an alternative approach.

The Hamiltonian equations r=0H/0p, p = —0H/0r
describe the dynamics of charged particles in the current
sheet. In what follows, we successively examine solutions of
these equations for various functions a.(z) and a,(x,z),
investigate the system in the presence of electric fields, and
discuss the behavior of ensembles of particle trajectories
described by Hamiltonian (2).

3. Dynamics of charged particles
in simple configurations

This section is devoted to problems of particle dynamics in
systems without the B,-component of the magnetic field
under the simplest assumption of homogeneity along x,
with B, = const. We introduce the quasiadiabatic invariant
for a system with Hamiltonian (2) and consider its
description in the framework of the quasiadiabatic approx-
imation corresponding to the exact conservation of this
invariant. We also determine the deviation of the system
behavior from that dictated by the quasiadiabatic approx-
imation, and discuss the consequences of violation of the
invariant conservation.

3.1 Charged particle motion

in one-dimensional current sheets

The dynamics of charged particles in a one-dimensional
current sheet depend on the value of the parameter
Kk = (B.L./Boly) and on the form of the function b.(z).
Because b,(0) = 0, we can use the dg)proximdtion by(z) =z,
whence a,(x,z) = xx — 1/2(zly/L.)". The case where this
approximation is inapplicable, i.e., ab, /0z =0 for z=0, is
discussed in Section 4.3. Taking into account that Hamilto-
nian (2) is independent of y (p, = const), we now introduce a
change in notation: kx — xx + p,. Then Eqn (2) becomes

1 1 1 12 2
He-p2i_p2._ _ 0,2\ 3
2px+2p_,+2(xx 3T’ (3)

Weset Iy = /L.p, and represent Hamiltonian (3) as

=Ly + L2 LY (PN ’ (4)
= — — — X — =2z

2Px TPy 27 )
where k = (B./By)+\/L-/p,. The parameter « thus introduced

is nothing but the square root of the ratio of the smallest
curvature radius of a magnetic field line and the largest
particle Larmor radius pyBy/B. in the system. That is, the
scale of magnetic field inhomogeneities— the curvature
radius of field lines ~ L.B./By ~ pyB:/By—is much smaller
than the scale of the Larmor radius of particles p,By/B.
determined in the plane where the field B, vanishes.

A numerical solution of the Hamiltonian equations for
the system considered here was first obtained in Ref. [33]. The
author showed that while particles are far from the z =0
plane, they oscillate across the magnetic field lines and travel
along them. The solution of the equation for the field lines
(dx/B, =dz/B.) in the configuration considered here is
represented by the parabolas z2 = 2ixx + const. After cross-
ing the z = 0 plane, a particle makes a half-turn in the field B.,
its motion being composed of two motions: gyrorotation in
the constant field B. and nonlinear oscillations in the field
B, ~ z (Fig. 2) [33, 34].

Having made a half-turn in the field B., the particle leaves
the z = 0 plane and once again starts to move along a field
line, oscillating across it. Therefore, such a particle can be
found near the z =0 plane only for a limited period of

Electron

y

Figure 2. Trajectories of an ion and an electron obtained by numerical
integration of the system with Hamiltonians (4). (From Ref. [33].)
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time [35]. But the energy distributions of the particle over the
two degrees of freedom (p,, p.) can be very different when the
particle approaches the z = 0 plane and after it leaves this
plane. Attempts to classify particle trajectories by values of
the magnetic moment p=mv?/2B for the system with
Hamiltonian (4) have not met with success because u
experiences a jump of the order of its own magnitude when
a particle interacts with the current sheet [36]. Current sheets
of zero thickness with the magnetic field B, = +B; [37]
represent an exception here.

The geometry of a real current sheet implies the presence
of not only a central region in which B, ~z but also current
sheet boundaries at which the field is spatially homogeneous
(By ~ Bysignz). Particles arriving in these regions from the
current sheet never return to it. These particles, which belong
to the class of transient particles with open trajectories, follow
their paths toward infinity (z — £o00). In the system with
Hamiltonian (4), the magnetic field b, =z increases at
infinity, and all the particles eventually return to the z =0
plane (with the exception of particles with zero components of
the momentum across the field line). Nevertheless, the system
with Hamiltonian (4) effectively describes the conditions of
particle interaction with the current sheet, and it is actively
used in analytic theory. In considering systems with Hamilto-
nian (2), the function b, = tanh (z) from the well-known
Harris model of the current sheet [38] is often used. In this
case, the main difference between the general system with
Hamiltonian (2) and the simplified system with Hamiltonian
(4) is that the first system involves transient trajectories.

The fact that it is not possible to construct an exact
analytic solution of the Hamiltonian equations for (2) and
to classify the trajectories hindered investigation of the
dynamics of charged particles in current sheets for a long
time. However, it turned out to be possible to perform such a
classification on the basis of the Poincaré technique for
constructing cross sections [39]. The solutions of Hamilto-
nian equations for (2) and (4) are curves in the four-
dimensional space (z, p., kx, py). Because of the energy
conservation, the trajectories fill up a certain three-dimen-
sional manifold. Then, if one of the coordinates is fixed (for
example, z = 0), the whole set of trajectories is represented by
a setin the (xx, p,) plane. The following approach is used for
constructing this set: the Hamiltonian equations of motion
are integrated numerically and, when the particle crosses
the z = 0 plane, its position in the (xx, p,) plane is recorded.
The initial coordinate of the particle here is a point in the
z = 0 plane. Thus, if the particle in its further motion never
crosses the z =0 plane again, it is not included in the
Poincaré section. An example of such a section from
Ref. [39] is presented in Fig. 3. In the system with Hamil-
tonian (2), the y coordinate obviously varies as dy/ds =
Py — (L:/py) ay(x,z). As a consequence, dp,/dr ~ dy/dz,
and Fig. 3 can be considered a set of intersections of
particle trajectories and the (x, y) plane at z=10. In the
figure, different regions can be identified, which allows
classifying trajectories in the system. Regions not occupied
by points correspond to transient particles. The regions
containing closed curves correspond to particles that are
‘trapped’ inside the current sheet and never leave the
vicinity of the z =0 plane. During their motion, these
particles constantly cross the z = 0 plane. Such trajectories
are called regular (as is shown below, these trajectories do
not take part in the chaos, and motion along them is
quasiperiodic). The regions filled up with points correspond

Px

KX

Figure 3. The Poincaré section for a system with Hamiltonian (2). C1-C5
are regions with transient particles, B is a region of quasi-trapped particles,
and A is the region of regular trajectories. (From Ref. [39].)

to chaotic trajectories. After having experienced interaction
with the current sheet, the particles on these trajectories do
not depart toward infinity, but return to the current sheet,
turning back at a certain distance from the z = 0 plane. As
a result of multiple interaction with the current sheet, their
motion becomes chaotic.

For a more complete description of the dynamics of the
system with Hamiltonian (4), an analytic approach is
generally used that is based on the introduction of different
time scales for the variation of the variables (z, p.) and (xx,
px). The existence of different scales allows introducing a
quasiadiabatic invariant. Because k < 1, in the system with
Hamiltonian (4), the variables xx, p, can be considered slow,
and the variables z, p, fast. This approximation allows
considering the dynamics in the (z, p.) plane with ‘frozen’ xx
and p,. We now introduce the Hamiltonian of fast motion,

I R 15\’
hZfH—prfipz—l—z(Kx—Ez ,

which depends on the parameter xx. The potential energy

1 1,5\
U—E(KX*EZ)

corresponding to this Hamiltonian is presented in Fig. 4a for
different values of kx. As can be seen from the figure, particles
can oscillate either in one of the ‘small’ wells (for s > 1,
s = kx/+/2h;) or within a single ‘large’ well (for 1 > s > 0).
When xx < 0, there is only a single potential well in the
system. Motions with and without intersections of the z =0
plane correspond to trajectories of two types in the (z, p.)
phase plane (Fig. 4b, c¢). Trajectories of these two types are
separated by a separatrix. When kx > 0 (Fig. 4b), the particle
can be found either in one of the loops of the separatrix or in
the external region. When xx < 0, the particle is trapped at
the center of the current sheet.

The periodicity of the fast motion of a particle in the (z, p,)
plane at a constant value of xx permits introducing the action
variable as the area bounded by a closed trajectory and
normalized to 2m: I. = (2m) " § p-dz [3]. For the system with
Hamiltonian (4), 1. has the form

IA*lJL 2h, — ;cx—l 2 2d (5)
Z_TE N z 22 VAN
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kx =1.0

U(kx,z)

(=]
N
(=]
S

Figure 4. (a) Potential energy U(icx, z) = 1/2(ix — (1/2) z2)* for different values of icx. Level lines of the Hamiltonian p2/2 + (ix — (1/2) z2)?/2 (b) for

kx > 0 and (c) for kx < 0. The dashed curve shows the separatrix.

The integration limits zi are determined from the equation
2h, = (kx — (1/2) zi)Z. We can introduce the quasiadia-
batic invariant L = (2/2) 1. = (2n)71(2h_,)3/4f(s), where
s = Kkx/+/2h, and

The coefficient is « = 1 if the particle oscillates in a single
potential well and « = 2 if the particle is in one of the small
wells.

The quantity 7. depends on the slow variables kx and p,
just as on parameters, and its conservation is a consequence of
the separation of time scales for z, p. and xx, p,.

Here and hereafter, as mentioned in the Introduction, we
use the term ‘quasiadiabatic’ invariant to underline the
difference between the invariant that we consider (and of the
approximation within which its conservation is assumed) and
the classical adiabatic invariant of this problem, namely, the
magnetic moment.

The quasiadiabatic invariant thus introduced is equal to
half the area inside the trajectory divided by 27 in the external
region, and to the total area inside the trajectory divided by 2w
in the internal region (inside the loop of the separatrix).
Consequently, in the framework of the quasiadiabatic
approximation, I; has the same value inside both the internal
and the external regions, i.e., f(s) is a continuous function.

The function f(s) can be expressed in terms of the
complete elliptic integrals of the first (K) and second (F)
kinds [40]:

f(s) = % [2(1 — k) K(k) +22k* = 1) E(k)], k<1,
f(s):% {2(1—k2)kK(%)+(2k2—1)kE(%)}, k>1,

1 (6)
k= E(l—i—s).

From Fig. 5a, f(s) can be seen to increase from zero for s
varying from s = —1 up to s =1, reaching its maximum
fmax ~ 1.6, after which it decreases, as s increases, as ~ s /2.

The value of the invariant I, depends on xkx and
h.=H—(1/2)p?. For a fixed energy H, the value of I,
determines the trajectory in the plane of slow variables (xx,

1.2

0.8

0.4

Px b

KX

Figure 5. (a) The function f(s). (b) Trajectories in the (xx, p,) phase plane
for a system with Hamiltonian (4). (From Ref. [40].)

D), 1.€., each value of I, corresponds to its own trajectory in
the (kx, py) plane. For the system with Hamiltonian (4),
trajectories in the (kx, py) plane were first constructed as lines
of constant I. = I.(kx, py) in Ref. [40] on the basis of previous
studies [33, 41]. The trajectories from Ref. [40] are presented
in Fig. 5b (the curves are symmetric with respect to the axis
px =0).

Each point in the (kx, p,) plane corresponds to a certain
trajectory in the (z, p.) plane. In Fig. 5b, solid curves indicate
the trajectories in the (kx, p,) plane that correspond to
trajectories in the (z, p.) plane in the external region. The
dashed curves show segments of trajectories in the (kx, py)
plane that correspond to one of the internal regions in the
(z, p.) plane. Certain trajectories do not have segments
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marked by dashed lines. The particles on these trajectories
never cross over to internal regions of the (z, p.) plane.

We note that during the motion of a particle in the plane
of slow variables (xx, py), the potential U, in which the
particle oscillates in the plane of fast variables undergoes
changes. Then, in the case of transition from one of the loops
to the external region, the area inside the trajectory doubles,
and, consequently, fZ also doubles. This effect is called a
geometric jump of the invariant. If the loops of the
separatrix are symmetric, as in the case considered here,
and their areas have the same value as the trajectory passes
to the external region and returns to one of the loops, then
the geometric jump can be excluded from consideration, with
I set to be half I. in the external region. A system with
nonsymmetric separatrix loops is discussed in Section 4.4
and in Appendix A.

The quasiadiabatic invariant I, is conserved in the system
away from the separatrix with a linear accuracy in the small
parameter x at times ~ 1/x [3]. However, it is always possible
to introduce the so-called improved quasiadiabatic invariant,
which is conserved far from the separatrix with an accuracy
~ k2 [42]. We use I. everywhere in what follows, unless
stipulated otherwise. We only need the improved quasiadia-
batic invariant in dealing with a particle crossing the
separatrix (see Appendix A). Using [I. corresponds to
considering a system in the leading approximation in .

3.2 Dynamics of particles and diffusion

of the quasiadiabatic invariant

In this section, we consider effects related to jumps of the
quasiadiabatic invariant /.. These jumps occur when a
particle crosses the separatrix in the plane of fast variables
(z, p-). The level lines of . in the plane (xx/v2H, p./v/2H)
determine the entire set of trajectories in the quasiadiabatic
approximation (i.e., for I, = const). Trajectories for Hamil-
tonian (4) are presented in Fig. 5b and, in a more complete
form, in Fig. 6a, in which half of the big circle (depicted by the
thick light line) for xkx > 0 indicates the wuncertainty curve
(kx>0 and p?+ (Kx)2 = 2H). Each point on this curve
corresponds to the particle motion along the separatrix in
the (z, p.) plane. Therefore, the trajectories that do not cross
the uncertainty curve in Fig. 6a never cross the separatrix in
the (z, p.) plane. As a consequence, no jumps exist for these
trajectories, and they form closed curves on the Poincaré
section (see Fig. 3).

Trajectories crossing the uncertainty curve in the plane of
slow variables cross the separatrix in the (z, p.) plane. When
leaving the external region, the particle is inside one of the
loops. An example of numerical simulation of a particle
trajectory is presented in Fig. 6b, c: it shows particle
trajectories in the plane of slow variables and the value of
the adiabatic invariant as a function of time. In Fig. 6¢c, two
jumps of the invariant are seen, which correspond to crossing
the uncertainty curve (and to crossing the separatrix in the
plane of fast variables). Because of the existence of these
jumps, the trajectory is open, even though its general shape is
similar to the shape of trajectories constructed in the
adiabatic approximation with I (xx, p,) = const.

In the three-dimensional (kx, py,z) space, the surface
swept by the trajectory in the quasiadiabatic approximation
(for I, = const) looks like a split deformed torus (Fig. 7).

The adiabaticity of motion is violated in the vicinity of the
separatrix because the period of particle oscillations in the
plane of fast variables depends singularly on the particle

1.0

0.5

po/V2H

25 30 35 40
kx/v2H
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2028 ¢
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0.12 | | | | |
0 50 100 150 200 250

Time, arb.units

Figure 6. (a) Level lines of the quasiadiabatic invariant I.(kx, py),
(b) projection of numerically calculated trajectory in plane of slow
variables, and (c) dependence of invariant /. on time for Hamiltonian
system (4).

z

Px

S

Figure 7. Invariant torus in the quasiadiabatic approximation in the (xx,
Px. z) space. Region A corresponds to the external region (rx/ V2H < 1),
and Bl and B2 are regions bounded by two loops of the separatrix
(x/v/2H > 1). Shading indicates regions of intersection with the separ-
atrix. (From Ref. [43].)

energy [44]. Thus, in the course of approaching the separatrix,
crossing it, and receding from it, changes in the quasiadia-
batic invariant accumulate (small changes in I, occur at each
oscillation period in the plane of fast variables). The sum of
these changes, called the jump of the invariant, is determined
(see Appendix A) as

2 .
AL =2 p; n (2sinre). )

where p is the momentum p, at the crossing of the separatrix
and £ € (0, 1) is a variable characterizing the point at which
the crossing occurs. We note that ¢ is very sensitive to initial
values of the fast variables (a change in the initial position of a
pointin the (z, p.) plane by a quantity ~ x leads to a change in
£ of the order of unity). Hence, & can be considered a random
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quantity, and jumps A/ can be regarded as random changes
in the invariant /. occurring at crossings of the separatrix.

As a result of such jumps, trajectories in the (xx, p,) plane
are open (Fig. 6b). Multiple crossing of the separatrix
(multiple interaction of the particle with the current sheet)
leads to stochasticization of the system at times much longer
than the period of slow motion (> 1/k) [45].

Consecutive jumps of the quasiadiabatic invariant can be
considered random, independent quantities for most particles
(see Appendix A). As a result, the quasiadiabatic invariant
varies with time in accordance with the law of random walk
with a random step Al and the time interval between the
jumps ~ 1/x. This process can be described in terms of
random walk in the space of invariants for a single trajectory
or in terms of diffusion, if we consider a certain distribution
over L. If a certain particle distribution over the quasiadia-
batic invariants exists in the system at the initial instant, then
the accumulation of jumps A7, with time leads to diffusion in
the space of invariants and to evolution of this distribution
[46, 47].

The value of the jump averaged over £ and determined by
formula (7), (AL)., can be shown to be exactly zero:

1
J In(2sinné)dé=0.
0

But the average of the square of the jump magnitude ((AIZ)2) c
is not equal to zero:
1

(L) = | @nra

0

*\2 T
= 74(’;173‘) J 1n2(2 sinx’) dx’ :% (Kp\*)Z (8)
0

Here, we use the tabulated integral [48, p. 544]

n/2 3
iny)dx =™
Jo In“(2sinx)dx = TR

Therefore, the variance of AI, depends on the small parameter
K quadratically. Hence, for the change of I to be of the order
of unity, 1/x? crossings of the separatrix must occur. The
characteristic time for a change in I to occur is determined by
the ratio of the slow motion period ~ 1/x and a value ~ 2,
and therefore the time required for a significant change in the
quasiadiabatic invariant to occur is of the order of 1/x3.

It is possible to express p; as a function of the
quasiadiabatic invariant itself. For this, we consider equality
(5) at the point p, = p:

2H = p? + (kx)°,

KX

s§=———=1
’ V2H — p? ’

1 8

L==— (H-p)r(1) == H-p})¥*.

s=5- QH=—p) (1) = - (2H = py)

As a result, p?/v2H = 1 — I*/3, where I =3nL/8(2H)**.
The diffusion coefficient in the space of quasiadiabatic
invariants assumes the form

((AL)) 2 He*(1—1*7)

Dy =
Te 3 Te ’

F(I,1)

Transient
trajectories

Quasi-trapped

trajectories

Regular trajectories

I

Figure 8. Distribution function F(Z, ¢) at different moments of time. The
initial moment is indicated by ‘in’, and the final moment by ‘fin’. (From
Ref. [46].)

where 1. is the period of particle motion in the plane of slow
variables [46].

If we introduce an ensemble of particles with different
values of the invariant 7 in terms of a distribution function
F(I,t), then the evolution of F(/,¢) is described by the
equation

oOF 0 oF
aza—I(Du a) - 9)

The solution of Eqn (9) yields the distribution function in the
space of quasiadiabatic invariants in systems that are not
subject to the action of external forces capable of changing the
distribution F(/,¢). The function F(I,7) was computed
numerically in Refs [46, 47]. Figure 8 presents the phase
density F([,t) for several time moments, obtained by
numerical solution of the diffusion equation. It was assumed
that in a current sheet with a magnetic field reaching its limit
values b, = +1, sources of particles exist at the boundary of
the system, |z| =1 (b, = tanhz). Due to these sources, the
population of particles in the sheet that move along transient
trajectories is maintained constant. These particles cross the
whole sheet either because the jump of I is small or because of
a particular resonance effect (see Section 3.3). However, these
transient particles are only a part of all the particles landing in
the current sheet per unit time. Because of the jumps Al of the
quasiadiabatic invariant, the remaining particle population
undergoes transition from the initially transient orbits to
quasi-trapped orbits and remains within the current sheet.
With time, the phase density related to this population
increases. The primary reason is that the initial particle
distribution over I, corresponds to quite a narrow maximum
of the function F([, 7) in the vicinity of small /. values (i.e., all
the particles move along transient trajectories at the initial
moment). Subsequently, although the jump is a random
quantity and a particle has the possibility of both increasing
and decreasing the value of I., the number of particles with
large I, values (particles on quasi-trapped trajectories) on the
average increases due to diffusion of the quasiadiabatic
invariant. From Fig. 8, the results of numerical simulation
are seen to be consistent with the above ideas: with time, the
phase density of particles moving along quasi-trapped
(chaotic) trajectories increases. The increase in the number
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of particles on these trajectories is responsible for the so-
called ageing process of current sheets (see Refs [46, 49, 50]
and Section 6.4).

3.3 Resonance effect and correlation of jumps

of the quasiadiabatic invariant

In Section 3.2, we discussed problems related to diffusion in
the space of invariants due to jumps Al,. However, among the
multitude of trajectories in the system, there are two separate
groups for which scattering processes play no significant role.
The first group includes trajectories that do not cross the
separatrix, i.c., regular trajectories. The second group consists
of trajectories of the so-called resonance particles.

In the case of a single interaction with the current sheet, a
particle crosses the separatrix twice (when leaving one of the
loops and landing in the external region and then when
returning and falling into some loop). Hence, two jumps of
the quasiadiabatic invariant occur:

2
AL, = - kp;In(2sinné),

AL, = % Kkpy In [2sin (né + nd¢)]

where 8¢ is the change in ¢ between the separatrix crossings.
Here, ¢ + 8¢ € (0, 1), i.e., the integer part is subtracted from
£+ 6&. The sum of two jumps (the resultant jump in the
invariant) is given by
cos (n&)
sin (&)
and hence the equation AIS"™(3¢) =0 has two solutions:
6& =0 and 8¢ = 1 — 2&. The second root depends on &, and
the corresponding condition for the total jump to be zero is
not valid for all the particles. For this reason, we only
consider the first root, 8¢ = 0, which is independent of &.
The quantity 2nd¢ is given by the integral of the frequency
of fast motion Q. (kx, h,) = 0H/0I, over time, taken with the

minus sign and modulo unity [45]. Then the condition for
AIZ'™ to be zero takes the form

2
A = - kp;In | cos (md&) + sin (1d&) |,

ZRN:JQZdt:% J% drx,

where N is an integer. Hamiltonian (4) can be expressed in
terms of the variables I, and kx:

1
H= 3 P+ (L, Kx).

Conseauently, Q. = 0h./0I.. Here, kx = +/2h.s and 2nl, =
2h.)*"*f(s), ie.,

- (75)

4/3
o= /2H — 2h, = 2H7<%> ,

f(s)
s (5) (50

As a result, we obtain the following condition for the total
jump of the invariant to be zero:

r L= 25f"(s)/3/(s)
0 f2(s)\/2H - (2L 1 ()

2L

N
T 3k

The integration limit § is determined from the equation

f(5) = 2TCI;/(2H)3/4. We note that the trajectories of tran-

sient particles correspond to small /. values. To obtain an
analytic expression in this region, we expand the integral in a
Taylor series in the vicinity of I, = 0:

N=(H)"*'C, (10)
where Cy = I'(3/4)/+/nT'(1/4) =~ 0.76 [45]. Hence, the phase
increment for particles of the energy 2H = (Nk/ Co)4 is equal
to an integer and I>'™ = 0. As a result, the scattering effect
turns out to be insignificant for such particles [51].

