
Abstract. It is shown how effective Hamiltonians are con-
structed in the framework of the adiabatic approach to the
electron±vibration interaction in electron tunneling through
single molecules. Methods for calculating tunneling character-
istics are discussed and possible features resulting from the
electron±vibration coupling are described. The intensity of
vibrations excited by a tunneling current in various systems is
examined.

1. Introduction

There are various experimental systems for studying a
tunneling current flowing through single molecules. First,
this is true in regard to the investigation of molecules
adsorbed on a surface of various materials by the scanning
tunneling microscopy/spectroscopy (STM/STS) methods [1±
3]. Second, the experiments are being conducted in which
molecules are deposited from gas of very low density onto the
area of a break tunneling junction [4, 5]. Third, recently it has
become possible to `drag' metal atomic chains through the
contact from one lead to another [6, 7]. Such an atomic chain

can also be considered a linear molecule which carries a
tunneling current.

When a current flows in such systems, their current±
voltage characteristics exhibit peculiarities at voltages equal
to the energies of vibrational modes.

In one of first studies on inelastic effects in molecules
adsorbed on a surface by the STM/STSmethods, peculiarities
of the tunneling conductance spectra of 16O2 and 18O2

molecules were observed. In Fig. 1 taken from Ref. [1], one
can see that for different isotopes the peculiarities arise at
different voltages, and for 18O2 the peculiarities are shifted to
lower energies. Such a shift is additional evidence that the
peculiarities are related precisely to oxygen atom vibrations in
a molecule.

The shape of peculiarities observed in tunneling conduc-
tance is not a universal characteristic. It may vary upon
changing the contact parameters, which has been demon-
strated in a series of experiments. In Ref. [8], copper
phthalocyanine molecules deposited onto varied-thickness
oxide layers grown on an NiAl surface were studied by the
STM method. The variation of the oxide layer thickness
resulted in a relative change in the rates of the molecule±
substrate and molecules±STM tip tunneling transitions. In
this case, the shape of the peculiarities related to molecular
vibrations noticeably changed.

In relatively recent study [9] on another organic molecule
on a silver surface, the tunneling spectra were recorded by
means of STM/STS for various distances between the tip of
the tunneling microscope and the molecule. One can see in
Fig. 2 taken from this study that the peculiarities related to
differentmolecular vibrations (indicated by different letters in
the figure) change shape when contact parameters vary (in the
figure, different distances between the tip and molecule
correspond to different values of current at a certain
reference voltage). The positions of peculiarities very well
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agreed with the corresponding vibration frequencies of the
molecule, obtained by the EELS (Electron Energy Loss
Spectroscopy) method.

In electron tunneling through atomic chains between two
contact leads, an electron±phonon interaction usually results
in a reduction in the tunneling conductance. It is manifested
by a `step-down' arising in the tunneling spectra at those
voltages corresponding to the chain phonon frequencies. One
such typical characteristic [7] is shown in Fig. 3. The position
of the peculiarity shifted as the chain, made from gold atoms,
was stretched (different curves correspond to different
stretching), which reveals the frequency change under
stretching.

Due to electronic±vibrational interaction, current flow is
also accompanied by the excitation of vibrationsÐ that is,
nonequilibrium heating of the system. Since the system is
strongly nonequilibrium, the most appropriate theoretical
description of all such phenomena leans upon the diagram
technique for nonequilibrium processes. The technique
allows considering, on a common basis, both the tunneling
current variation and the excitation of molecular vibrations
due to interaction. To apply the nonequilibrium diagram
technique `automatically', first it is necessary to determine
what is the operator of electron±vibrational mode interaction
in such problems? Generally, the choice of the most appro-
priate model depends on the particular system under
consideration. However, the adiabatic approach to separa-
tion of a complete Hamiltonian into the parts describing the
electronic and vibrational degrees of freedom and their
interaction remains to be, in our opinion, the most consis-
tent. The difficulties arising in realizing this program we shall
consider by the example of the simple model [10±13] in which
only one electron energy level of a small molecule (an
electronic state) is taken into account under the assumption
that the rest are far away in energy and do not fit into the
voltage range of interest.

It should be noted that we shall sometimes call vibrational
degrees of freedom in molecules phonons, and an interaction
of electrons with vibrational modes will be referred to as an
electron±phonon interaction.

2. Interaction of electrons with vibrational
modes in the model of a molecule with a single
electronic state

For simplicity, let us consider a diatomic molecule residing
between the two leads of a tunneling contact (see Fig. 4). The
complete description of all states in such a molecule in the
framework of the adiabatic approach [14] is made in two
stages. First, the electronic states should be found, which are
determined by the Hamiltonian dependent on the interatomic
separation (ion positions) as a parameter.

The energies ei�R� of these electronic states are functions
of interatomic separation R (assuming that the Coulomb
interaction inside the molecule is implicitly included in the
definition of electron energy ei�R�, and electron spin is
insignificant for the electron interaction with vibrational
modes). If the occupation of only a certain electronic state e1
in themolecule is changed in the process of tunneling, then the
Hamiltonian of an isolated molecule in the interaction
representation can be written out in the form (hereinafter
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the Planck constant is assumed to be unity, �h � 1):

Ĥ � a�1 a1

�
ÿ 1

2M

q2

qR 2
�W1�R�

�
� �1ÿ a�1 a1�

�
ÿ 1

2M

q2

qR 2
�W0�R�

�
; �1�

where a1 is the electron annihilation operator for the localized
molecular state with the energy e1,W1�R�, andW0�R� are the
effective potentials of ions, corresponding to the occupied
and empty electronic state e1, respectively:

W1�R� � Vion�R� � Ee�R� � e1�R� ;
W0�R� � Vion�R� � Ee�R� : �2�

Here, Vion�R� is the potential energy for the direct
(Coulomb) interaction of ions, and Ee�R� is the energy of
all occupied electron states except for the state e1. In the
harmonic approximation, atoms vibrate around the equili-
brium state determined by a minimum of effective potential
W�R�. Since we have two different potentials for the
occupied and empty states, two sets of oscillatory wave
functions arise, which describe the atomic vibrations
around different equilibrium positions with, generally speak-
ing, different frequencies. At a small number of electrons, a
change in the occupation of even a single electronic state
may substantially affect both the nucleus equilibrium
positions and vibrational frequencies. For the occupied
(empty) state e1, the equilibrium position R1�0� is determined
by the condition qW1�0��R�=qRjR1�0� � 0, and the square of a
vibrational frequency is o 2

1�0� / q2W1�0��R�=qR 2jR1�0� . The
eigenfunctions F 1�0�

n �R� � Fn�Rÿ R1�0�� are conventional
wave functions for an oscillator with frequencies o1�0�.

We may introduce in the usual way the creation and
annihilation operators b� and bÿ for describing the motion of
nuclei in the potential W0, corresponding to the state for
unoccupied level e1, in the harmonic approximation:

Rÿ R0 �
�������������

1

2Mo0

s
�b� b�� ; q

qR
�

�����������
Mo0

2

r
�bÿ b�� ;

whereMo 2
0 � q2W�0��R�=qR 2jR�0� .

When describing an oscillatory motion of atoms in the
potential W1 in the language of secondary quantization, it is
necessary to employ other operators b�1 and b1:

Rÿ R1 �
�������������

1

2Mo1

r
�b1 � b�1 � ;

q
qR
�

�����������
Mo1

2

r
�b1 ÿ b�1 � ;

whereMo 2
1 � q2W�1��R�=qR 2jR�1� .

It turns out that unified operators can also be introduced,
which describe a creation and annihilation of vibrational

quanta in both cases in the following way. Let us introduce
the transformation of the b� and b operators by means of the
unitary operator U:

~b � UbUÿ1 ; ~b� � Ub�Uÿ1 ; �3�

where

U � exp
�
la�1 a1�bÿ b��� exp �ya�1 a1�bbÿ b�b��� : �4�

The new ~b� and ~b operators (3) coincide with operators b�

and b in their action on the state with n1 � 0, and with
operators b�1 and b1 in their action on the state with n1 � 1 if
the parameters l and y are chosen as follows:

l �
�����������
Mo0

2

r
�R0 ÿ R1� ; y � 1

2
ln b ; b 2 � o1

o0
: �5�

Transformation U (4) has a clear physical meaning in the
language of transformations of oscillatory wave functions.
The first exponent in formula (4), exp

��R1ÿR0� q=qR
��

F 0
n �R�, describes a shift of a wave function from the

equilibrium position R0 to the position R1. The second part
of the transformation is responsible for coordinate contrac-
tion or expansion in the wave function due to the changed
curvature of potentialW1 as compared to potentialW0:

F 1
n �R� �

���
b

p
exp

�
�R1 ÿ R0� q

qR

�
� expx

�
�bÿ 1��Rÿ R0� q

qR

�
F 0

n �R� ; �6�

where b � ��������������
o1=o0

p
, and the notation expx means that in

expanding the exponent in a power series all the differential
operators should be placed to the right of the coordinate
operators.

