
Abstract. This review presents a methodology for, and basic
theoretical and experimental results on, the effect of the elec-
tric field on dielectric liquids with free surfaces (plane surfaces,
menisci, jets, and drops). The role of the surface conductivity
and the finite charge relaxation time in the development of
instabilities is highlighted.

1. Introduction

Investigations into the behavior of charged droplets, jets, and
plane surfaces have a long history [1±4]. Such great attention
to this problem results both from theoretical and especially
practical interest. Electrostatic technologies are discussed in a
number of monographs [5±10], reviews [11±18], and many
hundreds (if not thousands) of publications in various
scientific journals. By way of example, numerous studies
deal with electrostatic dispersion of liquids into atomic-scale
particles (atomization) [19±28], electrostatic painting [29],
printing [30], intensification of hydrocarbon fuel combustion
[31±35], mass-spectroscopic analysis of biomolecules [14, 25±
28], and methods for producing nanoparticles [36, 37]. Much
work was devoted to spraying [38±47], stability [1, 3, 48±55],
stabilization, and control of charged jets [56±62] and charged
droplets [1, 15±18, 63, 64]. Investigations of stability and
nonlinear deformation of charged plane surfaces are greatly
facilitated by their simple geometry and ease of observations
[3, 12, 65±77].

It should be noted that theorists utilize in their studies
rather simplified models, such as the ohmic law of bulk
conduction, j � sE, with the constant coefficient s disregard-
ing surface conductivity. As mentioned in review [12],
theoretical and experimental findings for `good' liquids are
in excellent agreement. Setting aside considerations of
theoretical rigor, the question is what to do with `bad' cases?
Suppose the data available thus far [12] hold only for
particular cases, and the predictions based on them prove
false upon the slightest change in parameters. Inwhat follows,
we shall consider examples of experimental observations that
suggest at least the necessity of taking new approaches. To
begin with, we formulate the boundary problem as a basis for
a succinct overview of the main electrohydrodynamic (EHD)
effects on free surfaces in an electric field.

2. Statement of the boundary problem

Let us consider two inmiscible incompressible liquids (one of
which may be a gas) separated by a free surface (Fig. 1).

A general formulation of the basic system of equations
and boundary conditions must take into account viscosity
and conductivity of the fluids, as well as the physicochemical
properties of their interface. In the case of ohmic conduction,
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Figure 1. Geometry of the region: S is the free surface, S1 and S2 are

electrodes.



the basic system of equations has the form

ri
dVi

dt
� ÿHp 0i � ZiDVi � qiEi ; divVi � 0 ; �1�

div �ee0Ei� � qi ; Ei � ÿHFi ;
qqi
qt
� div ji � 0 : �2�

Here, subscript i corresponds to the quantities in the Oi

regions containing upper �i � 1� and lower �i � 2� fluids, ri
is the density, Vi is the velocity, p

0
i is the total (hydrodynamic

and strictional) pressure [78], Zi is the dynamic viscosity, e and
e0 are the relative and absolute dielectric constants, respec-
tively, Ei andFi are the electric field strength and potential, qi
is the volume charge, and ji is the bulk density of the electric
current.

The boundary conditions on the surface of S1 (anode) and
S2 (cathode) electrodes and at the interface S between two
inmiscible incompressible liquids take the following form:

S1: F1 � U ; V1 � 0; S2 : F2 � 0 ; V2 � 0; �3�

S : hVi � 0 ; ÿ qF=qt
jHF j � V1n � V2n ; �4�ÿh piki � hTi ji

�
n j � 2aHni ; �5�

hFi � 0 ; hee0Eni � qs ; qs �
X
i

ei nsi ; �6�

qnsi
qt
� divs �i �si � nsiVt� ÿ 2HnsiV1n � ÿhi �ini � _xsi : �7�

Here, F�x; y; z� � 0 is the equation of a free surface, V1n, V2n,
and Vt are two normal and one tangential velocity compo-
nents at S, respectively, nk are the components of the normal
to S, a is the surface tension coefficient, H is the mean
curvature of the surface, pik and Ti j are the mechanical and
Maxwellian stress tensors, nsi and i �si are surface charge
density and migration charge flux of the ith component, qs is
the total density of the surface charge, _xsi is the rate of the
surface formation of the ith component, and divs is the
surface divergence operation [78]. The conditions (3) are
specified by the voltage applied to the electrodes and
adhesion of the viscous fluid, (4), (5), (6) are the kinematic,
dynamic, and electrodynamic conditions, respectively,
(7) describes the balance of the ith sort surface charges at S;
the angle brackets denote a jump of the respective quantity as
it passes across the surface, e.g., h p 0i � p 02 ÿ p 01.

Because the fluid dynamics is determined by the processes
on the free surface, the boundary conditions should be
thoroughly formulated on it. To begin with, the microscopic
standpoint implies that the interface between inmiscible fluids
has a width on the order of a few molecular layers [79], and
ions near the surface are subject to short-range polarization
forces directed toward themore polarizable fluid. Due to this,
the interface always adsorbs ions. It is this circumstance that
accounts for the appearance of a charge on water droplets in
ion-saturated air. In general, the surface adsorption rate is
described by the relation _x�si � kad fsni, and the desorption
rate by _xÿsi � kdensi [80], where kad �kde� is the adsorption
(desorption) coefficient, fs � 1ÿ nsi=ns0 is the filling factor,
and ns0 is density of adsorption centers. Thus, the surface
capture rate of ions under the effect of adsorption forces is
expressed as

_xsi � kad fsni ÿ kdensi : �8�

Coefficients kad and kde can be estimated as follows. When
ions are captured from the gaseous phase, one has
_x�si � �bi=4��cini [81, 82], where bi is the accommodation
coefficient, and �ci is the ion thermal velocity. Surface ions
penetrating deep into the fluid are repulsed by polarization
forces, to be concentrated in the dense and diffusion parts of
the surface layer [78]; in this case, kde � 0. For physically
adsorbed ions [83], one obtains

kde � ns exp
�
ÿ UA

kBT

�
;

where ns is the thermal oscillation frequency of an adsorbed
ion, and UA is the surface binding energy. At the liquid±
liquid interface, short-range polarization forces cause ions
from the less polar medium to be adsorbed by a more polar
one. Due to the activation character of the motion of ions
forming no chemical bonds, the adsorption coefficient kad �
nsrs exp �ÿUs=kBT �, where rs is the capture radius, and Us is
the ion±surface interaction energy, withUs < 0. For example,
in the case of polarization forces, the following relations hold
true:

Us � ÿ b
rs
; b � e 2

16pe2e0

e2 ÿ e1
e2 � e1

; e2 > e1 ; kde � 0 :

The above reasoning suggests the necessity, generally speak-
ing, of taking account of the adsorption±desorption processes
on a free surface. Moreover, our studies [75] showed that
adsorption processes may considerably change interface
properties, e.g., surface tension (see Section 3).

The problem thus formulated describes not only the
behavior of fluids in the geometry of Fig. 1 but also the
behavior of charged droplets and jets. In the latter case, the
value of the surface charge qs0 in equilibrium rather than the
potential difference is specified. We note once again that the
state of a fluid is determined by free surface dynamics; hence,
the frequent use of the term `stability of a free surface' that
will be employed below. The stability of free surfaces is
usually assessed by the method of small perturbations
presented as the sum of normal modes. Then, the most
`dangerous' perturbation mode is found together with
parameters at which perturbations increase with time. Such
calculations are considered in Sections 4 and 5.

3. General patterns of free surface behavior
in an electric field

The force action of the field on a free surface is determined by
normal and tangential stresses ensuing from the boundary
condition (5):

ÿ h p 0i � hti jin in j � e0
2

ÿheE 2
n i ÿ heiE 2

t

� � 2aH ; �9�

hti jin it j � ÿqsEt j : �10�

Here, t j denotes components of the unit tangent vector t, and
Et j are the components of the tangential constituent of the
field strength Et on surface S.

Equation (9) indicates that an electric field changes the
surface curvature, which causes its further deformation. It
follows from formula (10) that the surface Coulomb force
fet � qsEt is balanced by viscous stresses; in other words, for
fet 6� 0 a flow develops, making the equilibrium state of the
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fluid impossible. Such flows arising inside and outside
bubbles and droplets in inmiscible, weakly conducting
liquids are readily observable in the flat layer in the presence
of a tilted external electric field (Fig. 2). An elementary
calculation of the flow velocity inside the middle of the
vortex in the `frozen' charge approximation (see below) and
d5L, j5 1 (electrode 1 in Fig. 2c is almost vertical) yields
the following expression for the flow velocity:

Vx � ÿVms�3sÿ 2� ; s � z

d
; Vm � jqsExj d

4Z
;

qs � Ez

ee0
; Ez � Ud

4L2
; Ex � ÿ U

jL
;

�11�

where Z is dynamic viscosity. Relation (11) indicates that the
flow speed reaches amaximum on the fluid surface, where it is
directed to the inclined electrode 1 regardless of its polarity
(Fig. 2c).

A comprehensive review of the flows created by tangential
stresses is presented in Ref. [12]. It shows that peculiar
vortical flows occur in weakly conducting fluids in the
presence of droplets (or bubbles) (Fig. 3). Elementary
calculations in the Stokes approximation and replacement
of equation (9) by the boundary condition of the total current
continuity, h jni � 0, brought the authors of Ref. [12] to the
following expression for the tangential component of the flow
speed on the surface of a spherical droplet:

Vy � 2Vm cos y sin y ; Vm � ÿ 9eiE 2
0 r0�RSÿ 1�

10�2� R�2�Zi � Ze�
; �12�

where R � se=si, S � ee=ei, subscript i (e) refers to a droplet
(of the external fluid), E0 is the external electric field strength,
r0 is the droplet radius, and y is the angle counted from the
external field direction.

The authors of Ref. [12] use the balance of viscous and
electrostatic forces (without solution of the hydrodynamic
problem) and introduce the so-called separating function F:

F � S�1� R 2� ÿ 2� 3

5

�RSÿ 1��2M� 3�
M� 1

; �13�

whereM � Ze=Zi is the ratio between viscosities. It is believed
that a droplet in the electric field retains the spherical shape at
F � 0 but elongates (collapses) along the field for F > 0
�F < 0�. As noted in review [12], the results following from
formulas (11), (12) and experiments sometimes coincide. At
the same time, there are marked differences between theory
and experiment. For example, a droplet of the organosilicon
polymer polymethylphenylsiloxane (PMPS) collapses along
the external field direction in castor oil (Fig. 4a), whereas a
water droplet elongates in the same conditions (Fig. 4b). In
contrast, PMPS droplets in spindle oil and, vice versa, spindle
oil droplets in PMPS always elongate along the electric field,
despite their markedly different conductivities. These exam-
ples illustrate the inapplicability of criterion (13).

Further field growth may sometimes result in the forma-
tion of microcones in polar or equatorial regions (Fig. 5) that
become centers of droplet fluid dispersion into the surround-
ing medium.
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Figure 2. (a, b) EHD flows under the effect of interphase tangential forces in a transformer oil±air system at different surface positions. (c) Calculation

scheme: 1 and 2 are electrodes, and 3 is the free surface.
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Figure 3.The flows inside (a) and outside (b) a silicone oil droplet placed in

a mixture of castor and corn oils [12, 64].
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Figure 4. (a) PMPS contraction in castor oil along the external field: 1Ð

E � 0, 2ÐE � 16 kV cmÿ1, 3ÐE � 21 kV cmÿ1, and 4 Ð

E � 25 kV cmÿ1; d � 0:61 mm [84]. (b) Extension of a water droplet in

PMPS along the external field: 1ÐE � 0, 2ÐE � 25 kV cmÿ1, 3Ð
E � 48 kV cmÿ1, and 4ÐE � 56 kV cmÿ1; d � 1:3 mm.
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Figure 5. (a) Deformation of water droplets in transformer oil with the

formation of microcones (dispersion regions). Deformation of a PMPS

droplet in castor oil: (b) E � 25 kV cmÿ1, and (c) E � 33 kV cmÿ1 [84].
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Thus, droplet deformation in a constant electric field can
be broadly described as follows: in the region of fields lower
than a certain critical value, E < E�, only deformation of
droplets occurs (see Fig. 4), whereas for E > E�, the
deformation is accompanied by the formation of microcones
(see Fig. 5), and the fluid disperses from their vertices.

The same is true of charged menisci. Our studies revealed
the following patterns depending on the applied voltage. For
U < U1, meniscus draws out along the electric field (Fig. 6).
Next, for U1 < U < U2, low-frequency pulsations (on the
order of several hundred hertz) of microcones develop,
accompanied by corona glow. For U2 < U < U3, the detach-
ment of microcone-sized microdroplets is observed (Fig. 7a).
The size of the meniscus determines whether individual
microdroplets (as in the case of small menisci, see Fig. 7a) or
microjets (subsequently dissociating into microdroplets, see
Fig. 7b) are detached. The droplets formed from microjets
and located nearest to a meniscus sometimes return to it due
to recharging, suggesting that the surface of the meniscus is
surrounded by a cloud of charges having the sign opposite to
the sign of meniscus polarity. At last, forU3 < U < U4, either
microdroplets or microjets of capillary radius size (Fig. 7c)
become separated. Finally, for U > U4, the breakdown
occurs.

The frequency of microdroplet ejection sharply increases
as the capillary radius decreases; in aqueous solutions, it
amounts to 4� 104 droplets per second at 60±300 mm
capillary diameters (dispersion regime in which electric
bubble-jet printers work [30]). The detached droplets may
break down as a result of developing EHD instability.

In the case of a zero tangential field component on the
surface (i.e., surface equipotentiality), the fluid may be in the

equilibrium state (given a plane, cylindrical, or spherical
geometry, i.e., both in liquid layers and cylindrical jets,
droplets or bubbles).