If we consider the dynamics of particles with thermal
energies vy, then 2H = 1, and from the equation N = Cy/x we
obtain a relation for the resonance values of x [52]; for a
system with fixed k, particles of the energy H are therefore not
scattered.

In Earth’s magnetotail, x ~ B, decreases with the distance
from Earth according to a power law: i ~ (—x) ™", 0 < h < 1
[53]. This implies that a number of regions with coordinates
xy exists that correspond to resonance values ky = Cy/N.
The existence in space of such particular regions, in which no
particle scattering occurs, is manifested in the effects of
resonance acceleration discussed in Section 5.2.

In the case of an ensemble of particles with velocities
exhibiting a thermal spread, the obtained relation
(Nk=(2H) 1/ *Cy) determines the energies of particles that do
not experience stochastic scattering: (2H)1/ * ~ N. This effect
was revealed numerically in Ref. [51].

The formulation of the problem in Ref. [51] can be
explained as follows. We consider a current sheet with a
population of transient particles (b, = tanh z), and a source
of particles preset on one of the boundaries of the current
sheet. The distribution of particles that have crossed the
current sheet is investigated. At the beginning, all trajectories
at the boundary of the system can be considered transient. But
because of the jumps of the quasiadiabatic invariant, Al,
some of the particles increase the value of 7. and undergo
transition to quasi-trapped orbits. This effect is not felt only
by the particles that from the very beginning had resonance
energies H ~ N*. To confirm this assumption, the authors of
Ref. [51] analyzed how the distribution function of particles
after they cross the current sheet depends on the thermal
energy V =+/2H of the particles. The phase density of
particles with certain values of H'/* can be seen from Fig. 9
to have characteristic maxima. Each such maximum is
explained by particles with resonance energies remaining on
transient trajectories, i.e., no scattering occurring at these
energies (all particles with these energies cross the current
sheet).

Other manifestations of the resonance effect were revealed
numerically in Refs [32, 54]. The concept of lifetime on the
current sheet, i.e., of the time interval spent in crossing the
current sheet, can be introduced for particles. In the case of
particles moving along transient trajectories, this time is small
compared to the same time for particles on quasi-trapped
trajectories. In the case of nonresonance energies, as a result
of jumps of the quasiadiabatic invariant, Al,, particles on
quasi-trapped trajectories possibly reduce the value of the
quasiadiabatic invariant I, and leave the current sheet in a
finite time (particles on transient orbits can either traverse the
current sheet or undergo transition to a quasi-trapped
trajectory and remain inside the current sheet). In the case of
resonance energies, compensation of the jumps A/, results in
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Figure 9. Distribution function of particles that have crossed the current
sheet. (From Ref. [51].)

particles preserving the values of the quasiadiabatic invariant
in the current sheet and remaining on the initial trajectories.
As a result, if a transient particle rapidly leaves the current
sheet, while a particle on a quasi-trapped trajectory remains
in the current sheet for a long time (from a formal standpoint,
this particle should never leave the current sheet, but the
jumps no longer compensate each other in the next order in «,
and particles actually do leave the current sheet; the only
exception is a special class of stable quasi-trapped trajectories
with the total jump AL, = 0 [see Refs [55, 56])].

The following simulation procedure is used for demon-
stration of the above effect: particles are introduced in the
neutral plane (z = 0) from the region bounded by the circle
(kx)* + p2 = 2H. Particle trajectories are then calculated for
quite a long period of time, and a map is constructed of the
distribution of lifetimes: in the (kx,p,) plane, a particle
lifetime is marked by an appropriate color on the trajectory,
starting from the given point. For any values of H, it is
possible to single out three principal regions in the (kx, py)
plane (Fig. 10): the region of transient particles, from which
particles do not return to the current sheet (shown in white in
the figure); the region of regular trajectories, such that the
particles belonging to it do not leave the current sheet (shown
in black); and the region of quasi-trapped particles, whose the
lifetime in the current sheet is finite (shown in grey in Fig. 10a).
In the case of resonance energies, particles on quasi-trapped
trajectories become nearly regular: their lifetime increases
significantly (Fig. 10b).

A relatively large (= 0.4) value of x was chosen for the
calculations whose results are presented in Figs 10a,b. The
lifetime map for the system with k = 0.2 is presented in
Fig. 10c, from which the lifetime in the current sheet of
particles on quasi-trapped trajectories is seen to increase
significantly at resonance energies.

4. Dynamics of charged particles
in systems with a complex geometry

In Section 3, we showed how the charged particle dynamics in
the simplest magnetic configuration B = By(z/L.) e + B.e.
can be described using quasiadiabatic invariants. However,
the geometry of current sheets observed in Earth’s magneto-
tail, in the magnetospheres of other planets of the Solar
System, and in the solar wind are certainly much richer (see
reviews [22, 23]). For example, a characteristic feature of
magnetospheric current sheets consists in the presence of a
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T
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Figure 10. Lifetime t normalized to the gyrofrequency in the field B for (a)
nonresonance and (b) resonance energies in the case x ~ 0.4 and (c) for
nonresonance energy in the case k = 0.2. (From Ref. [54].)

nonzero gradient 0B,/0x [53, 57], which, although signifi-
cantly less than the gradient 0B,/0z, can also play an
important role in charged particle dynamics.

The development of tearing instability in current sheets
leads to the formation of configurations with X- and O-lines,
in which B.(x) represents not just a variable but an
alternating-sign quantity, B, ~ x [58—62]. Particle dynamics
in the configurations indicated can also be described using the
theory based on the conservation of quasiadiabatic invar-
iants.

Certain current sheets exhibit a complex internal struc-
ture, bifurcation of the transverse current. Current sheets
with such a structure are observed in Earth’s magnetosphere
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[63, 64], in the magnetospheres of other planets of the Solar
System [65], and in the solar wind [66]. In this case, the
derivative of the magnetic field component 0B, /0z has a local
minimum at the center of the current sheet. In Section 4.3, we
examine characteristic features of particle dynamics in such a
configuration and obtain an expression for jumps of the
quasiadiabatic invariant.

Furthermore, in the current sheets of Earth’s magnetotail
[67, 68] and of the magnetopause [69-71], a nonzero compo-
nent of the magnetic field B, directed along the current is often
present. The existence of B, # 0 in Earth’s magnetotail can be
due to both internal current systems and processes of the
interplanetary magnetic field penetrating the magnetosphere
[29]. In Section 4.4, we consider a current sheet in the case of a
nonzero component directed along the current (B, # 0) [72].
This configuration differs from those discussed in Section 3 in
the asymmetry of separatrix loops in the phase plane of fast
variables, which leads to an essential change in the particle
dynamics already in the quasiadiabatic approximation (i.e.,
even without taking the dynamic jump of the quasiadiabatic
invariant A, into account).

4.1 Particle dynamics in two-dimensional current sheets

In this subsection, we consider charged particle dynamics in a
current sheet with an inhomogeneous magnetic field
B.(x/L,), where L, is the B, inhomogeneity scale. We
assume that the field B.(x/L,) is nonvanishing everywhere
in a region x € [x1, xo] considered. The parameters x; and xg
satisfy the inequalities x; < xo < 0, which corresponds to the
current sheet on the night side of Earth’s magnetosphere and
also to the choice of a coordinate system with its origin at the
point corresponding to the coordinate of Earth and the x axis
directed from Earth toward the Sun (see Fig. 1). The magnetic
field lines are shown in Fig. 11 (for comparison, field lines for
a system with B, = const are also shown). We see from the
figure that the field lines in the system with 0B./0x # 0,
unlike the ones in a current sheet with B. = const, are no
longer equidistant along the x axis.

Particle trajectories for the above problem were obtained
for different dependences of B, on x in Refs [75, 76] by
numerical integration of the Hamiltonian equations of
motion. The analytic description of particle motion consid-
ered in this section is based on Refs [77, 78].

The Hamiltonian of the system in the dimensionless
variables introduced in Section 3.1 has the form

x / 2
27K‘[ BZ(YX)dX/> )
B

Xo z

1
H=-
2

TR
px 2pz 2 p,V 2

where x = B./Bo/L:/py, v=/L:py/Lx <1, and B. is a
certain characteristic value of B. within the interval
X € [x1,x0]. We now introduce a new coordinate

by + Jx B:(') dx’.
K

1==

Then p, = p,B(vy), where = B.(vx)/B.. In the new vari-
ables, the Hamiltonian takes the form

(11)

ol 2 g2 )+1 2+1 LN
Tl P VTR Py \ Ty 2 )

As in Section 3.1, the variables z and p. are fast, while the
variables xy and p, are slow. We note that it is possible to

A=~
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»

Figure 11. Field lines for a system with B, ~ zand with different profiles of
B-(x/Ly): (a) B. = const; (b) B. ~ (—)c/L,\)q/2 [73]; (¢) B. ~ exp(x/Ly)
[74].

8]

separate the Hamiltonian of fast motion, /., from Hamilto-
nian (11) and to compute its quasiadiabatic invariant
L.=(1/2n)(2h.)** (s), where s = Ky/\/2h.. We can then
write

PR VAR B
h: =5 p: +§<K/C—§Z> ;
1
I, = I:(vx, h.(H, pzﬁ)) =1 (K}(, H—Epf) .

Therefore, motion in the (z,p.) is identical to the one
considered in Section 3.1 (see Fig. 4). For the slow motion,
we obtain the Hamiltonian

1
H =23 p; () + eI, 7)

where /. is expressed in terms of the invariant 7. in accordance
with a formula given in Section 3.1.

The phase portrait of the Hamiltonian of system (12) in
the variables xy and p, f looks similar to the one shown in
Fig. 6a. Hence, the above change of variables has reduced the
problem to the one discussed in Section 3.1. But the original
variables of the system, in which it is necessary to plot phase
portraits, are kx and p,. To represent the phase portrait,
shown in the variables xy and p, f in Fig. 6a, using the
variables kx and p,, we must fix the form of the function
f(vx). We consider two possible choices of f8, corresponding
to the two characteristic magnetospheric configurations
shown in Figs 11b, c.

The magnetic field B.(x/L,) in Earth’s magnetotail is
formed as a result of the magnetic field of Earth’s dipole being

(12)
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screened by currents of the current sheet. A good approxima-
tion for the dezpendence of B. on x in this case is the power law
f=(-v (Fig. 11b), considered in Refs [57, 73, 79].

Here,

-2 ).

We now introduce the notation

p/ :py — 2K V _XO/V
' V2H

where

= const,

or

The phase portraits in the plane of slow variables are
presented in Fig. 12 for several values of p} The parameter p‘
contains information on the particle momentum along the y
axis and on the particle position on the x axis at the initial
moment. The larger p}’, is, the deeper the particle can penetrate
the tail of the magnetosphere when moving along the
trajectory in the plane of slow variables, which corresponds
to larger values of the coordinate —x,. Here, regions with

Py =1

—VX

Figure 12. Phase portraits in the (—vx, py) plane for the system with
p= (—vx)fl/2 and three values of p;. The parameters of the system are
H=1andv/k =0.5. '

larger values of —xq correspond to smaller values of the field
gradient B.(x/L,) because dB./dx ~ B./x. As a result, the
phase portrait at large values of p}’, is, more than others,
similar to the phase portrait presented in Fig. 6a and obtained
at a zero gradient B.(x/Ly).

An exponential dependence of the magnetic field on the
coordinate, i = exp (vx), is also frequently used in models of
current sheets (see Refs [80, 81]). Such an approximation
corresponds to the magnetosphere in the quiet condition. In
this case,

) EXp (vX) — €Xp (VX
x:—%+ P ( )vp(w7

o))
P e ()

The phase portraits for this system are presented in Fig. 13. In
this case, as —xg increases, the field gradient B.(x/L,)
decreases exponentially. As a result, already for pJ’, =23,
the phase portrait is similar in structure to the portrait of the
system with a zero gradient (Fig. 6a).

The shaded regions in Figs 12 and 13 correspond to the
region filled with trajectories that do not cross the separatrix
in the (xy, p,f) plane (Fig. 6a). From Figs 12 and 13, the area
occupied by these trajectories can be seen to depend on the
value of the parameter p;. Because larger values of py
correspond to smaller values of dB./dx, we conclude that in
systems with strong magnetic field gradients, fewer particles
move along regular trajectories.

As in the case of the system with a constant field B., a
trajectory crossing the separatrix in the case discussed here
leads to a jump AL of the quasiadiabatic invariant. Because
the substitution of the variables xy and p,f for the slow
variables reduces the system with Hamiltonian (11) to the

Figure 13. Phase portraits in the (—vx,p,) plane for the system with
p = exp (vx) and two values of p/. The parameters of the system are H = 1
and k = 0.1. ’
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system with Hamiltonian (4), the jump of the invariant can be
written as

2
Al = - Kp;ﬁz(v;(*) In (2sinné) .

Such jumps, as noted in Section 3.2, result in diffusion of the
quasiadiabatic invariant, and in time periods of the order of
x 3, the invariant changes by a value of the order of unity.

4.2 Particle dynamics in the vicinity of X- and O-lines
The X- and O-line geometry is determined by the magnetic
field components B, = By(z/L.) and B, = +£By(x/L,), where
the plus sign corresponds to an X-line and the minus sign
corresponds to an O-line. The respective configurations of
magnetic field lines are shown in Fig. 14.

The theoretical treatment of particle dynamics in the
vicinity of an X-line, presented below, is based on the theory
of quasiadiabatic invariants [40, 78, 82].

The Hamiltonian of a system with an X-line can be written
in dimensionless variables as

5 3 (13)

b, 1, L,y 1, ?

Hiipx—i—_pz +3 (p}—"_zj’x _EZ )

where 42 = L./L,. In a system with 22 < 1, as previously,
z and p, are fast variables for which the Hamiltonian is

by 1 Loy 1, ?
hZ—ZpZ—i—Z(p},—i—z/lx 57 .

As in Section 3.1, we can introduce the invariant /, =
(1/2m) (2h.)* f(5), where s=y/V2h. and z=p,+
(1/2) 2>x2. Here, the phase portrait of fast motion corre-
sponds to the one shown in Figs 4b, c.

The slow variables of the system are Ax and p,, in terms of
which the Hamiltonian has the form H= p2/2 + h.(y,I.). The
phase portrait in the plane of slow variables can be
constructed as a family of level lines of the invariant
L(x,H — (1/2) p?). The phase portrait of slow motion in the
coordinates y and p, is then fully identical to the phase portrait
presented in Fig. 6a, but not all values of y correspond to real
values of x for a given p,..

=
©@

Figure 14. Magnetic field lines (a) in the X-line geometry and (b) in the
O-line geometry.

S

[N

We introduce the constant p; = p,/ V2H. Then, expres-
sing x in terms of for different values of p/
(Jx = +(8H)"*(z/vV2H — p!)"/}), we can obtain different
phase portraits in the (Ax, p,) plane.

If py<—1, then x/\/ﬁl—p}’,>0 for all y/v2H >—1.
Hence, the entire (i, p.) space represented in Fig. 6a trans-
forms into the (1x, p.) space, but no trajectories in the (Ax, p.)
space cross the vertical straight line x =0, because
X~ y/V2H — p, is never equal to zero. The phase portrait
shown in Fig. 15a corresponds to these trajectories. Particles
moving along these trajectories land in the neutral plane
(z ~ 0) even before reaching the X-line (x ~ 0); therefore,
their motion resembles that of particles in the two-dimen-
sional current sheet with an inhomogeneous magnetic field
B.(x/Ly,) (see Figs 12 and 13).

If p/=-1, then y/ V2H ranges within the limits
1>y /V2H = p/. Hence, the point x =0 corresponds to
7/V2H = p! and is in the range of y/v/2H values. In this
case, there is a single trajectory in Fig. 6a with y/v2H = —1,
such that its corresponding trajectory in the (Ax,p,) phase
portrait passes from the region of negative Ax to the region of
positive x (or vice versa) across the X-line (x ~ 0). But all the
other trajectories of the system still do not cross the X-
line. The corresponding phase portrait in the plane of slow
motion is shown in Fig. 15b.

If —1<p; < 1, thecondition x/\/ﬁ—p}/, > 0is satisfied for
2/V2H > —1. Consequently, only part of the phase portrait
presented in Fig. 6a is projected onto the (Ax, p,) plane. The
phase portrait in the (Ax,p,) plane is shown in Fig. 15c.
Trajectories passing from the half-space of positive /x into
the half-space of negative Ax already exist in the system.

-3.5

-2.5

-1.5 —-050 05 1.5 2.5 35

Py =20

—1 t t T I t t
-35 =25 —-15 —-050 05 1.5 2.5 3.5
x/2H
Figure 15. Phase portrait in the plane of slow variables for four values of
the momentum pJ’. for the system with Hamiltonian (13).
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Figure 16. Poincaré sections for three values of the momentum pJ’, for the system with Hamiltonian (13). (From Ref. [83].)

If p; > 1, then the condition 1/V2H — p} > 0is satisfied
for y/v/2H > 1. As a result, only those parts of trajectories
that correspond to y/v/2H > 1 are projected onto the (1x, p,)
phase plane. These trajectories no longer cross the uncer-
tainty curve, and no separatrix is present in the (4x, p,) plane
(Fig. 15d).

The uncertainty curve corresponding to particle motion
along the separatrix in the (z, p.) plane can also be projected
onto the (Ax,p,) plane from the (kx,p,) plane, where the
uncertainty curve is represented by the semicircle (KX)2+
p2=2H, kx > 0. In this case, the uncertainty curve in the
(Ax, py) plane is represented by two arcs of circles touching
two regions with regular trajectories (indicated by dark lines).
As a result, the trajectories that are inside the region around
x = 0 bounded by these arcs do not cross the separatrix in the
(z,p:) plane.

For the system under consideration, Poincaré sections
were constructed in Ref. [83] for three values of p/. For this,
an ensemble of trajectories is calculated and, when a
trajectory crosses the z = 0 plane, the position of the particle
in the (4x, p,) plane is marked. Figure 16a corresponds to the
case where no trajectories crossing the straight line x = 0 and
not crossing the uncertainty curve are present in the plane of
slow variables. As a result, the region with x ~ 0 is filled with
points scattered about chaotically. Figure 16¢ corresponds to
a system with trajectories that do not cross the uncertainty
curve but pass through x = 0 (in the plane of slow variables,
undestroyed trajectories are seen passing from the half-space
x > 0 into the half-space x < 0). In all the Poincaré sections,
we can clearly see the region of regular motion (closed curves)
indicated in Fig. 15 by dark lines. We can also see the region of
stochastic motion filled with isolated points in space. The
formation of this region is related to the existence of jumps of
the quasiadiabatic invariant .. The particles on open orbits
fill the space around the regular region chaotically because of
the random nature of the jump Al (see Section 3.2 and
Appendix A).

The dynamics of a particle in the vicinity of an O-line are
described by the Hamiltonian obtained from (13) by replacing
the minus sign with the plus sign in front of the summand
(1/2) 22x2:

1 1 1 1 1 5)\?
He-pla_p2i2(, _2)22_2,2)
2px+2p_,+2<p}, 2/1x 57

(14)
Motion in the plane of fast variables in this case differs in no
way from motion of the system considered above. But we now
have Ax = +(8H)"/* x (py — 7/v/2H)'?, and the phase por-
trait in the plane of slow motion looks different (Fig. 17): all

-050 05 1.5 2.5 3.5
x/V2H

Figure 17. Phase portrait in plane of slow variables for three values of the
momentum p( for the system with Hamiltonian (14).

the trajectories cross the vertical straight line x = 0 at quite
large values of p;.

Thus, the problems with both the X-lines and the O-lines
can be treated analytically based on the quasiadiabatic
description if the configuration remains elongated (1 < 1).

4.3 Particle dynamics in a bifurcated current sheet

This section is devoted to charged particle dynamics in a
bifurcated current sheet. We consider the case of total
bifurcation, when not only the magnetic field component B,
but also the current density j, ~ 0B, /0z vanishes in the z = 0
plane. In this case, b, = (z/L.)’ and a, = xx — (1/4) z*/L}.
We introduce the spatial scale [y = (Lz3p0)l and represent
Hamiltonian (2) in the form

2
PR NS U W A
21& 2172 ) bif 2 .

(15)
In this case, kuif = (B./By) % (L/pO)S/4 and, as before, this
parameter can be considered the small parameter of our
problem, kpir < 1.

The level lines of the Hamiltonian 4, = H — (1/2) p? in
the plane of fast motion are shown for xpiex > 01in Fig. 18. We
see from the figure that the singular point (0, 0), unlike the
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(=}
—

0 z

Figure 18. Phase portrait of fast motion for the system with the
Hamiltonian /, = (1/2) p2 + (1/2) (ievir x — (1/4) 24

point (0, 0) in the problem considered in Section 3.1
(Figs 4b, ¢), is degenerate, i.e., the separatrices approach this
point at a zero angle. In the case of such a system, the
formulas obtained in Sections 4.1 and 4.2 for the invariant /.
and the jump A/ are no longer valid.

We consider the quasiadiabatic approximation for the
system with a degenerate singular point. We can define I, as
(1/21)(2h-)*"® fiie(s), where s = Kpig x/+/2h- > 1 and

Zy B
fbif(S):ocJ" mdz/.