In an explicit form, transformation (3) is given by

~b � v1b� v2b� � bla�1 a1 ; �7�

where

v1��1ÿ a�1 a1� � cosh�2y� a�1 a1; v2�sinh�2y� a�1 a1: �8�

In order to independently describe electronic and vibra-
tional degrees of freedom (by commutative operators), it is
necessary to pass on to new electron coordinate operators by
using the same transformation U simultaneously with the
introduction of the ~b operators:

~a1 � Ua1U
ÿ1 : �9�

Since a�1 a1 commute with the transformation operatorU, this
combination remains invariant: ~a�1 ~a1 � a�1 a1. Thus, we can
immediately express the electron operators in initial Hamilto-
nian (1) in terms of the new operators ~a�1 ~a1 and describe
nucleus vibrational motion by introducing in a unified
manner the operators ~b for both the occupied and empty
electronic states.

In this way, theHamiltonian of an isolatedmolecule in the
secondary quantization representation can be expressed in
the form

H0 � ~e1~a�1 ~a1 � o0
~b� ~b� �o1 ÿ o0� ~a�1 ~a1 ~b�~b ; �10�

R

k

Tk Tp

p

Figure 4. Schematic diagram of a tunneling contact with a diatomic

molecule.
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where the energy of an electronic state, ~e1 �W1�R1�ÿ
W0�R0� � �o1 ÿ o0�=2, does not coincide in the general case
with e1�R1� (the constant contribution W0�R0� � o0=2 was
omitted).

Notice that the term comprising the product of electron
and phonon occupation numbers in Hamiltonian (10) has no
meaning with regard to electron±phonon interaction, i.e., it
does not lead to phonon emission or absorption. It only
reflects the fact that the vibrational frequencies vary with a
change in electron occupation numbers.

The description in terms of transformed operators has a
clear physical meaning. Whereas operator b� was responsible
for the transition to the next excited state in the initial
oscillator, operator ~b� describes the transition to the next
excited state even if the oscillator equilibrium position and its
frequency have changed. It is schematically shown in Fig. 5.
Thus, operator ~b�, in contrast to b�, describes just the
oscillator excitation, regardless of whether the oscillator and
its frequency have shifted or not. This is a `correct' operator
governing the excitation of a molecule vibrational subsystem.

As for the new electron creation operator ~a�1 , its action
results in the origin of an electron in the state with the wave
function c1�R; r� and the simultaneous change of an ion
subsystem wave function. If the initial state comprised neither
electron nor excited vibrations, then the wave function of the
state was F 0

0 �R�. The action of operator ~a�1 transfers the
initial state to another: F 0

0 �R� ! F 1
0 �R�c1�R; r�. That is, in

multiplying the system wave function by the wave function of
the electron in state `1', the oscillator wave function
simultaneously is transferred to the wave function of a
shifted oscillator. An action of the `correct' operator ~a�1
results in the appearance of the electron keeping the vibra-
tional system on the same oscillatory level regardless of the
oscillator displacement due to the added electron.

In the presence of tunneling transitions between the
molecular electronic states and contact leads, the part of the
Hamiltonian describing the electron transitions from the
molecule to a contact lead has the form

Htun � Tk;1�R� c�k a1 � h:c: �11�

The operators ck correspond to the electronic states at the
contact leads, and Tk;1�R� is the overlap integral between the
electron state with the momentum k at the contact lead and
the molecular electronic state, which, naturally, depends on
the positions of the atoms in the molecule. Hence, with
allowance made for molecular vibrations, the tunneling
matrix element will also be modulated with these vibrations.
To describe this modulation, we may expand the matrix
element Tk;1�R� in a power series of displacement Rÿ R1

from the equilibrium position R1 (we shall show in the

Appendix that the expansion in a power series of displace-
ment Rÿ R0 from another equilibrium position R0 results in
the same final formulae for the tunneling Hamiltonian):

Tk;1�R� � exp

�
�Rÿ R1� q

qR

����
R1

�
Tk;1�R�

� Tk;1�R1� � �Rÿ R1� q
qR

����
R1

Tk;1�R� � . . . : �12�

By expressing the displacement Rÿ R1 in the standard way
via the creation and annihilation operators of vibrational
quanta, we obtain one type of interaction between electrons
and phonons in tunneling transitions. In addition, since the
number of electrons in the molecule changes under the action
of Hamiltonian (11), the state of the whole electron±ion
system also changes, and we have to express the electron
operators a1 in Hamiltonian (11) via `correct' electron
operators (9). The complete Hamiltonian for the interaction
between electrons and phonons in the tunneling process is
thoroughly derived in the Appendix. A general cumbersome
expression comprises three parameters which in many cases
may be assumed to be small: y, l (5), and the parameter ak; p
defined as follows:

ak; p �
�������������

�h

2Mo1

s
1

Tk; p

q
qR

Tk; p

����
�R1�R0�=2

:

Assuming all three parameters are small, we may restrict
ourselves to only the first terms in expanding all the quantities
in general formula (86) (see the Appendix) in a power series of
these parameters. Then, the first-order tunneling Hamilto-
nian with respect to all the parameters takes the form

Htun � Tk�c�k a1 � h:c:� � Tp�c�p a1 � h:c:�

� akTk�b� � b��c�k a1 � a�1 ck� � �k! p�
� lbTk�bÿ b���c�k a1 ÿ a�1 ck� � �k! p�
� yTk�bbÿ b�b���c�k a1 ÿ a�1 ck� � �k! p� ; �13�

where the tunneling matrix element corresponds to the
position of atoms at the distance �R1 � R0�=2, namely,
Tk � Tk��R1 � R0�=2�.

The three contributions to an electron±phonon interac-
tion arising in tunneling are responsible for different physical
effects. The contribution connected with the term ak; p
describes the processes of phonon (vibration) emission or
absorption when the electron tunnels between the contact
leads and the molecule due to themodulation of the tunneling
matrix elements with atomic vibrations. At the same time, the
part related to the constant l arises due to the adiabatic
change of the distance between atoms in the molecule, which
transfer to new positions corresponding to aminimum energy
at different electron densities. It should be noted that these
two interaction types do not act `additively' and cannot be
combined to a single interaction with a summarized coupling
constant. The interaction with the constant y describes those
effects related to changes in molecular vibrational frequency
under a changed number of electrons in the molecule.

In order to determine the limits of applicability for the
power series expansion of the general expression for the
tunneling Hamiltonian, it is necessary to estimate how small
the constants y, l, and a are. In real molecules, the constant y

1

0

b�

~b
�

Figure 5.Definition of the creation operators for the vibrational quantum

of an ordinary oscillator (b�) and of an oscillator with a changed

equilibrium position and frequency ( ~b�).
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can always be considered a small parameter because, even if
the vibrational frequency changes twice in adding an electron,
one has y ' 0:15 [see definition (5)]. This parameter is the
smallest one, and inwhat followswe shall notmake allowance
for the interaction related with the last term in Hamiltonian
(13).

For the constant ak; p, the following estimate is valid.
Assuming an exponential dependence of tunneling matrix
elements on the distance, viz. T�R� ' T0 exp �ÿdR=a�, we
obtain ak; p ' �m=M�1=4�a0=a�, where a0 is the Bohr radius.
The characteristic value of this constant equals approxi-
mately 0.1. To find the constant l, it is necessary to estimate
the equilibrium distance variation DR10 � R1 ÿ R0. In view
of initial expressions (1) and (2), we arrive at the estimate

DR10 ' qe1=qR

q2�Vion�R� � Ee�R��=qR 2
' a 2

int

Za0
;

where aint is the characteristic scale of localization for inner
electronic states, a0 is the radius of the state e1, and Z is the
number of occupied electronic states. This yields the estimate
for the constant l ' �M=m�1=4a 2

int=�Za 2
0 �. For light molecules

like H2, the constant is l > 1. For such molecules, a passage
considered to a simple first-order expression in terms of the
interaction constants (13) is inapplicable. It is necessary to use
the exact expression for the tunneling Hamiltonian (see
formula (86) in the Appendix). Nevertheless, expression (13)
can be applied to the molecules comprising at least 6±8
electrons.

Thus, the Hamiltonian of an isolated molecule is given by
formula (10), and the electron transitions between the
molecule and contact leads are described by Hamiltonian
(13). In Section 3, we shall consider the case where tunneling
transitions weakly affect the electronic states of the molecule.