The behavior of free surfaces of liquids at their different
geometries, conductivities, and viscosities in constant and
alternating fields is considered in many reviews (see, for
instance, Refs [4, 12, 16, 17) and monographs (e.g., Refs [9,
55]). The studies showed that the surface behavior is in the
first place determined by conductivities of the contacting
media. Therefore, it is appropriate to distinguish different
classes of EHD problems.

The following scheme is generally accepted. Volume
charge relaxation time te � ee0=s� is introduced, where s� is
the characteristic conductivity, including the surface one. On
the other hand, dynamic problems always comprise char-
acteristic times t0 determined by the periods of proper
oscillations [gravitational period tg �

����������������
l=�2pg�p

, and capil-
lary period tc � l

�������������������
lr=�2pa�p

, where l is the wavelength],
such that t0 � min �tg; tc�. The oscillation periods of gravita-
tional perturbations are estimated as tg � 4� 10ÿ3 s at
l � 1 mm, and tg � 1:3� 10ÿ2 s at l � 1 cm. Typical values
of te, tc for different liquids are listed in Table 1.

For te 5 t0, a surface of liquid may be regarded as
equipotential, but as te 5t0, surface conduction needs to be
taken into account. As follows from Table 1, condition
te 5 t0 is fulfilled only in a few cases, e.g., for water,
glycerol, and ethyl alcohol for l5 1 mm. As a rule, it is not
fulfilled for typical liquid dielectrics, either polar or nonpolar.
Moreover, the inverse inequality, te 4 t0, holds for short-
wavelength perturbations in liquid hydrocarbons; this means
that such perturbations develop in the presence of a frozen
surface charge. In other words, two classes of problems can be
distinguished.

The one in which te 5 t0 and the charge rapidly relaxes is
called the ideal conductor approximation. This class includes
problems concerning liquids in contact with weakly conduct-
ing media (air, liquid hydrocarbons, etc.) and having
conduction like that of water or higher. In this case, the
charges are distributed only over the surface. Therefore, it is
natural to refer to such problems as the charged surface
approximation. Processes with fast charge relaxation are
rather widespread in nature and find application in modern
technologies. In this connection, let us consider the main
behavioral patterns of charged surfaces.

a b c

Figure 6.Drawing out of a water meniscus along the field forU < U1. The

meniscus tip oscillates at U � U1 with a frequency of roughly 200 Hz at

U1 � 10 kV cmÿ1 (a) and grows further as voltage increases (b), with

subsequent corona discharge ignition (c). The capillary diameter is 1 mm;

the distance between its edge and the wire electrode measures 15 mm.

a

b c

Figure 7. Meniscus dispersion regimes in a tap water±air system: (a) microcone pulsations accompanied by corona glow, U � 10 kV, pulsation rate

� 200Hz. (b) Snapshots showing the process ofmicrojet separation and further disintegration intomicrodroplets,U � 17 kV, frame repetition frequency

1000/s. (c) Microdroplet detachment, U5 17 kV. Capillary diameter and distance between its edge and the wire electrode are the same as in Fig. 6.
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Any charged surface at equilibrium is characterized by
critical field strength E�, such that a field of strength E < E�
stabilizes it. This means that an electric field suppresses all
small perturbations. When the field strength exceeds the
critical value, E > E�, the surface becomes unstable and
undergoes a rather complicated nonlinear evolution result-
ing in nontrivial surface forms or fluid dispersion.

The second class encompasses problems with finite charge
relaxation time, te 5t0, in which both bulk and surface
conductivities need to be considered. It is exemplified by
problems of liquid hydrocarbon dispersion, fabrication of
thin polymer filaments or capillaries, etc.

Let us consider the main deformation patterns of a simple
surface at normal and tangential electric field orientations
using the generally accepted terminology. In the first
Lyapunov method [85], the time-dependence of perturba-
tions is assumed to be proportional to quantity exp �lt�,
where l is the spectral parameter specified by the eigenvalue
problem. There are other parameters, too, for instance, the
external electric field strength; therefore, l is a function of
problem parameters. If l is a real quantity at certain
parameter values, perturbations monotonically decay
(increase) for l > 0 �l < 0�. Such a regime is called mono-
tonic instability. If l is a complex quantity, perturbations
increase (damp out) for Im l > 0 �Im l < 0� and perform
harmonic oscillations. Such a regime is termed oscillatory
instability.

3.1 Normal field
Instability of the interfaces between the air and liquids with
fast charge relaxation (air±mercury [3, 86], air±water [65, 68])
and between the air and liquids with the finite charge
relaxation rate (air±silicone or transformer oil [67]) was
thoroughly studied in experiment. Critical field strength E�
in the short-wavelength spectral region at fast charge
relaxation (see Section 4.1) appears to have been calculated
for the first time by Frenkel [3]. The general case was
discussed in Refs [65, 67]. In all these studies, the predicted
and experimental results are in excellent agreement (see, e.g.,
book [55]). The case of a horizontal interface between two
inmiscible liquids is rather complicated, because it implies
consideration of viscosities and especially surface conductiv-
ity (see Section 5.2).

As revealed in experiment, minor surface strains rapidly
transform into rather intricate nonlinear structures, such as
rolls, dimples, and peaks. The latter are, as a rule, unstable
and extend to form thin filamentous structures closing
interelectrode gaps. Such nonlinear forms were observed,
for example, at the glycerol±transformer oil interface [75]
(Fig. 8). It should be noted that dimples do not develop at a

`fresh' interface; they appear only after surface aging for a few
months. This may be attributed to the electrochemical
reaction at the interface resulting in reduced surface tension.
This inference is confirmed, first, by the well-apparent
thickening of the transient layer, and, second, by the altered
reflective properties of the surface (loss of brightness and
appearance of dullness). Notice also that nonlinear dimple-
like deformations were observed on the charged surface of
liquid helium [87±89]. The essential difference between these
two cases lies in different directions of the surface Coulomb
force: it presses electrons onto the surface in Refs [87±89], and
vice versa it is directed away from the surface in Ref. [75].

3.2 Tangent field
In the case of tangent field E � Ex 6� 0, Ez � 0, a surface
charge is absent, qs � 0, and the liquid may be at equilibrium.
Of special interest is surface instability and the development
of flows in the presence of large enough tangent fields. Such
instability was observed in a vertical flat capacitor filled with
two weakly conducting inmiscible liquids (see review [12] and
the description of original experiments [66, 90]). The loss of
stability results in a flow in the form of stationary electro-
convection cells. The threshold field strength calculated on
the assumption of ohmic bulk conduction (without regard for
surface conductivity) was reported in Refs [12, 66, 71]. It was
shown in paper [71] that monotonic instability leading to
stationary electroconvection is feasible if the conditions
s1 > s2, e2 > e1 or opposite conditions s1 < s2, e2 < e1 are
fulfilled (the subscripts correspond hereinafter to those in
Fig. 1). Oscillatory instability can develop in two cases:
(1) s2=s1 > e2=e1 > r1=r2, and (2) s2=s1 < e2=e1 < r1=r2.
These results are substantially different from those reported
in Refs [12, 66], where it is argued that the instability develops
only if condition s2=s1 > e2=e1 is satisfied.

Surface instability is easy to observe in the geometry
shown in Fig. 2b where the dashed line indicates the free
surface position. In this case, a tangent field forms along the
surface and the development of bulk EHD instability due to
injection processes is excluded. It turns out that stationary
electroconvection is absent, while the developing oscillatory

Table 1. Characteristics of typical dielectric liquids.

Liquid e s, Sm mÿ1 r, g cmÿ3 a, dyn cmÿ1 te, s
tc, s

l4 0:1mm l � 1mm

Tap water 81 10ÿ5 1 72 7� 10ÿ5 4 4:7� 10ÿ5 1:5� 10ÿ3

Glycerol 56 10ÿ5 1.26 59.4 5� 10ÿ5 4 6� 10ÿ5 1:9� 10ÿ3

Ethyl alcohol 28 10ÿ6 0.79 28.5 2� 10ÿ4 4 6:6� 10ÿ5 2:1� 10ÿ3

Nitrobenzene 31 10ÿ6 1.2 43.9 3� 10ÿ4 4 2� 10ÿ5 6:6� 10ÿ4

Oil 2.2 10ÿ10 0.8 26 0.19 4 7� 10ÿ5 2:5� 10ÿ3

Gasoline 2.2 10ÿ10 0.7 28 0.19 4 6:5� 10ÿ5 2� 10ÿ3

a b

Figure 8. Nonlinear forms on the charged glycerol surface bordering

transformer oil: (a) solitary dimple, and (b) rolls [75].
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short-wavelength surface instability is manifested as random
movements of a disperse particle over the surface, accom-
panied by low-frequency (50±200 Hz) `hissing'. We believe
that such instability is related to surface conductivity. This
inference following from elementary physical considerations
is confirmed by relevant calculations. Indeed, surface charges
excite surface oscillations with a frequency determined by the
ion migration rate: oi � VEik, VEi � biE, where bi is the ion
mobility, and k is the wave number. Coincidence of oi, say,
with the capillary wave frequency o � k

����������
ak=r

p
, gives rise to

resonance and instability developing at the surface due to the
conversion of the electric field energy into the energy of small-
scale surface oscillations.

Below are given some results of experimental studies on
the behavior of charged menisci and cylindrical jets. The
typical layout of the experimental setup is depicted in Fig. 9.
The cathode is thin-walled capillary 2 (inner diameter
d � 1 mm and d � 2 mm), and the anode is copper ring 1
(diameter D � 13:5 mm) made of a 2.3-mm thick wire. The
ejection velocity was measured by means of frame-by-frame
scanning.

3.3 Jets with fast charge relaxation
Water and aqueous solutions are liquids with fast charge
relaxation and relatively high surface tension coefficients (see
Table 1). Results of experimental studies on the outflow of
such liquids are presented in Sections 3.3.1±3.3.3.

3.3.1 Dropping outflow regime. In this regime, a fluid outflows
dropwise in the absence of applied voltage (Fig. 10a). When
the voltage exceeds U � 6 kV, the droplets begin to fuse
together; they form a jet stream flowing in a wavelike fashion
as the voltage grows further up toU � 10ÿ15 kV, with the jet
shape varying continuously (Fig. 10b±d). In other words, the
electric field stabilizes the outflow at U � 6ÿ15 kV. Flow
destabilization for U5 17 kV manifests itself as renewed
droplet formation near the tip of the capillary. The droplets
become larger as their fall speed decreases and fly apart under
the action of the Coulomb repulsive force (Fig. 10e).

3.3.2 Transient regime. New field effects emerge during
transition from the dropping to the jet regime. Since the
outflow velocity in the latter is higher than in the former, the
jet stream is initially continuous and flows in a wavelike
fashion with an amplitude much lower than in the dropping
regime (Fig. 11a). In this case, the wavelength along the
outflow direction decreases with increasing field; due to this,
the droplets into which the jet breaks become smaller, and the
region in which droplets are formed shifts upstream
(Fig. 11b). An interesting effect is a corkscrew outflow at
high enough voltages (Fig. 11c).

3.3.3 Jet outflow regime. The outflow velocity in this regime is
so high that jets assume a cylindrical shape at a rather small
undulation amplitude (Fig. 12). Droplets are formed at the tip
of the jet, with charged droplets flying apart under the action
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Figure 9. Experimental setup employed in studying charged jet efflux: 1Ð

wire ring, 2Ðcapillary, 3Ðcuvette with the fluid, 4Ðlight source, 5Ð

high-voltage power supply unit, 6Ðampermeter, 7Ðlimiting resistance,

8Ðspark discharger, 9Ðmagnifying optical system, 10Ðvideocamera,

11Ðstorage bulb, 12Ðflow rate control clamp, 13Ðcharged jet.

a b c d e

Figure 10. Effect of field strength on the dropping outflow regime:

(a)U � 0, (b)U � 6 kV, (c)U � 10 kV, (d)U � 15 kV, and (e)U � 17 kV.

a b c

Figure 11. Effect of field strength on the transient outflow regime:

(a) U � 6 kV, (b) U � 10 kV, and (c) U � 12 kV.

22

1
1

a b d e

x

R

t

Dx

t�Dt

c

Figure 12. Effect of field strength on the jet outflow regime.

(a, b) Sequential snapshots taken with the intervals Dt � 1=240 s at

U � 10 kV; elongated shape of the droplets 1 and 2 is due to their motion

at a speed of � 5 cm sÿ1 leading to track formation; grid step is 1 mm.

(c) Schematic of droplet charge calculation. (d, e) Jet stabilization: U � 0

in figure d, U � 6 kV in figure e.
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of the Coulomb repulsive force (Fig. 12a, b). These data allow
the droplet charge to be determined. The charge of a freshly
formed droplet is estimated as q0 � 4pR 2

0 qs, where qs � e0E,
R0 is the droplet radius, and E � U=R. In the case of droplet
dispersal (droplets 1, 2 in Fig. 12a, b), it follows from the
equation of motion of a disperse droplet, namely

m
dV

dt
� qE� q 2R

4pe0R 3
;

that for small horizontal displacementsDx over time intervals
Dt this equation yields Dx � �q 2x=�4pe0R 3m��Dt 2=2, where q
is the charge of droplets 1, 2; distances x and R are marked in
Fig. 12c. Assuming U � 10 kV, R0 � 0:5 mm, for the droplet
charge at the moment of detachment one finds q0 �
4pe0R0U � 5� 10ÿ10 C. As follows from Fig. 12b, at
x � 1 mm, Dx � 0:5 mm, Dt � 1=240 s, and R � 4 mm,
taking into account that m � r�4p=3�R 3

0 (where r is water
density) gives q � 4:5� 10ÿ10 C. Thus, charges q0 and q
coincide with an accuracy of � 10%, which suggests that
their dispersion at the initial stage is due to mutual repulsion.
The fact that q is somewhat smaller than the initial charge q0
can be attributed to droplet discharging by counter-ions
present in the air. We note that it is possible to effectively
increase the length of the jet stability region by choosing the
proper electrode configuration (Fig. 12d, e). Similar stabiliza-
tion of a water jet was described in Ref. [91].