Here, z. are roots of the equation (s —z?/4)*> = 1. The
coefficient is o = 2 if the particle is in one of the closed loops
of the separatrix and « = 1 if the particle is in a region that is
external with respect to the separatrix. As we can see from the
plots of the functions fyif(s) and f(s) taken from Section 3.1
and presented in Fig. 19a, as s increases, fuir(s) decreases
faster than f'(s), and the maximum value of fu;r(s) is smaller
than the maximum value of f(s).

Particle trajectories in the plane of slow variables
(rcviex, py), defined as level lines of I = I (kuirx, py)
(Fig. 19b), have a structure similar to the structure of
trajectories in the system with Hamiltonian (4), depicted in
Fig. 6a.

Comparison of Figs 6a and 19b permits noting that the
region occupied by regular trajectories (shown by dark lines)

is larger in the case of the system with the degenerate
singular point. To verify this, we find the areas S™¢ and
Sy of the regions occupied by the relevant trajectories in the
respective planes (ipiex, py) and (xx,py). The boundary of
the region with regular trajectories is the curve /) = const
that touches the uncertainty curve 2H = px2 + (Kbifx)2 at the
point kpirx = v/2H (similarly to the case of a classical current
sheet with k). The respective values of the quasiadiabatic
invariant are I[¢=S%./2n and I/**=S*/2n, where Sy, =
(2H)Pfi(1) and S* = (2H)¥4f(1). Calculations yield
St = 27V4(2H)%%B(3/4,3/2) and S* = (252/3)(2H)**,
where B is the beta-function. Hence, the area Sp;f can be
defined as the integral § p, drpirx, where p.(ipirx) is defined
by the relations

Kbif X

/2}1_173') = Shir»
o * (16)
V2H — p?

(and similarly for S™¢). Finding p, (xuirx) and calculating the
integrals, we obtain S, ~ 0.64n and S™¢ ~ 0.197. Hence,
the phase space occupied by regular trajectories is more than
three times larger in the system with a degenerate singular
point than in the system with Hamiltonian (4).

The following asymptotic formula for a jump in the
quasiadiabatic invariant in the system with a degenerate
singular point was obtained in Ref. [84] (see also Ref. [85]
and Appendix B):

(2H — pxz)S/S./Bif <

(2H—p,3)3/4f(

AL = (i p ) (rewiex ™) 710 C(€)

Here, p¥ and kpigx* are values of the momentum and
coordinate at a separatrix crossing point, £ is a variable that
has the same meaning as for a current sheet without
bifurcation (see Appendix A), and C(&) = Ci(&)+
(1/v2) C (1 — &), where C;(&) is given by the formula (see
Appendix B)

7-11/16 % ]

Ci(¢) =58 T a J {———

nS8T(1/4) Jo Lt 1—exp(=1)

As in the case of the system with Hamiltonian (4), the mean

value (AL). = 0.

If we introduce the dimensionless quasiadiabatic invar-

iant 1= CL/H®®, where C=2"%tB~1(3/4,3/2), the
expression for the jump of the invariant can be rewritten as

exp (—¢&1) dr
e

Al = —K3/4(1 _ [8/5)3/8 I—I/ZOCI(i) .
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Figure 19. (a) The functions fuir(s) and f(s). (b) Trajectories of particles in the plane of slow variables (kpirx, py) for the system with Hamiltonian (15).
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K— — 7

Figure 20. Dependences of the jump in the invariant, AZ, on the value of the
invariant I for the system with Hamiltonian (15) (solid curve) and the
system with Hamiltonian (4) (dashed curve).

Here, C'(¢) differs from C(&) by the presence of a constant
factor (see Appendix B). If 7 < Ksi/r7, the last formula is no
longer a})7plicable and it is only possible to obtain the scaling
Al ~ ;cbsif (see Ref. [84]). The dependences of Al for the
system with Hamiltonian (4) and for the system with a
degenerate singular point with Hamiltonian (15) are pre-
sented in Fig. 20.

As can be seen from Fig. 20, jumps of the quasiadiabatic
invariant in a current sheet with a degenerate singular point
are larger, Al ~ ;csi/f4, than in an ordinary current sheet,
Al ~ k. Hence, the particle scattering rate in bifurcated
sheets should be higher. This result is confirmed by numer-
ical simulations [86, 87].

4.4 Particle dynamics in a sheet

with a guiding magnetic field component

In this section, we consider particle dynamics in a current
sheet with B, =const # 0, i.e., with a magnetic field
B = By(z/L)e. + Be, + B.e.. The vector potential corre-
sponding to the magnetic field of such a current sheet has
two components: A/Byly=(kx —z?/2)e,+bsze,, where
by = (By/By)+/L/py. For current sheets of Earth’s magneto-
tail, b < 1, while for current sheets of the magnetopause, the
cases where bs > 1 are possible. The Hamiltonian of a
charged particle in such a system is given by

1
H= Epzz + U(p!ﬁva 2)7

U=

N =

(px=b )2+l Kx— 2 22 2
Px sZ 2 2Z .

It follows from (17) that the system under consideration,
unlike the system with Hamiltonian (4), does not have the
symmetry z — —z. However, Hamiltonian (17) preserves its
form under the transformation z — —z, p, — —px.

The potential energy U in (17) now depends on three
parameters: kx, bs, and p,. As seen from Fig. 21, the two

potential wells that originate in the system, unlike such wells
in the case of the system with Hamiltonian (4), can differ in
shape. That is, the loops of the separatrix of such a system are
asymmetric. Therefore, in passing from the external region to
one of the loops, the quasiadiabatic invariant experiences so-
called geometric jumps, related to a change in the area
bounded by the trajectory. For the system with Hamiltonian
(4), we could redefine 1. so as to avoid geometric jumps
(because the loops were symmetric and the total area bounded
by the separatrix was always twice the area of one of the
loops), but this can no longer be done because of the
difference between the areas of the right and left loops.

We next consider the system in the quasiadiabatic
approximation: we neglect dynamic jumps of the invariant
related to transitions across the separatrix (see Appendix A),
and discuss the role of geometric jumps.

In a transition between the wells, a particle can change the
value of the quasiadiabatic invariant by a quantity of the
order of unity (a quantity independent of x). Geometric
jumps of I, like dynamic ones, occur when a particle crosses
the uncertainty curve. Precisely at this moment the particle
can change the potential well in which it oscillates (can
undergo a transition from a loop of the separatrix to the
external region or to another loop or from the external region
to one of the separatrix loops). In the problem with by = 0,
only transitions from the external region to one of the
separatrix loops and from a separatrix loop to the external
region are possible, but now, because of the asymmetry of the
loops and to the asynchronicity in their evolution, transitions
are possible with the change of slow variables from one
separatrix loop to another. These transitions proceed as
follows: at one period of fast motion, particle crosses the
separatrix twice: the first time when it leaves the loop and
passes to the external region, and the second time when it
undergoes a transition from the external region to another
loop.

In this case, a geometric jump occurs, which implies a
change in the invariant I.. As a result, the trajectory on the
uncertainty curve ‘splits’ into two, and several such bifurca-
tion points can exist. This means that in the plane of slow
variables (kx, py), the same trajectory can have several values
of the quasiadiabatic invariant corresponding to it. But
because the Hamiltonian is invariant under the transforma-
tion z — —z, p, — —py, the number of bifurcation points for
each value of b is finite.

When speaking of bifurcation of a trajectory, we do not
mean that the trajectory of a real particle actually splits into
two. We mean that at each bifurcation point, the particle can
move along one of the two possible trajectories. The choice of
a concrete trajectory among the set of possible versions is a
probabilistic problem. This means that the probability of
transition to one of the two possible loops (or one loop and
the external region) on the uncertainty curve can be
determined in terms of the rates at which the areas of the
given loops undergo changes (in the case of the external
region, this rate equals the total rate with which areas of both
loops change, taken with the opposite sign) (see Ref. [42]).
The probability of transition to one loop or another is defined
as the ratio of the change rate of the area of this loop and the
total change rate of the area of both loops. If this rate is
negative, the particle cannot undergo the transition to the
loop considered. If a particle is in a loop with a negative rate
(negative probability), it must leave the loop on the
uncertainty curve.
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Figure 21. Potential energy U for b = 0.25 and different values of xx and p;.

Examples of adiabatic trajectories in the (kx, py) plane are
shown for different b values in Fig. 22. The trajectories were
determined as follows. The trajectory of a particle that started
from a certain point in the plane of slow variables was
calculated numerically in accordance with the equation
I.(xx,py) = const. Then, when the particle reached the
uncertainty curve, the calculation was stopped, provision-
ally. For this point on the uncertainty curve, the change rates
were calculated for the areas bounded by the separatrix loops
and, thus, the trajectories (loops) along which the particle
could continue motion were established. Then, in each loop
with an increasing area, a new trajectory I.(ix, py) = const
was launched.

In Fig. 22, regions S, R, L, B, and N are indicated in which
the potential energy U has different forms and the particle of a
given energy H can undergo oscillations of appropriate types:

e S: either a single potential well exists that occupies the
region z = 0 or there are two potential wells below the energy
level of the particle. As a result, the particle oscillates in the
external region about the separatrix in the plane of fast
variables, crossing z = 0 twice at each turn;

e R and L: the particle can only oscillate in a single
potential well, whose bottom is situated to the right or to the
left of z = 0. No R or L regions are present in the system with
bs = 0;

e B: two potential wells exist, in each of which the particle
can oscillate;

e N: no solution exists.

We see from Fig. 22 that the trajectory bifurcates on the
uncertainty curve. The figure demonstrates all possible
trajectories for a particle that at a certain instant occupied a
position on the trajectory shown. As can be seen from the
figure, the uncertainty curve in the system does not reach the
boundaries of the region of motion in the (xx,p,) plane,
unlike the uncertainty curves in Figs 6a and 19b, which are
semicircles. As a result, some of the trajectories traverse
region xx < 0 without crossing the uncertainty curve (i.e.,
without crossing the separatrix). This new effect is due to the
introduction of the field B, into the system. When B, is
sufficiently large (if by > 1), the uncertainty curve comple-
tely disappears and the system passes to the dynamics
without any jumps of I.. There is no separatrix in the
plane of fast variables in such a system. This means that
the system corresponds to the case where the curvature
radius of magnetic field lines (in other words, the magnetic
field inhomogeneity scale) is greater than the gyroradius of
the particle. The limit of such a system, as bs increases, is a
system that can be described in the standard approximation
of a guiding center, where the role of the quasiadiabatic
invariant is taken by the magnetic moment.
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Figure 22. Trajectory of a particle in the (kx, py) plane for three b5 values.
Light thin curves indicate boundaries of regions with different geometries.
The light thick arc is the uncertainty curve. Dark curves show particle
trajectories.

Because a real particle chooses one of the two versions of
further motion on the uncertainty curve, each trajectory in
Fig. 22 for different b, actually represents a set of trajectories.
As a result, in numerical simulations of Hamiltonian
equations, we should obtain a trajectory corresponding to
only a part of the trajectory shown in Fig. 22. In Fig. 23, the
trajectory of a particle in three-dimensional space is pre-
sented, which was obtained by straightforward integration of
the Hamiltonian equations for (17). In this computation, the
value of k was chosen to be sufficiently small for the trajectory
to seem closed (the dynamic jump effect is insignificant). As
can be seen from Fig. 23, the particle indeed moves along a
part of the quasiadiabatic trajectory shown in Fig. 22.

We note that the actual geometric jumps of the quasia-
diabatic invariant that are related to the asymmetry of the
loops of the separatrix (owing to the existence of B, # 0) are
independent of the small parameter x and therefore give rise
to a very rapid change in the invariant [8].

The presence of the field B, leads to the disappearance of
resonance trajectories with jumps, reducing the quasiadia-
batic invariant during the first and second crossings of the

N

KX

Figure 23. Results of numerical simulations of the trajectory of a particle
with Hamiltonian (17).

separatrix. This effect was revealed numerically in Ref. [89].
Furthermore, it can be shown that in the case of a system with
asymmetric loops, no stable resonance quasi-trapped trajec-
tories exist [90].

5. Acceleration of charged particles

Quasistationary acceleration of charged particles in current
sheets of the tail of Earth’s magnetoshpere is primarily related
to the presence of a large-scale electric field £,. We define this
field by introducing a vector potential, i.e., consider a curl
electric field with 4, ~ E,t. From a formal standpoint, £ in
Earth’s magnetotail can be considered an electric field related
to interaction of the magnetic field of Earth’s dipole with the
solar wind flux [23]. But when E, = const is substituted in the
Hamiltonian, we can use either of the two possible methods
for its definition: via the vector potential A, or via the scalar
potential ¢, owing to the gauge invariance of 4, and ¢ [91].
We note that if the field is introduced by means of the scalar
potential ¢ ~ E,y, the p, momentum conservation is violated
in the system, but the system remains stationary (H = const).
If we use the relation A4, ~ E,t, then p, =const, but
stationarity is violated.

5.1 Quasiadiabatic acceleration

with conservation of invariants

In this section, particle acceleration is considered in a system
with a magnetic field B, depending on the coordinate x and in
the presence of a constant electric field E, = const. Here, we
assume B. to be everywhere greater than zero. This problem
was discussed in Refs [77, 78, 92]. It must be noted that due to
the existence of a gradient 0B./0x, charged particles drift
slowly along y, which leads to an increase in energy in the
constant field E,. Therefore, this acceleration mechanism is
an analog of adiabatic acceleration (the betatron mechanism
and the Fermi mechanism), for which the existence of the
inhomogeneity 0B, /0x is essential.

The motion of quasiadiabatic ions in two-dimensional
geometry is shown schematically in Fig. 24. Because of the
presence of a transverse electric field E,, particles drift slowly
toward Earth (this drift, related to the open-endedness of
trajectories in the plane of slow motion, is manifested in
averaging over the slow motion), arriving to the region of



April 2013

Quasiadiabatic dynamics of charged particles in a space plasma 365

Figure 24. Schematic view of an ion trajectory in the two-dimensional
configuration of a current sheet. (From Ref. [93].)

large B.(x) values. The particles drift in the y direction due to
the inhomogeneity of the magnetic field, and their orbits
become open-ended.

The Hamiltonian of the system can be obtained by adding
the term —excz to ky in Hamiltonian (11), where ¢ = cEy/voBZ:

1 1 1 2
*Pfﬁz(VX)JrEP_}wLE <Kxf§zz *SKZ) .

We make the following change of variables: we consider
the quantity y — ¢t to be a new variable, keeping the notation
y forit:

1 5, ‘ 1, 1 15\
szplﬁ (v(x—i—el))—l—zpz —1—5 Ky =52 —&p, .

We also introduce the variable p, — ¢/ p? and continue using
the notation p, for it. This change of variables allows isolating
a complete square in the Hamiltonian A and obtaining the
following expression for the new Hamiltonian:

_ 2[32(‘;( -l—Sl))-l—l 2+1 K _122 2_;'_15
P, X 2[7: > X 2 2[32.
(

18)

We note that both changes of variables preserve the
Hamiltonian form of the equations (see Refs [77, 78]).

We now find the relations between the parameters
entering Hamiltonian (18). The parameters x and v being
small allows separating the variables into fast (z, p.) and slow
(xy,p,) ones (as in Section 4.1). The electric field E,
determines the evolution time of the system (or the convec-
tion time of charged particles toward Earth in the magneto-
tail). For realistic values of E, (E,<0.lmV m~!' (see
Ref. [94]), this time significantly exceeds the particle oscilla-
tion period in the phase plane of slow variables, and we can
assume that ¢ < k. In this case, we obtain a time hierarchy of
processes: a particle moves with a velocity ~ 1 in the (z,p,)
plane and with a velocity ~ « in the (xy, p,) plane, and the
trajectory of the particle with a velocity ~ ve undergoes
evolution in the (xy, p,) plane. In the first approximation in
&, we can therefore neglect the term ~ &2 in Hamiltonian (18).

For this system, similarly to how this was done in
Section 4.1, we can introduce a quasiadiabatic invariant,
when 7. is ‘frozen’ (and at a ‘frozen’ time ¢f), by the formulas
given in Section 3.1. The Hamiltonian of fast motion, 4., in
this system has the form

1, 1 ,)\°
hz—5p2+§<m{ 52).

. (1/21)(2h-)>*£ (), where
s = ky/v/2h.. Hence, the quasiadiabatic invariant and the
phase portrait in the (z, p.) plane for the system are similar to
the those discussed in Section 4.1. The Hamiltonian of slow
motion then takes the form

Correspondingly, I. = I (h.,xy) =

== p2B* (v(x + 1) + ho(L, k7).

This Hamiltonian describes a system with 1.5 degrees of
freedom. This means that in the case of a frozen time &z, the
problem is integrable. The corresponding results in the case of
&t = const are presented in Section 4.1.

We investigate the slow evolution of the system related to
a change in the time &f. In the (xy,p,f) plane (and in its
corresponding (xx, py) plane [see Figs 11, 12]), the trajectories
of the system can be considered closed at time scales of 1/x
and their evolution is slow, and we can therefore introduce
one more quasiadiabatic invariant

1
Izzﬁ%pxdx,

We note that [, is an analog of the second (longitudinal)
adiabatic mvarlant in the classical theory of motion of a
guiding center. We describe the evolution of the system taking
the conservation of . and 7, into account. For this, we divide
the trajectories in the (;cy,p/) plane into two groups:
trajectories that do not cross the uncertainty curve (the
region occupied by these trajectories is shown by dark lines
in Figs 6a, 11, 12) and trajectories crossing the uncertainty
curve and, consequently, the separatrix in the (z, p) plane.

5.1.1 Acceleration of particles not crossing the separatrix. For
the group of particles whose trajectories do not cross the
separatrix, I. = I.(h.,xy) and I, = I,(H, et, I.) are conserved
with a high precision. Therefore, motion in the (H, ¢f) plane is
determined by the equation /, = const, and a particle moves
in the (xy,p,) plane along phase curves /. = const, which
undergo deformation with time. To illustrate this assertion,
we consider the phase portrait of the system constructed for a
fixed value of I, (Fig. 25). In the case of a fixed value of I, the
uncertainty curve that at a fixed energy H was a semicircle in
the plane of slow variables is now determined by the equation
of the straight line kx = rx* (315]./8)2/3 [77]. As the energy
H increases, the trajectory approaches the uncertainty curve
closer and closer (such a typical trajectory is shown in Fig. 25
for H = H>).

This motion in the plane of physical variables (xx,py)
corresponds to the situation where a particle undergoes
transition from one trajectory to another, i.e., a drift over
the phase portrait occurs, corresponding to a drift over
energy:

B = (pisteran) ) =o(pogy ).

Here, the operator (...) stands for time averaging over the
period of slow particle motion in the (iy, p,ff) plane. Because
0 /0vy > 0 (which follows from the positivity of the gradient
0B./0x), the particle energy increases with time. At a certain
instant, the particle therefore acquires a sufficiently high
energy for its trajectory to cross the uncertainty curve.

We obtain the expression describing the increase in the
energy of a particle with time until the moment it arrives at the
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Figure 25. Phase portrait of a system with a constant value of the invariant
I for different values of the energy H. The vertical straight line represents
the uncertainty curve.

uncertainty curve. For this, we write
_LjL\/ZH—%Z &
Fom JB(v(x + et))
_14¢w'@wﬁwwl
T 2n B(v(z + et))

and pass t02t3he integration variable s=xy/v2h, =
k(2L /f ()

s o))
72v%®>d&

g 2H(?€if”(i3>L%C 30)

The dependence of the energy H on the time &z is determined
from the equation 7, (H, &t) = const. If a particle is deep inside
the region of regular trajectories (far from the uncertainty
curve), its quasiadiabatic invariant 7, is close to its maximum
value I max = 2n(2H)3/ 4fmax. Using the dimensionless qua-
siadiabatic invariant I’ = I./I. nax, we obtain

Lt {1 ()"
(o) (-3 e

where ( ) is the mean value of § taken outside the integrand.
Such an operation can be performed because the range of s is
sufficiently small (the value of I’ is close to unity) and,
consequently, f varies weakly in the integrand. Therefore,
the invariant 7, is a function of two variables: 7" and H/(f).
As a result, from the relations /, = const and /. = const, we
obtain an expression that describes the increase in energy with
p: H ~ if. It is appropriate here to point to the analogy with
the betatron acceleration of magnetized particles, for which
the particle energy component perpendicular to the magnetic
field increases linearly with the magnetic field because of the
magnetic moment conservation (see Refs [12, 92]). However,
it must be noted that in the case of each concrete particle, the
relation obtained is valid during a limited period of time. As
the energy increases, the particle approaches the uncertainty
curve, and the approximations used become inapplicable.
We now obtain the relation for the time 7* in which a
particle reaches the uncertainty curve. The time ¢* is
determined by matching the value of the quasiadiabatic

invariant at the initial moment, 7, (Hy, &ty) (Hy is the particle
energy at the initial moment), to its value on the uncertainty
curve I,(H* et*) (H* is the energy corresponding to the
uncertainty curve). The quantity H* can be obtained from
the relation

1 \3/4 8 3/4
I.=— (2H 1)=— 2H" .
L= QHYE() =5 )
Hence, H* = (1/2)(3nL./8)*3 = (1/2)(kx*).
We consider the case where the parameter v is quite small,
and changes in the quantity (xy, fp,) during a single turn in
the B(v(x + ¢f)) plane can be neglected:

PP 1 j£ S
211[:%—@(:— ppdiy =-——,
g B (B J (B
where S is the area bounded by the corresponding trajectory
in the (xy, fip,) plane. Hence, we can find an expression for ¢*:

B(ver*) = Blveto) (19)

So’
where Sj is the area within the trajectory at the initial
moment, S* is the area within the trajectory at the moment
when the trajectory reaches the uncertainty curve (for any
given trajectory, Sy is a quantity uniquely defined by the
energy and the invariant I, at the initial moment). Thus, we
have determined the time required for the particle to leave the
acceleration mode corresponding to its motion before cross-
ing the separatrix.

We note that because the motion before crossing the
separatrix involves an increase in the energy H ~ kf5, reaching
the separatrix signifies that the particle has attained the
energy H/Hy ~ S* /Sy, where H) is the initial energy.

5.1.2 Acceleration of particles crossing the separatrix. In its
motion in the region in which crossing of the uncertainty
curve occurs, a particle regularly crosses the separatrix. As a
result, jumps of the quasiadiabatic invariant I, occur
periodically (see Section 4.1 and Appendix A). The quantity
I, also experiences jumps, synchronized with the jumps of /.:
AI, = (0I,/0I.) AL.. Consequently, the behavior of a particle
at long times depends on the ratio of the jump values and the
drift in the phase plane of slow variables.