3. Influence of electron±vibrational mode
interaction on tunneling characteristics

To completely describe thewhole tunneling system, we should
add the Hamiltonian describing the electrons in the contact
leads to the Hamiltonian of the molecule. In the former
Hamiltonian, the voltage V applied to the contact is included
in the shift of the chemical potential of electrons in a contact
lead:

Ĥ0 �
X
k

�ek ÿ m� c�k ck �
X
p

�ep ÿ mÿ eV � c�p cp : �14�

The tunneling current operator is determined in the
standard way from the continuity equation:

I � e _Nk � ÿie�Nk;Htun� ;

where Nk is the number of electrons in a contact lead. In the
subsequent calculations, a current will be measured as the
number of electrons per secondÐ that is, the electron charge
will be assumed to be unity (e � 1). For Hamiltonian (13), the
tunneling current is determined by the following expression

I � iTk

X
k

ÿhc�k a1i ÿ ha�1 cki
�

� iTk

X
k

hDÿ�ak � l� b��ak ÿ l� b�� c�k a1Eÿ h:c:
i
: �15�

A conventional tunneling current is given by the first
contribution to formula (15) if allowance is only made for
direct tunneling processes without atomic vibrations. How-
ever, if the electron±phonon interaction is taken into account,
this contribution also changes and results in a change in total
current, as does the contribution from the second group of
terms which comprise the electron±phonon interaction
constants l and a in an explicit form. In calculating the
current by formula (15) according to the perturbation theory
with respect to electron±phonon interaction (13) for a lower-
order interaction we arrive at the set of diagrams shown in
Fig. 6. The diagrams describe a set of appropriate Green
functions with the index `<' in the Keldysh diagram
technique and are calculated by ordinary rules. The only
distinction from the standard rules is that we have to modify
the standard definition of the phonon Green function. Since
the phonon operators enter into two interaction terms in
Hamiltonian (13) in different combinations, it is convenient
to define two phonon Green functions in the following way:

D �ÿÿ��t; t 0� � ÿi
Tb�t� b��t 0�� ;
B �ÿÿ��t; t 0� � ÿi
Tb�t� b�t 0�� ; �16�
B��ÿÿ��t; t 0� � ÿi
Tb��t� b��t 0�� :

The function B� is not independent because it is related with
the function B by an obvious relationship:

B��t; t 0� � ÿ�B�t 0; t��� ;
which holds true for all Keldysh components. These anom-
alous functions, as well as the functionsD, satisfy all standard
relationships between different components, such as the
followings:

Bÿÿ�t; t 0� � B<�t; t 0� � B r�t; t 0� ;
B<�O� � iN�O� ImB r�O� �17�

(the superscript `r' stands for `retarded'). In averaging over
the equilibrium state, the functions B become zero, but as
soon as a current arises or the system is disturbed from a
thermodynamic equilibrium in some other way, these
averages become nonzero.

1 gk gk

gk gk
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k 1
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In the general case, the equilibrium functions D0 deter-
mined by Hamiltonian (10) take into account a variation of
vibrational frequency in changing the number of electrons on
a molecule:

D r�O� � 1ÿ n1
Oÿ o0 � id

� n1
Oÿ o1 � id

; �18�

D<�O� � 2iN�O� ImD r�O�
� ÿi2pN�O� ��1ÿ n1�d�Oÿ o0� � n1d�Oÿ o1�

�
: �19�

Each vertex in the diagrams shown in Fig. 6 comprises the
sum over the interaction types (a, l) with the same combina-
tion of electron operators. This results in the following
effective phonon Green function which should be put into
correspondence to each wavy line in the diagrams:

eD�t; t 0� � a 2
�
D�t; t 0� �D�t 0; t� � B��t; t 0� � B�t; t 0��

� l 2
�
D�t; t 0� �D�t 0; t� ÿ B��t; t 0� ÿ B�t; t 0��

ÿ 2al
�
D�t; t 0� ÿD�t 0; t��

� �aÿ l�2D�t; t 0� � �a� l�2D�t 0; t�

� �a 2 ÿ l 2�ÿB��t; t 0� � B�t; t 0�� ; �20�

where a equals ap or ak, depending on which tunneling
vertices the phonon line connects to. This is the most general
expression in the nonequilibrium case.However, it was shown
in paper [15] that the contribution from anomalous functions
can be neglected in most cases when studying characteristic
properties of a current.

In this case, relationship (20) shows that effective phonon
functions may be introduced, which are specific in the
interaction with each lead of the contact. Such a function is
defined in the Fourier representation as follows:

eD r
p�O� � �ap ÿ l�2D r�O� � �ap � l�2D a�ÿO� ;
eD<
p �O� � �ap ÿ l�2D<�O� � �ap � l�2D>�ÿO� �21�

(the superscript `a' stands for `advanced'). We may do the
same with Dk. Using the expressions for equilibrium func-
tions (18) we conclude that functions eD< and eD r are again
interrelated by the standard relationships

eD<�O� � 2iN�O� Im eD r�O� :

From expressions (21) one can see that if a certain type of
electron±phonon interaction prevails, i.e., l5 a or l4 a,
then we again return to the standard definition of the Green
functions for electron±phonon interaction, based on the
symmetric mean: D � ÿi
Tÿb�t� � b��t��ÿb�t 0� � b��t 0���.
In the general case, an interference between two interaction
channels (with the constants l and a) leads to new expres-
sions.

The addition to a tunneling current, arising due to an
electron±phonon interaction, can be divided into two parts:
the first one is determined by the variations of the electron
spectral function due to interaction, and the second part is
related to the inelastic processes of phonon emission or
absorption. For the sake of brevity, we shall call these
contributions elastic and inelastic, respectively.

Expression (15) describing the current flowing from a
contact lead to a molecule looks asymmetric with respect to
another contact lead. At first glance, the diagrams shown in
Fig. 6 are also asymmetric. However, these diagrams include
the electronGreen functions for the molecule, calculated with
allowance made for all tunneling transitions (without
phonons). Hence, the symmetry with respect to contact
leads in the explicit expression for a tunneling current is
recovered. Let us consider this issue in more detail.

For this purpose we shall calculate the expression
corresponding to the diagrams in Fig. 6b. Since it describes
the contribution to a current made by the interaction with the
`p' lead, this part of the current will be designated Ip. Omitting
the integral overo, we can rearrange the terms entering into Ip
in the following way:

Ip � T 2
k Re

�
G
�1�<
1 G a

k � G
�1�r
1 G<

k

�
� T 2

k Re
hÿ
G<

1 S
a
p G

a
1 ÿ G r

1S
<
p G a

1 � G r
1S

r
pG

<
1

�
G a

k

� G
�1�r
1 G<

k

i
� T 2

k Re
n
n1
��G a

1 ÿ G r
1�S a

p G
a
1

� G r
1S

r
p�G a

1 ÿ G r
1�
�
G a

k � G
�1�r
1 G<

k ÿ G r
1S

<
p G a

1G
a
k

o
� T 2

k Re
nh

n1
ÿ
G
�1�a
1 ÿ G

�1�r
1

�
G a

k � G
�1�r
1 G<

k

i
� �n1G r

1�S r
p ÿ S a

p �G a
1 ÿ G r

1S
<
p G a

1

�
G a

k

o
; �22�

where Sp with different superscripts are the corresponding
irreducible parts shown in Fig. 6. The Green function of
electrons on a molecule, entering into this expression with
allowance made for the tunneling transitions, has the form

G r
1�o� �

1

oÿ e1 � i�gp � gk�
:

The electron energy level of the molecule broadens due to the
tunneling transitions, and the tunneling rates are determined
by the standard expression

gk � iT 2
k

X
k

G r
k ; gp � iT 2

p

X
p

G r
p :

The occupation numbers for the state e1 become non-
equilibrium due to a tunneling current:

n1�o� �
gpn

0
p �o� � gkn

0
k �o�

gp � gk
: �23�

In rearranging expressions (22) we used the relationship
G<

1 � n1�G a
1 ÿ G r

1�, and defined the first interaction-assisted
correction to the retarded Green function as follows:
G
�1�r
1 � G r

1S
r
pG

r
1 .

The first part of expression (22) looks exactly like an
ordinary tunneling current but, due to the interaction, with a
changed spectral function of electrons, ImG r

1 . As we shall see
later, the second part of the terms in Eqn (22) is responsible
for an inelastic currentÐ that is, the current related to a real
emission of phonons.