The role of fluid viscosity in the development of instability
of charged jets is illustrated by the example of outflow of
glycerol and polymer fluids (polystyrol solutions in dichlor-
oethane or polymethylphenylsiloxane) [84] (Fig. 13). The
figure shows that increased viscosity may effectively stabilize
the jet in the pre-critical region (Fig. 13a±c), whereas
instability with respect to short-wavelength axisymmetric
perturbations develops in the supercritical region (Fig. 13d).

3.4 Jets with the finite charge relaxation rate
Figure 14 displays results of experiments on outflowing the
charged jets of castor oil. Due to high viscosity and relatively
low surface tension, in the absence of an electric field the jet
begins to break down into droplets near the capillary tip
(Fig. 14a). An applied field stabilizes the jet surface, and the
fluid outflows in the form of a rather long cylindrical jet
(Fig. 14b). Instability developing at its tip is associated with
the formation of small satellite droplets subject to recharging
in two alternative modes: either a single recharging resulting
in a droplet return to the charged fluid (Fig. 14c) or double
recharging, in which case the droplet first approaches the
fluid but thereafter moves off (Fig. 14d). Finally, a few jets

may outflow simultaneously in the presence of a strong
enough electric field (Fig. 14e).

To sum up, more precise physicochemical models are
needed to explain experimental data on the free surface
behavior in an electric field; in particular, surface charge
dynamics should be taken into consideration. There is
nothing new in this standpoint. It was stated, for instance,
by the authors of Ref. [5], who studied electrostatic dispersion
of fluids with the use of surface-active substances (SAS),
known to increase surface conductivity. A similar opinion
was expressed in Ref. [92], where rotation of cylindrical
bodies in weakly conducting media (including the air) was
investigated in a uniform external electric field perpendicular
to the symmetry axis,

4. Electrohydrodynamics of free surfaces
during fast charge relaxation

This section is devoted to instability patterns and the
development of perturbations for fast charge relaxation
when a free surface may be regarded as being equipotential.
To recall, problems of this class formally coincide with those
of free surface stability in ideal conductors.

4.1 Linear electrohydrodynamic instability
of plane surfaces
It will be shown below that the critical field strengthE� can be
determined based on an ideal fluid model, while the develop-
ment of perturbations strongly depends on fluid viscosity.
This section precedes a nonlinear analysis.

For te 5 t0, the boundary problem (1)±(7) is written down
in the form

Oi: ri
dVi

dt
� ÿHp 0i � ZiDVi � ri g ; divVi � 0 ; �14�

O1: DF � 0 ; E � ÿHF ; �15�
S1: F � 0 ; V1 � 0 ; S2: V2 � 0 ; �16�

S : F � U ; hVi � 0 ;
qf
qt
� V1njHF j ; �17�

ÿ h p 0i � hti ji n jn i � e1e0E 2
n

2
� 2aH ; hti ji n it j � 0 : �18�

a b c
d

Figure 13.A few sections of a polymer fluid jet outflowing from a capillary

1mm in diameter in the direction of gravity. Photographs were taken from

distances (a) 0, (b) 2 cm, and (c) 4 cm from the capillary edge; flow rate was

8:3� 10ÿ3 cm3 sÿ1; mean field strength between the capillary and the

counter-electrode was 56 kV cmÿ1 [84]. (d) The development of instability

of a glycerol jet at U � 10 kV.

c d e

a b

Figure 14. Effect of the field strength on castor oil outflow. (a) U � 0,

(b)U � 6 kV. (c) Return of a satellite droplet after recharging. (d) Double

recharging of the droplet. (e) Multijet outflow in a strong field at

U � 10 kV.
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The free surface equation has the form z � f �t; x; y�,
F � zÿ f �t; x; y�, g is the gravitational acceleration vector,
and f �t; x; y� is the free surface deflection from the plane state
(see Fig. 1).

4.1.1 Equilibrium state.At equilibrium, problem (14)±(18) has
the following solution

F0 � ÿE0z�U ; E0 � U

h1
; f0 � 0 ; �19�

p 010 � p0 � r1g�h1 ÿ z� ; p 020 � p 010�0� ÿ r2gzÿ
e1e0E 2

0

2
:

Here, p0 is a constant determined by the difference between
atmospheric and striction pressure. Notice that pressure in
the lower fluid (ideal conductor) is smaller than in the upper
one by e1e0E 2

0 =2 (the difference between the surface Coulomb
force qsE0 � e1e0E 2

0 and electric pressure e1e0E 2
0 =2).

4.1.2 Equations for perturbations. Representing unknown
functions as the sums of equilibrium and small-amplitude
additions (perturbations), e.g., f0 � f, and substituting them
into equations (14)±(18) yield, after linearization, the follow-
ing equations for perturbations:

Oi: ri
qVi

qt
� ÿHpi � ZiDVi � ri g ; divVi � 0 ; �20�

O1: DF � 0 ; E � ÿHF ; �21�
z � h1: F � 0 ; V1 � 0 ; z � ÿh2: V2 � 0 ; �22�

z � 0: E0 f � F ; hV i � 0 ;
qf
qt
� V1z � V2z ; �23�

ÿ h pi ÿ hri g f� 2

�
Z
qVz

qz

�
� e1e0E0

qF
qz
� ÿaD1 f ; �24��

Z
�
qVz

qx
� qVx

qz

��
�
�
Z
�
qVz

qy
� qVy

qz

��
� 0 : �25�

4.1.3 Dispersion relation. In what follows, a case of a gas-filled
region O1, such that r1 5 r2 � r, Z1 5 Z2 � Z, is considered
for simplicity. Stability is studied with respect to the normal
modes:

�V; p; f;F� � �W�z�;P�z�;F;C�z�� exp �i�otÿ kx�� ; �26�
where the x-axis is oriented along the wave vector. Substitut-
ing formula (26) into equations (20)±(25) and making
elementaryÐeven if somewhat cumbersomeÐcalculations
yield the following dispersion relation linking the frequencyo
with the wave number k:

Zn
��k 2 � b 2�2 tanh �kh2� ÿ 4k 3b tanh �bh2�

� � kD ; �27�

D � ak 2 � rgÿ e1e0E 2
0 k coth �kh1� ; b 2 � k 2 � io

n
;

where n � Z=r is kinematic viscosity.

4.1.4 Analysis of stability. It follows from relation (27) that
generally frequency o is a complex quantity, o � o0 � id,
whereo0 is the oscillation frequency, and d is the perturbation
increment (decrement). The critical field strength E� above
which instability develops can be found from condition d � 0,

i.e., at real frequency. It is possible to prove that the sole real
solution of Eqn (27) at the stability boundary, d � 0, is the
trivial solution o0 � 0. This means that E� is given by the
condition D � ak 2 � rgÿ e1e0E 2

0 k coth �kh1� � 0. Let us
introduce dimensionless parameters W � e1e0E 2

0 =�rgh1�,
k � kh1, and g � l 2c =h

2
1 , where lc �

��������������
a=�rg�p

is the capillary
length. Then, E� is determined by the condition

W� � e1e0E 2
�

rgh1
� min

k>0
W�g; k� �W�g; k�� ;

�28�
W�g; k� � �1� gk 2� tanh k

k
:

Let us consider different limiting cases.
In the long-wavelength perturbation region, k5 1, the

derivative is expressed as W 0
k � 2k�gÿ 1=3� �O�k 2�, mean-

ing that the critical value of W� for 3g > 1 is found from the
condition k � 0, which gives W� � 1. Thus, if the top
electrode is located sufficiently close to the surface or if the
surface tension coefficient is high enough, h1 <

���
3
p

lc,
instability develops in the long-wavelength perturbation
region, with E� �

��������������������
rgh1=e1e0

p
.

In another limiting case, g5 1=3, i.e., when the top
electrode is placed far from the surface, h1 4 lc, the critical
field strength is E� �

���������������������
2rglc=e1e0

p
, while the critical wave-

length is expressed through the capillary length: l� �
2p=k� � 2plc, where k� � k�=h1, and k� is found from
formula (28).

An elementary analysis showed that a plane charged
surface loses stability with respect to monotonic perturba-
tions, with the critical field strength E� being independent of
fluid viscosity. This result is easy to obtain by the quadratic
formmethod, not only for liquid±gas surfaces but also for the
interface between two inmiscible viscous fluids. Specifically,
the method described in book [85] permits obtaining from
system (20)±(25) the following expressions for perturbations,
the time dependence of which is defined by the factor exp �lt�,
with l � d� io0:

d�H1 �H2� � io0�H1 ÿH2� � ÿR ; �29�

H1 �
X2
i�1

ri

�
Oi

jVij2 dV ; R � 2
X2
i�1

Zi

�
Oi

X
n;m

jVi
nmj2 dV ;

H2 �
�
S

�
ajHF j2 ÿ hrigÿ e1e0E 2

0 jHFj2
�
dS ;

where integrals over x; y coordinates along the surface are
taken around the periodicity region, and Vi

nm is the rate-of-
strain tensor of the ith fluid. As follows from equation (29),
the quantity R � 0 at the stability boundary, d � 0, which
suggests the absence of viscous stresses: Vi

nm � 0. In other
words, the critical value E� at the stability boundary is
unrelated to fluid viscosity. This conclusion holds true not
only for plane but also for cylindrical and spherical surfaces.

4.1.5 Perturbation decrements. Viscosity strongly influences
both the form and the rate of perturbation growth in the
instability region. Analytical expressions for perturbation
decrements can be obtained in the limiting cases of weakly
and strongly viscous fluids.

In the case of a weakly viscous fluid, k 2n=o0 5 1, the
oscillation frequency in the subcritical region E0 < E� is
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expressed as

o �
�����������������������������
kD

coth �kh2�
r

s
� o0 ; �30�

where D is defined in formula (27). The oscillation damping
decrement is expressed as d � 2k 2n, i.e., it is field-indepen-
dent. In the post-critical region E0 > E�, the perturbation
growth decrement increases with increasing field strength
according to the law d � ������������������������������������

kjDj coth �kh2�=r
p

. In this case,
the weak viscosity condition is written out as k 2n=d5 1.

In strongly viscous fluids in the subcritical E0 < E�
(supercritical E0 > E�) region, the perturbation damping
(growth) decrement is expressed as

d � jDj
2kZA

; A � tanh �kh2� ÿ kh2

cosh2 �kh2�
: �31�

In this case, oscillatory perturbations do not develop, and the
strong viscosity condition takes the form d=�k 2n�5 1. We
note that this condition is fulfilled for arbitrary viscosity but
low supercriticality (small D).

4.1.6 Scenarios of instability development. Calculations
revealed the following patterns of development of charged
surface instability.

In the case of weakly viscous fluids in the subcritical
region E0 < E�, the surface may oscillate. According to
formula (30), the surface charge decreases the oscillation
frequency, i.e., suppresses perturbations. In the instability
region E0 � E�, the surface ceases to oscillate and monotonic
instability develops for E0 > E�. Perturbation decrements
increase linearly over the field: d � E0.

Concerning strongly viscous fluids, surface oscillations do
not develop in the subcritical region, but the external electric
field reduces perturbation decrements. In the supercritical
regionE0 > E�, monotonic instability develops and perturba-
tion decrements increase with increasing field strength as
d � E 2

0 .
Figure 15 comparing theoretical and experimental data

demonstrates that they agree at small h1 when long-

wavelength perturbations are most `dangerous' (under criter-
ion h1 <

���
3
p

lc, they are critical for water as h1 < 0:47 cm, and
for silicone oil as h1 < 0:26 cm). There is marked discrepancy
between theory and experiment in the short-wavelength
perturbation region where surface conductivity is of great
importance (see Section 5.2). The best agreement of experi-
mental and theoretical results has been obtained for water, for
which the critical voltage was calculated according to
condition (28) (solid line). Calculations for silicone oil were
done in the framework of a general model (1)±(7) without
regard for surface conductivity (dashed line). However, the
stability criterion in the long-wavelength perturbation region
was just as well determined in accordance with formula (28)
(see Section 5.2). Another important result is the satisfactory
agreement between experiment and ideal dielectric theory
(dashed±dotted line) in the high-frequency (400 Hz) alternat-
ing electric field.

These patterns are easy to observe both on plane surfaces
and on curved surfaces of menisci. For this reason, we omit
here experimental data and move to a more intricate analysis
of the nonlinear development of instability.

4.2 Branching of equilibrium forms
It is universally believed that rearrangement of an equilibrium
surface form after the loss of stability at small supercritical-
ities (see below) is defined by solutions of the linear stability
problem. The search for such solutions is based on the theory
of branching (TB) [93], which is essentially an asymptotic
theory, since calculations reduce to the solution of a series of
linear equations. The first approximation is always described
by linear equations governing stability; due to this, the
leading term in an asymptotic expansion always coincides
with the solution of the stability problem. The main result of
TB consists in the calculation of the amplitudes of solutions in
the supercritical regions (branched solutions).

The most transparent scheme of calculations, emerging
from the exposition of TB in the operator form [93],
essentially reduces to the following. The Banach space B of
real functions u � u�r�, where r � �x; y; z�, with the scalar
product �u1; u2� �

�
O u1u2 d

3r, d3r � dx dy dz (O is a certain
bounded region of three-dimensional space) is considered.
Further on, solutions of the equation for a certain second-
order nonlinear operator Â are considered; this operator acts
in the subset B2 � B of doubly, continuously differentiable
functions that Âmaps onto zero, namely

Â�u;W � � 0 : �32�

Here, the spectral parameter W is distinguished for conve-
nience.