As was noted in Section 3.2, the time required for the
quasiadiabatic invariant 7. to undergo a change of the order
of unity due to diffusion is ~ 1/x3. The time of slow drift in
the phase plane due to the electric field is determined by the
quantity 1/ve. Therefore, the particle dynamics depend on
the relation & =3 /ve. If § <1, the drift time is much
shorter than the diffusion time, and the dynamics of the
particle are determined by the drift (jumps in the invariant
represent background phenomena in this case). If 6 > 1, the
diffusion of particles in the space of invariants becomes the
main process.

In this section, we consider the limit in which jumps of the
invariant can be neglected. In this case, the problem can be
integrated as this was done above: averaging over z-oscilla-
tions yields a Hamiltonian with 1.5 degrees of freedom, and, if
the smallness of ¢ is used, the problem becomes completely
integrable. But analytic expressions for the increase in energy
with time can be obtained only if 7, < 1. Small values of I,
correspond to trajectories leading from the z =0 plane.
Hence, particles on such trajectories spend most of their
time far from the z = 0 plane [i.e., particle motion corre-
sponds to motion in one of the separatrix loops (Figs 4b, c)].
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The coordinates of the bottoms of potential wells of the two
inner regions in the (z, p.) plane are &-1/2xy (the minima of the
potential energy U = (1/2) (ky — (1/2) z2)%).

We expand Hamiltonian (18) around the position of the
bottom of one of the potential wells. For this, we introduce a
variable equal to the deviation of the coordinate z from the
value —/2icy and let Z = z + /2icy denote this new variable.
Expanding the Hamiltonian in Z yields the expression

1 1 -
H:§p§ﬁ2+§p3+K}(22,

The obtained Hamiltonian describes a system representing
a harmonic oscillator with the variable frequency
o(y) = v/2iy. Then the Hamiltonian of fast motion repre-
sents the harmonic oscillator energy:

1 1,

hz:§P22+§Z (7).

The quasiadiabatic invariant can also be written as

1 [ ]
]Z:EJ B\/2H—I_,\/8;cxdx.

0

Here, the lower integration limit is set equal to zero, although,
strictly speaking, we must integrate not from zero but from a
certain value y,;, determined by the condition p,(jmin) = 0.
But we see from Fig. 6a that the area inside the curve
I, = const for I, < 1 is mainly determined by the region of
large y.

We now introduce the variable ¥’ = \/2ky I./H. Then

D HS/? [ !
12:7\/_ J %\/I—X/d;{/.
0

nicl?

Introducing the mean value of f§ for a single turn in the plane
of slow variables, (f), we obtain

\/EHS/Z
ncl2(f)

Hence follows the acceleration law for particles with small 7:
the energy of such particles increases as H ~ (Kﬁ)z/ > This law
is similar to the relation obtained in the guiding center theory
for the acceleration of adiabatic particles with distant
reflection points [92, 95].

We note that a semianalytic expression for the depen-
dence of the particle energy H/H, on the magnetic field 8
can be obtained for an arbitrary value of the invariant ..

= const.

5 -
~ ,BZ/S
H/HO 13 <h<lI
4 -
3 -
2
1 |
0 20 40 60

Figure 26. Dependence of the particle energy on f for different values of 7..
(From Ref. [92].)

This expression is an integral relation for I, H/H,, and p.
For each I, we then obtain a certain function H/Hj
depending on 5. An example of such dependences [92] is
shown in Fig. 26.

5.2 Resonance effect

with the electric field taken into account

As was noted in Section 3.3, for certain values of the
parameter k, a population of resonance particles in the
current sheet exists for which the total jump of the
quasiadiabatic invariant is zero. Such particles enter the
current sheet along the magnetic field lines, experience a
half-turn in the field B., and leave the current sheet with the
same gyrorotation phase value with which they entered it.

We now examine the mechanism of resonance particle
acceleration in a current sheet due to the above effect. We
adopt the current sheet model with B. = B.(x/L,), but
assume that the gradient 0B,/0x can be neglected on the
scale of an ion trajectory in the plane of slow variables.
Therefore, we formally consider a set of systems in each of
which B. = const. Then, using the argument x corresponds to
a trajectory belonging to one configuration or another with its
own B. value. As in Section 4.1, we consider B. to decrease, as
|x| increases, according to a power law. Furthermore, we take
into account that a field B, ~ z can increase linearly only up
to the boundaries of the current sheet (until |z| < L.). When
|z| > L., the increase in By(z) becomes saturated, B, =
Bjsign(z). Therefore, it is essentially important in the
problem considered that particles on transient trajectories
exist. The acceleration of precisely such particles is considered
in this section.

One of the principal quasistationary mechanisms of
charged-particle acceleration in the current sheet of Earth’s
magnetotail is the acceleration by the ‘dawn—dusk’ field
E, ~ const [34, 96, 97]. Quasiadiabatic ions experiencing a
half-turn in the field B. cover a distance equal to two
gyroradii along the field E,. If a particle does not leave the
current sheet because of a jump of the quasiadiabatic
invariant, it subsequently loses nearly all its energy gain
while making another half-turn in the field B. at a certain
distance from the z = 0 plane. By contrast, the resonance
particle leaves the current sheet with all the energy it gained
and moves along the field lines (Fig. 27).

If the initial energy of particles approaching the current
sheet is low compared with the gain in energy, it can be
neglected. Then the velocity with which the particle moves in
the z = 0 plane is approximately cE,/B.. The gyroradius of
such a particle is ¢?E,m/qB?, while the energy gained is
W~ 2¢?E}m/B2. Here, an analogy can be drawn with the
elasticinteraction of a particle with a moving wall (the current
sheet) [98]: in the rest frame of the wall (current sheet), the
particle impinges on the current sheet with the velocity
Vy = —cE,/B. and leaves it with the velocity V, = cE,/B..
In the laboratory frame, in which the wall (current sheet)
moves with the velocity V,, the increment of the particle
velocity AV = 2¢E, / B just corresponds to the velocity of the
particle at the final moment; the corresponding energy
increment is W = m(AV)?*/2 = 2¢*E;m/B2. Therefore, the
energy gained is inversely proportional to the square of the
quantity B.(x/Ly).

Because such a coherent acceleration can only be observed
in regions with x = x, where xy is determined by the relation
k' (xy) = N/Cy [see formula (10)], it is possible to determine
the resonance values of the magnetic field B,(xy/L,). For
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Figure 27. Trajectories of two particles starting from the boundary of the current sheet. (a) Trajectory of a transient particle that leaves the current sheet.
(b) Trajectory of a particle captured from a transient orbit to a trapped orbit because of a jump of the quasiadiabatic invariant.

this, we use the definition of x, taking into account that the
particle energy is W ~ B2

K:E £~B_,\/4 w-1~ B3?.
By \l po i

From the last equation, using the relation k ~ 1/N, we obtain
an expression for the resonance values of the magnetic field:
B.(xy/Ly) ~ N~2/3. The corresponding resonance energies
are Wy ~ B7%(xy/Ly) ~ N¥3 [52, 99]. Thus, a system of
resonance regions arises along Earth’s magnetotail, and as the
distance from Earth increases (B, decreases), the energy
gained by particles in these regions increases as B (xy)
(Fig. 28a).

The existence of a chain of resonance regions results in
specific phenomena observed in Earth’s magnetotail. Solar-
wind protons arrive in the distant magnetotail from a source
in the plasma mantle (Fig. 28b). The proton flux from the
mantle simultaneously reaches several different resonance
regions in the current sheet, where the protons gain different
energies corresponding to the number of each of these
regions. Beams of accelerated particles then leave the neutral
plane of the current sheet and move along magnetic field lines
in the plasma sheet boundary layer (PSBL). In the PSBL, the
accelerated particles are observed by spacecraft devices as a
single or multiple, almost monoenergetic beams [102, 103].
The problem of observing these beams and of their properties
is discussed in review [104].

Beams of particles accelerated in different resonances and
therefore having different energies then approach the dipole
field region. The field lines thicken in this region (the magnetic

field strength increases). When crossing the field lines in this
region from top down (or, vice versa, from bottom up), a
spacecraft may have time to register the whole ‘comb’ of ion
beams accelerated in different resonances along the tail nearly
simultaneously. In its motion, when the spacecraft crosses a
successive field line, it observes a flow of accelerated particles
from the resonance corresponding to this line. As a result, a
chain of resonances can show up clearly in the energy—time
diagram (Fig. 29a).

The choice of a certain model of the magnetic field in
Earth’s magnetotail allows reconstructing the considered
effect of resonance acceleration. In Refs [52, 107], a two-
dimensional model [73] was used in which the tracing of
particles was performed for a given electrostatic field E,. As a
result, in the region of assumed observation of energetic
dispersion structures, the authors of Refs [52, 107] numeri-
cally revealed a chain of resonances in very good agreement
with the predictions of analytic theory.

The simulation of particle dynamics in magnetic fields in
the framework of global simulation of the structure and
dynamics of the magnetosphere by methods of magnetic
hydrodynamics is more complicated, but also closer to real
conditions. This approach was realized by the authors of
Ref. [106] in order to simulate measurements of the chains of
resonances observed in experiments. As a result, the structure
of accelerated beams obtained from the data of satellite
observations was successfully reproduced with good preci-
sion (Fig. 29b).

In the framework of analytic theory, an expression was
obtained for the energy of accelerated particles depending on
the resonance number, Wy ~ N43. This relation is indepen-
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Figure 28. (a) Schematic view of resonance regions in Earth’s magnetotail
and the corresponding energies W (Rg is Earth’s radius) (From Ref. [100].)
(b) Schematic of the acceleration and dynamics of ions in the current sheet
in Earth’s magnetotail. The dashed line shows the observation region of
dispersion structures. The vertical arrows schematically indicate the Nth,
(N + Dth, and (N + 2)th resonance regions, in which x ~ 1/N. (From
Ref. [101].)

dent of the concrete magnetic field model and can be verified
both by numerical simulations and by experimental observa-
tions. For this, the dependence of the observed (or simulated)
energies In Wy on the resonance number In N is constructed.
The obtained proportionality coefficient, both for the results
of numerical simulation in the framework of various models
of the magnetic field of Earth’s magnetotail and for experi-
mental data, turns out to be close to 4/3 (Fig. 30).

A natural generalization of the theory of resonance
acceleration is a nonlinear model in which the current of
accelerated particles modulates the magnetic field of the
magnetosphere [108]. In the framework of this model, it has
been possible to demonstrate that the mechanism of reso-
nance acceleration is quite stable with respect to perturba-
tions of the magnetic field B.(x/L,), while nonlinear effects
provide an additional specific local dispersion of the energy of
resonance beams (differing from the average dispersion of the
entire structure). This locally nonlinear effect can also be
observed in experimental data (see review [104]).

Moreover, it is shown in Ref. [109] that the coefficient of
the linear dependence of In W on In N can be affected by the
ambipolar electric field E. related to the difference in
character of the motions of ions and of electrons in the
current sheet.

5.3 Acceleration in the vicinity of X- and O-lines
We now consider charged particle acceleration in configura-
tions with X- and O-lines based on the quasiadiabatic theory,

T
2
Y 4B1h
45 50 55 60
Time (from dawn), min
T
R

Time (from dawn), min

Figure 29. (In color online.) (a) Energy flux of particles with pitch
angles 0—60°, observed by the satellite Cluster-1. The chain of resonances
Al—-A4 and BI, B2 observed by the satellite mission Cluster-1. (From
Ref. [105].) (b) Simulated flux of particle energy. Chains of resonances
Al'—A4" and Bl'—B4' obtained by numerical simulation. (From
Ref. [106].)

following Refs [40, 78, 82]. Particle dynamics in the config-
urations considered in the absence of an electric field are
described in Section 4.2.

We note that the process of particle acceleration immedi-
ately on the X-line (in the region of zero magnetic field)
cannot be described in the framework of the considered
quasiadiabatic theory. For investigating the energy gain on
the X-line, an approach is used that is based on the expansion
of the equations of motion in a series in the vicinity of the zero
line, neglecting terms of higher orders of smallness. Within
this approach, it is possible to obtain the energy of accelerated
particles as a function of the system parameters [110-114]. A
generalization of this approach to the case of a nonzero field
B, was proposed in Refs[115, 116]. The results obtained are in
good agreement with those of numerical simulations [117—
119]. But it follows in the framework of this approach that
when E, = const, a particle can be found in the immediate
vicinity of the region of zero magnetic field only during a
limited time interval (motion in the vicinity of an X-line is
unstable with respect to deviations along the x axis; see
Refs [110, 118, 120, 121]). When a particle leaves the
immediate vicinity of the X-line, it continues its motion
along the x axis. A characteristic example of particle
trajectories in the vicinity of an X-line is presented in Fig. 31,
which shows that the particle can cross the z = 0 plane before
it approaches the region of zero magnetic field, x = 0. After
crossing the z=0 plane, the particle moves along the
magnetic field lines; here, the particle can either return to
the same half-plane from which it arrived (the light
trajectory) or go in the opposite direction (the trajectory
shown by the dashed line). The dynamics of such particles
resemble particle dynamics in the current sheet with
B.(x/L,). Accordingly, the process of particle acceleration
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Figure 30. (a) Dependence of energy on the resonance number N obtained
by numerical simulation for different configurations of the magnetic field
of the current sheet and electric field intensities (see details in Ref. [52]).
(b) Results of different observations by spacecraft devices Cluster-1 and
Interball (data shown by X’s and the corresponding dependence 2 are
taken from Ref. [105]). (From Ref. [52].)
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Figure 31. Three possible trajectories (dark, light, and dashed curves) of
particles in the (z,x) plane in a system with an X-line. The dotted line
shows the magnetic separatrix +x/L, = z/L..

in the geometry considered is related to the electric field E,
applied to the set of X-lines (O-lines). Under the action of the
field E,, particles are accelerated and leave the X-line (O-line)
simultaneously, moving along x in the direction of the
increasing magnetic field B.. As a result, the acceleration
mechanism described in Section 5.1 is actually realized, but
with specific properties of the magnetic field configuration
with X-lines (O-lines). The energy gain in the course of
motion is precisely the subject of our investigation.

Similarly to Section 5.1, we introduce a field E, in the
system by means of a vector potential. Here, we define the
dimensionless parameter ¢ = cE,/voBy that determines the
field amplitude E,. We introduce a slow time t = ¢f + p, and
represent Hamiltonian (13) in the form

Hf1 2+1 2+1 11/122 L2 ’ (20)
BRI N et B T B

The sign of 22x2 in the right-hand side of (20) is determined
by the geometry of the system: the plus for the X-line and the
minus for the O-line. We determine the hierarchy of time
scales in the system with Hamiltonian (20). If 1 < 1, then
motion in the (z, p,) plane proceeds much faster than motion
in the (4x,p,) plane. We assume that ¢ < A and that the

evolution of the system with time proceeds more slowly than
the motion of particles in the (Ax, p,) plane.

With the field E,, the Hamiltonian of fast motion in
Section 4.2 becomes

_1 2 1 1 2.2 1 2 :
h:—zp:ﬁ-z(j:z)v)» —EZ — 7T y

and, as was noted in Section 5.1, motion in the (z, p.) plane is
identical to motion characteristic of the current sheet (see
Section 3.1). As a result, we can introduce the quasiadiabatic
invariant I, (see Section 3.1) and use its dimensionless
equivalent / = 31:13/8(2H)3/4:

) ()
2(1 — k%) K(k) +2(2k* — 1) E(k),
2(1—k2)kK<%>+(2k271)kE(%), k>1.

k<1,

Here,

1 :t(1/2)22x2—1)
K=< (1+—122 2 ),
2( * 6T

Expressing /i, in terms of I, and substituting in (20), we obtain
the Hamiltonian of slow motion

1 1
H:Ep'f + h. <IZ,:|:§ J2x2 - ‘L'> .

In the case of a frozen time 7, the problem becomes
integrable. The corresponding phase portraits are presented
in Section 4.2. As noted in Section 4.2, particle trajectories can
be divided into two groups: those that cross the uncertainty
curve (and, consequently, cross the separatrix) and those that
do not cross the uncertainty curve. The equation for the
uncertainty curve in the (Ax,py) plane for a system with an
X-line (O-line) has the form

2
px:i\/m <i%).2x2 71) .

As in the case of a current sheet with B.(x/L,) (see
Section 5.1), to describe the system dynamics at times 1/e,
we need, besides I, one more invariant I, corresponding to
the area of the trajectory in the plane of slow variables. In the
notation introduced, /. (which is the same invariant as I,
introduced in Section 5.1, but written for y = 2%2x? and with
the integration variable k) takes the form

1x:

— . \\4/3

22, J oK) £QHIFR)” 1)
n e F2R) 2k = 142 (f (k) /1)

Here, o is a constant parameter defined below,

_ [kK(k), k<1,
Q(k)’{K(k*), k>1,

and the upper integration limit is determined from the
condition

[P (k) 143
2H '
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Figure 32. Phase trajectories in the (/,7) plane for a system with an X-line.
Each curve corresponds to a particle trajectory with its own quasiadiabatic
invariant /..

The lower integration limit depends on whether the trajectory
crosses the x = 0 axis. If the trajectory does not cross the
x = 0 axis, then f*/3(k,)/2H = I*/* and « = 1, and if it does
cross the x = 0 axis, then o = 2 and

—r= (Wia))zﬂzkf —1).

Asin Section 5.1, we consider the regime 2° /¢ < 1. In this
regime, jumps of the quasiadiabatic invariants can be
neglected, and we can consider the set of equations
I. = const, I, = const. Here, the invariant I. serves as a
parameter, while the conservation of I, =1,(I., H,1) allows
finding trajectories in the (H, 7) plane.

We now introduce the normalized quasiadiabatic invar-
iant I, = I,/I and the new variables

X = XI1/3 y Px :ﬁx171/3 s

H="hI*?, h.=h1*?,

T=11%3,
202 =
E2:l<l+(1/2)/{ic r>7
2 V/2h.

in which the relation for /4 and T becomes

C B R ok) [ £QRFPR) - 1) TV
I“'*_J/;. J2(k) {2/%2—1”/72/3(/%)] w

T
Here, the plus sign corresponds to X-lines and the minus
corresponds to O-lines. Solving the equation I, (h, ) = const,
we can obtain trajectories in the (/,7) phase plane. In the
case of an X-line, these trajectories are presented in Fig. 32,
whence we see how the particle energy increases with
time 7.

6. Statistical consequences of the conservation
of the quasiadiabatic invariant:
description of an ensemble of trajectories

In Sections 3-5, we addressed the problems of particle
dynamics and obtained sets of trajectories corresponding to
the quasiadiabatic approximation I, = const for different
systems. Moreover, we demonstrated that taking the jumps
AL into account leads to diffusion of the quasiadiabatic
invariant.

However, not only individual particle trajectories are of
interest, because the properties of a self-consistent system
that depend directly on the particle distribution over
trajectories are also important. In this section, we show
how the theory of quasiadiabatic dynamics considered in
Sections 3—5 permits describing the formation of distribution
functions in the central region of the current sheet and at its
boundaries. We also discuss problems of a self-consistent
formation of the current sheet due to currents carried by
transient particles. We demonstrate that particle scattering
and transitions from transient trajectories to quasi-trapped
trajectories underlie the evolution process of the current
sheet.

6.1 Distribution function of trapped particles

at the center of a current sheet

We consider the problem of the particle distribution at the
center of a current sheet within the approximation I, = const.
As was shown in Section 3.1, the value of the quasiadiabatic
invariant /. determines the trajectory of a particle in the plane
of slow variables. Trajectories most significantly elongated
along the rx axis correspond to small values of I.. However,
Fig. 6a, with a set of trajectories in the (kx,py) plane, was
plotted for a system with a magnetic field B, ~ z without
taking the loss cone into account. In a real current sheet, the
magnetic field B, does not increase to infinity with the
distance from the z = 0 plane but takes constant values that
can be described by the simple analytic model

B,

V4
(= <L.,
B, _ { A
Bo signz, |z| > L..

Hence, trajectories that deviate from the z =0 plane at a
sufficiently large distance fall into the region with a constant
magnetic field and never return to the system. Precisely these
are transient trajectories. In the case of a current sheet with
concrete parameters, a value of I can be found for which all
particles with I. < I are transient.

The position of a particle in the half-plane of slow
variables (for p, > 0) is characterized by three parameters:
the particle energy H, the normalized value of the quasiadia-
batic invariant 7, and the quantity k = k(kx, p,) (with k% =
(1/2)(1 + xx/+/2h.)) determining the position of the particle
on the trajectory. With these parameters, it is possible to
determine the particle coordinates averaged over fast oscilla-
tions, projected onto the z =0 plane, and expressed in
dimensionless form [40, 122]:

7 \23
K<X>:(%> (2k* — 1),

=)
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Here, f(k) = 3f(s)/8, and the function f(s) is presented in
Section 3.1. We define 7* such that the particle does not
leave the current sheet when 7> 7*. On the average,
particles leaving the current sheet move along the magnetic
field lines:

We define the boundary of the current sheet as the location
where the magnetic field tends to a constant value. The
boundary thus defined is described by the following relation
in dimensionless variables: 2, 4.ry = 1/0 = \/L/p,. Hence,
a particle reaches the boundaries of the current sheet
(z) = +£y/o when K(x),, = o/2. Particles that leave the
current sheet can be considered transient. The largest
possible value of (x),,,, for each trajectory is determined by
the turning point p, = 0. If (x),,, > (¥)., the particle is
transient. It follows from the definition of ( y) that (y) = 0 at
px = 0. Then the value of k corresponding to the turning point
(px = 0) is found from the relation

f(ktum) =1.

We thus obtain the following expression for (x).,:

X = 2y — 1.

turn

The condition (x),,., > (). implies that

turn

2k?2

1
turn 1 > E g.
If the current sheet is sufficiently thick (¢ > 1), we can use the
function f (k) for k > 1: f(k) ~ 3n/16k. We then obtain the
condition for a trajectory to be transient:

I<I*~ 3n/o .