A contribution similar to expressions (22) is made to the
elastic part of the current by the diagrams describing in Fig. 6
the interaction with another lead of the contact. These
diagrams make contributions which differ in that the sub-
script p is replaced by subscript k in the first group of terms for
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Ip (22). By adding up these two contributions and taking into
account the relationship T 2

k

P
k G

<
k � 2igknk�o�, we obtain

the final expression for the elastic part of the current, which is
symmetric with respect to the contact leads:

I1 �
� �

4
g kg p

g
ImG �1�r�o�

�ÿ
np�o� ÿ nk�o�

� do
2p

: �24�

Here, nk and np are the Fermi electron occupation numbers
for the contact leads, differing in the chemical potential shift
by the value of applied voltage, namely, np�o� eV � � nk�o�,
g � gp � gk. Expression (24) is similar to the ordinary formula
for tunneling current except that the initial spectral function
of a localized state in Eqn (24) is replaced by the first
correction to the spectral function ImG �1�r�o�:

ImG �1�r�o� � Im
�
G
�1�r
0 �o�S r�o�G �1�r0 �o�

�
; �25�

where the eigenenergy part S r is determined by the interac-
tion with phonons:

S r
11�o� � iT 2

k

�X
k

� eD r
k�O�G<

k �oÿ O�

� eD>
k �O�G r

k�oÿ O��dO
� iT 2

p

�X
p

� eD r
p�O�G<

p �oÿ O�

� eD>
p �O�G r

p�oÿ O��dO : �26�

It should be noted that the diagrams in Fig. 6d correspond
to the eigenenergy corrections to the Green functions of
electrons in the contact leads. These diagrams contribute a
higher-order correction to the current compared to �l; a�2g 2
and are neglected here.

The inelastic part of the current for the diagrams plotted
in Fig. 6c [the second group of terms in Eqn (22)] can be
transformed into the form

I inelp �gk

�
do
2p

Im
�
S<
p �o�ÿn1�o� 2i ImS r

p�o�
���G r

1�o�
��2

� ÿgkgp
�
do
2p

��G r
1�o�

��2 � dO
2p

n
2n1�o�

� �Im eD a�O� 2np�oÿ O� ÿ i eD>�O��
� 2np�oÿ O� i eD>�O�

o
� 4

gkgp
g

�
do
2p

ImG a
1 �o�

�
dO
2p

Im eD a
p �O�

�
n
n1�o�

�
1�N�O� ÿ np�oÿ O��

ÿ np�oÿ O�N�O�
o

� 4
gkgp
g

�
do
2p

ImG a
1 �o�

�
dO
2p

Im eD a
p �O�

�
�
gk
g

ÿ
nk�o� ÿ np�o�

��
1�N�O� ÿ np�oÿ O��

� �np�o� ÿ np�oÿ O���N�O� ÿN0�O�
��

: �27�

This part is also obviously asymmetric with respect to the
contact leads. To derive the contribution to an inelastic

current, in which the parameters of another contact lead are
included in a similar way, it is necessary to add up the
expressions corresponding to two diagram types, namely,
the diagrams presented in Figs 6a and 6c. Both the diagram
types give the same functional expression, which is included,
however, with the factor gk for the diagrams fromFig. 6a, and
factorÿg 2k=g for the diagrams fromFig. 6c. By summing these
two expressions we recover the symmetry with respect to the
subscripts k and p: gk ÿ g 2k=g � gkgp=g.

Thus, by adding up all the contributions we arrive at the
following final expression for the inelastic current

I inel � 4
gkgp
g 2

�
do
2p

ImG a
1 �o�

�
dO
2p

�
nÿ

nk�o� ÿ np�o�
�h
gk Im eD a

p �O�
�
1�N�O�

ÿ np�oÿ O��� gp Im eD a
k �O�

�
1�N�O�

ÿ nk�oÿ O��i� g
�
N�O� ÿN0�O�

�
�
�
Im eD a

p �O�
ÿ
np�o� ÿ np�oÿ O��

� Im eD a
k �O�

ÿ
nk�oÿ O� ÿ nk�o�

��o
: �28�

Formula (28) also holds true in the case where the phonon
distribution function N�O� becomes nonequilibrium. Any-
way, the current addition tends to zero with decreasing
voltage, as it must because N�O� ÿN0�O� ! 0 for V! 0.

Recall again that a correct calculation of tunneling
current does not necessitate the artificial symmetrization of
initial expressions [like Eqns (15), (22)] with respect to the
subscripts k and p, which was done in paper [16], because the
final expression for a current always satisfies the symmetry
relationships in their transposition (the change in voltage
polarity).

In the case of weak excitation of a phonon subsystem,
where N�O� � N0�O�, formula (28) is simplified. Using the
explicit form of the functions eD a

p; k (21), we arrive at the
expression comprising two additive contributions related to
the excitation of vibrations at the frequencies o0 and o1:

I inel � �1ÿ n1� I0 � n1I1 ; �29�

where

I0 � 4
gkgp
g 2

�
do
2p

ImG a
1 �o�

ÿ
nk�o� ÿ np�o�

�
�
n
gk
h
�lÿ ap�2

�
1�N�o0� ÿ np�oÿ o0�

�
� �l� ap�2

�
N�o0� � np�o� o0�

�i
� gp

h
�lÿ ak�2

�
1�N�o0� ÿ nk�oÿ o0�

�
� �l� ak�2

�
N�o0� � nk�o� o0�

�io
: �30�

The expression for I1 is obtained from I0 by making the
substitution o0 ! o1.

An inelastic current is proportional to the difference
between the occupation numbers, np�o� ÿ nk�o�; hence, as
usual the contribution is only made by those states from the
domain of width V between the Fermi levels of the contact
leads. In addition, for moderate temperatures T5o0 the
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Fermi factors turn the integral to zero until the voltage
becomes greater than o0�o1�. This contribution to a current
only exists when the processes of real phonon emission start,
which are related to a loss of energy o0�o1� by the electron in
tunneling from one contact lead to another.

Notice also that the magnitude of an inelastic current is
always determined by the `cross' products of the rates (like
akgp, apgk) of the direct tunneling transition from one contact
lead to a molecule and the tunneling transition with phonon
emission from the molecule to another contact lead. For real
phonon emission to occur, an electron should complete the
tunneling from one lead to another with a loss of energy. At
the same time, the change in the density of states, which is the
reason for the appearance of an `elastic' additive to current
(24), is described by irreducible parts (26) which are nonzero
in equilibrium as well. This change in the density of states is
determined by the interaction with each of the contact lead
independently.

In the general case, the tunneling conductancemay exhibit
three features. One of them is related to a passage of voltage
through the electronic level of an impurity. At such voltages, a
current may grow due to inelastic processes; however, the
effect is weak against the background of a sharp change in
total tunneling current at the same voltages. The second
feature arises at voltages equal to the phonon frequency
(energy); both elastic and inelastic parts of a current con-
tribute to this effect. The third feature arises upon a further
increase in the voltage (in absolute value) to the magnitude of
eV � e1 � o0. This additional peak in the tunneling conduc-
tance is mainly related to an inelastic current; it may be well
resolved only if the condition g5o0 holds true.

The structure and specific form of the features of
tunneling characteristics related to electron±phonon interac-
tion are similar for the contributions both to current I0 and to
I1. Under the condition of a very weak broadening of
electronic levels in the molecule due to tunneling processes,
two sets of similar features should arise for molecular
vibrations with the frequencies o0 and o1. Nevertheless, in
most experiments the level broadening g is much greater than
the difference between o0 and o1. In this case, there is no
reason in distinguishing between the frequencies o0 and o1.
Hence, below we shall only consider those features associated
with vibrations at the single frequency o0.

If an electronic level resides close to the Fermi level of the
contact leads and is strongly broadened due to the tunneling
hybridization with the states of a continuous spectrum in
contact leads, then the feature on the tunneling conductance

may look like a peak or dip, depending on the parameters of
the contact. Such a situation is illustrated in Fig. 7.

In the literature it is asserted that the passage from one
type of the feature to another is related to the initial contact
conductance with neglected electron±phonon interaction at
eV � o0 being either greater or less than a conductance
quantum. Actually, the relationship between the feature
type and the value of the initial conductance is only
qualitative. Indeed, in Fig. 7 one can see that, at a high initial
conductance and voltages eV � o0, the feature more closely
resembles a dip in the tunneling characteristics, and at low
initial conductance there is a rise (step-up). However, the
feature in Fig. 7b looks like a step, although on the whole the
contact conductance falls. In addition, there is no definite
threshold value of the conductance at which one feature type
transfers to another.

Nevertheless, qualitatively the change in feature appear-
ance versus the initial contact conductance at the voltage
eV � o0 is actually noticeable, which is clearly observed in
the conductance derivative with respect to voltage, shown in
Fig. 8.