The substitution u! uÿ u0 (where u0 is the equilibrium
solution) reduces problem (32) to the problem of solution
branching in the vicinity of the zero solution (as assumed
below). At a certain W �W�, the uniqueness of the solution
in problem (32) is compromised, and new solutions
u1; u2; . . . ; un appear, besides the zero one, for W >W�. The
challenge is to calculate these solutions for m �
�WÿW��=W�5 1 (in this case, the supercriticality is said to
be small). The idea behind the solution is as follows.

Let us represent W as W �W� � mW� and expand
operator Â in the vicinity of m � 0, distinguishing the linear
part Â0. Then operator relation (32) takes the form

Â�u;W � � Â0�u;W�� � Â1�u; m;W�� � 0 ; �33�

0.6

h1, cm

0.40.20

4

8

12

16

U, kV

Figure 15. Theory vs experiment: ~Ðsilicone oil, 400-Hz alternating

electric field (dashed±dotted lineÐpredicted result) [65], *Ðsilicone oil,

constant field (dashed lineÐpredicted result) [65], and &Ðwater,

constant field (solid lineÐpredicted result) [68].
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where Â1�u; m;W�� is the nonlinear operator vanishing at
m � 0.

Assume for simplicity that the problem for eigenvalues of
operator Â0, namely

Â0�u;W � � 0 ; �34�
has the unique solution u � u� corresponding to the eigenva-
lueW �W�. Also, suppose that the problem for operator Â�0
conjugate to Â0, viz.

Â�0�w;V � � 0 ; �35�
also has the unique solution w � w� corresponding to the
eigenvalue V � V�. Then, the decidability problem for
equation (33) is written out as [93]ÿÂ1�u; m;W��;w�

� � 0 : �36�
Relationship (36), called the branching equation, defines the
amplitude of the branched solution calculated at small
supercriticality m5 1 as follows. The solution of problem
(33) is sought in the form of asymptotic expansion

u � ml1a1u1 � ml2a2u2 � . . .� mlnanun � . . . ; �37�
where l1 < l2 < . . . < ln are the parameters to be found, and
an denotes the unknown constants �n � 1; 2; . . .�. Evidently,
the ml1 -order terms are given by problem (34), so that u1 � u�,
W �W�, and terms un �n5 2� are found from the solution of
the sequence of linear problems including the known
u1; u2; . . . ; unÿ1. After the substitution of expansion (37) into
condition (36), parameters ln are determined by the Newton
diagram method [93], while an �n � 1; 2; . . .� is found by
setting the sums of mln -order terms to zero.

This procedure, used in various forms (either mathema-
tical as above or physical) in many studies, proves rather
cumbersome when applied to concrete problems. It was first
used (in fact, developed) by Lyapunov [94] with regard to the
solution of the branching problem for a rotating ideal fluid.
Kapitza [95] applied it to the problem of thin film flow in a
wind tunnel, while other authors have applied it to the
problem of the stability of a capillary fluid with a free surface
in a gravity field [85], and to the problem of the charged plane
surface of an ideal conductor [77]. The stability of the plane
surface of a magnetized fluid in a normal uniform magnetic
field with respect to short-wavelength perturbations was
studied in Refs [96, 97]. The same problem of plane surface
stability in a normal magnetic field was considered employing
the equivalence of the variational principle and the respective
boundary problem [98]. The branching of this problem was
studied mathematically in Refs [99, 100]. A detailed exposi-
tion of the problem of stability and rearrangement of an
electron-charged liquid helium surface can be found in
monograph [88] and reviews [87, 89]. The conclusions of
Refs [96±98] were compared with experimental data [99±102]
in monograph [103]. The results of calculations are easy to
explain by the example of branching, i.e., the appearance of
rolls on the plane surface [96, 97]. The main conclusions are
based on the expression for amplitude A1 � ml1a1, which has
the following form for an ideal dielectric (in dimensional
variables):

A1 � lc

�������������������������
F�e� Eÿ E�

E�

r
; F�e� � 32�e� 1�2

42eÿ 11�e 2 � 1� ; �38�

where lc �
��������������
a=�rg�p

, E� �
������������������������
2lc rg=�ee0�

p
, e is the relative

dielectric constant of the lower fluid in the geometry of
Fig. 1, and l1 � 1=2.

Because function F�e� changes sign at point e � 3:54 � e�
[F�e� > 0 for e < e�, and F�e� < 0 for e > e�], the expression
under the radical in formula (38) is positive for e < e� in the
supercritical region E > E�, and for e > e� in the subcritical
regionE < E�. The former case is referred to as the soft loss of
stability, and the latter one as the hard loss of stability [96±98].
As the field increases, E! E�, the amplitude of the branched
solution decreases in the hard stability loss scenario, i.e., the
external electric field stabilizes the equilibrium state. In the
supercritical region, E > E�, amplitude A1 has no real value,
because the expression under the radical in expression (38) is
negative. In this case, branching is supposed to be absent [85];
in other words, there is no solution for e > e�, and E > E�.

Experiments with a magnetic fluid [101, 102] demon-
strated that stability, as a rule, corresponds to the soft
scenario, i.e., the results of experiments are in conflict with
the conclusions drawn in Refs [96±98]. As regards liquid
dielectrics, it is necessary to take account of the surface
charges always present due to the low but finite conductivity
of the fluid.

Finally, let us make a remark concerning the feasibility of
comparing in general the results of TB and experiment. In our
opinion, this question is rather controversial because finite
perturbations described by nonlinear equations suggest new
solutions, e.g., solitary soliton type forms disappearing upon
transition to a linear problem. In this case, quite different
patterns arise, which will be considered in the next section.

4.3 Nonlinear deformation of plane surfaces
The dynamics of liquid with a free surface is usually
investigated with the use of the long-wavelength approxima-
tion or the envelope method [104±108]. The long-wavelength
approximation, also known as the shallowwater theory, leads
to the Korteweg±de Vries (KdV) equation [104±106], while
the envelope method gives rise to the nonlinear SchoÈ dinger
equation [107±109] describing, for example, wave packets in
deep water [107±109] and on the electron-charged liquid
helium surface [110], laser beam self-focusing in a nonlinear
medium [111], and so forth. Since consistent multiscale
asymptotic analysis [107] is rather cumbersome, we confine
ourselves to the brief derivation of nonlinear equations from
physical considerations and in the long-wavelength approx-
imation.

Calculations are made for an ideal fluid and potential
flow, V � Hc. We introduce the surface deflection amplitude
a and the characteristic horizontal scale l of the same order
of magnitude as the perturbation wavelength. Analytical
expressions for these parameters will be given after the
derivation of the respective equations. Moving to dimension-
less variables x 0 � x=l, y 0 � y=l, z 0 � z=h2, f 0 � f=a,
F 0 � F=U, c 0 � c=c0, c0 � lc0, and c0 �

�������
gh2
p

yields the
following set of equations with respect to dimensionless
functions (the primes are omitted):

O1: Fzz � m 2D1F � 0 ; O2 : czz � m 2D1c � 0 ; �39�

z � h : F � 0 ; z � ÿ1 : cz � 0 ; �40�

z � e f : F � 1 ; e ft � mÿ2cz ÿ eH1cH1 f ; �41�

ct� 0:5mÿ2
ÿ
c 2
z � m2jH1cj2

�� e fÿ 0:5Wh 3
ÿ
F 2

z � m2jH1Fj2
�

ÿ em 2gh 2 div
h
H1 f

ÿ
1� e 2m 2jH1 f j2

�ÿ1=2i � C�t� : �42�
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Here, subscript letters denote the respective partial deriva-
tives, C�t� is the Lagrange constant, D1 and H1 are operators
in x; y variables, and dimensionless parameters

e � a

h2
; m � h2

l
; h � h1

h2
; W � e1e0E 2

0

rgh1
; g � a

rgh 2
1

were introduced.
Derivation of nonlinear equations is performed with the

help of asymptotic expansion at small deflection amplitude,
e5 1, in the long-wavelength approximation, m5 1, by the
method described in paper [77]. Its principal aspects are
expounded below.

It should be first emphasized that in the linear analysis
small parameters e, m enter not only amplitudes but also
arguments (as functional multipliers). Therefore, the solution
is sought in the form of a series in e: c �P11 e ici, and
F �P10 e iFi, where functionsci,Fi depend not only on time
and the coordinates, but on parameters e, m, too. Substituting
these expansions into equations (39)±(42) and linearizing over
e yield a sequence of boundary-value problems with respect to
ci,Fi. ForF0, we haveF0 � 1ÿ z=h and obtain the following
expressions for the first two approximations:

O1: Fizz� m 2D1Fi � 0 ; O2 : cizz� m 2D1ci � 0 ; i � 1; 2 ;

�43�
z � h : Fi � 0 ; z � ÿ1 : Ciz � 0 ; �44�

z � 0 : F1 � f

h
; F2 � ÿF1z f ; c1 � C ; c2 � ÿc1z f ;

�45�

where C � C�t; x; y� is the function to be determined.
The employment of a Fourier transform in the class of

localized or periodic solutions gives

Fi � 1

2p

�
F �i G1�j; z� exp �ÿijr� d2j ;

F �1 �
f �

h
; F �2 � �F1z f �� ; G1�j; z� �

sinh
�
mk�hÿ z��

sinh �mkh� ;

Ci � 1

2p

�
H �i G2�j; z� exp �ÿijr� d2j ;

H �1 � C � ; H �2 � �c1z f ��; G2�j; z� �
cosh

�
mk�z� 1��

cosh �mk� ;

where superscript � denotes the Fourier transform of the
respective functions. Substituting these expressions into
unused boundary conditions (41), (42) and retaining the
terms of order e, m2 yield the following system of nonlinear
equations with respect to f � f �t; x; y�, and C � C�t; x; y�:

ft � D1C� e div1 � fH1C� � m 2

3
D2
1C � 0 ; �46�

Ct � �1ÿW � f� m 2h 2

�
W

3
ÿ g
�
D1 f

� 0:5e
ÿjH1Cj2 ÿ 3hÿ1Wf 2

� � C1�t� : �47�
The last set of equations describing the evolution of nonlinear
perturbations in the long-wavelength approximation can be
simplified in two limiting cases.

In the subcritical region W < 1 for 1ÿW5 e, a set of
equations (46), (47) can be transformed by the method of

Ref. [107] to the KdV equation [75]

Vt � c0Vx � 3e
2

�
1ÿ W

hc 20

�
VVx

� m 2

6

�
c0 ÿ h 2

c0
�Wÿ 3g�

�
Vxxx � 0 ; �48�

where V � Cx is the flow velocity at a point with the
x coordinate, and c0 �

�������������
1ÿW
p

is the linear wave propaga-
tion velocity. The form of the free surface is defined here as
f � V=c0.

The influence of the external field on nonlinear perturba-
tions is easy to follow up by writing out the solution in the
form of a solitary wave (soliton):V � V0 cosh

ÿ2x, x � xÿ ct,
where V0 is the maximum flow velocity in the peak of the
soliton (at e � 0), and c is the velocity of the soliton as a
whole. Substituting this expression into equation (48) yields

V0 � 4m 2

3e
c0
�
c 20 � h 2�Wÿ 3g��

c 20 ÿW=h
;

c � c0 � 2m 2

3

�
c0 � h 2

c0
�Wÿ 3g�

�
:

It can be seen that velocity V0 for c 20 6�W=h decreases with
increasing field (i.e., as W! 1) and, because f � V=c0, the
surface flattens. Thus, the field suppresses long-wavelength
perturbations in the subcritical region W < 1. However, the
velocity amplitude c 20 �W=h sharply increases as
W! h=�1� h� �Wh, and the field can initiate perturba-
tions. As it grows further, Wh <W < 1, the field suppresses
perturbations again. The surface shape may be either convex
(for c 20 >W=h) or concave (for c 20 <W=h); it tends to be flat
when the field becomes higher in thick layers �h � h1=h2 5 1�,
but may undergo strong deformation in thin layers
�h � h1=h2 4 1� in accordance with the law f �W=c0.

The surface behavior changes dramatically when the field
strength is close to the critical value: 1ÿW � e. First, static
deformations develop in the form of grooves and isolated
dimples, described by the equation (dimensional variables)

D1 f � a1 f� a2 f
2 � C0 ; �49�

a1 � 3�Wÿ 1�
h 2
1 �Wÿ 3g� ; a2 � 9W

2h 3
1 �Wÿ 3g� :

By substituting f � �ja1j=a2� u�x; Z�, x � ������ja1p j x, and Z �������ja1p j y, equation (49) is reduced to the form

DxZu � �u� u 2 � C ; �50�

where DxZ is the two-dimensional Laplacian acting on
variables x, Z, and the upper plus sign is taken for a1 > 1,
and the minus sign for a1 < 1.

In the one-dimensional case, DxZ � d2=dx 2, equation (50)
has the unique solution u � ÿ3 coshÿ2 �x=2 ���

2
p � for a1 > 1.

Because W � 1, the surface is dome-shaped (a mound) for
3g > 1, and concave (a groove) for 3g < 1. In the axisym-
metric case, DxZ � d2=dr 2 � rÿ1 d=dr, equation (50) was
numerically integrated and tabulated [77]. It was shown that
function u�r� is negative for a1 > 1, and nonlinear deforma-
tion at small surface tension, 3g < 1, is manifested as dimples
(Fig. 8a).