8

If the quantity 7* is known, then, from the general particle
distribution function, we can single out its part that
corresponds to particles trapped in the current sheet. For
this, for example, we define an isotropic Maxwell distribu-
tion function with a thermal velocity vy at the center of the
current sheet. We then represent this function as a
distribution not over velocities but over values of the
quasiadiabatic invariant 7 (Fig. 33a).

We divide the phase space into two regions, those
occupied by particles on transient trajectories (I < /*) and
on trapped trajectories (I > I*). In our problem, the region
with I < I'* plays the role of the loss cone in the ordinary
guiding center theory: particles from this region have small
pitch angles and are ‘spilled out’ from the magnetoplasma
configuration. We modify the resulting distribution function
as follows: we set its value in the phase space region where
I<1I* to zero and return the remaining part to velocity
space. The distribution function obtained as a result of this
operation and expressed as a function of longitudinal and
transverse velocities (at the center of the current sheet
v = v;) is presented in Fig. 33b. As can be seen from the
figure, the part of the distribution function corresponding to
small transverse velocities at the center of the current sheet
vanishes. Hence, unlike the usual loss cone of magnetized
particles, which forms about a magnetic field line, the loss
cone for quasiadiabatic distributions is asymmetric in the
direction perpendicular to the magnetic field.
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Figure 33. (a) The isotropic Maxwell particle distribution function as a
function of the quasiadiabatic invariant. (b) Distribution function with the
phase space cut out for 7 < I*. (c) Cross sections of the distribution
function for values 0, ©/10, n/6, n/2 of the angle 0 between the cross
section plane rotated about the v axis and the vy — v, axis. The velocity v}
corresponds to the component that in the rotated coordinate system is
perpendicular to the z axis. (From Ref. [122].)

We also plot the structure of phase space for different
cross sections of the obtained distribution function (Fig. 33c).
Each cross section is formed by the plane vy — v’ for different
values of the angle 6 between the plane of the cross section
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rotated about v (i.e., about the z axis) and by the plane
V| — vy, where v/ is the velocity component that in the rotated
system is perpendicular to the z axis. Hence, 0 is the angle
between the components v and v,. We see from Fig. 33c that
the shapes of projections of the distribution function resemble
spheres with the sector corresponding to positive v, cut out.
Therefore, particles with positive v, must leave the current
sheet and form the distribution of transient particles (see
Section 6.2).

6.2 Distribution function of transient particles

at the center of a current sheet

While particles on quasi-trapped orbits in the current sheet
form a distribution function with a characteristic anti-loss
cone, the distribution of transient particles must exhibit
significant asymmetry along the y direction.

The transient particles penetrate the current sheet in
moving from the boundaries of the sheet, perform a half-
turn in the neutral plane about B., and leave the current sheet.
As a result, in the (p,,p.) plane, these particles describe a
semicircle in the vicinity of the z = 0 plane. Because B, > 0
and the particles enter the current sheet with p, < 0, this
semicircle occupies the region with p, > 0. The corresponding
particle distribution was obtained in Refs [123, 124]. As can
be seen from Fig. 34a, the distribution of transient particles at
the center of the current sheet has the shape of a semicircle.
The thickness of this semicircle is equal to the thermal velocity
vp of the initial distribution.

To obtain a similar distribution function in the analytic
approach, we use the following procedure (see Refs [125, 126]
for the details). The distribution at the boundary of the
current sheet is chosen in the form of a shifted Maxwell
distribution,

(v —vp)’ + 0}

2 )
Vo

F~exp|—

where v and v, are the parallel and perpendicular compo-
nents of the particle velocity. We introduce the parameter
¢ = vo/vp determining the flux anisotropy of the distribution
function. Because the magnetic field at the boundary of the
current sheet is constant, B, = +B; and B. = const, an
analytic expression for the quasiadiabatic invariant I. can
be obtained. A particle oscillates in a constant magnetic
field with a gyrofrequency wy, and its velocity is v, =
vy cos (wot). Performing the change dz =wv.drs, we calcu-
late the integral I.:

2

Ty

2nl, = %v_, dz =v? ni; cos?(wot) dt = (22)

o

We next use the energy conservation law vuz +v? =02 Asa
result, the distribution function Fcan be expressed in terms of
the integrals of motion:

200l + (/0?2 = 2wl — 'UD)2

2
Yo

F ~exp [— (23)

Using the Liouville theorem, we find the distribution
function at each point z inside the current sheet [125-127].
For this, we must obtain an expression for the quasiadiabatic
invariant at an arbitrary point inside the sheet. We take a
point in phase space with coordinates (zg, KXo, Px0, P10, P-0)-
For this point,

2
2 = pH+ (rx0 + pyo — ay(20))” = v+ ”fo )

Py

Px

Figure 34. (a) Distribution function of transient particles obtained by
numerical simulation. (From Ref. [123].) (b) Distribution function of
transient particles obtained within the analytic approach. (From Ref. [30].)

where a,(z) is the dimensionless vector potential (see
Section 3.1) and the constants wy=xxy + pyo — a,(20),
v.0=p., are components of the particle velocity at the
point (zg, KXo, Pxo, Uyo, Uz0). We then obtain the quasiadia-
batic invariant in the form

2nl, = \/2h;0 — (kx + poy — ay(z))2 dz

= v+ — (kx+py - ay(z))2 dz

2

= \/v_fo +0f = (o +ay(20) — ay(2))"dz. (24)

We next divide the phase space into elementary volumes
dz dkx dv, dv. dv, and consider expression (24) to define the
quasiadiabatic invariant I, for an element of the phase
volume with its center at the point (zo, kX, Ux0, V)0, Vz0)-
Setting a certain profile @,(z) and recalculating I. at each
point z for the entire volume of the (vy,vy,v.) space,
introduced a priori, we obtain the invariant 7, and hence the
phase density F(I.,v) at the given point zy for the given
(vy,vy,v:). Thus, it is possible to find the distribution
F(px,py,p-) at the center of the current sheet, where z = 0,
by ‘tracing’ the distribution from the boundary of the current
sheet along the transient trajectories (see Refs[125, 126]). This
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distribution can be integrated over p. to yield the distribu-
tion function in the (py, py) plane shown in Fig. 34b. As we
see, the distribution function found analytically fully
coincides with the result of direct numerical simulation
presented in Fig. 34a.

Sickle-shaped distributions of transient particles, similar
to the ones obtained in computations, are observed by
spacecraft in the current sheets of Earth’s magnetotail. But
because the fraction of transient particles is small compared
with the total density of background plasma, these distribu-
tions can be singled out only in two cases. As the current sheet
is thinning, part of the background plasma is lost (the
parameter ¢ decreases; see Section 6.1). In this case, the hot
asymmetric flank of the distribution function is clearly seen to
have a sickle-like shape (see Refs [128, 129]). On the other
hand, we can use the fact that when crossing the current sheet,
characteristics of the background plasma do not change
significantly. As a result, if we subtract the distribution
function at the boundary of the current sheet from the
distribution function at its center, then, in the resultant
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Figure 35. (a) Distribution function of transient particles measured by
satellites in the current sheet of Earth’s magnetotail. (From Ref. [30].)
(b) Particle distribution function in the boundary region of the plasma
layer. (From Ref. [32].)

residual function, sickle-like distributions of transient parti-
cles can be clearly seen whose shape is very close to that found
theoretically (Fig. 35a).

We can therefore assert that the theory of quasiadiabatic
particle motion in current sheets allows reconstructing the ion
distribution function in the plasma layer of Earth’s magneto-
tail with good precision.

6.3 Distribution function at the boundary

of a current sheet

Formation of the charged particle distribution at the
boundary of a current sheet (or in the boundary region of a
plasma layer) is subject to the significant influence of the
processes of particle acceleration by the electrostatic field E,.
Direct numerical simulations [97] and simple estimations [96]
indicate that particles leaving the current sheet should form a
distribution function in the velocity space with a specific
‘bean-like’ shape in the (vj,v.) space. Similar distribution
functions have been repeatedly observed by spacecraft
devices in the boundary region of the plasma layer [103, 108,
130, 131]. A typical example of such an observation is
presented in Fig. 35b. In this section, we show, mainly on
the basis of the results in Ref. [133], how that particle
distribution can be obtained from velocities in the frame-
work of the theory of quasiadiabatic dynamics.

We consider the model of a current sheet with B.(x/L,)
and E, = const discussed in Section 5.1. We are interested in
particles on quasi-trapped trajectories. The projection of a
typical trajectory of such a particle onto the z =0 plane
represents a series of open orbits linked with each other. The
orbits are open because, in the field with a gradient 0B, /0x #0,
particles experience magnetic drift in the y-direction and gain
energy in the field E,. The results of numerical simulations of
such a trajectory for a system with B. ~ 1/,/—x are presented
in Fig. 36.

We consider particles with initial velocities much smaller
than the drift velocity at the center of the current sheet,
vp(Xo) = cE,/B:(xo/Ly). In this case, a particle crossing the
current sheet at a coordinate xy moves in the central region
with a velocity vp(xg). We assume this particle to be observed
atadistance Ax = x — xy from the point where it first crossed
the current sheet. We consider the acceleration stages of the
particle separately.

First, the particle, if we consider its slow motion averaged
over z-oscillations, makes one fourth of a turn in the z =0
plane and shifts along the y axis (the turn initiates on the y

N lop (xo)

lop (x)

|
|
|
X I
y Ix = xo 4+ Ax X0

Figure 36. Trajectory of a particle in the system with Hamiltonian (18) in

the case f(x) ~ 1/y/=x.
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axis) by the distance

p(xo) = vp(Xo) Q- qB:(xo) _

Q.(x) me

Because the particle moves in a field E;, # 0, it gains the
energy

AW (x) = gEyp(x0) = mu(x0)

This energy is half the energy a particle gains on a resonance
trajectory (see Section 5.2).

The particle then moves along a quasi-trapped orbit and
gains energy due to its drift in the increasing field, 0B, /0x > 0
(see Section 5.1). Hence, the difference between the energies at
points xo and x = xo + Ax is

L.

AW, = W(x) — W(xy) = 3 mug(x)

|
+ W (x) — 3 mvd(xo) — W*(xo) .

The energy W*(x¢) depends on the acceleration in the current
sheet during the particle motion along E,: W*(xg) =
AW (xp). In turn, W*(x) is determined by the gain in energy
during the particle drift toward Earth: W*(x) ~ B?(x), where
0 € [2/5,1]. In Refs [92, 134] (see also Section 5.1), it is shown
that depending on the type of the particle trajectory, the
particle energy increases in the case of convection toward
Earth according to a power law with the exponent 6 = 2/5
(for transient particles) or 6 = 1 (for trapped particles). In our
case, we consider J a certain intermediate value depending on
the relative number of trajectories of various types in the
ensemble investigated:

) = o) (s ) =m0
b= Bz(x) _ UD(XO)
B-(xo)  wp(x)

The coordinate of the particle along the y axis is determined at
the observation point by relation (21) (see also Refs [40, 135]):

The angle 6’ is the pitch angle of the particle in a reference
frame drifting with the velocity vp(xo). The presence of the
factor sin?@’ in the expression for the quasiadiabatic
invariant [ is explained by the quasiadiabatic invariant at
the boundary of the current sheet (where z = L.) being equal
to (1/2)v2/wy = Hsin? 0’ /wy [see formula (22)]. The rela-
tion between 0’ and the pitch angle 0 in the rest frame is given
by

v*(x)

s 20/
sin“ ' = —————
Ul%(x()) p2+o

sin? 0,

where mv? = 2W and we used the equation for W*. This
expression was obtained from the condition that velocities

along z and y be constant in passing to the reference frame
without any electric field E,. Hence, the gain in energy
resulting from a shift along the field E, is given by

AWy = g, (v(x) ~ ¥(x))
The total energy increment is

1
W:Eva:AW1+AW2+AW3.

Substituting the expressions for AW (x), AW,, and AW3 in
the last relation, we obtain

v? = o3 () (1+57) + v (x)

: 473
Lage o visinf0 \Y
x 2b 1 S .
v (x) b2F0

This expression defines an ‘enforcement rib’ for the sought
particle pitch-angle distribution depending on the observa-
tion coordinate x in the approximation of a small initial
particle energy. An enforcement rib is meant to be the
geometric locus of points in the (v, v ) plane corresponding
to the largest value of phase density. Generalization to the
case where the initial velocity uy must be taken into account is
given by the formula

v? = ud +vj(x) [1+b*(a— 1) +b5>a?]

2 2 14+0/2 UZ sin 6 40 2
+vj(x)2b 1— 25 ) (25)
where
2 .
e uocos(90+1 ug sin? 0o 7
bup(x) b2v3(x)

and 0 is the pitch angle at the initial instant (at point xg).

Figure 37 shows level lines of the proton distribution
function in the boundary region of the plasma layer. Each
enforcement rib corresponds to its own value of b, i.e., to a
certain distance of the initial position x( of a particle in the
current sheet from the observation point. We note that within
broad limits, the positions of enforcement ribs are indepen-
dent of the initial particle velocities uy and pitch angles 0
[133]. The enforcement ribs change in form as b increases (as
the distance Ax increases): the greater b is, the more the
enforcement ribs resemble segments of circles. In the case
Ax =0 (b =1), the structure is elongated along the long-
itudinal direction of the velocity. For large b, the dependence
on the pitch angle decreases and the enforcement ribs just
become semicircles of radius R, shifted along the direction of
v by the distance vp(x). The radius R is given by

R= ’UD(X)b(Hl = UD(X()) b(;.

Figure 37b shows the enforcement ribs calculated by
formula (25) for vp(x) = 100 km s~ and uy = 0y = 0. The
curve with » = 9 is quite consistent with the enforcement rib
for the ion distribution function measured by a spacecraft
device within the PSBL (Fig. 37c¢).

Small values (or vanishing) of the particle distribution
function in the PSBL in the case of large pitch angles 0 is
explained by particles with such pitch angles not leaving the
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Figure 37. (a, b) Enforcement ribs of the particle distribution function in a
plasma sheet boundary layer, calculated for different values of the
parameter b. Figure b is similar to Fig. a with vp = 100 km s~ (c) The
proton distribution function measured in the plasma sheet boundary layer.
(From Ref. [133].)

current sheet and not being able to take part in the
formation of the distribution function in the PSBL (see
Section 6.1). This effect can be obtained on the basis of the
expression for v: the condition under which the radicand in

formula (25) is positive determines the existence of a certain
Omax for each v.

In concluding this section, we can say that the results of
the application of analytic methods based on the quasiadia-
batic theory are in good agreement with both the results of
numerical simulations and the data from direct satellite
observations of ion distribution functions at the center of
the plasma sheet of the magnetotail and at its boundaries.

6.4 Construction of self-consistent models

of a one-dimensional current sheet

It was shown in Section 6.3 that the distribution function of
transient particles can be determined at any point of the
current sheet by particle tracing starting from the boundary of
the system. The possibility of such tracing (i.e., analytic
integrability of the equations of motion) is related precisely
to the assumption of the quasiadiabatic invariant conserva-
tion. The existence of a distribution function known in the
entire region (at all z) permits calculating its moments (for
instance, the particle current density directed along y). Thus,
it is possible to construct a self-consistent model of the current
sheet, namely, a model of an equilibrium system with
magnetic fields where particles move along trajectories
described in the framework of the quasiadiabatic theory.

A stationary equilibrium solution for a current sheet that
describes the distribution of vector and scalar potentials (and,
as a consequence, of the electric and magnetic fields), as well
as the distribution functions of plasma particles, must satisfy
the set of Vlasov—Maxwell equations

v 4 (g Ly ) ¥
or  m, c ov

47
rotB = - Z 4 JvFi(v,r) dv,

divE = 4n2anF1(v,r) dv,

where F,(v,r) is the particle distribution function, and m, and
¢, are the mass and charge of a particle of type « (an electron
oranion). Any function of the integrals of motion is a solution
of the first equation in (26). Here, with r = xe, + ze,, the
system has two exact integrals: the total energy H and the
generalized momentum Py, = m,v,+ (g./c) Ay (X, z).

There are a number of current sheet models in which
F, = F,(H,Py) (see Refs [38, 136-140] and reviews [141-
145]). But these models do not take the presence of transient
particles in the real current sheet of Earth’s magnetotail into
account; in problems with the existence of an arbitrarily small
but finite magnetic field component across the sheet, B, # 0, a
population of transient particles moving from one boundary
of the sheet to another can exist. Even in the simplest
problems with B, # 0, the equations of particle motion lose
their integrability, and developing a kinetic model of the sheet
(i.e., finding the integrals of motion of the particles) requires
introducing one more invariant of motion, whose role is taken
precisely by the quasiadiabatic invariant 7, [125, 126, 146].

The class of current sheets with the conservation of I,
taken into account has a number of properties following
directly from the properties of transient particle trajectories.
It is shown in Refs [125, 126, 147, 148] that the main
properties of current sheets associated with transient ions
are as follows: (1) embedding (the plasma density profiles and
the current density profiles do not coincide); (2) the fine
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structure of current density profiles (for example, the
existence of several local maxima of the current density,
instead of one). As a result, current sheets with transient
particles become metastable, i.e., for certain parameters of the
system, such current sheets rapidly (sometimes even in an
explosive manner [149]) undergo transition to an unstable
state and are destroyed due to the development of explosive
instability [62], which permits a description of the most
important large-scale process developing in Earth’s magneto-
sphere, namely, of a magnetospheric storm [25, 58, 150, 151].
Below, we discuss the main stages of the current sheet model
construction taking the I. conservation into account (we
consider a thin current sheet (TCS) that exhibits relatively
small space scales along the z axis), relying on the results of
investigations of the self-consistent evolution of a current
sheet related to jumps of the invariant 7, in Refs [46, 47, 50],
and compare the models obtained with the experimental data
(see Refs[22, 26, 152]). In conclusion, we present results of the
development of two-dimensional models of current sheets
based on a ‘double’ quasiadiabatic description assuming
conservation of both the first (I.) and the second (Zy)
quasiadiabatic invariants.

6.4.1 Model of a one-dimensional current sheet. We formulate
the basics of the one-dimensional TCS model.

1. The main carriers of current in the current sheet are
ions on transient trajectories, while in the first approximation
electrons can be regarded as the background ensuring the
quasineutrality of the plasma (i.e., >, g, [ F.(v,r) dv = 0).

2. The B.-component of the magnetic field is considered
constant (not depending on the x coordinate). The compo-
nent B, = 0 (the validity of such an approximation is ensured
by the smallness of the values of B, in the case of many current
sheets observed in the magnetotail [26, 153]).

3. The only spatially inhomogeneous component of the
magnetic field is the self-consistent component B,(z),
determined by the currents of transient ions.

4. Because B. = const, the large-scale electrostatic field E|,
persisting in Earth’s magnetotail can be taken into account by
passing to the de Hoffmann-Teller reference frame [154]
moving uniformly along the x axis with the velocity cE,/B..

5. The model takes the roles of both transient ions and of
ions on quasi-trapped trajectories into account. Actually,
electron currents play an important role in the formation of
the current sheet structure, but because we are mainly
interested in the role of quasiadiabatic ion dynamics, we
only consider electrons in the simplest background approx-
imation, when only their charge (but not current) is taken into
account.

We now consider the features of particle motion on
transient and quasi-trapped trajectories in the central region
of the current sheet in greater detail. Figure 38 demonstrates
characteristic shapes of parts of orbits of transient (dashed
curve) and of quasi-trapped (solid curve) particles. As a rule,
the orbits of quasi-trapped particles have a complicated
serpentine-like character; therefore, at the center of a sheet,
the ion velocity component along the y axis is negative,
and when the particle reaches the maximum distance in the
z coordinate, it is positive. By contrast, the velocity vector of a
transient ion is always directed along the y axis. In the right-
hand part of Fig. 38, the respective currents are shown
schematically: the current of a transient ion (dashed curve)
exhibits a pronounced positive maximum, while the current of
a quasi-trapped ion (solid curve) is negative at the center of

Quasiregular orbit

Transient orbit

Figure 38. Parts of the orbits of two ions crossing the z = 0 plane. Shown
are the direction of particle motion, the directions of the magnetic field
component B, and the profiles of currents supported by each of the
particles. (From Ref. [46].)

the current sheet and positive at its edges. Therefore, transient
ions can be considered the main carriers of current. As
regards quasi-trapped particles, whose orbits are closed, the
total magnetic field supported by them is exactly equal to
zero, although the local current differs from zero, and if many
particles are trapped in the system, then such a current can
change the structure of the sheet in an essential manner.
Trajectories of both types, transient and quasi-trapped, are
important for the formation of the TCS fine structure.

The TCS model assumes that impinging ion flows enter
the current sheet from distant sources located at the
boundaries of the system (|z| > L.). Transient ions on open
orbits describe semicircles in the neutral plane (a half-turn in
the field B.) (see Section 3.1). Choosing the ion distribution
function at the boundary of the current sheet in the form of
the Maxwell distribution with a shift velocity vp along the
magnetic field direction and representing this distribution in
terms of the integrals of motion (the energy H and the
invariant I;), as was done in Section 6.2, we can find the
distribution function F(v) at each point of the current sheet
(for all z2).

As mentioned above, besides transient particles, particles
that are on quasi-trapped trajectories exist in the current
sheet. (Although the influence of jumps of the adiabatic
invariant on the dynamics and properties of the system is
not discussed in this section, we continue referring to closed
trajectories crossing the separatrix as quasiadiabatic.) These
particles do not leave the current sheet, and their distribution
function cannot be found by tracing the distribution from the
boundaries of the system. However, the population of
particles on quasi-trapped and transient trajectories in phase
space can be identified by the value of the quasiadiabatic
invariant I* (see Section 6.1). If I. < I*, then the particle is on
a transient trajectory, and if /. > I ¥, then it is on a quasi-
trapped trajectory. Hence, in integrating the function F over
the velocity space, a distribution function differing from F
must be chosen in those spatial regions where /. > I*. For
simplicity, the distribution in the regions of phase space with
I. > I is chosen in the model as the thermal Maxwell
distribution F, = nsexp (—H/T), where T = v¢m/2 is the
ion temperature in the current sheet and n = Kng (19 is the
transient particle density at the boundary of the current sheet
and K is a free parameter characterizing the relative
contribution of particles of both types). The choice of the
coefficient K is determined by the necessity of taking some
plasma processes into account. In a number of studies where
the problem of investigating the role of plasma trapped by the
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current sheet was not formulated directly [125, 126], the
simplest solutions with K = 1 were considered, in obtaining
which the distribution functions of trapped and transient
particles were made to match each other with equal densities
at I. = I*. In studying the influence of trapped plasma on
the current sheet structure [49, 155], the parameter K was
made to vary within a broad range of values, from K = 0 to
K =~ 20.