In a strongly asymmetric contact, i.e., in the contact in
which the rates of the tunneling transitions from the molecule
to different contact leads substantially differ, the conven-
tional tunneling current is symmetric with respect to the

1.5

d
I=

d
V
,r
el
.u

n
it
s

1.0

0.5

0.70
o0 V, rel. units

1.4

a

d
I=

d
V
,r
el
.u

n
it
s

1.5

1.0

0.5

0.70
o0 V, rel. units

1.4

b

d
I=

d
V
,r
el
.u

n
it
s

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.50

o0
V, rel. units

1.0 1.5 2.0 2.5

c

Figure 7. Variation of the tunneling conductance versus the frequency of a vibrational mode at a fixed position and width of the electronic level: e1 � 0,
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change in voltage polarity. However, in such a contact the
features related to the interaction with vibrational modes
would noticeably differ in intensity for different voltage
polarities, which makes the current±voltage characteristics
asymmetric. Depending on contact parameters, it may occur
that the features considered do not actually reveal themselves
at a certain voltage polarity, whereas at the opposite polarity
they are well distinguished (see Fig. 9). It worth noting that
the appearance and intensity of the features are determined by
the kinetics of the whole tunneling process.

If tunneling coupling with contact leads is weak and the
electronic level in the molecule constitutes a sufficiently
narrow resonance shifted from the Fermi level of the leads,
then a tunneling conductance derivative would have, in
addition to the feature at o0, an additional feature at eV �
e1 � o0. The latter is mainly related to the abrupt increase in
the inelastic contribution to a current at such voltages. Such
characteristics are demonstrated in Figs 10a and 11b.

The shape of features at the same level position and
phonon frequency would vary with a change in the degree of
tunneling coupling with leads. From Fig. 10b one can see that
the feature shape in the dependence dI=dV at the voltage
eV � o0 has changed from a `step' to an asymmetric peak at
stronger tunneling coupling with leads, and the tunneling

conductance feature at the voltage eV � e1 � o0 has com-
pletely disappeared (become invisible).

When the impurity level lies at a little depth under the
Fermi level, the feature may be strongly revealed, which is
connected with the origin of an inelastic current ± that is, with
the onset of phonon emission. From Fig. 11b one can see that
it is the origin of an inelastic contribution to the tunneling
current that mainly determines the feature at o0. The figure
gives a clear understanding of the difference in feature shapes
at o0 and at e1 � o0. Both features are explained by the
electron interaction with phonons, the first feature looking
like a step, and the second one the peak in the tunneling
conductance curve.Correspondingly, the feature shapes in the
dependence d2I=dV 2 are also well distinguished. However,
these features may overlap at other values of the parameters,
resulting in substantial shape distortions, which is illustrated
in Fig. 11a.

It is evident that the shape of features depends on the
proportion between elastic and inelastic contributions to the
current, and on the ratio between different tunneling
transition rates. Hence, the feature shape carries information
concerning contact parameters. The problem of varying
feature shape under the changed proportion between the
elastic and inelastic parts of a current was considered in
Ref. [12] in the single-level `polaron' model of interaction
between electrons and a vibrational mode.

In large tunneling contacts, the peculiarities of tunneling
characteristics are mainly related to the change in the density
of electronic states, connected only with the behavior of the
eigenenergy parts like those of formula (26) due to electron±
phonon interaction [17], i.e., with the elastic part of the
current. At the same time, it is seen that in small-dimension
systems these features may not be so substantial as compared
to the tunneling current variations due to inelastic tunneling
channels arising.

If the constant l is the greatest parameter in a system, i.e.,
the main mechanism of the electron interaction with vibra-
tional modes consists in the displacement of atoms to some
other equilibrium position under the varying number of
electrons on the molecule, then it is reasonable to use another
approximation. The approximation has a simple form if a
vibrational frequency variation can be neglected. In the

dI=dV, rel. units

ÿ2.0
V, rel. units

ÿ1.0 0 1.0 2.0

Figure 9. Conductance of the asymmetric contact with the parameters:

e1 � 0,o0 � 0:2, gk � 0:2, and gp � 0:9 at different voltage polarities. The
dashed line shows the `elastic' contribution to the current, the dotted line

refers to the `inelastic' contribution, and the solid line presents the total

current.
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expression for tunneling Hamiltonian (90) (see the Appen-
dix), we should retain only the term

H tun�c�k ~a1 exp
�
l� ~bÿ ~b���Tk;1

�
R1 � R0

2

�
� h:c: �31�

One can see that the phonon operators ~bÿ ~b� are replaced
by the operators exp �l� ~bÿ ~b���. Hence, all the calculations
of the tunneling current in this case are performed similarly to
the previous case, with the exception that the ordinary Green
function for phonons is replaced with the function F
constructed from operators exp �l� ~bÿ ~b�� rather than
~bÿ ~b�:

F �ÿÿ��t; t 0� � ÿi 
T exp
�
l
ÿ

~b�t� ÿ ~b��t���
� exp

�
l
ÿ

~b�t 0� ÿ ~b��t 0���� : �32�
The function of this type can be easily expressed in terms of
ordinary phononGreen functionsD (18) (in which one should
set o0 � o1):

F �>��t� � exp
�ÿ l 2�ÿiD>�t� ÿ iD<�t� � 2N� 1

�
;

F �<��t� � F �>��ÿt�;
F �r��t� � y�t�ÿF �>��t� ÿ F �<��t�� : �33�

From Eqn (33) one can see that the function F with the
exponent expanded in a power series comprises all the
harmonics of an initial vibrational frequency; hence, the
peculiarities in the tunneling characteristics arise at all the
multiple phonon frequencies [18]. We shall not dwell on this
issue because this case still seems to have only theoretical
meaning.

4. Strong hybridization of the states of an
adsorbed molecule (atom) with a contact lead

We considered in Section 3 the case where a hybridization
of molecular electronic states with contact leads was not
strong; hence, in the zero approximation it was possible to
take the vibrational states determined for an isolated
molecule. However, one more type of vibrations exists in
the tunneling systems comprising adsorbed molecules,
namely, the vibrations of a molecule as a whole. The
frequencies and characteristics of such vibrations are
determined, in turn, by the degree of hybridization of
molecular electronic states with the states of a substrate;
therefore, such vibrational degrees of freedom cannot be
determined independently by neglecting electron tunneling
transitions. Since we are discussing the vibrations of a
molecule as a whole, there is no difference between
considering a molecule or a single atom adsorbed on a
surface. Hence, consider the system illustrated in Fig. 12. A
hybridization of the atomic states with a surface, deter-
mined by the matrix elements Tk, is assumed sufficiently
strong and cannot be taken into account by means of the
perturbation theory. At the same time, the tunneling matrix
elements Tp describing the transitions of electrons to
another contact lead (for example, to the tip of a tunneling
microscope) are assumed small and the perturbation theory
can be applied to them in the ordinary way.

To find vibrational modes, it is necessary to use the
expression for the total electronic energy of a system with an
adsorbed atom. The dependence of this energy on the distance
R between the atom and surface is determined by a variation
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Figure 11. A tunneling conductance and its derivative for the case of e1 < o0: (a) e1 � 0:2, o0 � 0:7, ak � 0:35, ap � 0:30, and (b) e1 � 0:6, o0 � 1:5,
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of hybridization matrix elements Tk�R� versus the distance:
Ee�R��

�
do
2p

onk�o�
�
ImG a

d �R;o� �
X
k

ImG a
kk�R;o�

�
:

The Green functions in this expression can be exactly
calculated as in the Andersen problem on an impurity
hybridized with the states of a continuous spectrum. This
energy constitutes the potential energy of ion motion, which
determines the vibrational frequencies of atoms near the
surface. In order to determine the electronic±vibrational
interaction correctly, we should again start with the exact
wave functionsCn�r;R� of the whole system. In terms of such
exact states, the interaction is described by the Hamiltonian

Hint �
X
n;m

� �
drC �n �r;R�

q
qR

Cm�r;R�
��
ÿ 1

M

q
qR

�
: �34�

In order to pass to a secondary quantization representation,
we may expand the wave functions into the states `k' of a
continuous spectrum and into the state `d' of an adsorbed
atom (for simplicity, we consider only one electronic level in
an atom):

Cn�r;R� � b n
d �R�Cd�rÿ R� �

X
k

b n
k �R�Ck�r� ;

c�n � b n
d �R� d� �

X
k

b n
k �R� c�k : �35�

By using the orthonormality conditions having the formX
n

b n
k �R� b n�

d �R� �
�
do
2p

ImG a
kd�R;o� � 0 ; �36�

X
n

b n
d �R�b n�

d �R� �
�
do
2p

ImG a
dd�R;o� � 1 ;

we arrive atX
n

Cn�r;R� c�n � Cd�rÿ R� d� �
X
k

Ck�r� c�k ;X
m

q
qR

C �m�r;R� cm �
X
k

ÿ
gdkCd�r� ck � gkdCk�r� d

�
�
X
kk 0

gkk 0Ck�r� ck 0 ; �37�

where gdk �
P

m�qbm
d =qR� bm�

k . The rest of the coupling
constants are determined in a similar way. Unfortunately,

these constants cannot be obtained in an explicit form,
because we know all the Green functions for the impurity
problem, but do not know the explicit form of the exact wave
functions of the whole system. By retaining only the
interaction related to the electron transitions between an
atom and a substrate, we arrive at the Hamiltonian in the
form