On small time intervals, the motion of localized structures
can be investigated by an asymptotic method. Introducing
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slow time t � e1t, e1 �
��
e
p

and searching for the solution of
equations (46), (47) in the form of series f � F�t; x; y��
e1F1�t; x; y� � . . . ; and C � e1H�t; x; y� � e 21H2�t; x; y� � . . .
lead in the first approximation to

Ft � D1H � 0 ; a0Ht � D1Fÿ a1Fÿ a2F 2 � C�t� ;
a0 � 3eB ; a1 � 3�Wÿ 1�B ;

a2 � 9eWB

2h
; B � 1

m 2h 2�Wÿ 3g� :

Excluding H results in the following equation with respect to
F :

a0Ftt � D1�D1Fÿ a1Fÿ a2F 2� : �51�

In the one-dimensional case, D1 � q2=qx 2, equation (51)
coincides with the equation for nonlinear string vibrations
[104], having soliton type solutions. In the spatial case,
equation (51) has solutions in the form of stationary,
pulsating, and traveling dimples, which were observed on
the charged surfaces of glycerol bordering transformer oil [75]
and an electron-charged liquid helium surface [87±89]. We
note that electrons are pressed onto the charged surface of
liquid helium and dimple formation is an expected effect. In
the case of a charged glycerol surface, the surface Coulomb
force is directed upward; this suggests the formation of
protrusions, but dimples appear instead [75], whereas the
protrusions exhibit an oscillatory character [77]. Also worthy
of note is the possibility of effectively using the aforemen-
tioned method [76] for the description of deformation of the
electron-charged surface of liquid helium at certain para-
meters (e.g., in the regime of surface saturation with electrons,
such that in the notations of review [89] Eÿ � 0, and the layer
thickness is rather large, h � 1 mm).

In the short-wavelength region where the top electrode is
sufficiently far from the surface [g < 1=3 in formula (28)], a
nonlinear analysis in the small surface tilt approximation
leads to the integro-differential equation [113]. Solutions exist
that describe pointed peaks (in terms of paper [113]Ð root
peculiarity) resembling so-called Taylor cones (see Section
4.5). Analysis of deformation of the charged helium surface in
the plane case in the short-wavelength region showed that
finite perturbations undergo transformation into sharp-
edged grooves with time [114, 115]. Thus, a nonlinear
analysis of strained charged plane surfaces in the short-
wavelength region reveals the existence of cusp-shaped
deformations. A detailed analysis of the formation of
smooth solitary deformations and their transformation into
sharp-pointed forms is presented in review [89].

It was shown above that nonlinear interaction between
three forces (gravitational, capillary, and Coulomb) produces
nonobvious and sometimes unpredictable effects. It should be
noted that a few new approaches to nonlinear analysis are
currently applied to study charged surfaces, such as simula-
tion of two-dimensional crystal structures based on the
nonlinear interaction between dimples on the charged sur-
face [87±89], etc.

4.4 Instability of charged cylindrical jets
The curvature of a charged surface produces new effects in
EHD instability. Detailed formulation of the problem will be
presented in Section 5.3. This section deals with an analysis of
the instability of a cylindrical jet upon instantaneous charge

relaxation. This problem is solved in the cylindrical system of
coordinates �r;j; z�, in which the z-axis is directed along the
axis of symmetry. Representation of perturbations in the
form

F�r� exp �i�otÿ njÿ kz�� ;
where F�r� are the amplitudes of perturbations of the velocity
potential and electric field (the free surface deflection
amplitude being constant), yields the following expression
for small oscillation frequencies:

o2 � o2
0

kI 0n�k�
In�k�

�
k 2 � n 2 ÿ 1�W

�
1� kK 0n�k�

Kn�k�
��

; �52�

o0 �
����������
a

rR 3

r
; k � kR ; W � e1e0E 2

0R

a
;

where R is the radius of an unperturbed jet, E0 is the field
strength on the jet surface, In�k�, Kn�k� are the modified nth-
order Bessel functions [112], n � 0; 2; 3; . . . (n � 1 is excluded,
the center of masses being motionless), and the primes denote
k-derivatives.

Let us consider limiting cases. Using differentiation
formulas

I 00�k� � I1�k� ; K 00�k� � ÿK1�k� ;
I 0n�k� � 0:5

�
In�1�k� � Inÿ1�k�

�
;

K 0n�k� � ÿ0:5
�
Kn�1�k� � Knÿ1�k�

�
; n > 1 ;

and asymptotic expressions

k! 0 : In�k� ! �k=2�
n

n!
; K0�k� ! ÿ ln

k
2
;

Kn�k� ! �2=k�
n�nÿ 1�!
2

;

k!1 : In�k� ! exp k��������
2pk
p ; Kn�k� ! exp �ÿk�

������
p
2k

r
yields the following asymptotics from expression (52):

k5 1 : o2 � 0:5o2
0k

2�Wÿ 1� ; n � 0 ;

o2 � o2
0n�nÿ 1��n� 1ÿW � ; n � 2; 3; . . . �53�

k4 1 : o2 � o2
0k�n 2 � k 2 ÿ kW � : �54�

Thismeans that axisymmetric perturbations �n � 0� in the
region of long-wavelength modes, k5 1, are always sup-
pressed by the external field, whereas nonaxisymmetric ones
�n � 2; 3; . . .� are suppressed by the field for W < 3, and the
field destabilizes the jet for W > 3 with respect to perturba-
tions with n � 2. In the region of short-wavelength perturba-
tions, k4 1, the electric field suppresses perturbations for
W < k, and destabilizes the jet for W > k with respect to
axisymmetric perturbations with n � 0.

A comparison of EHD instability patterns of plane and
cylindrical surfaces shows that the surface curvature produces
new effects, the most conspicuous being suppression of long-
wavelength perturbations by the field for W > 1, in contrast
to the plane surface on which the field triggers the develop-
ment of long-wavelength perturbations. It follows from
expressions (53), (54) that, in limiting cases, the field has the
most pronounced effect on axisymmetric perturbations
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�n � 0�. A numerical study of dispersion relation (52) for the
axisymmetric case showed that the region of instability to the
wave numbers is enclosed by k�1 < k < k�2. The dependences
of boundary k�1, k�2 values on parameter W are shown in
Fig. 16a. Calculations revealed asymptotics in weak and
strong external electric fields: k�1 ! 0, k�2 ! 1 when
W5 1, and k�1 ! 0:56, k�2 !W when W4 1. The critical
wave number km (and the respective wavelength lm � 2p=km)
were calculated from the condition of maximum perturbation
decrement in the instability region:

d � max
k>0

o0F�k� � F�km� ;

F�k� �
�����������������������������������������������������������������������������������
kI1�k�
I0�k�

����k 2 � n 2 ÿ 1�W

�
1ÿ kK1�k�

K0�k�
�����

s
:

The dependence of km on W is presented in Fig. 16b.
Calculations showed that km ! 0:7 as W! 1, and
km ! 0:53W as W4 1; the latter asymptotics holds true for
W5 10 with an accuracy of at least 3%. The dependence of
the critical wavelength lm on jet diameter D and field
parameter W traces lm � pD=km. It follows from the
available numerical data that the critical perturbation in
the low-field region is a function of the Rayleigh wavelength
lm � 4:5D, and that lm decreases with increasing field
(Fig. 16c). These patterns are confirmed by observations of
outflow of charged jets from a small capillary (see Figs 11
and 12).

A nonlinear analysis of charged jet deformation is rather
complicated and requires a sophisticated mathematical
technique. Nonaxisymmetric deformations of a charged jet
in the absence of longitudinal strain (plane formulation of the
problem) was studied in the exact formulation in Ref. [116].
Results of the calculations are presented in Fig. 17, showing
that an increase in charge may lead to the separation of the jet
into two parts (Fig. 17a), and its dispersion into small droplets
(Fig. 17b, c).

4.5 Taylor cones
The simplified Taylor cone model [117] can be used to explain
the formation of pointed water droplet dispersion centers (see

Fig. 5). The essence of the model is as follows. Taylor cones
refer to the conical structures arising on small portions of the
surface at the strongly nonlinear stage of deformation
(Fig. 18). The shape of these structures at sites far apart
from both the base and the vertex is determined on the
assumption that the surface has the form of a cone with the
unknown vertex angle y0 . Then, the electric field potential is
expressed as F � r n f �y�, where r; y are the spherical
coordinates having their origin at the cone vertex (Fig. 18a),
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Figure 16. Instability of charged jets: W-dependences of boundary parameters k�1 and k�2 (a), and critical wave number km (b). Critical forms of

perturbations in the absence (c) and presence (d) of the charge.
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Figure 17. Examples of nonlinear deformations of initially cylindrical jets

in the cross section plane (taken from Ref. [116]).
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Figure 18. (a) The chosen system of coordinates. (b) Numerical calculation

of a Taylor cone formation in time on a plane charged metallic surface

[118]. (c) Jet formation from the Taylor cone vertex. (d) Fluid dispersion

from a microjet. (e) Microjet outflow.
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and n is an unknown parameter. The surface being equipo-
tential, so that f �y0� � 0.

The cone angle y0 is calculated using the Laplace equation
for the electric field potential:

1

sin y
d

dy

�
sin y

df

dy

�
� n�n� 1� f � 0 ; �55�

and normal stress balance at the cone surface:

p � p0 � 2aHÿ e0E 2

2
: �56�

In this case, the double mean curvature of the surface is
expressed as 2H � A=r, A � cos y0=�1� cos2 y0�1=2. Equa-
tion (56) has a solution if n � 1=2, which unambiguously
defines equation (55), the solution of which is expressed
through the Legendre function: f �y� � P1=2�y� [112]. The
root of equation P1=2�y� � 0 is y0 � 49:3�, which defines the
so-called Taylor angle.

Analytical calculations of the local strain of a charged
plane surface confirmed the formation of Taylor cones (see,
for instance, Refs [89, 118±120] and references cited therein,
as well as Fig. 18e). The consideration of various liquid
models, from an ideal dielectric [118] to an ideal conductor
[119, 120], on the assumption that the ambient medium is a
nonconducting gas, makes it clear that the Taylor solution
does not hold for the cone vertex, which is the region of fluid
dispersion and, at the liquid±gas interface, the region of
corona discharge ignition (see Fig. 6).

It was shown in experiments that Taylor cone vertices are
unstable and pulsate with frequencies on the order of
hundreds of hertz that increase with increasing field strength
(Fig. 7a). This phenomenon resembles Trichel pulses in a
needle corona discharge [121]. We regard the calculations in
Refs [118±120] as being of a model character, because they
disregard gas ionization, e.g., air, which usually takes place in
experiments and has an appreciable effect on the behavior of a
charged surface (Figs 7a and 14c, d). Microjets that may
outflow from the Taylor cone vertex either disperse into
microdroplets (Fig. 18d) or form a stable thin liquid filament
(Fig. 18e), depending on liquid viscosity and ambient
conditions. The latter effect occurs when one fluid outflows
into another (see review [122] and original studies [123±129]; it
forms the basis of many technologies designed to fabricate
micro- and nano-scale capsules [123, 124], hollow nano-
spheres [125], nanoemulsions [126], and hollow [124, 126]
and coaxial [127±129] nanotubes. Examples of such articles
are presented in Fig. 19.

Numerical calculations of microjet outflows from Taylor
cones were reported in a number of publications (see, for
instance, Refs [46, 47]). These are model calculations, too,
because they disregard ionization processes in gases, possible

surface charge relaxation, and stability criteria for numeri-
cally simulated stationary flows, which are of importance for
applications.

5. Electrohydrodynamic instability
of free surfaces at finite charge relaxation time

5.1 Problem formulation
The great variety and complexity of EDH effects in liquid
dielectrics with free surfaces inevitably require the employ-
ment of sophisticated EDHmodels taking into consideration,
in particular, surface conductivity and finite charge relaxa-
tion (see Section 3 and Table 1). Hence, substantial mathe-
matical difficulties arise from the necessity to take account of
fluid viscosity and to solve spatial boundary-value problems
(for applications).

The three-dimensionality and multiparametricity of
mathematical models are characteristic features of research
on the behavior of charged liquid menisci, jets, and droplets.
They account for the high probability of appearing errors in
both the physical formulation of problems and mathematical
computations. It is no wonder that many theoretical studies
arrive at contradictory and even paradoxical conclusions. For
example, it is argued in Ref. [17] that the leading role in EHD
instability in the case of a small droplet radius is played by
fluid viscosity; in contrast, for fast charge relaxation, the
instability threshold is described by the limiting Rayleigh
charge, whereas viscosity influences only perturbation
growth increment (see Section 5.5). The instability of water
droplets is sometimes considered on the assumption of an
ideal dielectric, while the formation of dispersing microcones
(see Fig. 5) is explained by the development of high-mode
perturbations (see, e.g., monograph [55]).

Similar drawbacks can be found in some foreign publica-
tions [45, 50, 51, 61, 62]. Erroneous problem statements in
these studies were noted in the lectures of the international
group [130] (see also paper [75]). Despite the high methodo-
logical level of experimental studies [61, 62], the authors
appear to have been first and foremost interested in applied
matters, such as elucidation of conditions for the formation of
equally sized small droplets by a pulse electric field. As a rule,
droplet formation was considered in a uniform external
electric field or in an electric field in the presence of an
external periodic (acoustic) perturbation [61, 62].

Errors typically occur in the surface charge balance
boundary conditions. As mentioned in review [78], incorrect
differentiation of thematerial surface integral leads to the loss
of kinematic term qsVnH in Refs [12, 45, 50, 51, 55, 61, 62]. In
papers [50, 51], the surface charge balance is described in the
form qqs=qt� divs �qsVt� � h jni � 0, i.e., taking no account
of the kinematic term qsVnH or the surface current js. The
latter can be neglected only in the case of a `frozen' surface

cba

5 mm 100 nm

200 nm 500 nm

Figure 19. Examples of objects fabricated by electric bubble-jet technologies [122]: (a) nanospheres, (b) nanotubes [125]), and (c) coaxial nanotubes [127].
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charge, i.e., charge chemosorption or slow surface charge
relaxation.We do not think that this case is typical, and it can
be observed only under specific conditions, for instance, in the
presence of SAS. Similar inaccuracies can be found in
Refs [61, 62].