Integrating the distribution function over velocities (or
momenta py, py, p-) with a weight coefficient v,, we can find
the particle current density j,(z). Here, j,(z) involves both the
diamagnetic current and the magnetization current, due to
the gradient of particle pressure, as well as the paramagnetic
current resulting from the trajectories of transient particles
being open (an analog of the edge current in a bounded system
in which elastic reflection of particles from walls occurs) (see
Refs [22, 126]). Below, the equation for the magnetic field in
system (26) is written in terms of the vector potential
component /I_v(z) = A, — B.x (see Refs [22, 148]):

d2/1y 4 . -
de ?]1’("4}) = 0 .

Here, we use the fact that the system is one-dimensional and
that the current density can be represented as a function of the
vector potential component /Iy.

One of the key parameters of the system is & = vy /vp,
which determines the relative velocity of the particle flow at
the boundary of the current sheet. We see in what follows that
¢ also determines the depth of the emerging self-consistent
current configuration.

The solution of the equation d*4,/dz%+(4n/c) j,(4,)=0
can be found with the aid of an iteration procedure. At the
zeroth step, a certain spatial distribution is chosen for the
potential A,(z) and the distribution function F, and hence the
current density j, is reconstructed at each point z for this
distribution. Then a new approximation for 4,(z) is found
from the current density. The iteration process continues until
it converges to some function A,(z). Furthermore, the
magnetic field B, and the current density are determined for
this function [125, 126].

The results of computations are presented in Fig. 39,
where the self-consistent current density in a TCS is
represented as a function of the dimensionless coordinate
{ = ze*Bwy /vp (wy is the ion gyrofrequency at the boundary
of the current sheet) for different values of the parameter
¢ = vo/up, as well as plasma density profiles for the same
values of ¢&. Comparing Figs 39a and 39b shows that in the
case of a strong flux asymmetry in the system, i.e., for small
values of &, the current and plasma density profiles exhibit a
clearly expressed maximum, which smooths out as ¢ increases,
and practically vanishes for weakly anisotropic sheets with
& — 10. However, the profiles being compared also manifest
an essential difference: the current density (Fig. 39a) tends to
zero at the boundaries of the current sheet, while the plasma
density (Fig. 39b) becomes constant, which is due to the
presence of particle flows at the boundary of the system.
Thus, the current sheet is embedded into a thicker plasma
layer. As follows from the results of the computations
presented in Fig. 39, the layer thickness is of the order of
unity and its dimensional thickness is L. ~ pye'/3. Therefore,
the layer thickness increases with e up to e ~ 1 (L. ~ p,), but
in the case of weakly anisotropic layers (¢ > 1), as shown in
Ref. [126], it tends to the constant value L. ~ p,. Hence, all

T

Figure 39. (a) Normalized current density J, =j,/(gnovpe??) and
(b) normalized plasma density n/ny as functions of the dimensionless
coordinate {. (From Ref. [126].)

self-consistent (even weakly anisotropic) current sheets are
thin: L. < pg.

Moreover, it is also shown in Ref. [126] that the fine
structure of current density profiles in a TCS results from
competition between the oppositely directed para- and
diamagnetic currents. Paramagnetic currents are mainly due
to transient particles (see Fig. 38) in the case of current
carriers moving at the center of the current sheet (a half-turn
about B.), while diamagnetic currents are caused by the drift
motion of ions even before they cross the neutral z = 0 plane.
The main drift currents are the magnetization current, the
gradient current, and the drift current due to the curvature of
magnetic field lines [156]. A small contribution to the negative
current density can also be made by quasi-trapped ions (see
Fig. 38), butif K = 1, then their concentration in the system is
small and, consequently, their role is insignificant. Diamag-
netic currents are always much smaller than the paramagnetic
ones, but at the edges of the current sheet, diamagnetic
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currents can manifest themselves as weak maxima of the
magnetic field at the periphery of the current sheet. The role
of diamagnetic currents increases in weakly anisotropic sheets
with large values of the parameter ¢ (see Refs [125, 126] for the
details).

6.4.2 Jumps of the quasiadiabatic invariant and evolution of the
current sheet during finite time intervals. The self-consistent
equilibrium solution constructed in Section 6.4.1 is approx-
imate. The accuracy of the quasiadiabatic model of a current
sheet is determined by the accuracy of the conservation of
quasiadiabatic invariants of motion (see Appendix A).
During time intervals significantly exceeding the period of
ion motion in the plane of slow variables (kx, py), ions can
accumulate on quasi-trapped trajectories owing to jumps Al
of the quasiadiabatic invariant (see Section 3.2).

In current sheets with ¢ < 1, the sheet thickness is close to
the Larmor radius, and therefore the parameter x is small,
which leads to small values of the relative jumps of the
invariant, AL /I, < 1. Here, the region of phase space
occupied by quasi-trapped trajectories is small, and hence
the effects of plasma accumulation in this region become
insignificant [126, 155]. Jumps of the quasiadiabatic invar-
iants, on the contrary, are significant in TCSs with ¢ ~ 1,
where the phase space region occupied by quasi-trapped
trajectories is already large, and jumps of the invariants of
motion also increase compared with such jumps in the case
¢ < 1. The particle distribution function can therefore change
in time very slowly (compared to the slow motion of particles
in the (kx,py) phase plane) [47, 50]. An increase in the
concentration of quasi-trapped particles causes a redistribu-
tion of the current density in the sheet, and the maximum of
the current density then splits at the beginning into two
maxima displaced to the periphery of the current sheet [46].
Such an evolution of the sheet can be regarded as a sequence
of quasistatic equilibrium states or a relatively slow diffusion
process in the space of invariants of motion 7.. As shown in
Section 3.2, the particle distribution function in this approx-
imation can be found from the solution of the diffusion
equation with the diffusion coefficient Dy ~wx?(1 — I*/3)/z.,
where I is the dimensionless quasiadiabatic invariant and
1. =2n/(¢qB./mc) is the period of particle motion in the
(xx, px) plane (the period of oscillations in the field B.).

The assumption that the system undergoes fast relaxa-
tion to the equilibrium permits using the distribution
function profiles obtained at different time instants as the
distributions corresponding to quasiequilibrium configura-
tions that the system passes in the course of its evolution.
We can therefore assume that at each instant, the right-hand
sides of Eqns (26) contain ‘snapshots’ of the distribution
function undergoing evolution and obtained by solving the
diffusion equation.

Successive changes in the current density profile resulting
from the accumulation of particles on quasi-trapped trajec-
tories inside the TCS at the instant © = /7, for a character-
istic configuration of the current sheet in Earth’s magnetotail
are depicted in Fig. 40. The accumulation of particles on
quasi-trapped trajectories can be seen to lead to a trough in
the current density profile at the center of the sheet. The
accumulation time characteristic of quasi-trapped particles in
the current sheet of Earth’s magnetotail has been estimated to
be 10-60 min [50], which is in agreement with the lifetime of
the thin current sheet determined from the results of satellite
observations.
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Figure 40. Three current density profiles in a current sheet undergoing
evolution at instants when no trapped particles are present in the sheet
(z = 0), a small concentration of particles is present (t = 40 min), or there
are many particles (t = 104 min). (From Ref. [46].)
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Figure 41. Two self-consistent stationary profiles of the normalized
magnetic field B, in a simple TCS with a single maximum in the current
density (curve /) and in a triply split TCS (curve 2). (From Ref. [49].)

The problem of the limits of plasma accumulation close to
the TCS is discussed in Ref. [155], where it is shown that upon
reaching a negative minimum in the current density, the
current sheet can be destroyed and equilibrium may no
longer exist. For this reason, the accumulation process of
particles on quasi-trapped trajectories was termed ‘ageing’ of
the current sheet. However, it must be noted that in another
study [49], the possibility was revealed of the existence of
‘exotic’ triply split current equilibria, in which a high
concentration of trapped plasma is observed with a char-
acteristic three-layer configuration such that a negative
current is observed at the center of the sheet and a positive
current is observed at its edges (Fig. 41). Such a configuration,
unlike the doubly split one, is stable with respect to small
external perturbations of the magnetic field, although the
value of the threshold density of particles on quasi-trapped
trajectories does exist, an excess of which leads to the
destruction of the triple current sheet.
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The relation between the doubly and triply split equili-
brium states is still unclear, because it has not been possible to
achieve smooth transition from the first to the second and vice
versa. It can only be asserted that three types of equilibria
have been found as solutions of the set of Vlasov—Maxwell
equations: an unsplit state, a doubly split state, and a triply
split state. In a current sheet where the plasma exhibits a weak
flux anisotropy (¢ ~ 1), because of diffusion in the space of
quasiadiabatic invariants, an unsplit equilibrium current
sheet can undergo the transition to a split state that
experiences slow evolution toward a triply split equilibrium.
The rate of this evolution turns out to be variable: it increases
with time, because the increase in the concentration of ions
on quasitrapped trajectories leads to the formation of a
‘smoothed out” magnetic field profile with a large value of
the parameter x, which in turn provides further enhancement
of particle scattering (in accordance with the expression for
the diffusion coefficient D ~ x?) and particle capture in the
vicinity of the current sheet. Thus, the mechanism of the
‘ageing’ process implies a positive feedback between the
‘depth’ of the minimum in the current profile at the center of
the current sheet and the diffusion coefficient D ~ x 2, which
may result in a very fast explosive evolution of the system at
the final stages of its existence [46, 50].

6.4.3 Asymmetry of the current sheet and multicomponent
systems. Nonsymmetric TCSs are quite often registered in
Earth’s magnetotail [153]: they have also been revealed by the
satellite Mariner-10 during its flight through the magneto-
sphere of Mercury [157]. The most natural source of
asymmetry in a current sheet may be the asymmetry of
plasma flows crossing the current sheet [158, 159], or the
presence of a nonzero magnetic field component B, in the
current sheet [160, 161]. Below, we consider the influence of
the first mechanism in a current sheet with B, = 0, assuming
for simplicity that the only source of plasma at the boundary
of the system is located in the northern hemisphere, and no
sources exist in the southern hemisphere [157]. Tons penetrat-
ing the current sheet from the boundaries of the system,
describing a half-circle about the field B, in the neutral z =0
plane, can start moving in the opposite direction toward the
source (‘reflection’) or can undergo transition to the side of
the current sheet opposite the source (‘refraction’). Particle
reflection and refraction processes depend essentially on the
phase difference between crossings of separatrices at the
entrance to and the exit from the sheet (see Sections 3.1,
3.3). This phase difference is determined by the parameter x
(actually, the ratio of the frequencies of slow and fast
motions), i.e., it ultimately depends on parameters of the
sheet (L., B./By) and on the particle energy. The probabilities
of reflection and of refraction, averaged over the distribution,
are the same for ions, with the exception of a group of
particles with resonance energy values for which the phase
difference &¢ is zero, i.e., the jump in the quasiadiabatic
invariant of motion at the entrance is compensated by the
jump of an equal magnitude at the exit (see Section 3.3). Such
particles experience either only reflection (even resonances) or
only refraction (odd resonances) upon interaction with the
current sheet [162].

Figure 42 outlines a model of a one-dimensional TCS in
which the ion distribution function in the sheet contains
particles with resonance energies; the structure of the sheet
can then be determined by the dominance of either the
reflection or refraction of particles arriving from the only
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Figure 42. Schematic of the distribution of incident, reflected, and
refracted plasma flows in the vicinity of TCSs. (From Ref. [159].)

source located in the region z > 0. The free parameter r < 1
describes the probability of particle reflection in the direction
toward the source; the particle refraction coefficient is,
accordingly, 1 — r. Hence, r = 0 corresponds to total refrac-
tion of the plasma flux through the current sheet, i.e., to the
symmetric case. The value r =1 corresponds to total ion
reflection toward the source, i.e., to the maximum asymmetry
of the system.

We write the distribution function F of transient ions in a
layer for z > 0 and z < 0 in terms of the distribution function
of transient particles at the boundary of the sheet Fy:

F _ F()7 )| < 0,
l=>0 = I‘F()7 Y| >0,

F _ (]—I‘)F(), ’UH<0,
<0 = 0, v > 0,

where v is the velocity component along the direction of the
magnetic field. It is also assumed that upon interaction of the
ions with the current sheet, the form of the distribution
function does not change and no particle or energy losses
exist. The directions of the plasma flows before and after the
interaction with the TCS are shown in Fig. 42.

Self-consistent Vlasov—Maxwell equations (26) with the
distribution function F were solved numerically and, as a
result, equilibrium solutions were found for the parameter r
ranging from 0 to 1 and a fixed ¢ =1 [159]. The plasma
density profiles for five values of the reflection coefficient r
are shown in Fig. 43a. Analysis of partial currents reveals that
the paramagnetic currents due to the half-turn of ions in the
neutral plane about the field B. tend to support the symmetry
of current density profiles. The asymmetry of the current
sheet is determined only by diamagnetic currents depending
on the density distribution of plasma particles. Because the
incident and reflected flows are added on the side of the
source, the plasma density is higher there than on the opposite
side (the case » = 0 is an exception). Figure 43b shows how,
owing to diamagnetic negative currents, the current density
profile becomes flatter on the side of the source, while its
amplitude decreases. The shift of a nonsymmetric current
sheet as a whole occurs in accordance with the condition that
the pressure be balanced across the sheet, when an increase in
the coefficient r is accompanied by an increase in the plasma
density on the side of the source and a decrease on the
opposite side.

The one-dimensional quasiadiabatic TCS model also
permits studying other effects, for example, the influence of
a multicomponent plasma on the structure of the current
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Figure 43. Plasma density (a) and current density (b) as functions of the
dimensionless coordinate for values of the reflections coefficient r varying
from 0 to 1 in steps of 0.2. The location of the plasma source is shown
(¢ > 0). (From Ref. [159].)

sheet. In Ref. [163] (see also review [22]), the results are
presented of self-consistent solutions for a current sheet
whose plasma contains not only protons but also heavy
oxygen ions. It is shown that the orbits of transient heavy
ions lead to the current sheet thickening severalfold, because
of the larger Larmor radii of heavy ions. Moreover, the
current due to oxygen ions dominates at the periphery of the
current sheet, while the proton current dominates at its
center. The results reveal the formation of a structure with
multiple embeddings resembling a Russian doll: a relatively
thin proton layer of the thickness of the order of the proton
gyroradius is embedded into a relatively thick oxygen current
sheet (of the order of several proton gyroradii), and the entire
current sheet is in turn embedded into an even broader plasma
sheet (whose thickness is only limited by the size of the model;
in a real magnetosphere, it can reach several hundred proton
gyroradii).

6.4.4 Comparison with experimental data. Owing to satellite
missions of the past two decades (Interball, Cluster, and
THEMIS (Time History of Events and Macroscale Interac-
tions during Substorms)), it has become possible to obtain
unprecedented detailed information on current sheets in
Earth’s magnetotail [17, 129, 152, 153, 164], which allows
performing a comprehensive comparison of observational
data with theoretical models.

A comparison of satellite data and results based on
current sheet models taking the invariant 7, into account has
revealed the broad possibilities provided by these models in
describing experimental data [26, 147]. In the framework of
TCS models, it has been possible to describe the ‘embedding’
property of the observed current sheets. Success has been
achieved in showing that for the absolute majority of current
sheets observed in Earth’s magnetotail, the decrease in the
current density j, occurring as the magnetic field |By|
increases with the distance from the z = 0 (B, = 0) plane is
significantly more rapid than the decrease in the plasma
density np(z) [165]. That is, the profile j,(z) is embedded, as
it were, in a wider profile ny(z). Embedding is a natural
property of TCSs with a population of transient particles,
which permits describing experimentally observed current
density profiles in the framework of the model considered
[22, 26, 31, 152, 166].

Another universal property of the TCS constructed with
the conservation of the quasiadiabatic invariant /. taken into
account has been confirmed with the aid of satellite observa-
tions. Theoretical TCS models based on the quasiadiabatic
description of the motion of plasma particles predict that the
sheet thickness (spatial scale of the profile of j,(z)) must be of
the order of the gyroradius of transient ions in the field By.
This estimate has been confirmed [30, 31] for most of the
current sheets observed in Earth’s magnetotail.

The first experimental data on the observation of
bifurcation of the current sheet in Earth’s magnetotail were
published in Ref. [63] in 1996. Subsequent satellite missions
confirmed this configuration of the magnetic field with a local
minimum in the density of j, at the center of the sheet (z = 0)
[64, 153]. The theoretical description of bifurcated current
sheets based on quasiadiabatic models fully explains the
diversity of such structures, observed in experiments [46,
167]. It must be noted that the role of dynamic processes in
the formation of bifurcated current sheets has still not been
fully investigated. On the one hand, there is a series of
observations of bifurcated current sheets performed over a
long period of time [168]. On the other hand, a number of
authors have indicated that the bifurcation of a current sheet
can be caused by its vertical oscillations in space [63, 169, 170].
Such oscillations are typically associated with various
instabilities developing in current sheets possessing a signifi-
cant store of free energy (see Refs [171-74] and review [22]).

6.5 Models of two-dimensional current sheets

The model of a one-dimensional current sheet can be used in
describing the most recent available results of satellite
observations. But a zero (or small) value of the gradient
0B./0x in the magnetotail is a temporary manifestation of
specific conditions for a certain interval of x values, rather
than an inherent property of the system. With the exception of
cases where thin current sheets with L,/L, = 25 are formed
[175], the magnetotail is usually characterized by the ratio
L,/L. ~ 5and arelatively large gradient 0B./0x[176, 177]. It
must also be noted that local regions are sometimes observed
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with a reversed gradient 0B./0x < 0 [178-181]. The problem
of how the gradient 0B./0x influences the structure of a
current sheet therefore deserves a separate investigation.

The idea of a current sheet model with B.(x/L,) was
proposed in a relatively simple form in Ref. [93] and realized
numerically in Refs [182-184]. The description of ion
dynamics in the framework of the quasiadiabatic theory
discussed in this review is based on the results in Sections 4.1
and 5.1, where the possibility is shown of describing particle
motion with the conservation of the first, 7., and the second,
I, quasiadiabatic invariants.

We specify a certain profile of the magnetic field B.(x/L,)
in the region x € [xy, x1]. At the boundary x = x(, we set the
ion distribution function to correspond to the distribution
function of particles arriving in the distant magnetotail from
sources in the mantle (Fig. 28b). This function must be
represented as a function of the invariant 7. and of the total
energy H at x = xo, Fy(I., H). The function Fat x = x( can be
written as Fy(py, I.). Then, using the initially fixed profile
B.(x/Ly,), it is possible to find the expression for the second
quasiadiabatic invariant I, = I,(H,I.,), which plays the
main role in the problem considered (see Section 5.1):

N ——
Ix—%‘[ H—h.(L,xx’) dx'.

X

Here, the energy /. of fast motion can be expressed in terms of
I, and kx, as in Section 3.1. Because H = h.(I.,xx0)+
(1/2) p2, we obtain the expression

I —lr\/ 2 4 2h,(L, kxo) — 2k (L, x') dix’
x*n N Py 24z, KXo Uz, KX Xy

where the integration limits x. are determined from the
condition that the integrand vanish. Thus, Fy(py,I.) can be
expressed in terms of the invariants I, and I.: Fy([,,I.) at
X = Xop.

The presence of the field E, leads to particle convection
toward Earth (in the direction of increasing x). The distribu-
tion function F(I,,I;,x) can therefore be obtained by
projecting the function Fy(Iy,I.), as is done in Section 6.4
for a one-dimensional current sheet. That is, having specified
the profile B.(x/Ly), we can determine the function
F(I,, 1., x) at each point x € [x¢, x;]. Subsequently, integrat-
ing v, F(I,, I, x) over velocities, we find the current density

j}’(x) ~ JU,L'F(lxv 127 x) J(Ixa ]z) d]z dl\ )

where J(I,,1.) is the Jacobian of the transition from dp to
dI. dI, and the velocity component v, must be expressed in
terms of the invariants I. and Iy. Using j,(x), it is possible to
determine the profile B.(x/L,) and then to repeat the
procedure. This iteration process stops when the profile
B.(x/L,) ceases to undergo changes from one iteration to
another.

The technique considered permits obtaining self-consis-
tent profiles of the magnetic field B,(x/L,) and moments of
the ion distribution function along x in a system averaged
over particle oscillations in the field B, [93].

There is also a more complicated approach, which
generally permits obtaining practically all the characteristics
of a two-dimensional configuration with quasiadiabatic ions.
In developing the methods for current sheet simulation that

03 - Distant region
J, / of the tail (x > 1)
Near region
of the tail
0.2 -
0.1
0 1 1 1 1 1 1
-6 —4 -2 0 2 4 6

N

Figure 44. Profiles of current densities for different values of the
x coordinate. The coordinate z is normalized to the ion Larmor radii.

were considered in Section 6.4, the function of quasi-trapped
ions can be represented as Fiap ~ K exp (—(H + woly)/T),
where K is a parameter characterizing the relative density of
quasi-trapped particles, and H and T are the total energy and
temperature. The quantity K is a free parameter in the
problem because the sources of plasma with quasi-trapped
and transient particles are conventionally independent.
Quasi-trapped ions can occupy the current sheet not only
because transient particles are scattered and trapped but also
because of the convection from the far region of the tail to the
near region in the two-dimensional problem. Transient ions
do not experience multiple oscillations in the plane of slow
variables and have no time to be shifted along the x direction
due to the inhomogeneity of the magnetic field. Therefore, the
motion of ions can be considered locally one-dimensional and
the same distribution functions that were used in Section 6.4
can be applied for their description. We therefore describe
transient ions using the distribution function Fi,ps in (23).