Hint �
X
k

�akdc�k d� adkd�ck��b� ÿ b� �38�

with the coupling constants akd �
�������������������
o0=�2M�

p
gkd. By differ-

entiating expression (36) with respect to R, we easily obtain
the expression gkd � g �dk � 0, from which it follows that the
Hamiltonian obtained exhibits the same interaction type as
the interaction determined by the constant l for inner
molecular vibrations:

Hint �
X
k

ad�c�k dÿ d�ck��b� ÿ b� �39�

(the constants ad are real quantities). Hamiltonian (39)
describes the interaction of electrons with the vibrations of
the adsorbed atom if its electronic states are strongly
hybridized with the states of the substrate. If the tunneling
coupling with the second contact lead is noticeably weaker,
then, similarly to the previous case, the second channel of the
electron interaction with the vibrations of the atom (or the
molecule as a whole) arises, being related to a modulation of
the tunneling matrix element Tp�R� in atomic vibrations:

Hint �
X
p

ap�c�p d� d�cp��b� � b� : �40�

The tunneling current is determined by the diagrams
(Fig. 13) that exhibit the same type as in Fig. 6.

In contrast to Section 3, here all possible Green functions
for electrons in the strongly coupled system `atom plus
substrate' are included as `zero'-approximation Green func-
tions. In calculating these functions, the hybridization Tk�R�
is exactly taken into account; hence, in addition to the
diagonal functions Gkk and Gdd, the diagrams in Fig. 13 also
include the off-diagonal functions Gkd and Gkk 0 .

Due to a strong hybridization of atomic states with the
lead k, the electron occupation numbers for an adsorbed
atom actually coincide with the occupation numbers of
substrate states, nd�o� ' nk�o�, even in the presence of a
tunneling current. Hence, the inelastic part of the current is
only contributed from the first diagram in Fig. 13. This
contribution is described by formula (28) in which one
should put gk 4 gp:

I inel � 4gpa
2
p

�
do
2p

ImG a
1 �o�

�
dO
2p

ImD a�O�

�
nÿ

nk�o� ÿ np�o�
��
1�N�O� ÿ np�oÿ O��

� �N�O� ÿN0�O�
�ÿ
np�o� ÿ np�oÿ O��o : �41�

In formula (41), the phononGreen function is determined
now in the ordinary way [in contrast to that in formula (28)].

ad Tp
ad

pkd d

ad Tp
ad

pk kd d d

ad Tp
ad

pk kd d dd ap app

ad Tp
ad

pk kd d d d

Figure 13.Diagrams describing the tunneling current through an adsorbed atom.

R
k

Tk Tp

p

Figure 12. Schematic diagram of the contact with an adsorbed atom which

is strongly coupled to a contact lead: Tk 4Tp.
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All the expressions are given under the assumption of a weak
dependence of electronic±vibrational interaction constants
on the momentum k.

The Green functions Gkd and Gkk 0 entering into the
diagrams presented in Fig. 13 can always be expressed in
terms of the functions Gdd and G0

kk by using the Dyson
equation, for example,X

k

TkG
r
kd � ÿigkG r

dd ;
X
k; k 0

TkG
r
kk 0Tk 0 � g 2kG

r
dd : �42�

In view of relationships (42), the correction to a current,
arising due to the interaction determined by the constant ad,
can be presented in the same form as for the case of amolecule
weakly coupled with contact leads:

Ik � g p
�
Im
�
G r

d�o�S r
eff�o�G r

d�o�
�ÿ
np�o� ÿ nk�o�

� do
2p

:

�43�
However, a strong hybridization of atomic (molecular)

states with a contact lead is specific in that the eigenenergy
part is unusual here:

S r
eff�o� � ia 2

d

�X
k

�
D r�O�G<

k �oÿ O� �D>�O�

� G r
k�oÿ O�� dO

2p
� 4pigknka

2
d

�
�X

p

�
D r�O� nk�oÿ O�

� G r
d�oÿ O� ÿD>�O�G r

d�oÿ O�� dO
2p

: �44�

The voltage dependences of a tunneling conductance
calculated by these formulae show that if the electronic level
of an atom resides closely to the Fermi level of a substrate,
then for large values of hybridization Tk (gk) the peculiarities
related to atomic vibrations have the shape of a `step-down'
(the conductance falls). Such a rather general behavior of a
tunneling conductance is displayed in Fig. 14. In this case, the
shape of the peculiarity is mainly determined by the elastic
contribution to a current, which is clear from the figure.

If the electronic level is separated from the Fermi level by
an energy value comparable to level broadening due to
hybridization, the shape of the peculiarity changes. The
shape is substantially different depending on whether the
atomic energy level is higher or lower than the Fermi level. In
Fig. 15, such changes in feature shape are shown versus the
varied position of the electronic level in an atom relative to the
Fermi level of contact leads.

If the atomic level resides above the Fermi level, the
peculiarity looks like a sharp dip; if it is essentially below the
Fermi level, the peculiarity looks like a peak. In Fig. 15, the
inelastic current contribution is also given, but for strong
hybridization with a contact lead (Tk 4Tp) this contribution
is small and has actually no influence on the behavior of
tunneling conductance.

5. Tunneling conductance of atomic chains

In a series of studies, tunneling contacts were produced by
various methods, with their conductance being determined by
isolated atomic chains [6, 7]. In the tunneling conductance of
such chains peculiarities were revealed at certain voltages and
associated with the excitation of vibrational modes in the
atomic chains. Theoretical models were suggested for describ-
ing such features with allowance made for the influence of
electron±phonon interaction in atomic chains on tunneling
characteristics [19, 20]. However, although the peculiarities
are described qualitatively by these theories, they often
employ an initially wrong definition of the parameters of
electron±phonon interaction in such systems.

It is easiest to develop the theories for atomic chains
based on the strongly coupled electron method. In this case,
the electronic states of isolated atoms are first determined,
and the states of the whole chain are described by the
Hamiltonian

H �
X
i

eic�i ci �
X
i; j

Ti; j�Ri; j��c�i cj � c�j ci� ; �45�
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Figure 14. Typical behavior of a tunneling conductance at a substantially

broadened electronic level of an adsorbed atom,o0 � 0:3. A dashed curve

shows the elastic contribution into a current, solid curve depicts the total

current, and dotted curve presents the tunneling conductance ignoring the

interaction with a vibrational mode.
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Figure 15. Shape variation of a peculiarity in the tunneling conductance upon changing the electronic level position in an atom. The vibrational frequency

is o0 � 0:3, and level broadening is g � 3:8. A dashed curve refers to the elastic contribution to a current, a dash-and-dot curve shows the inelastic

contribution, a solid curve depicts the total current, and a dotted curve presents the tunneling conductance ignoring the interaction with a vibrational

mode; (a) e1 � ÿ0:6, (b) e1 � 0:6, and (c) e1 � 1:6.

1162 P I Arseev, N S Maslova Physics ±Uspekhi 53 (11)



where ei are the energies of the electronic states in individual
atoms, and Ti; j�Ri; j� is the amplitude of a transition from one
atom to another. In this approach, the change of electronic
states of the whole chain due to a variation of atomic
positions is determined by introducing a dependence of the
matrix element for electron transitions between atoms as a
function of the interatomic distance. Such a method allows
one to escape solving the exact Schr�odinger equation for
electrons of the whole chain at fixed positions of atoms.