Thus, the physics of charged surfaces in a wide range of
conductivities (from s � 10ÿ7 Oÿ1 cmÿ1, as in aqueous
solutions, to s � 10ÿ12 Oÿ1 cmÿ1 typical of nonpolar dielec-
trics) is far from complete and awaits further development.
Hence, the natural question: what new effects are produced
by taking into account surface conductivity and finite charge
relaxation time?

A few remarks on the general statement of the problem are
in order. As noted above, the Coulomb force applied to the
free surface region of a unit area for instantaneous charge
relaxation is directed along the normal. Then, tangential
stresses are absent, which substantially simplifies the mathe-
matical formulation of the problems for calculation of
instability criteria. Tangential surface force qsEt appearing
in the case of finite charge relaxation time accounts for
viscous stresses leading to the marked redistribution of the
velocity field and, thereby, to the altered conditions for the
emergence of EHD instability. If instability develops from the
equilibrium state, viscosity (unlike that in hydrodynamic
instability, when viscous stresses cause transition from
laminar to turbulent flows [131]) plays the role of damper,
i.e., acts on perturbation development decrements but not the
instability threshold. However, the finite charge relaxation
time under conditions of surface conductivity may resonantly
`swing' the surface, which makes possible instability [75]
resembling acoustoelectronic instability in semiconductors
[132].

Now, let us turn directly to the statement of the problem.
To begin with, we note that injection processes in free surface
problems (electrodynamics of droplets, menisci, and jets) are,
as rule, unessential, and bulk conduction is governed by the
law j � sE, where s � e�b1 � b2�n0, b1�b2� is the mobility of
positive (negative) charges, and n0 is the equilibrium con-
centration of impurity ions. Surface conductivity in a bi-ion
model is defined in the usual fashion:

jsi � ebsinsiEt ; i � 1; 2 ; �57�
where bsi, nsi are surface mobilities and ion component
concentrations, respectively, Et is the tangential field compo-
nent, and the resulting surface charge [see formulas (6)] is
defined as qs � e�ns1 ÿ ns2�.

The basic system of equations has the form (1), (2) at the
boundary conditions (3)±(7). The thickness of the surface
transient layer being on the order of the Debye radius rD [78],
the characteristic outer size R (radii of menisci, jets, and
droplets) must satisfy the conditionR4 rD. Consideration of
droplet and jet dynamics for R4 rD in the context of
continuum mechanics, i.e., based on equations (1)±(7), is
incorrect.

Let us start reasoning from the simplest case of linear
stability of a plane surface, and then move to more
complicated objects, such as cylindrical jets and droplets.

5.2 Plane surface
The study is conducted on geometry of Fig. 1, so that the
equilibrium state is described by relations (19), with the
surface charge given as qs0 � e�n 0

s1 ÿ n 0
s2�, where n 0

si are
constant surface concentrations of positive �i � 1� and
negative �i � 2� charges. Further on, we assume for simpli-

city that the upper region O1 is filled with a gas and examine
stability with respect to traveling waves, so that a plane
problem can be considered.

Linearization of equations (1)±(7) in the vicinity of the
equilibrium state and the introduction of the current function
c using relations Vx � qc=qz, Vz � ÿqc=qx yield, after
certain transformations, the following boundary-value pro-
blem:

O1�z > 0� : DF1 � 0 ; D � q2

qz 2
� q2

qx 2
;

�58�
O2�z < 0� : D

�
ZDcÿ r

qc
qt

�
� 0 ; DF2 � 0 ;

S�z � 0� : qf
qt
� ÿ qc

qx
; F2 � F1 ÿ E0 f ;

e0

�
e
qF2

qz
ÿ qF1

qz

�
� qs ;

qnsi
qt
� �ÿ1�ibsin 0

si

q2F2

qx 2
� n 0

si

q2c
qx qz

ÿ �ÿ1�ibin0 qF2

qz
� 0 ;

pÿ rg f� 2Z
q2c
qx qz

ÿ e0E0
qF2

qz
� ÿa q2f

qx 2
;

Z
�
q2c
qz 2
ÿ q2c
qx 2

�
� qs0

qF2

qx
;

S1�z � h1� : F1 � 0 ; �59�

S2�z � ÿh2� : F2 � 0 ; c � qc
qz
� 0 :

Seeking the solution in the form of normal modes

�c; p;Fi; nsi; f ��
ÿ
C�z�;P�z�;Fi�z�;Ni 0; f0

�
exp

�
i�otÿ kz�� ;

where Ni 0; f0 � const, leads to

C�z� � C1C1�z� � C2C2�z� ;

C1�z� � cosh k�z� h2� ÿ cosh b�z� h2�
cosh k2 ÿ cosh ki

;

C2�z� � b sinh k�z� h2� ÿ k sinh b�z� h2�
b sinh k2 ÿ k sinh ki

;

F1�z� � H1
sinh k�h1 ÿ z�

sinhk1
; F2�z� � H2

sinh k�h2 � z�
sinh k2

;

where b � ������������������������
k 2 � iro=Z

p
, ki � bh2, kj � hjk, Cj;Hj � const,

j � 1; 2.
Substituting these relations into boundary conditions (59)

gives a linear homogeneous system with respect to constant
coefficients. Equating the determinant of this system to zero
yields the following dispersion relation:

ro�A1B1 ÿ A2B2� ÿ ik2ZOv

� ak 2 � rgÿ ke0E 2
0 coth k2�1ÿ G� ; �60�

A1 � a3 � a2o=k
a

; A2 � a3 � a1o=k
a

; a � a1 ÿ a2 ; �61�

aj � C 00j � iFkC 0j ; j � 1; 2 ; a3 � ok�1ÿ F � ; F � OZ

oH
;

Ov � A2C
0
2 ÿ A1C

0
1 ; OZ � e0E

2
0

Z
; G � 1ÿ Ov=o

H
;
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H � e� 1ÿ ioe

o
; oe � kss0 � s0 cothk2

e0
;

ss0 � e�bs1n 0
s1 � bs2n

0
s2� ; s0 � e�b1 � b2�n0 ;

B1 � b cosh ki
b sinh k2 ÿ k sinh ki

; B2 � sinh k2
cosh k2 ÿ cosh ki

;

C 01 �
k sinh k2 ÿ b sinh ki
cosh k2 ÿ cosh ki

; C 02 �
kb�cosh k2 ÿ cosh ki�
b sinh k2 ÿ k sinh ki

;

C 001 � k 2 ÿ ior
Z

cosh ki
cosh k2 ÿ cosh ki

;

C 002 � kb
�
1ÿ �bÿ k� sinh k2 � sinhki

b sinhk2 ÿ k sinhki

�
:

Writing the complex frequency o in the explicit form,
o � o0 � id, shows that relation (60) defines the dependence
of oscillation frequencies o0 and increments (decrements) of
perturbation increase (decrease) d on the problem para-
meters, viz. region geometry (distances h1, h2), viscosity Z,
electric field strength E0, medium conductivity (parameter
oe), surface tension coefficient a, perturbation wavelength
l � 2p=k, etc. The multiparametricity of the problem and
complex character of transcendental equation (60) makes its
comprehensive study rather difficult. Therefore, let us
consider limiting cases of importance for applications.

(1) In the case of long-wavelength perturbations or low
viscosity, k 2 5 joj r=Z, it follows from relation (60) with an
accuracy up to big O�Z� that

ro2 � k cothk2�ak 2 � rgÿ ke0E 2
0 coth k1� : �62�

This equation defines the spectrum of small oscillations of an
ideal liquid in the conditions of instantaneous charge
relaxation. This implies that fluid viscosity and finite charge
relaxation in the spectral region of long-wavelength perturba-
tions have no effect on the stability of the charged surface
considered in Section 4.1.

(2) In the approximation of remote electrodes �k1 4 1,
k2 4 1� it follows from relation (60) that

�roÿ ik 22Z�A1 ÿ ik2ZA2 � ak 2 � rgÿ ke0E 2
0 �1ÿ G� ; �63�

A1 �
�
b
k
ÿ 1

�
V 2

E

VfaH
� Vf

a
ÿ A2 ; A2 � i2kZ

ra
;

�64�
V 2

E �
e0E 2

0

r
; Vf � o

k
;

G � �kA1 � bA2�=oÿ 1

H
; a � 1� �b=kÿ 1�V 2

E

V 2
f H

;

where H is defined in Eqn (61).
In the long-wavelength approximation, k 2 5 joj r=Z,

dispersion relation (63) takes the form (62), where coth k1 �
coth k2 � 1. In the other limiting case of short-wavelength
spectrum, k 2 4 joj r=Z, relation (63) has the following form:

o � i

2kZ

�
F0 � ke0E 2

0

e� 1

o
oÿ iOe

�
;

�65�
F0 � ak 2 � rgÿ ke0E 2

0 ; Oe � oe

e� 1
:

This means that finite charge relaxation plays an important
role in the short-wavelength part of the perturbation spec-
trum. For example, in the case of instantaneous relaxation,
oe 4 joj, critical strength E1� at which stability is lost may be

expressed as E1� � 2
����������
rg=a

p
=e0 at a critical wavelength

l� � 2p
��������������
a=�rg�p

. In a `frozen' charge approximation,
oe 5 joj, one finds E2� � E1��e� 1�=e; in other words, the
field increases �e� 1�=e times without a change in the critical
wavelength.

In the intermediate case of arbitrary conduction, relation
(65) is explored in the following way. It is written in the form
of a quadratic equation with complex coefficients:

o2 ÿ iboÿ c � 0 ; �66�
b � Oe � F� B ; B � e0E 2

0

2Z�e� 1� ; c � FOe ; F � F0

2kZ
:

Seeking the solution in the form o � o0 � id leads to the
decrement d � b=2 and frequency o0 � �cÿ b 2=4�1=2, mean-
ing that oscillatory perturbations occur only in the subcritical
region: ak 2 � rg > ke0E 2

0 �F0 > 0�. In the supercritical
region, ak 2 � rg < ke0E 2

0 �F0 < 0�, they are absent
�o0 � 0�, and perturbation growth increments are given by
two branches:

d1 � b

2

 
1�

����������������
1� 4jcj

b 2

r !
;

�67�

d2 � b

2

 
1ÿ

����������������
1� 4jcj

b 2

r !
:

The first is unstable at low conductivities: d1 �
ÿ�kee0E 2

0 =�e� 1� ÿ ak 2 ÿ rg�=�2Zk� as oe ! 0, whereas
quantity d1 rapidly decreases as oe !1: d1 ! b � Oe.
The second branch disappears at low conductivities, d1 ! 0
as oe ! 0, and is unstable as oe !1: d2 �
ÿ�ke0E 2

0 ÿ ak 2 ÿ rg�=�2Zk�.
The following conclusions are drawn based on the results

of above-made analysis.
(1) In the long-wavelength perturbation limit or at low

viscosity, k 2 5 joj r=Z, neither surface conductivity nor
viscosity influences small oscillation frequencies, while
stability is defined in terms of an ideal fluid model with
instantaneous charge relaxation.

(2) In the short-wavelength part of the spectrum, the
critical field strength essentially depends on both bulk and
surface conductivities. The perturbation growth increment
depends on viscosity, surface tension, conductivity, and
polarization properties of the fluid and is unrelated to mass
density in the absence of the gravity force.

Similar trends are observed for charged cylindrical jets
and droplets; in the latter case, however, there are some
peculiarities due to surface curvature.

5.3 Cylindrical jet
This section focuses on the formulation of the cylindrical jet
stability problem and elucidation of new effects associated
with surface conductivity at finite charge relaxation time.

Suppose a jet in contact with the air has radius R in the
unperturbed state, and the charge

qs0 � e�n 0
s1 ÿ n 0

s2� � e0E0

is uniformly distributed over the surface. As in the plane
case, n 0

si are constant surface concentrations of positive
�i � 1� and negative �i � 2� charges. In the cylindrical
system of coordinates �r;j; z� with the z-axis directed along
the axis of symmetry, for the field outside the jet one has
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Er � E0R=r, where r is the radial coordinate; the field
vanishes inside the jet. Both experiments and calculations
indicate (see Section 4.4 and Refs [61, 62]) that instability
with respect to axisymmetric perturbations develops at the
linear stage; it is this case that is considered below to simplify
calculations. The equations for perturbations and the
respective boundary conditions in terms of the current
function �Vz � rÿ1 q�rc�=qr, Vr � ÿqc=qz� assume the
following form after transformations analogous to those in
Section 5.2:

O1�r > R� : DF1 � 0 ; D � q2

qr 2
� rÿ1

q
qr
� q2

qz 2
;

�68�
O2�r < R� : DF2 � 0 ; L̂

�
ZL̂cÿ r

qc
qt

�
� 0 ; L̂� Dÿ rÿ2;

S�r � R� : qf
qt
� ÿcr ; F2 � F1ÿ E0 f ; e0�eF2rÿ F1r� � qs ;

qnsi
qt
� �ÿ1�ibsin 0

siF2zz � n 0
sicrz ÿ �ÿ1�ibin0F2r � 0 ;

i � 1; 2 ;

p� 2Zcrz ÿ e0E0F2r � ÿa
�
fzz � f

R 2

�
;

�69�

Z�2czz ÿ L̂c� � ÿqs0F2z

(on the assumption of the boundedness of the functions being
sought at r � 0 and as r!1). Here, the subscripts z, r
denote the respective partial derivatives.

The solution will be sought in the form of normal modes:

C�z� � ÿC1C1�z� � C2C2�z�
�
F ; �70�

C1�z� � I1�kr�
I1�k� ; C2�z� � I1�br�

I1�ki� ;

F1 � H10
K0�kr�
K0�k� F ; F2 � H20

I0�kr�
I0�k� F ; p � P�r�F ;

f � f0F ; ns j � Nj 0F ; j � 1; 2 ; F � exp
�
i�otÿ kz�� ;

where b � ������������������������
k 2 � iro=Z

p
, ki � Rb, k � Rk, Cj;Hj 0; f0;Nj 0 �

const � j � 1; 2�, and I0, I1, K0 (and further on K1) are the
modified Bessel functions [112].