Because we are only interested in the role of quasiadia-
batic particle dynamics, we take electrons into account only
as a cold background supporting the charge neutrality of the
system. Solving the two-dimensional equation for the
magnetic field components B, and B.,

0B, 2. _dng
0z x ¢

J Uy (Ftrans(‘v|, 1:) + Flrans(‘v|7 I»c)) dV,

with the proper boundary conditions allows examining the
two-dimensional current density distribution in the current
sheet. Cross sections of the current density profiles for
different x are shown in Fig. 44. As can be seen from the
figure, for large x values (far from Earth), the current density
is bell-shaped (the solid thin curve), which suggests that the
current of transient ions is dominant, while the concentration
of quasi-trapped ions is small compared with the concentra-
tion of transient particles. In approaching Earth, the con-
centration of quasi-trapped ions and their local current
become more and more significant; redistribution of the
current density across the sheet occurs, in the course of
which its maximum in the neutral plane is replaced by a
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minimum. At small x (the thick solid curve), the thickening
and splitting of the current density profile become noticeable
and reach a maximum at the edge of the current sheet closest
to Earth (it is interesting to compare Fig. 44 and Fig. 40: the
only difference between them is that the density of quasi-
trapped particles increases in time in Fig. 40, but increases in
space in Fig. 44).

The influence of the longitudinal inhomogeneity on the
structure of the current sheet is therefore the cause of an
important difference between the dynamics of quasiadiabatic
transient and trapped ions. Transient ions are the main
carriers of current, and they can carry a practically one-
dimensional current density distribution in the current sheet.
Their distribution function can only depend on the quasia-
diabatic invariant of fast motion, 7., and the total energy. By
contrast, owing to the conservation of the invariant 7, quasi-
trapped ions are redistributed within the current sheet, and
hence their density increases in the direction of the increase in
the B, component. Consequently, the roles of the particles
carrying the main current are interchanged. This is mani-
fested in the thickening of the current density profile and in its
splitting as the observer approaches Earth.

7. Conclusion

We have performed a detailed analysis of the quasiadiabatic
dynamics of charged particles in systems with a weak
magnetic field, in which the spatial scale of the field
inhomogeneity is much smaller than the particle gyroradius.
We have shown that owing to the existence of a small
parameter in such systems, it is possible to introduce a
quasiadiabatic invariant, which is analogous to the magnetic
moment. Moreover, in the case of two-dimensional systems, it
is possible to introduce a second quasiadiabatic invariant
similar to the longitudinal invariant of bounce oscillations of
magnetized particles. The conservation of quasiadiabatic
invariants for long periods of time is not possible due to the
existence of random jumps of the invariant, related to
crossing of the separatrix in the plane of fast motion.
Exceptions are represented by populations of particles for
which jumps of the invariants in the case of two successive
crossings of the separatrix compensate each other due to the
resonance effect, and populations of particles that are on
regular trajectories not crossing the uncertainty curve.

The existence of quasiadiabatic invariants permits
describing the dynamics of charged particles in one-dimen-
sional and two-dimensional current sheets. We have exam-
ined a number of important applications corresponding to
configurations of the magnetic field that are most often
encountered in the course of describing magneto-plasma
structures in a space environment. For example, we have
described the dynamics of charged particles in current sheets
with a longitudinal inhomogeneity of the magnetic field
B. = B.(x) with a magnetic field shear B, # 0, in bifurcated
sheets with two maxima of the current density, and in sheets
involving X- and O-lines. Based on the constructed picture of
particle dynamics, various mechanisms of effective particle
acceleration in current sheets were considered, which can be
described analytically using the assumption that quasiadia-
batic invariants are conserved.

We have shown how the use of the quasiadiabatic
invariant allows integrating trajectories of an ensemble of
particles in a current sheet and reconstructing the distribution
function at the boundary and in the central region. The

analytic results obtained are in good qualitative and quanti-
tative agreement with the results of direct satellite measure-
ments. This makes the quasiadiabatic theory a powerful and
effective tool for constructing magneto-plasma equilibrium
states (current sheets) and investigating their evolution and
acceleration of particles interacting with them.
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8. Appendices

A. Transitions across a separatrix and jumps

of the quasiadiabatic invariant in Hamiltonian systems
with fast and slow motions

In this Appendix, the general theory of jumps of the
quasiadiabatic invariant is presented for transitions across
the separatrix in Hamiltonian systems. We consider Hamilto-
nian systems with fast and slow motions that have two
degrees of freedom: one corresponds to fast motion and the
other one to slow motion. For fixed values of the slow
variables, the phase portrait of fast motion is assumed to be
divided by separatrices into three regions. When the slow
variables change, the phase points cross the separatrix.

The value of the quasiadiabatic invariant ‘action’ is
constant along the trajectory in the leading approximation
until the trajectory reaches a separatrix. On the separatrix, the
‘action’ experiences a standard geometric jump related to the
difference between the areas inside the trajectory in one of the
loops of the separatrix and those in the external region. This
approximation is called quasiadiabatic. Below, following
Ref. [185], we obtain a formula for the next term in the
asymptotic formula for changes in the ‘action’ in transition
across the separatrix. The calculated correction to the
quasiadiabatic approximation turns out to be a quantity of
the order of kInk in general, where « is a small parameter
characterizing the relation between the rates with which slow
and fast variables change. If certain symmetry conditions are
satisfied, this correction is of the order of x. Such symmetry
conditions are satisfied, for example, in the problem of the
motion of a charged particle (ion) in the parabolic model of
Earth’s magnetotail.

The above correction to the quasiadiabatic approxima-
tion is related to particle motion in the vicinity of the
separatrix. It is therefore called a jump of the quasiadiabatic
invariant at a separatrix crossing (it is sometimes termed a
dynamic jump, in order to distinguish it from a geometric
jump). Although this jump of the quasiadiabatic invariant is
small, it is essential for the dynamics of the system. Adding
jumps for multiple crossings of the separatrix leads to
diffusion of the quasiadiabatic invariant in the correspond-
ing space.

The particular case of systems with fast and slow
variables considered here is represented by Hamiltonian
systems with a single degree of freedom, whose Hamilto-
nians depend on slowly varying parameters. Formulas for
the change in the adiabatic invariant due to a crossing of the
separatrix were obtained for such systems independently in
Ref. [44] and in Refs [186, 187], while in the particular case
of a pendulum in a slowly changing gravitational field (or a
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Figure 45. Schematic view of a phase portrait of fast motion.

charged particle in an electrostatic wave of slowly changing
amplitude), the formulas were first obtained in Ref. [188].
Formulation of the problem of the behavior of an adiabatic
invariant crossing a separatrix traces back to studies
collected in books [1, 2].

A.1 Basic equations

We consider a Hamiltonian system with the Hamiltonian
H = H(p.,z,py, kx), where z and x are coordinates and p, and
P are their conjugate momenta. The equations of motion are
given by

OH . OH . . OH = ke o0H
_—— . z = x=—K—, KX = .
oz " "o o

Pz = OKx

The variables p. and z are termed fast, and the variables p,
and kx, slow. The Hamiltonian system for p. and z, when p,,
kx = const is called fast, or nonperturbed. We assume that
the phase portrait of the nonperturbed system is similar to the
one shown in Fig. 45.

The separatrices /; and [, passing through the saddle point
C divide the portrait into regions Gy, G,, and G3. The areas of
the regions Gi, G, and G;UG; are denoted by S, =
Sy(px,kx), v=1,2,3. We let h(p,,kx) denote the value
of the Hamiltonian at the saddle point C and set E =
H — h.. Then, E =0 at the point C and on the separatrices,
and £>0 in G; and E < 0 in G;,. We assume that the
following quantities are different from zero (for definiteness,
positive):

O, = {Sy, he} = % (E,he}dr.
I

Here and below, {, } are Poisson brackets in terms of xx and
Dx:

{fig} =18 — 1y &ux-

A.2 Quasiadiabatic approximation

Motion in each of the G regions can be described using the
quasiadiabatic approximation. We let 7 denote the variable
action of the fast system. In the quasiadiabatic approxima-
tion, the condition / = const is satisfied along the trajectory
(which is equivalent to the action I being a quasiadiabatic
invariant) in each of the G; regions, and a change in the
variables p, and kx is described by a Hamiltonian system with
the Hamiltonian k®(7, p, xx), where p, and kx are conjugate
variables and @ is the function H expressed in terms of 7, p,,

and rx:

. 0D . 0P
= —K —— KX =K .
Px oKx’ Opx

Such a system is termed slow. Solutions of a slow system can
land on the curve @(I, py, xx) = he(px, kx) corresponding to
the separatrix of the fast system. This curve is called the
uncertainty curve [189]. Crossing the separatrix leads to
probabilistic phenomena [190, 191], which can be described
in the quasiadiabatic approximation as follows.

Let motion startat = 0 from a point Mo (p.o, Zo, Px0, KX0),
and (p.0,20) € G3(px0, kX0). In the region Gs, the action is
assumed to be constant until the instant of reaching the
separatrix: /=1~ =const. A change in p, and kx is
described by the solution Y3(t), X3(t), T = xt of the system
with the Hamiltonian xk®(I —, py, kx) and the initial condi-
tions (pyo, kXo). The instant 7. of reaching the separatrix is
determined from the relation S3(Y3(t.), X3(t.)) =2nl",
1. =kt,. The quantities p,, = Y3(7.) and kx, = X3(t,) can
be determined by solving the set of equations S5 (X, pys) =
2nl~, hc(]’xﬂm KX*) = H(]’207 205 Px0, KX())‘

After crossing the separatrix, the point can continue
motion either in region G; or in region G,. In the course of
motion in region G;, i = 1, 2, the action is again assumed to be
constant: [ = S; (py«, kx,)/(2m). Hence, in the quasiadiabatic
approximation, in crossing the separatrix, the action experi-
ences a jump related to the difference in geometry between
phase trajectories in the G; regions (a geometric jump).

A change in the slow variables is described by the solution
Y:(1), Xi(z) constructed for the G; region of the slow system
with the initial condition Y;(t,) = pys, Xi(T4) = Kx..

Capture in one region or another is considered a random
event. For a point My, the probability of being trapped in the
G; region is given by (see Refs [42, 44])

_ @i(px*y Kx*)

Pi - ’
@3(Px*, KX*)

i=1,2.

)

A.3 Improved quasiadiabatic invariant
The following quantity is called the improved quasiadiabatic
invariant:

J=J(pz,z,px, kx) = I+ ku(p., 2, py, KX)

T ‘
u:LJ (GHJ a—Hdt/)dt
4nt Jo \ Opx Jo Oxx
T ‘
—LJ (a—HJ oH dt’) dr.
4t )o \ Oxx Jy Opx
The integrals in (27) are calculated along the phase trajectory
of the fast system passing through the point (p.,z), T is the
period of motion along this trajectory, ¢ is the motion time
counted from the instant of passing through point (p., z), and
Jis the improved first approximation in the averaging method
[9]. When motion occurs far from the separatrices in times of
the order of 1/x, I remains constant with a precision ~ «, and
J with a precision ~ x2. The derivation of formula (27) is
given in Ref. [185].

The main idea underlying the calculation of the dynamic
jump in the quasiadiabatic invariant is as follows. In motion
far from the separatrix, the improved quasiadiabatic invar-
iant changes by a quantity ~ 2, while the dynamic jump is a
quantity ~ x In k or, in the symmetric case (when & =@, and

(27)




April 2013

Quasiadiabatic dynamics of charged particles in a space plasma 385

S| = 83), ~ k. Therefore, the dynamic jump is related to
motion in the vicinity of the separatrices, and for its
calculation we can use asymptotic expansions in the vicinities
of separatrices.

A.4 Asymptotic expansions for nonperturbed motion
in the vicinity of separatrices
In the asymptotic expansions given below, a, b;, and g; are
smooth functions of p, and kx.

The following expansion is valid for the period T =
T (h, px,xx) of motion along the trajectory E = h lying in
the region G;, i = 1,2, 3:

T= —an|h| +b;+O(hin|h]), (28)

ag=ay=a, a3 =2a, b3 =by +b,. (29)
In accordance with the formula 7 = 2n01/0h, the following
expansion is valid for the action I on the trajectory
considered:

2nl = S; — a;hIn |h| + (b + a;)) h + O(h* In|h|) . (30)
From the identity
EF OF dr — 0S; _
lf a“ - aa ) “7PX7KX7
we obtain
OF 0S;
%E:ha dtf—a—&—O(han)7 o = Py, KX, (31)

i; <E) di = —k@; + xO(h1n|h|)
E=h de tot

in the region G;. The integrand in the last formula is the total
derivative of the function E.

Let Con be the set of principal coordinates for the saddle
point C. The axes of this system are the bisectors of the angles
between the separatrix segments entering the point C and
leaving it. The axis Co is directed toward the interior of G,.
The Cy axis is directed toward the interior of G3, such that the
coordinate system Car is right-handed.

The following formulas represent asymptotic expansions
for function u (27):

(a) if the point (p., z) lies inside the region G;, i=1, 2 close
to C on the Co axis, then the following expansion holds for
the function u:

2mu=gi+O(VIhlnlh), h=E(p:zperx)  (32)

(b) if the point (p;, z) lies inside the region Gj close to C on
the positive part of the Cp axis, then

2nu = l a(@z — @1) Inh —‘r% (@1b2 — @2]71)

el S}

+§{Sz,51} +g+O0(Whinh),

where g3 = g1 + g

A.5 Calculation of a change in the quasiadiabatic invariant

Far from the separatrices, the improved quasiadiabatic
invariant changes only by a quantity O(x?). Therefore, an
order-of-magnitude change of x is gained in a small vicinity of

the separatrices, and to calculate it we can use the asymptotic
expansions presented in A.4. This method, which is similar to
the stationary phase method of calculating integrals, is
represented below.

Let a phase point start motion at ¢ = 0 in the region Gs,
with/=71",J=J ,andu=u";whent=1" = K, let this
point lie in region G;, i=1,2 with I=1" and J=J . We
now introduce the following notation: 7., py., and xx, are the
values of slow time and slow variables calculated in the
quasiadiabatic approximation upon reaching the separatrix
(we assume that 7, < t1); 7 is the instant at which the phase
point lands for the last time on the positive Cy axis close to the
saddle C; z" is the instant at which the phase point lands for
the first time on the Co axis close to C; A%, J*, pE, and kx*
are E,J,y, x values on the trajectory at t=tF, E=h_ /(xkO3),
and ¢; = |h}|/(k0;). Here, O, (and, in what follows, «, b;, g,
0S;/0kx, 0S;/0py, j=1,2,3) are calculated at rx = Kx,,
Px = Pxx. The initial point is assumed not to belong to an
exceptional small-measure set for which the phase point
passes at a small distance (< «) from the saddle point C and
therefore moves in its vicinity for an untypically long time.
Hence, k1 = 1, + O(x Ink).

The purpose of further calculations is to express J T in
terms of J , &; in the leading approximation.

A.5.1 Approaching the separatrix. When 0 <7<, the
projection of a phase point onto the (p.,z) plane describes
coils close to nonperturbed trajectories. It can be verified that
in the case of motion in the region E > & > k, the quantity J
changes by O(x?/h). In particular, in the region
E > \/x/|Ink|, the value of J changes by O(x*?*Inx). After
the arrival of the moving point in the region
0 < E < +/k/|Ink|, we determine the instants when it succes-
sively crosses the Cy ray near the point C. These instants are
numbered starting from the last one: ¢t =1 > > ...
>ty > 0. We let Ay, 1, I, J, pxn> kX, denote the values of
E 1,1 J, py, kx at t = t,. We introduce an arbitrary positive
small constant k < 1, which is independent of k. If ¢ > kv/x,
then the following formulas hold:

Byt = hy +k[03 + O(/hyi1 )] (34)
Tppl = Tp + K % alnh, +xaln (h, + O1x)

+K % alnhy — by + kO(/Ii1)
S3(Pxn 1X0) = S3(pr0, K%0) + O3(t4 — 70) (35)

+O(h2  In? 1) + O(kn/ It ) -

In the formula for 7,1, it is taken into account that the point
passes close to the saddle C three times, with the respective
values of E close to &, h, + @k, and h,y,.

In calculating the asymptotic form of the change in J, we
only use the leading terms of expansions (34), (35) (not
involving the symbol O), and we do not present the
derivation of the estimates of residual terms for simplicity.

The change in the improved quasiadiabatic invariant is
represented as

Jo—J = =T+ Un—=J).

The second term in the right-hand side is of the order of
O(x*? In k). In calculating the first term, we use the leading
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terms of expansions (30), (32), (33) for Jy and J_ . We
determine the quantities hy, S3(pyn,xxy) entering the
expansion for Jy with the aid of the leading terms of
expansions (34), (35).

It can be shown that using the leading terms of the
expansions permits obtaining the asymptotic form of
J. —J upto O(x? Ink).

We perform the necessary calculations. Let /2, and 1, be
the values of /1, and 7, calculated using the leading terms in
(34). We set 9; = ©,/0; and obtain

’ —
h, —h  =n0O;k,
N-1
/ _ / /
Iy~ T = E (Ty1 — )
n=0

N-1
= }C|:—Nb3 —&—az In (b +n@31<)}
n=0

N-1
= —kNb3 + aKZ In (h, 4+ nOsxk)
n=0
N-1
+ a;cz In(h, +nOzx + Ok)
n=0

+g kn (h- + NO3K) — Kgmhg

T(E+N)

= —Nkb; + ka {ZN In (O;x) +In NG

I+ N+d3) 1

1
e o) +§1n(g+1v)—§1né}
:N;c(—b3+2a 111(@316)) +Ka[ln%

+ <5+N+ﬁ13 —%) In(E+N+313) — (E+N+93)

+%ln(€+N)f%1n4 +0<%)

= Ni(— b3 — 2a+ 2a In(O;x))

+ Ka |:1n 27‘“
T(OT (& +13)

+2<6+N+1913—%) In (¢ + N) —25—%1115}
+0(k*? Ink). (36)

Here, I'(-) is Euler’s gamma function and the Stirling
asymptotic formula is used for T".
Substituting the obtained expressions into the expansions
for I'and u in (30) and (33), we finally obtain
2n

o |
27'[(.]* —J )—2Ka@3|:—§1nm+é

+ (—f—i—% 1923) ll’lf:| + O(K3/2 an), 19,'_,' = @z/@/
(37)

Comment. The estimate of the residual term in (37) turns
out to be much better than in intermediate formulas at £ = hy.
This is because the residual terms in asymptotic expansions are
constrained by relations providing the quasiadiabatic invar-
iance at large /.

In the leading approximation, formula (37) permits
obtaining the relation between Si(p,,xx.), J~, and
&(i=1,2), which is needed in what follows. The following
relations hold:

_ _ AT
S/(Px*? KX, ) - S/(_px*» KX*) = a]?j (px* _px*)

08 - 2102
+M (kx, —Kkx,) + Ok~ 1In"x),

(38)
_ Ohe , _ Ohe , _ 272
=== (Py. — Px+) —%(Kx* —Kkx:) + O(k”In" k).

The last relation follows from the definition of p,, and x, and
the energy integral H = h(py.«,xx.). Regarding the first
relation for j = 3 in (38) and the second relation as a linear
system for p_, — p.. and kx_ — Kx,, solving it, and substitut-
ing the result in the first relation for j = 1, 2, we obtain

h;

03

+ 791'3 (53(17;*7’6)@:) - S3(px*aKx*))
+0(k*In*k), i=1,2.

Si(prr k%) = Si(pxss KX4) = {Si, S3}

(39)

The expansions presented in Section A4 permit expressing
S3(py, kx,”) in terms of J,~ and &; formula (37) expresses J,~
in terms of J—, ¢ Therefore, (39) permits expressing
Si(ps,xx.)interms of J —, &.

A.5.2 Crossing the separatrix. In a single turn in the vicinity of
the separatrix /; at a distance of the order of x from it, the
value of the function E changes by the quantity
—k0; + O(x3/?). Therefore, ¢ € (0, 1+k+/x), k = const > 0.
If ¢ € (ky/x, Y23 — ky/K), then after crossing the separatrix,
the point is trapped in Gy, while if & € (V3 + kv/x, 1 — k/x),
it is trapped in G,. Below, we consider the first case for
definiteness. When ¢ < 7 < ¢, the projection of the phase
point onto the (p., z) plane describes a curve close to the
separatrix /». The following relations are satisfied:

hi=ho =6+ 0(k*?),

th =1

*

1 1
—zalnh; —§a1n|hj|+b2+0(zcln2;c),
Sa(pikx}) = Sa(py,kx, ) + Oorc(t) — 1) + O(k?) .

These relations, together with the expansionsin Section A.5.1,
allow expressing J,~ and £ in terms of S»(p_,, kx, ), &.

A.5.3 Moving away from the separatrix. Arguments similar to
those presented in Section A.5.2 when applied to motion in
the region G;, i = 1,2 lead to the relation

v
I'(&)

+ (% - f,) In 5,} + 0k Ink).

n(J T —J) = Ka@f[—ln + ¢

(40)



April 2013

Quasiadiabatic dynamics of charged particles in a space plasma 387

We note that formulas (37) and (40) hold for any number of
degrees of freedom of slow motion.

A.5.4 The final formula. In Section A.5.3, the quantity J * is
expressed in terms of /" and &;. The formulas in Section A.5.2
permit expressing J," dnd &in terms of Si(p_,,kx. ) and ;. In
turn, the formulas in Section A.5.1 allow expressing
Si(pe,kx) in terms of J~, £. As a result, we can express
Jtinterms of J~ and &; : in the case of arrival in the region G;,
ifky/iK < & <1 —ky/k, then

21t = Si(paws k) + 03 (21T T — S3(pae, kX))

+ Ka@i(é, - %) [In (kO;) — 203 1n (kO3)]

(2m)*
C(E)T(Wa(1 - &) T —9aé)

— ka®; In

1

+ k0, (E - ff) (bi — 93b3) + k(g — Ving3)
1

+ k0 (5 - fi) {8, 83}

—|—0(K3/2(|1nx|—|—(1—é,;)_l)). (41)

The quantity &; € (0, 1) is a function of the initial conditions,
and its value can experience a change of the order of unity
when there is a small change, of the order of x, in the
arguments. Therefore, in dealing with an individual jump, it
is expedient to treat &; as a random quantity. For a given
initial point My (p-0, zo, Pxo, KXo), the probability of the event

& € (o, ) € (0,1) is, by definition,
i mes Uff) 5
Qi) = 30 ko0 mes U<0

where U( ) is a set of points in the - nelghborhood of My that
are to be captured in the region Gy, and Ul( ) s the set
of points from U ) for which ¢ € (o, p), and mes(...) is the
phase volume. It can be shown (see the derivation of a similar
relation in Ref. [192]) that Q; (, p) = f — a.