Usually, a naive approach is realized in constructing an
electron±phonon interaction, which implies a simple expan-
sion of Ti; j�Ri; j� in the displacements of atoms from the
equilibrium position in their vibrations. The first term of the
expansion, qTi; j=qRi; j�Rÿ R0��c�i cj � c�j ci�, is considered as
the Hamiltonian of electron±phonon interaction after sub-
stituting the corresponding operators of phonon creation and
annihilation for the atomic displacements Rÿ R0. However,
in a consistent separation of states of the whole electron±ion
system into vibrational and electronic degrees of freedom in
the adiabatic approach, the variation of Ti; j�Ri; j� under
changes of atomic positions makes a contribution to the
effective potential for ion motion. A correct procedure again
implies using the exact wave functions Cn�r;R� of the whole
system, by analogy with formula (34). For electrons in the
strong coupling model (45), the exact interaction (34) can be
expressed in terms of the quantity qTi; j=qRi; j in the following
way. By using the exact eigenfunctions for Hamiltonian (45),
we may write out the derivative:�

Cn

���� q
qRi

H

����Cm

�
� Em

�
Cn

���� q
qRi

����Cm

�
; �46�

which entails�
Cn

����X
j

qTi; j

qRi
�c�i cj � c�j ci�

����Cm

�

� �Em ÿ En�
�
Cn

���� q
qRi

����Cm

�
� q
qRi

Emdn;m : �47�

In view of the appearance ofHamiltonian (45), the interaction
in terms of the creation and annihilation operators for
electrons in exact states c�n , cn can be written in the form

Hint �
X
i

X
n 6�m

�P
j�b n�

i bm
j � b n

i b
m�
j � qTi; j=qRi

Em ÿ En

�
� c�n cm

�
ÿ 1

Mi

�
q
qRi

; �48�

where we again expressed the electron creation operators in
the exact states Cn in terms of the creation operators on the
i-chain atoms, similarly to the case of the adsorbed atom
considered above [see formulae (35)±(37)]. The coefficients of
this expansion are as follows:

c�n �
X
i

b n
i �R� c�i : �49�

By using relationship (49) again, we can bring the complete
interaction operator to the form

Hint

�
X
l; k; i

X
n 6�m; j

� �b n�
i bm

j b
m�
k b n

l �b n�
i bm

j bm�
k b n

l � qTi; j=qRi

Em ÿ En

�
� c�l ck

�
ÿ 1

Mi

�
q
qRi

: �50�

And finally, by expressing atomic displacements in terms of
the operators of vibrational modes in the chain, viz.

q
qRi
�

����������
Mon

2

r
e ni �b n ÿ b n�� ;

we obtain

Hint �
X
l; k; n

g n
l; kc

�
l ck�b n ÿ b n�� ; �51�

where the coupling constant g n
l; k is rather complicated:

g n
l; k

�
X

n 6�m; j; i

� �b n�
i bm

j b
m�
k b n

l � b n�
i bm

j b
m�
k b n

l � qTi; j=qRi

Em ÿ En

�

�
����������
Mon

2

r
e ni : �52�

If we start with the naive expression qTi; j=qRi; j�RÿR0��
�c�i cj � c�j ci� as the operator of the interaction of electrons
and atomic vibrations, we will obtain an expression similar to
Eqn (51) but with the coupling constant

g n
i; j �

qTi; j

qRi

����������
2

Mon

r
e ni �53�

which differs from exact expression (52).
Due to different symmetries of chain vibrational modes

and coefficients b n
i for electronic states, the total constant of

the interaction of electrons with certain vibrational modes
may be very small (in the ideal case it turns to zero). Hence,
not all the vibrational modes will give rise to peculiarities in
the tunneling conductance [20].

The general expression for current flowing through an
atomic chain, also valid for an electron±phonon interaction,
takes the form [21]

I�V � � 2

�
jT1kj2nk�o�

� �2ImG r
11�o� n 0

k �o� ÿ iG<
11�o�

� do
2p

; �54�

or

I�V � � 2

p

�
jT1kj2nk�o� ImG r

11�o�
�
n 0
k �o� ÿ n1�o�

�
do ;

�55�

where nk is the density of states at the end of a contact lead,
and G11 is the Green function for the first chain atom closest
to the lead. If we neglect the interaction of electrons with
chain atom vibrations, then expressions for current (54) can
be put in the form symmetrical with respect to the contact
leads:

I�V � � 2

p

�
jT1kj2jTNpj2nk�o� np�oÿ eV ���G r

1N�o�
��2

� �n 0
k �o� ÿ np�o�

�
do ; �56�

where the subscript N corresponds to the last chain atom
closest to the other lead of the contact.
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The electron±phonon interaction yields corrections to the
Green functions G11 in initial formulae (54). The appropriate
current variations may again be divided into two parts, which
we may call elastic and inelastic contributions to a tunneling
current from the interaction effects. The elastic contribution
to the current is described by the same formula (56) as in the
absence of interaction, but with the function jG r

1N�o�j2
changed due to the involvement of interaction; in other
words, it is only related to the change of the spectral function
ImG r

11�o� in formula (55). An inelastic contribution is related
to the change of the electron occupation numbers n1�o�
entering into the Green function G<

11�o� (54) due to the
electron interaction with vibrations. By substituting the
corresponding change of G<

11�o�, viz.
dG<

11 �
X

G r
1iS

<
i j G

a
j1 ; �57�

into formula (54), we arrive at the following expression for the
inelastic part of the current [22]:

Iinel�V � � 2

�
jT1kj2nk�o�

�
�
ÿ i
X
i; j

G r
1i�o�S<

i j �o�G a
j1�o�

� do
2p

; �58�

where the sum over i; j runs over all the chain atoms. This
contribution, in contrast to the elastic case, cannot be written
out in the standard form (56) that is valid for a systemwithout
interaction. The irreducible part S in the first order with
respect to electron±phonon interaction is expressed as

S<
i j �o� �

�
dO
2p

X
k; l; n

g n
ik g

n
l j G

<
kl �oÿ O�D<

n �O� : �59�

In a series of studies [23±25], attempts were made to
calculate the current±voltage characteristics for particular
atomic chains by formulae similar to Eqn (54) (although
with an incorrectly defined electron±phonon interaction). In
all the calculations, the characteristics obtained exhibit an
abrupt fall in conductance at the voltages equal to the
frequencies of vibrational modes. The shapes of these
characteristics are similar to those in Fig. 15. Such a behavior
of current±voltage characteristics testifies to the fact that the
main role in interactions with vibrations is played by the
`elastic' contribution to a current variation, which always
reduces the conductance. The `inelastic' contribution increas-
ing the total conductance through the system is small in this
case.

6. Vibrational excitation by a tunneling current

In order to quantitatively describe the degree of phonon
subsystem heating, it is necessary to calculate the non-
equilibrium phonon occupation numbers for a flowing
tunneling current. The nonequilibrium phonon occupation
numbers are determined from the Green function

D<�t; t 0 � � ÿi
b��t 0 � b�t�� : �60�

In a stationary state, this function in a Fourier representation
satisfies the following relationship

D<�O� � 2iN�O� ImD r�O� : �61�

A nonequilibrium diagram technique provides a calculation
of functions D<�O� and D r�O�, thus giving the possibility of
determining the occupation numbers N�O� (in the model of
`polaron' interaction at a single electronic level, such a theory
was developed in Ref. [11]). Notice that in the nonequilibrium
case, the `anomalous' phonon averages are also nonzero,
which results in Green functions having the form
B<�t; t 0 � � ÿi hb�t� b�t 0 �i. Hence, in the nonequilibrium,
albeit stationary, case at a fixed current flowing through the
contact, an exact system of Dyson equations is slightly
complicated, as shown in Fig. 16.

The Dyson equation for vibrational modes in a Fourier
representation assumes the form

D ab�O� � D ab
0 �O� �D ag

0 �O�

�
n
Pgd

dd �O�D db�O� �Pgd
db �O�B db�O�

o
;

B ab�O� � D ag
0 �ÿO�

�
n
Pgd

bd �O�D db�O� �Pgd
bb �O�B db�O�

o
; �62�

where D0 is the equilibrium Green function for phonons,
namely

D r
0�O� �

1

O� idÿ o0
;

D<
0 �O� � ÿ2piN0�o0� d�Oÿ o0� ; �63�

with N0 being the Bose distribution. The form of the
polarization operators P depends on the particular system
under consideration. Prior to concretizing the form of these
operators, we shall make the following general remark.

In many cases (both in theory and experiments), it is
important to determine the amplitudes of atomic vibrations
in a molecule excited by a tunneling current. In the
equilibrium case, the root-mean-square amplitude of atomic
vibrations is completely determined by the occupation
numbers for vibrational modes. In the nonequilibrium case,
however, an r.m.s. displacement of atoms is determined as
follows:

hdR 2i � �h

2Mo0


�b� b���b� b���
� �h

2Mo0

�
2iD<�t; t� � 1� iB<�t; t� � iB�<�t; t�� : �64�

In addition to the ordinary displacements that are similar to
the equilibrium thermal fluctuations of atoms, additional
displacements arise which are proportional to ÿ2ImB<. In
some cases, this additional contribution may be not very
small [15].

Nevertheless, the situation is noticeably simplified inmost
cases. The corrections related to the allowance made for the

=

=

+

+

+

Figure 16.Dyson equation for vibrational modes.
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anomalous function B are usually small quantities of the
order G 2=o 2

0 , where G is the broadening of a vibrational level
due to interaction [15]. If G is small, the main contribution to
the nonequilibrium excitation of atomic vibrations is related
to the `normal' polarization operator Pdd.