Substituting these expressions into boundary conditions
(69) yields the following dispersion relation defining low-
oscillation complex frequencies:�

ik2ZC 01 ÿ or
I0�k�
I1�k�

�
A1 ÿ ik2ZC 02A2

� a
�
k 2 ÿ 1

R 2

�
ÿ ke0E 2

0

�
Bk � K1�k�

K0�k� G
�
: �71�

Here, parameters A1, A2, ss0, and s0 are given by expressions
(61), in which the following parameters are introduced:

a1 � V 2
E

V 2
f

C 01
k
; a2 � 1� V 2

E

V 2
f

C 02
k
; a3 � ÿBV 2

E

VfH
ÿ i2kZ

r
; �72�

H � 1ÿ i
Oe

o
; Bk � K1�k�

K0�k� ÿ
1

k
;

G � 1

AkH

�
A2C

0
2 ÿ A1C

0
1

o
ÿ 1

�
; Ak � e

I1�k�
I0�k� �

K1�k�
K0�k� ;

oe � 1

e0

�
kss0 � s0

I1�k�
I0�k�

�
; C 01 �

kI 01�k�
I1�k� ;

C 02 �
bI 01�ki�
I1�ki� ; Oe � oeI1�k�

AkI0�k� ;

where I 01 denotes the derivative with respect to the appro-
priate argument, and VE and Vf are defined in formulas (64).

Let us consider below limiting cases.
(1) In the long-wavelength approximation or at low

viscosity, k 2 5o0r=Z, o0 � �a=�rR 3��1=2, one has an equa-
tion coinciding with Eqn (52) at n � 0. Consequently, the
behavior of a charged jet in this approximation is described by
the ideal liquid model with instantaneous charge relaxation.

(2) In the short-wavelength approximation, k 2 4o0r=Z,
one has

o � i
d0

2kDk

�
FW � kWSk

o
oÿ iOe

�
; FW � k 2ÿ 1ÿ kWBk ;

�73�
d0 � a

RZ
; Dk � I0

I1
� LkPk ; Lk � I0

I1
ÿ 1

k
; Pk� 1ÿ kC21 ;

C21 � 1� 1=k 2

Lk
ÿ Lk ; Qk � Bk ÿ LkPk ; Sk � S1

Ak
;

S1 � Pk

�
K1Lk

K0
� I0Qk

I1

�
�QkC21 ÿ K1Bk

K0
:

Here, the Bessel functions depend on the parameter k, and
criterion W is defined in Eqn (52).

Dispersion relation (73) has the same structure as relation
(65); therefore, instability develops in the short-wavelength
limit in the same manner as in the plane case: oscillatory
perturbations take place for k 2 > 1�WBk �FW > 0�, and
instability develops in amonotonic fashion for k 2 < 1�WBk

�FW < 0�. There are two branches in the instability region, the
decrements of which are determined from equation (66) with
the coefficients

b � Oe � F� B ; c � FOe ; F � d0FW

2kDk
; B � d0WSk

2Dk
:

It is a matter of direct verification to prove the correctness of
calculations showing that in the limiting case of large radii,
k � Rk4 1, with due regard for K1=K0 ! 1, I1=I0 ! 1,
dispersion relation (71) converts into relation (63), (52) into
(62) at cothk1 � cothk2 � 1, and (73) into (65).

Based on equation (73), it is possible to calculate the
boundary value k� separating the region of instability with
respect to wavelengths k < k� from the stability region
k > k�, as well as km values at which perturbation decre-
ments reach a maximum in the instability region. The results
of calculations for low �oe 5 d0� and high �oe 4 d0� con-
ductivities at differentW, e are presented in Table 2.

These numerical data suggest that in both nonpolar
liquids (e � 2:1 for transformer oil, liquid hydrocarbons,
etc.) and aqueous solutions �e � 81�, the critical wavelength
l� � 2pR=k� separating instability �l > l�� and stability
�l < l�� regions decreases with increasing field strength
(parameter W); at fixed W, the critical wavelength l� also
decreases as e increases. The same is true of the most
dangerous wavelength lm � 2pR=km, at which perturba-
tions grow especially rapidly. In the case of liquids with fast
charge relaxation,oe 4 d0, the values of l�, lm do not depend
on e.
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5.4 Electrohydrodynamic instability of electrojets
If electric current flows along a jet (the jet shorts out
electrodes), it is called an electrojet. The electric field in
electrojets, as a rule, exerts a stabilizing action. It is this
effect that allows creating thin and ultrathin filaments, e.g.,
for Petryanov filters [6], polymer microtubes, and even
capillaries to be used in medicine (see Fig. 19).

The stability problem for electrojets is formulated by
analogy with that for charged jets (see Section 5.3), the sole
difference being that the external electric field is directed
along the jet axis, E0 � E0ez (ez is the unit vector oriented
along the z-axis of a cylindrical jet of radius R). For
simplicity, consideration will also be with respect to axisym-
metric perturbations. In such a case, the equations for
perturbations in terms of the current function have the form
(68). The difference arises in the boundary conditions for
electric field potentials and the balance of surface charges and
stresses on a free surface, namely

S�r � R� : F2 � F1 ; e0�eF2r ÿ F1r� � qs � e0�eÿ 1�E0 fz ;

qs � e�ns1 ÿ ns2� ;
qns j
qt
ÿ �ÿ1� jbs jE0

qns j
qz
� n 0

s jcrz

ÿ �ÿ1� jbjn0�F2r � E0 fz� � 0 ; j � 1; 2 ;

p� 2Zcrz ÿ e0�eÿ 1�E0F2z � ÿa
�
fzz � f

R 2

�
;

Z�2czz ÿ L̂c� � qsE0 :

Seeking the solution in the form (70) by a known method
yields the following dispersion relation�

or
I0�k�
I1�k� ÿ ik 22Z

I 01�k�
I1�k�

�
A1 ÿ ik2Zb

I 01�ki�
I1�ki� A2

� a
�
k 2 ÿ 1

R 2

�
ÿ ike0E 2

0Ho ; �74�

A1 � o
k
ÿ A2 ; A2 � ik

�
2Z
r
� L

�
ÿ kLHoTk ;

L � V 2
Eg

o
; g � oeGo ; oe � s0

e0
; Ho � g� i�eÿ 1�

Ak ÿ igTk
;

Tk � I1�k�
I0�k� ; Go � b1

b1 � b2

1

oÿ os1
� b2
b1 � b2

1

o� os2
;

whereV 2
E is defined in Eqn (64),Ak, b, k, and ki are defined in

Eqns (70), (72), and os j � kbs jE0, j � 1; 2.
Let us consider the following limiting cases.
(1) In the case of low viscosity or in the long-wavelength

approximation, i.e., for k 2 5o0r=Z, o0 � �a=�rR 3��1=2, the
following limiting relation holds:

o2 � o2
0kTk

�
k 2 ÿ 1� kW

Ak

�eÿ 1�2O�o� ÿ ioeSe�k�
O�o� ÿ ioeAe�k�

�
; �75�

O�o� � �b1 � b2��oÿ os1��o� os2�
b1�o� os2� � b2�oÿ os1� ;

Se�k� � 2�eÿ 1� ÿ 1

Ae�k� ; Ae�k� � Tk

Ak
:

Let us first consider the case of low conductivity: oe 5o0.
Representing relation (75) in the form

o2

o2
0

�
O�o�
o0
ÿ iAe�k� oe

o0

�
� F

O�o�
o0
ÿ i

oe

o0

ÿ
Ae�k�F0 � BWSe�k�

�
; �76�

F � F0� �eÿ 1�2BW ; F0� kTk�k 2ÿ 1� ; BW� k 2WAe�k�

yields �o2 ÿ o2
0F �O�o� � 0 in the zero approximation. It

follows that two types of oscillations are realized for
k 2 ÿ 1� kW=Ak > 0 �F > 0�: capillary oscillations with the
frequency oc � o0

���
F
p

, and ionic waves with the frequencies
defined by equation O�o� � 0, which are generated by
traveling waves of positive and negative surface charges with
frequencies os1 and os2, respectively.

Capillary instability develops for k 2ÿ1� kW=Ak < 0,
which means that an electric field suppresses short-wave-
length perturbations, and instability may develop only in the
long-wavelength spectral region, while the field (parameter
W) increases. Instability may just as well develop in the
capillary oscillation region k 2 ÿ 1� kW=Ak > 0 due to the
interaction between capillary and ionic waves. Indeed, the
following expressions for the decrement are obtained from
equation (69) on the assumption that o � oc � idc:

dc � o2
0oeBW

2ocO�oc� g�e; k� ; g�e; k� � �eÿ 1�2Ae ÿ Se�k� : �77�

Because function O�oc� may change sign depending on the
electric field strength, the decrement is a sign-alternating field
function, too. For example, at positive ion frequencies, one
has O�oc�< 0 for oc < os1, and O�oc� > 0 for oc > os1. At
oc � os1, the equation O�oc� � 0 holds true, i.e., instability
has a resonant character. In our opinion, this type of
instability arises from the conversion of the ionic wave
energy into the energy of surface deformation oscillations; it
is analogous to acoustoelectronic instability in semiconduc-
tors [132]. As mentioned above, such instability is observed in
experiments with an inclined electrode, schematically shown
in Fig. 2b, where the position of the fluid free surface is
indicated by the dashed line.

In the case of high conductivities, oe 4o0, two limits are
distinguished. In the first one, the following condition is
fulfilled:

jb1os2 ÿ b2os1j5 �b1 � b2�o0 :

Table 2. Critical values of instability parameters of charged jets of viscous
fluids (short-wavelength spectral region).

W�e� k�,
oe 5 d0

k�,
oe 4 d0

km,
oe 5 d0

max d=d0,
oe 5 d0

km,
oe 4 d0

max d=d0,
oe 4 d0

1 (2.1) 1.32 1.33 0.91 0.066 0.545 0.108

5 (2.1) 3.23 4.65 1.61 0.539 2.24 0.677

10 (2.1) 6.18 9.56 2.14 1.45 3.38 2.27

25 (2.1) 16.18 24.53 3.52 4.90 5.05 8.26

50 (2.1) 33.08 49.51 5.35 11.65 6.68 19.18

1 (81) 1.33 1.33 0.65 0.099 0.545 0.108

5 (81) 4.58 4.65 2.20 0.6657 2.24 0.677

10 (81) 9.44 9.56 3.35 2.27 3.38 2.27

25 (81) 24.2 24.53 5.03 8.11 5.05 8.26

50 (81) 48.89 49.51 6.65 18.88 6.68 19.18
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The frequency is given by the preceding expression
oc � o0

���
F
p

, and the decrement assumes the form

d1 � o2
0BW

2O�oc� g�e; k� ; O�oc� � os1os2

oc
:

By virtue of condition g�e; k� > 0, the decrement is also
positive: d1 > 0; therefore, oscillations of this type decay
with time.

In the second limit, jb1os2 ÿ b2os1j4 �b1 � b2�o0, one
obtains

o2 � o2
0Z ; Z � z1 � iz2 ; �78�

z1 � F1

Ae�k� ; z2 � mBWg�e; k�
A2

e �k�
; m � Oe

oe
;

F1 � F0Ae�k� � Se�k�BW ; Oe � �b1 � b2�os1os2

b2os1 ÿ b1os2
:

Expressing Z as Z � jZj exp �ij� gives decrement d2 �
o0

�������jZjp
sin �j=2�, where the sign of the angle j depends on

the sign of Oe. Instability takes place for b1os2 < b2os1 when
E0 > 0, and for b1os2 > b2os1 when E0 < 0. Calculated
results show that instability develops for k < k�. Numerical
values of k�, km, d�km�=o0 � max d=o0 for low �oe 5o0�
and high �oe 4o0� conductivities at different values of W, e
are presented in Table 3.

The numerical values indicate that an electric field
effectively stabilizes low-viscosity fluid electrojets only in the
case of weak conductivities. The field stabilizing effect
enhances with increasing dielectric constant. In nonpolar
fluids �e � 2�, the critical wavelength l� � 2pR=k� separat-
ing instability �l > l�� and stability �l < l�� regions, as well
as the wavelength of the most rapidly developing perturba-
tion, lm � 2pR=km, increases with parameter W at low
conductivity �oe 5o0�, but decreases at high conductivity
�oe 4o0�. In a highly polarizable low-conductivity medium,
e.g., aqueous solutions �e � 81�, the jet is completely
stabilized by the field; for high-conductivity media, the
character of stabilization is such as that described above.

(2) In the short-wavelength perturbation spectrum or
high viscosity, k 2 4o0r=Z, dispersion relation (74) is written
out with an accuracy up to big O�Zÿ2� as

o � i
d0

2kDk

�
k 2 ÿ 1� kW

Ak

�eÿ 1�2 ÿ igCe�k�
1ÿ igAe�k�

�
: �79�

Here, d0, Dk, and Ak are defined in formulas (72), (73), g is
defined in Eqn (74), Ae�k� is defined in Eqn (75), and
parameter Ce�k� has the form

Ce�k� � eÿ 1ÿ
�
I0
I1
ÿ kLkC21

��
Ak ÿ �eÿ 1� I1

I0

�
;

where Lk and C21 are defined in formulas (73), and Bessel
functions depend only on k.