It follows that the distribution of ¢; is uniform on (0, 1).
The quantity J T is also treated as random, and formula (41)
determines its conditional distribution under the condition
that the points are trapped in the region G;.

If the initial and final points of a trajectory are chosen
such that u = 0 at these points, then we can substitute the
quantity /* for J* in (41); the second term in the right-hand
part of (41) then vanishes.

A.5.5 Formulas for changes in the quasiadiabatic invariant
in other transitions. Above, it was assumed that @, > 0,
@, > 0. If the signs of ©; are different, other transitions
occur between the regions. For example, let @ > 0, @, < 0,
and @3 > 0. Then the probability of points from G, and G;
to arrive in the region Gj is unity. The change in J in the
transition from Gj; to Gy is given by formula (41), with
ky/ik < & < 1 — 931 — ky/k. The change in J in the transition
from G; to Gy in the case kv/ik < & < 1 — ky/K is described
by the formula

21T = S1(pas, kX)) + 912 (20 T — S5 (prs, kX))
+ K?a(l — éz) (@2 In (K@l) — OIn |K@2|)

2n(1 — &) vV —"02
[(&) T(W31 — 9nés)

+ (1 = &)(01by — O2b1) + k(g1
—x(1 = &) {S1, S} + 0k

h-

— Ka® In

—Y1282)
(Inx|+(1-&)h),

= 42
f= s (42)
Here, /1 is the value of E at the last arrival on the Co axis in

the region G close to the saddle point C.

The formulas for other transition options are obtained
from (41) and (42) by altering the direction of time and the
region labels. The method for obtaining formula (41) is
general and permits calculating changes in the quasiadia-
batic invariant for other types of the phase portrait divided
into regions by separatrices. The essential assumptions
underlying this derivation are the nondegeneracy of singular
saddle points and nonzero rates of change of the areas of
regions in the quasiadiabatic approximation. In what follows,
we everywhere use the notation ¢ for the quantity 1 — &;.

A.6 Jump of the quasiadiabatic invariant in the problem

of charged particle motion in the parabolic model

of Earth’s magnetotail

The motion of a charged particle in the parabolic model of
Earth’s magnetotail is described by Hamiltonian (4). The
fast variables are z and p., and the slow variables are xx and
P~ Phase portraits of fast motion for xx > 0 and xx < 0 are
shown in Figs 4a and b. When kx > 0, the portrait of fast
motion has separatrices on it. A jump of the quasiadiabatic
invariant in the case of transition across the separatrix from
the region Gj into G| or G, is given by formula (41). Owing to
the symmetry of the problem under the change z — —z in

(41), we can set S| :SQZS3/2,@] =0,=0,b=br, g = g,
and 93 = 1/2. Then Eqn (41) gives
1 Ka®
+_ 1. Ka® .
J —2J o= In (2 sin &)
+ 0¥ (|Ink|+(1-87")). (43)

In passing from (41) to (43), reflection and duplication
formulas for the gamma function are used. The coefficient a
in (43) is equal to 1/4/xkx. For the areas of the regions G;, we
have

3/2

8
S]A’z = § (K?x)

Consequently, ©® = (0S),/0Kx) px = 4py/Kx. As a result, in
the leading approximation we obtain

1 2Kpy

J*:EJ’— nJ In (2sinwé) . (44)
For the transition from G » to G3, we similarly find
4
Jt=2J" - f‘ In (2sinwé) . (45)
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Figure 46. Dependence of AT on ¢ for several values of 7.

Applying formula (27) for the improved quasiadiabatic
invariant, it is not difficult to verify that for both z = 0 and
p- =0, we have u = 0 and, consequently, J = I.

Therefore, if at the instant 7z, the phase point has z = 0 or
p- =0, then we can substitute the quantity /= for J* in
formulas (44) and (45).

A.7 Jump of the quasiadiabatic invariant as a function

of the fast phase

The jump in the quasiadiabatic invariant, Al, in the problem
of charged particle dynamics with Hamiltonian (4) is
described by an expression following from formulas (44)
and (45):

2 .
Al = - kpy In (2sinmé).

We now introduce the dimensionless quasiadiabatic invariant
= 311:]-/8(2[‘1)3/4 use the formula reldting the area inside a
separatrlx loop and the value of kx*, and take into account

that p} = £[2H — (kx*) ]1/2 We can then write
- 3
Al=—= ;cs1gnlp\ V1 —T431n(2sinné). (46)
2 2H)V*

From formula (46), the jump in the invariant is seen to exhibit
a logarithmic divergence in the vicinity of ¢ =0 and £ = 1.0
(Fig. 46).

Relation (46) for a jump in the quasiadiabatic invariant as
a function of ¢ has been repeatedly verified by direct
numerical integration of the original Hamiltonian system
for concrete problems. For a mathematical pendulum with
slowly changing parameters (a system with 1.5 degrees of
freedom), formula (46) was verified by numerical simulation
in Ref. [193], and for a charged particle in the magnetic field of
a current sheet, in Refs [194, 195].

B. Jumps of the quasiadiabatic invariant in the case

of its small initial values

It must be noted that in deriving formulas (44) and (45) for a
jump of the quasiadiabatic invariant, the existence of a single
small parameter « in the system was assumed. These relations
are therefore inapplicable when the values of the quasiadia-
batic invariant are small (/ < k). Obtaining formulas for a

S8

z

S

Figure 47. Phase portrait of the system with the Hamiltonian H =
(1/2)(2)* + (1/2)(z* — kx*122) for (a) kx*¢ > 0 and (b) xx*t < 0.

jump of the quasiadiabatic invariant in this case requires a
separate analysis.

We obtain an expression for a jump of the quasiadiabatic
invariant, AL, in the case of small values of the invariant I,
itself (of the order of x or less) [196]. We write the
Hamiltonian equations for Hamiltonian (4):

A
p:=i=-z{ 52" —xx),

1 (47)
pxzjézlc(izz—xx>.

Particles with a small I, cross the uncertainty curve at
approximately x = 0. For such particles, in the vicinity of
the point of crossing the uncertainty curve (and, conse-
quently, the separatrix), we can write xx =~ kx*f, where
X* =p} is the momentum at the instant of crossing the
separatrix. Hence, the first equation of system (47) becomes
f=—(1/2) 23+ zkx*t, where kx*t is the slow time. The
Hamiltonian of this system has the form H = (1/2)(z)*+
(1/2)(z* — kx*1z?%). The phase portrait of this Hamiltonian
for a frozen kx*t is presented in Fig. 47 for xx*¢ > 0 and
kx*t < 0. For kx*t > 0, the phase portrait has two separatrix
loops and an external region, as does the phase portrait in
Fig. 5b.

We now change the variables as w = z(1/2)(kx*)~ 13,

r=t(xx*) /2 Then the first equation of system (47) becomes
d*w 3
FPh rw— 2w’ . (43)

Equation (48) is the second Painlevé equation and no longer
involves a small parameter. The asymptotic form of the
solution of Eqn (48) was found in Ref. [197]. As r — —o0,

w(r) = ot_(fr)fl/4 sin E (71‘)3/4 +% a?In(=r)+¢_
(49)
and as r — +o0,
w(r) = j:\/g +o, (2r) 4
2v/2
X COS (T\/vr’?/“—%fh 1n1+§0+). (50)
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Here, («—,¢_) and (o, ¢, ) are related to the action—-angle
variables for solutions in the limit as r — Foo:

1. 1+pf

2

——In—— P

T M 2m ()]

0 = -2+ 142 1n2 —argM(ia2) — arg (1 + p)
+ 4 2t + 7

p=/exp (na?) —1
2 i 2
xexp{i[%]nz—%—argr<%> —(p_}},

I' is the gamma function, and arg(...) is the argument of a
complex number.

Just as in Section 3.1, it is possible to introduce a
quasiadiabatic invariant [, as the area, normalized to 2m,
bounded by the particle trajectory. In the asymptotic regimes
r — +o0o, we then obtain the values for the quasiadiabatic
invariant:

1
]‘;J,Czio(i.

The quantities 7,7 and I, coincide in the leading approxima-
tion with the value 7, of the quasiadiabatic invariant before
and after the separatrix is crossed. For the invariant 1., we
obtain

1
I. = 4(Kx*)% % b dw = 4(’(“{5*) I, .

B.1 Jump of the quasiadiabatic invariant in the case

of transition from the external region to one of the loops

of the separatrix

Based on the relations obtained above, if /7 and ¢_ are
known, we can determine the value of 7" as

I
v 2rn 0 2|lm(p)|’
p=+/exp(2nl;) —1

X exp (i3ln’, In2— % —iarg(il)) — i(p_) .

The jump of the quasiadiabatic invariant in crossing the
separatrix is given by AL, =217 — I 7.

The comparison of Fig. 48, in which the dependence
AL,(¢_) is presented, with Fig. 46 shows that in the case of
small initial values of the invariant /,;, the behavior of the
jumps A7, (¢_) in Fig. 48 differs essentially from the behavior
of jumps in the case of moderate initial 7. values, presented in
Fig. 46. The main difference consists in the absence of the
region of negative jump values of the invariant at small 7,,.
This is because the quasiadiabatic invariant is a positive
quantity. As a consequence, for small initial values of the
invariant, the jump cannot be negative (the total value of
the invariant and of its jump cannot be less than zero).
Therefore positive jumps dominate in the case of small
initial 7,, values.

Straightforward verification of the formula for AZ,(¢_)
with the aid of numerical integration of the initial Hamilto-
nian set of equations (47) has confirmed the validity of the
obtained expressions [196].

Al,

Figure 48. Dependence Al (¢_) for different values of 7.

It is worth noting that the expression obtained for the
jump of the quasiadiabatic invariant should turn into formula
(7) for moderate initial values of /,; (i.e., when /.~ ~ 1 or
I. ~ k). To verify this, we substitute the expression for p in the
expression for I

+ —

1
=1 fﬂln exp (2nl,;) — 1

w w

— % In [2 sin (31”,’ In2— g —arg'(if;) — (p_)] .

We now introduce the new notation
’ _ T R
¢'=317In2— 7 are il ) —o_

If 1,7 ~ 1, we can use the asymptotic formula

In[exp (2nl,) — 1] = 2nl,; .

Substituting this and the expression for ¢’ in the formula for
1T, we find

w

1
Al, = ——In(2sin¢’).
b1
We now use the relation /. = 4kp.I,, and obtain
4
Al = — KD In(2sing’).

The last expression coincides exactly with the expression
AJ =2J" —J~ in (44).

B.2 Jump of the quasiadiabatic invariant in the case

of transition from one of the separatrix loops

to the external region

We consider the jump of the quasiadiabatic invariant in the
transition from a separatrix loop to the external region. We
assume the quantities 7,7 and ¢, to be known. It is then
necessary to obtain an expression for /7. We write the
equation for p:

L+ 1pf _
2[Imp|

gi()), arg(l+p?) =g, 0,),
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where

g1 = €Xp (2n11j)7
e

2t 71F In2 —arg (2.

&= -0,

We write \p|2 in terms of g; and g»:

2
|p|* =sin’g (gl — 1) + (g1 —cosgry/gf — 1) :

The quantity /- is expressed in terms of | p|2:

1
I, :Eln (1+1p).
Thus, we have obtained 7 as a function of I, and ¢_ . The
corresponding expression for the jump in the quasiadiabatic
invariantis Al,, = I." — 21 .

We note that in the case of a zero initial value of the
quasiadiabatic invariant (/;F = 0), we obtain p = +ig? =
In 2/m. Then, after the separatrix is crossed,

L :% Klps| In2.

T
Hence, after the separatrix is crossed, particles with a zero
initial value of the quasiadiabatic invariant have values of the
invariant that are independent of £. Direct numerical
integration has shown this relation to hold [196].

C. Jumps of the quasiadiabatic invariant in a system
with a degenerate saddle point
We now show that in a system with a degenerate singular
point, the jump of the quasiadiabatic invariant A/ is of the
3/4 : .
order of x./" (the particle dynamics for such a system are
discussed in Section 4.3). In order to derive the formula for
the jump AT, we use the same approach that was expounded
in Appendix A for a system with a nonde,%enerate singular
point. Because the jump is of the order of ;csif4 and the change
in the invariant occurs far from the separatrix ~ Ky, we
assume that the main part of the change in the quasiadiabatic
invariant is related precisely to motion close to the separatrix.
We consider particle motion in the plane of fast variables
(z,p-) for the system described by Hamiltonian (15). A slow
change in kpirx leads to a change in the energy of fast motion,
h., and, as a result, to the crossing of the separatrix.

Let a particle be primarily outside the region bounded by
the separatrix (the external region) (Fig. 49). Owing to a
decrease in the energy /., the particle approaches the
separatrix and at an instant ¢* crosses it. Then the particle
leaves the separatrix and enters one of the two loops (an
internal region). This motion can be represented as a sequence
of turns of the particle in the (z,p.) plane. In the external
region, the particle covers the distance between successive
crossings of the z = 0 axis in a half-period. We choose a point
on the z = 0 plane as the initial point for counting these half-
turns. In the case of a particle moving inside the internal
region, we assume the starting point for counting turns to be a
point on the p. = 0 axis close to the saddle point, and we
count the numbers of complete turns. The values of slow
variables are assumed to be equal to their values at the initial
turn (half-turn) points and are marked by the respective
period (half-period) number n. The first turn in the internal
region corresponds to n = —1, and all the turns in this region
have negative numbers (n < 0). The first half-turn in the
external region corresponds to n = N. In the external region,

Figure 49. Schematic image of trajectory in the (z, p.) plane.

the number of half-turns therefore varies from n= N to
n = 0, and in the internal region, fromn = —1ton = —N.
We introduce the variable

Kpir X)

2 . 2
h—h. - T CURIR

2 2

on the separatrix 2 = 0. The quantity #* corresponds to the
value of / at the initial point of the half-period during which
the particle crosses the separatrix (the number of this half-
period n = 0). We set h, = h* + nkpir @, where @ = {S,h.}
and he = p2/2 + (kpir x)?/2 is the value of H at the saddle
point (@ = {S, h¢} is the rate at which the area bounded by
the separatrix changes, {...,...} are Poisson brackets, and
Kpir @ is the change in /1 along the trajectory during one turn
(half-turn) near the separatrix). We calculate @ for the values
of the kpirx and p, corresponding to the crossing of the
separatrix. During motion of a particle in the external region,
h decreases and the (n + 1)th turn precedes the nth turn (in the
internal region & <0 and |k increases). We consider
h*[(kvir ©) € [k,1 — k], where k>0 is a small arbitrary
positive constant (i.c., k does not depend on ky;r).

To find the change in the quasiadiabatic invariant
during one half-turn (complete turn), we use the relation
2101, /O0h, =T, where T is the period of nonperturbed motion
in the plane of fast variables (for which «yir x = const) in the
inner region (or half-period in the case of motion in the
external region). Here, we use the asymptotic expansion of 7'
and I.. The change of the invariant I. during a single half-turn
(turn) with the number # is related to a change in the period T
and of the area S bounded by the separatrix:

Sn+l - Sy~ @(‘C)T+l - ":11)7
(51)

T+l =~ Ty _% Kbif(Tn+l + Tn) .
Here, T, = T, (hy, kvir X), with the value of kpir x taken at the
instant of separatrix crossing. We drop the second argument
Kpir X in expressions for the period in what follows to simplify
writing the formulas. We use the notation © = ki ¢ for the
slow time. The equation 2n0/,/0h, = T leads to the relation
2nl, =S+ foh T(h')dh'. Hence,

[

2n(12,n+1—1_,,n):(s,1+1—sn)+J T(h')ydh'.  (52)

I
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Substituting (51) in Eqn (52), we obtain

Pyt 1
zn(lz,lﬁ»l - [zAn)%J T(h,) dh/ - @Kbif E (Trl+l + Tn) .
I

(53)

The change in 7. during a single half-turn (turn) is determined
by the difference between the integral f, "' T(h')dh’ and its
approximation (1/2) Oxyi(Tps1 + Ty). The calculation of
the jump AI therefore reduces to the problem of asymptotic
calculation of the difference between the area bounded by the
curve T and the approximation of this area by a trapezoid
with a step Oxpjs.

To calculate AI, we must sum the changes in 7. during all
the half-turns in the external region and all the turns in the
internal region. We use the expansion of the Hamiltonian
close to the saddle point to obtain an approximate expression
for the period T.

In the vicinity of the saddle point, motion of a particle
slows down and the period of oscillations in the plane of fast
variables approximately corresponds to the time required for
covering a small distance in the immediate vicinity of the
saddle point. To calculate this time, we consider motion close
to z =0 and neglect the term ~ z® in the expansion of h:

4 The half-period of rotation in the

4h ~ 2p22 — Kpif Xz 7.
external region Toy = f dz/p. can be calculated as
dz

d.
Tou(h, ki X) = V2 J ——
—d. \/4h + 1cpip xz*

N V2 rc do
\/4—hv(Kbifx/4h)l/4 o V1+ ot

1 1
= (e x) 2" 3/43(4 4)

(54)

Here, d. is a positive number, d./h'/* — oo as h — 0. We
introduce the notation coy = 27/4B(1/4,1/4).

The period of rotation in the internal region T, = f dp./p-
can be found as

Tin(h, kx) ~

1 J*"" dp:
(it x)* J—a, (2p2 + 4]])
1 J*“ do

2(\h|f<bifx)l/4 o (224 1)

. !
= (2hfiex) "2 5/43( )

3/4

~
~

v (55)

Here, d, is a positive number, d,/h'/?> — oo as h — 0. Thus,
Tin = cin(2|hjicpi x) 4, where ¢in = cout/ V2.

We now consider three successive stages in the motion of a
particle: approaching the separatrix, crossing the separatrix,
and moving away from the separatrix. We let 7, and I,
denote the respective values of the invariant 7, on the z =0
axis during the last half-turn before crossing the separatrix
and on the p. = 0 axis during the first turn after crossing the
separatrix: [, = L oand [,y = I, ;.

We first consider the approach of a particle to the
separatrix (the energy h decreases). Substituting (54) in
Eqn (53), we obtain

Iy
Cout +dh
2n(lz,n+l - Iz,n) ~ — J T4
(2Kbifx)l/4 B hV
1
— @Kbif E (Tn-H =+ Tn) . (56)

We use the relation 2n(L x — L) = YN 2n(L, i1 — L)
and Eqn (51):
1 N-1
2Ly = L) % =5 Kb © ) (Tur +T))
n=0
—1ja . 4 34
+ (2Kbif X) Cout g (hN —h ) . (57)

To find the total change in I, before the separatrix is crossed,
we introduce the variable & = 1*/(ikir ©). In accordance with
this definition, ¢€[k, 1 — k]. Taking (51) into account, we
rewrite Eqn (57) as

2n(L,y — L) .\ _
(2t x) " coutienir )74 g(é =
FRLEF N [+ N e (s8)

We now consider a half-turn with a crossing of the
separatrix. At the beginning of this half-turn, the energy of
the particle is 7* = &kpir @, and by the end of the turn, 7| =
h* — ipir @ = (¢ — 1) kpig @. The change in the invariant 7,
during this half-turn can be found as

2n(l, — I._y) 1 —1/4 —1/4
(k) P @) 2 (C‘““'é‘ +cinle — 1] )

(Cm|é - 1|%/4 + Cou |£|3/ ) (59)

wl-lk

The change in the adiabatic invariant at the third stage can
be written as

2n(l—y — I, ) —1/4
E+n
(2kwir Y)71/4(/1n(Kblf@ i ;;1 | |
4
+3 (8= NP e 1P
1 _ _
+5 (I8 =N e -1, (60)

In Eqn (60), we use the fact that the particle starts its motion
in the internal region, having the energy s = (£ — 1) kpir O.

The jump AL =1I. _y — I. y can be represented as the
sum of expressions (58)—(60):

2nAL N —~1/4
— = = Cout |é + ”l|
(2xpirx) " (revir @) ;

_N
+ Cin Z |é+n|71/4

n=-—1

(Cout‘é + N‘2/4 + Cm‘é N‘2/4>

(61)

l\)l»— wl-b

— = (coumlé+ N[V +cinle = N7

Therefore, the jump in the quasiadiabatic invariant takes the
form
Cout (K0ir ©)** g(&)

2nAlLL ~ —(szif X)_1/4 (62)
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where the function g(&) is defined as

N —N
L a1 —1/4
g@»—@g[fzgm+m P ILEL

n=-—1

401 3/4 3/4)
- —=E=NP*+|E+N
3<\/§|~: \ & |

1 Ry’ 4/4)}
w3 (1N e v

Expression (63) can be represented in integral form (see
Ref. [84]):

(63)

L [®[1+1/V2
=i ), 1
exp (=& + (1/V2) exp[— (1 = &) 1] | dr
- 1 —exp(—1) }W - (64)

To calculate ©® = {S, h.} = (0.S/0kpir x)(0he/Opy), we use the
expression

s __\(fa(Hfhc) dr
aKbifx o 6Kx
1 [ o 1L\
S S GRS D R
:%%fdﬁ (65)

Replacing the integration over time by integration over the
coordinate, we obtain 0S/0kpir x = (Kbit x)1 4C2, where ¢, =
2-1/4 B(1/2,3/4). The final expression is © = (kpir x)*pyca,
and from Eqn (62), we find

3/4

3/4 .
2mAL ~ — i) m cg(&),
bif

(66)
where ¢ = coues!* /214 =n3/8211/16 | /T(1/4) ~6.27144~ 1.99r,
and the values of ky;r x and p, are determined at the separatrix
crossing instant.

Al \
I
] 1
l 1
\ 1
1 1
1 1
\ 1
1 1
1 1
\ . z
\ In (2sin ém)
\ - ()
0
| | | | |
0 0.2 0.4 0.6 0.8 1.0

Figure 50. Dependence of the jump of the quasiadiabatic invariant on & for
a system with a non-degenerate singular point (solid curve) and a system
with a degenerate singular point (dashed curve).

The comparison of the function g(£) with In (2sinné),
corresponding to a dependence of jumps of the quasiadiabatic
invariant on ¢ in the system with a nondegenerate singular
point, is presented in Fig. 50. As seen from the figure, the
function g(&) is not symmetric with respect to & =1/2.
However, it can be noted that, as in the case of a nondegene-
rate singular point, the mean jump of quasiadiabatic invariant
(66) is precisely equal to zero: (AlZ), = 0 (see Ref. [84]).
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