It follows from relation (79) that for low conductivity,
oe 5 d0, only ionic waves with frequencies os1, os2 exist,
while capillary perturbations with decrements

dc � d0
2kDk

�
k 2 ÿ 1� kW

Ak
�eÿ 1�2

�
�80�

monotonically decrease or increase.
In the case of high conductivity, oe 4 d0, there are ionic

waves with frequencies described by the equation O�o� �
ioeAe�k� and damping time determined by charge relaxation
time te � Ae�k�=oe; they exist along with capillary waves,
whose frequencies and decrements for jb1os2 ÿ b2os1j4
�b1 � b2�d0 are expressed as

oc � d0mB
Ce�k� ÿ �eÿ 1�2Ae�k�

m 2 � A2
e �k�

;

�81�

dc � d0

�
F0 � B

�eÿ 1�2m 2 � Ae�k�Ce�k�
m 2 � A2

e �k�
�
;

m � Oe

oe
; F0 � k 2 ÿ 1

2kDk
; B � W

2DkAk
:

This suggests the possibility of existing oscillatory capillary
perturbations in the short-wavelength region that are stable
but decay with time. Numerical calculations showed that
instability in viscous jets occurs for k < k�, with perturbation
decrements in the instability region growingmonotonically as
k decreases, i.e., as the wavelength l � 2p=k increases.

Numerical values of k� for low �oe 5 d0� and high
�oe 4 d0� conductivities at different W, e values presented in
Table 4 show that electrojets of viscous fluids are effectively
stabilized by the electric field. The degree of stabilization
increases with increasing dielectric constant of the fluid.

5.5 Droplet instability
It is generally believed that the maximum (limiting) chargeQ�
of a droplet of radiusR is determined by the Rayleigh charge:
Q� � 8p�e0aR 3�1=2 [1, 117]. However, this result is valid for
liquids with instantaneous charge relaxation, and for dro-
plets, the size of which is bounded from below by the Debay
radius. Given a finite charge relaxation time, this result is
inapplicable, and the problem of charged droplet stability
should be considered in complete formulation (1)±(7). In
what follows, we will describe a method and give results of

Table 3. Critical values of instability parameters of low-viscosity fluid
electrojets (long-wavelength spectral region).

W�e� k�,
oe 5o0

k�,
oe 4o0

km,
oe 5o0

max d=o0,
oe 5o0

km,
oe 4o0

max d=o0,
oe 4o0

1 (2.1) 0.77 1.76 0.51 0.059 1.23 0.70

5 (2.1) 0.35 5.20 0.24 0.012 3.50 21

10 (2.1) 0.22 9.66 0.15 0.0049 5.44 135

25 (.,1) 0.121 23.13 0.083 0.0016 15.4 1845

1 (81) Stable 0.195 Stable Stable 0.139 0.066

5 (81) Stable 0.127 Stable Stable 0.091 0.054

10 (81) Stable 0.115 Stable Stable 0.083 0.007

25 (81) Stable 0.107 Stable Stable 0.077 0.0129

Table 4. Critical values of instability parameters of electrojets of viscous
fluids (short-wavelength spectral region).

W�e� 1 (2.1) 5 (2.1) 10 (2.1) 25 (2.1) 1 (81) 5 (81) 10 (81) 25 (81)

k�,
oe5 d0

0.77 0.35 0.22 0.12 0.005 0.002 0.0016 0.0008

k�,
oe4 d0

1.64 1.99 2.09 2.162 0.102 0.102 0.102 0.102
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calculations of stability criteria in the framework of problem
formulations presented earlier in this publication.

Suppose that a surface charge at equilibrium is defined as
qs0 � e�n 0

s1 ÿ n 0
s2� � e0E0 (see notations in Section 5.3). In the

spherical system of coordinates �r; y;j� having the origin in
the center of a droplet, the electric field outside the droplet is
Er � E0R

2=r 2, where r is the radial coordinate, and the field
inside the droplet is nonexistent. Assume again that surface
conductivity is defined by Eqn (57), and the jet radius is much
larger than the Debay radius.

In order to exclude pressure, we apply the rot operation to
the vector equation of momenta (20), and once again apply
this operation to the resultant equation. Projecting the vector
relation thus obtained onto the radial direction yields, after
some transformations, the following boundary-value pro-
blem for perturbations:

O1�r > R� : DF1 � 0 ; �82�
O2�r < R� : DF2 � 0 ; D

�
ZDuÿ r

qu
qt

�
� 0 ;

S�r � R� : qf
qt
� u

r
; F1 � F2 � E0 f ; e0�eF2r ÿ F1r� � qs ;

�83�
qns j
qt
� �ÿ1� jbs j n 0

s jR
ÿ2DyjF2

� n 0
s j

�
ur ÿ u

R

�
ÿ �ÿ1� jbjn0F2r � 0 ; j � 1; 2 ;

pÿ 2Z
�
ur
R
ÿ u

R 2

�
ÿ e0E0

�
2E0 f

R
� F1r

�
� ÿaRÿ2�Dyj f� 2f � ;

Z
ÿ
Rÿ2�2u� Dyju� ÿ urr

� � qs0R
ÿ1DyjF2 ;

D � q2

qr 2
� 2

r

q
qr
� 1

r 2
Dyj ;

Dyj � 1

sin y

�
sin y

q
qy

�
� 1

sin2 y

q2

qj 2
;

on the boundedness condition for the functions being sought
at r � 0 and as r!1. Here, subscript r denotes the partial
derivative of r, u � rVr, and Vr is the radial velocity
component. The solution is sought in the form

u � C�r�Flm�y;j; t� ; p � P�r�Flm�y;j; t� ; �84�
Fj � Fj�r�Flm�y;j; t� ; ns j � Nj 0Flm�y;j; t� ; j � 1; 2 ;

f � f0Flm�y;j; t� ; Flm�y;j; t� � Ylm�y;j� exp �iot� ;

where Ylm�y;j� stands for the spherical functions [112],
l � 0; 1; 2; . . . ; and m � 0;�1;�2; . . . ;�l.

Substituting expressions (84) into Eqn (82) yields

C�r� � C1

�
r

R

�l

� C2C2�br� ;
�85�

C2�r� �
�����
R

r

r
Ig�br�
Ig�ki� ; g � l� 1

2
;

F1�r� � H10

�
r

R

�ÿ�l�1�
; F2�r� � H20

�
r

R

�l

;

P�r� � ÿ ior
l

�
r

l

�l

C1 :

Here, as in formula (77), b � ������������������������
k 2 � iro=Z

p
, ki � bR,

Cj;Hj 0; f0; Nj 0 � const, j � 1; 2, and Ig is the modified
Bessel function [112].

The following dispersion relation is derived by themethod
described above:

i2ZoRÿ
�
iorR 2

l
� 2Zl

�
A1 ÿ �2Za�A2

� a
�
l �l� 1� ÿ 2

�ÿ e0E 2
0R
�
lÿ 1ÿ �l� 1�G � ; �86�

A1 � ÿDo
�
i
ÿ
l �l� 1� ÿ 2ÿ 2b

�� Bol �l� 1��l� 2ÿ a�� ;
a � kiI 0g �ki�

Ig�ki� ÿ
1

2
; A2 � Do

�
i2�l 2 ÿ 1� � Bo2l �l� 1�� ;

b � a� 1

8
ÿ k 2

i � g 2

2
; G � i�lA1 � aA2�=�oR� � l� 2

AlH
;

Al � �e� 1�l� 1 ; H � 1ÿ iOe

o
; Oe � oel

Al
;

oe � ss0=R� s0
e0

; Do � oR
c� iQ

; Bo � OZ

oAlH
;

c � l �lÿ 1� � 2b ; Q � OZl �l� 1��lÿ a�
oAlH

; OZ � e0E 2
0

Z
:

The study of equation (86) shows that the patterns of
instability development for a charged droplet are the same
as for a plane surface and a cylindrical jet. By way of example,
for a droplet with low viscosity and a large radius, joj4 n=R 2

�n � Z=r�, equation (86) is written out with an accuracy up to
big O�Z� in the form

o2 � o2
0lFl�W� ; Fl�W� � l �l� 1� ÿ 2ÿW�lÿ 1� ; �87�

where o0 and W are defined by expressions (52), l � 2; 3; . . .
(the values of l � 0; 1 are excluded, bearing in mind
immobility of the center of masses and fluid incompressi-
bility).

Expression (87) describes the limiting charge Q� �
4pR 2e0E� � 4p

�������������������
W�e0aR 3

p
. Evidently, instability develops

at l � 2, i.e., for W >W� � 4, which determines the limiting
Rayleigh charge Q� � 8p

�������������
e0aR 3

p
. Thus, the criterion for the

limiting Rayleigh charge is fulfilled either at low viscosity or
at large droplet radii: o0 4 n=R 2; it is calculated based on the
ideal fluid model with instantaneous charge relaxation.

In the limiting case of high viscosity or low droplet radii,
o0 5 n=R 2, dispersion relation (86) takes the form

dc � d0
2Dl

�
Fl�W� �WSl

o
oÿ ioe

�
; �88�

Dl� �lÿ 1� 2�l� 1��g� 1�ÿ l

2lg
; Sl� l �l� 1��l� 2��g� 1�

g 2Al
;

where d0 is defined in Eqn (73).
The results of numerical calculations of criticalW� values

and the respective l� at low conductivities, oe 5 d0, at which
droplets lose stability (when dc � 0) are presented in Table 5.

Table 5. Critical values of W� and l� in low-viscosity fluid droplets or
droplets with small radii at different e.

e 2.1 5 10 15 20 28 31 81

W� 20.4 10.6 7.4 6.45 5.82 5.18 5.04 4.35

l� 7 4 3 3 2 2 2 2
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It follows from this table that the Rayleigh criterion
W� � 4 for low-conductivity liquids, oe 5 d0 (with large
charge relaxation time ) is fulfilled only in the case of strongly
polarizable fluids characterized as a rule by short charge
relaxation time. Also, we note that the critical l� of small
droplets of nonpolar liquids �e � 2� take rather high values
�l� � 7�. This means that at such parameters the droplets may
break down into a larger number of smaller droplets than
under conditions of Rayleigh instability. Finally, the limiting
charge Q� � 4p

�������������������
W�e0aR 3

p
� 18p

�������������
e0aR 3

p
for nonpolar

liquids �e � 2� is more than twice that for highly polar
�e � 81� ones.

6. Conclusions

The following conclusions can be drawn from this study.
(1) Solving exact dispersion equations (71), (74), (86)

permits determining the critical parameters at which instabil-
ity of jets and droplets develops with respect to known
electrical and physical characteristics of liquids.

(2) If perturbations are generated by external sources
(e.g., sound), analytical formulas can be used at instanta-
neous charge relaxation in the long-wavelength or short-
wavelength regions, viz. expressions (30), (31) concerning a
plane surface, and expressions (52), (53), as can the data of
Fig. 16, for charged jets. Given finite charge relaxation time,
formula (67) can be used in the case of a plane surface, the
data of Table 2 in the case of cylindrical jets, the data of
Tables 3 and 4 in the case of electrojets, and data of Table 5 in
the case of charged droplets.

(3) In many cases of practical importance, it is not
necessary to solve complete dispersion equations (71), (74),
(86); instead, analytical formulas obtained in the long-
wavelength or short-wavelength approximations can be
applied. This inference is illustrated by the example of
cylindrical charged jets using electrophysical characteristics
of typical liquid dielectrics from Table 6.

It should be noted in the first place that the typical value of
parameterW, even in strong electric fields E0 � 100 kV cmÿ1

at R � 1 mm, is on the order of unity: W � 1. The condition
of long-wavelength approximation or low viscosity,
k 2 5o0r=Z, in the dimensionless form is written out as
k 2
m 5R 2o0=n, n � Z=r. The data of Fig. 16b and Table 2

suggest that relation k 2
m � 1 holds for W4 1, while the data

of Table 6 give R 2o0=n � 200 for low-viscosity liquids;
therefore, the condition of long-wavelength approximation

or low viscosity, k 2 5o0r=Z, is fulfilled for low-viscosity
liquids with Z4 0:01 P for R5 1 mm.

Let us consider the short-wavelength spectrum or high-
viscosity liquids. In dimensionless variables, this limiting case
is expressed as k 2

m 4R 2d0=n � Ra=�Zn�. For R � 1 mm,
Z5 10 P, the estimate gives Ra=�Zn� � 0:05; therefore,
condition k 2 4 d0r=Z is fulfilled at typical 0:54km 4 1.
Thus, for highly viscous liquids, Z5 10 P, and small
R4 1 mm, the short-wavelength spectrum approximation
can be utilized.

(4) Calculations showed that taking account of surface
conductivity requires radical revision of generally accepted
concepts of the development of instability of charged jets,
electrojets, and charged droplets. For example, in jets in the
framework of the long-wavelength approximation, charge
relaxation in water and glycerol may be regarded as
instantaneous: oe 4o0. In contrast, a charge should be
regarded as `frozen' in a liquid dielectric, oe 5o0, if
conductivity s4 10ÿ11 Oÿ1 cmÿ1. Approximation of high
viscosity or small droplets, d0 5 n=R 2, holds true for high-
viscosity liquids (glycerol, castor oil), whereas for low-
viscosity liquids (water, benzene, etc.), one finds o0 4 n=R 2

even at R � 1 mm, i.e., instability is determined by the
Rayleigh criterion. The limiting charge of small droplets of
viscous liquids with low dielectric constant is more than twice
that of droplets with instantaneous charge relaxation, having
the same size and electrophysical characteristics.

(5) Representation of the conduction law in form (57)
makes it possible to encompass a rather broad class of surface
phenomena, such as unipolar conduction (e.g., of surface
electrons [88]) and multiion conduction of free ions. More-
over, surface conductivity in the problems of charged surface
stability is represented in the form ss0 � e�bs1n 0

s1 � bs2n
0
s2�

corresponding to the ohmic surface conductivity law for
bound ions, js � ssEt, with the constant coefficient ss of
surface conductivity. Further development of free surface
electrohydrodynamics requires new experiments to obtain a
deeper insight into surface conduction mechanisms.

The work was supported by the Federal Targeted
Program `Scientific and Scientific±Pedagogical Personnel of
Innovative Russia', 2009-2013 (state contract P913).
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