In the case of electron tunneling through a single
electronic level of a molecule, considered in Section 2, the
operator Pdd is expressed in the form

Pdd � �ak ÿ lk�2P1k � �ak � lk�2Pk1 � �k! p� : �65�

The polarization operators in the first-order with respect
to electron±phonon interaction are shown in Fig. 17. The
corresponding analytical expression has the form

P r
1k�O� � ÿiT 2

k

X
k

�
do
2p

� �G r
1�o�G<

k �oÿ O� � G<
1 �o�G a

k �oÿ O�� ;
P<

1k�O� � iT 2
k

X
k

�
do
2p

�
G<

1 �o�G>
k �oÿ O�� : �66�

Electron Green functions in contact leads (Gk�p�) and at the
level e1 (G1) are calculated taking into account all the
tunneling transitions without inference from phonons [26].
Due to the tunneling transitions, the level e1 acquires the
width g � gk � gp, where gk�p� � pT 2

k�p�nk� p� are the rates of
tunneling transitions to contact leads (nk� p� is the density of
states in the contact leads). The remaining functionsPk1,Pp1,
and P1p are determined similarly to Eqn (66). In the wide
band approximation for contact leads, the maximum values
of real and imaginary parts of these operators are of the same
order: ImP r

1k ' ReP r
1k ' gk. The electron±phonon interac-

tion is assumed sufficiently weak, so that a 2g5o0 and
l 2g5o0. Then variations of phonon frequencies may be
neglected, and we may allow for only the imaginary parts of
polarization operators, which determine the broadening of
phonon lines: ImP r

dd � G. From Dyson equation (62) one
can easily deduce that within the accuracy of the order of
G 2=o 2

0 the spectral function of phonons may be replaced by
the delta-function in all the integrals:

ImD r�O� ' G�O�
�Oÿ o0�2 � G�O�2 ' ÿpd�Oÿ o0� : �67�

By using Dyson equation (62), we obtain the expression
for D<:

D<�O� � ÿD r�O�P<
dd�O�D a�O� : �68�

From this evidence and formula (61), it follows that the
nonequilibrium phonon occupation numbers are given by

N�O� � iP<
dd�O�

2ImP r
dd�O�

: �69�

By substituting into formula (66) the explicit expressions for
the Green function and integrating over momenta k and p, we
obtain the following expressions for the functionsP<

dd�O� and
ImP r

dd�O�:

ImP r
dd�O� � 2

�
do
2p

ImG a
1 �o�

�
n�
gk�ak ÿ l�2ÿnk�o� ÿ nk�oÿ O����k! p��

� �gk�ak � l�2ÿnk�o� O� ÿ nk�o�
�� �k! p��

� 4
gpgk
g

l�ap ÿ ak�
ÿ
np�o� ÿ nk�o�

�o
; �70�

iP<
dd �O� � 2ImP r

dd�O�N0�O� � P<�O� ;

where

P< �O� � 4
gpgk
g

�
do
2p

ImG a
1 �o�

�
n��ak ÿ l�2ÿnk�oÿ O� ÿ 1

�� �ak � l�2nk�o� O�

ÿ �k! p��� 4lN0�O��ak ÿ ap�
o ÿ

np�o� ÿ nk�o�
�
: �71�

The formula for phonon occupation numbers (69) can be
presented as a sum of an equilibrium occupation number and
the nonequilibrium additive caused by the tunneling current:
N�O� � N0�O� � DN�O�, where

DN�O� � P< �O�
2ImP r

dd�O�
: �72�

Nonequilibrium phonon occupation numbers are always
proportional to the difference between electron occupation
numbers in contact leads, np�o� ÿ nk�o�, and turn to zero in
the absence of a tunneling current.

Analysis of formulae (70)±(72) permits establishing the
conditions under which the phonon emission is high or,
conversely, low. A low phonon emission is observed if the
degrees of molecular tunneling hybridization with the
different contact leads noticeably differ, for example, for
Gp 4Gk, gp 4 gk . The nonequilibrium occupation numbers
of a vibrational mode to an order of magnitude will be equal
to DN ' �Gk=Gp � gk=gp�. The least heating will occur if the
intermediate energy level e1 lies near the Fermi level of the
lead p, to which it is bounded more strongly, so that E

p
F ÿ e1

and o0 are on the order of g. Then, even for voltages eV4 e1
the perturbation of a phonon subsystem is small: DN5 1.

Strong phonon emission will occur if the level e1 initially
lies deep enough beneath EF, so that E

p
F ÿ e1 5o0, and the

state e1 is approximately equally hybridized with both the
leads: Gp ' Gk, gp ' gk. In this case, as soon as the voltage
across the contact reaches e1, strong atomic vibrations are
excited. The maximum possible occupation numbers at high
voltages can also be easily estimated: DN ' e21=�go0�.

The calculated phonon occupation numbers as functions
of voltage are compared in Fig. 18 for a symmetric tunneling
system and a system in which the tunneling coupling with one
contact lead ismuch stronger thanwith another. In the case of
a symmetric contact, the number of phonons barely rises in
the wide range of voltages from o0 to o0 � e1, and then the
excitation sharply increases. In an asymmetric contact, the
number of phonons rises not so rapidly, and phonon emission
at high voltages is noticeably weaker.

+

1

k, p

=

1

k, p

Figure 17. Polarization operator in tunneling through a single electronic

level of a molecule.
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An important property of the model considered is the
interference between two tunneling processes with phonon
participation. A small variation of the proportion between
the different constants a and l results in substantial suppres-
sion or amplification of phonon emission. This evidence is
illustrated in Fig. 19, where a variation of nonequilibrium
phonon occupation numbers is plotted versus a small
variation of constants ak and ap. Such a difference in system's
behavior is mainly determined by the last term in formula (70)
which is proportional to the product l�ap ÿ ak�. At a
sufficiently large difference in the rates of tunneling with
phonon contribution to the different leads of a contact, a very
intense generation of phonons may develop due to the
denominator which tends to zero in formula (72). To
adequately describe the phenomenon, it is necessary to take
into account nonlinear processes limiting system excitation in
a way similar to that in Ref. [26].

From the viewpoint of the general laws of a vibrational
mode excitation in flowing tunneling current, the excitation
of vibrations of an adsorbed atom is similar to the case of a
strongly asymmetric tunneling contact, where the vibrational
modes are weakly excited.

In studying the problem of exciting vibrations in a chain
of atoms, it is easier to start with the interaction Hamiltonian
written out in terms of the exact electronic states for the whole
chain (48):

Hint �
X
n;m

g n
n;mc

�
n cm�b�n � bn� : �73�

Then the nonequilibrium occupation numbers for vibrational
modes are given by general formula (69) [26]:

Nn�O� � iP< �O�
2ImP r�O� ; �74�

and the polarization operators take the form

ImP r�O��2
X
n;m

�g n
n;m�2

�
do
2p

h
ImG a

n �o� ImG a
m�oÿ O�

� �nn�o� ÿ nm�o�� � ImG a
m�o� ImG a

n �oÿ O�

� ÿnm�o� ÿ nn�o�
�i
;

iP< �O� �
X
n;m

�g n
n;m�2

�
do
2p

�ÿ G<
n �o�G<

m �oÿ O�

� 2iG<
n �o� ImG a

m�oÿ O� � 2iG<
m �o� ImG a

n �oÿ O�

ÿ G<
m �o�G<

n �oÿ O�
i
: �75�

In deriving expressions (75), we neglected the interaction due
to modulation of the tunneling matrix elements, which bind
the molecule and the contact leads, with vibrations of
outermost atoms. This interaction, generally speaking,
should be added similarly to the above case.

In the general case of long atomic chains in which many
electronic states and vibrational eigenmodes exist, general
expressions are cumbersome and may only be estimated
numerically. Nevertheless, one can follow some regularities
of chain vibrational excitation, even for the simple example of
a diatomic chain, which can be considered analytically.

In a diatomic chain (comprising two similar atoms) there
are two electronic eigenstates: symmetric (s), and anti-
symmetric (as). The Green functions corresponding to the
eigenstates and needed for determining the excitation of
atomic vibrations can be expressed via the Green functions
of the first and second atoms in the chain:

G<
s; a�o� �

1

2

ÿ
G<

11�o� � G<
22�o�

�� i ImG<
12�o� : �76�

Taking advantage of the formulae for functions G<
11�o�,

G<
22�o�, and G<

12�o� given in Ref. [27], we obtain

G<
s; as�o�

� ÿi gknk
��oÿ e0 � T12�2�g 2p

�� gpnp
��oÿ e0 � T12�2�g 2k

���oÿ e0�2 ÿ T 2
12 ÿ gpgk

�2� �gp � gk�2�oÿ e0�2
;

�77�
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Figure 18. The phonon occupation numbers versus voltage for a system

with e1 � 1,o0 � 0:7, and l � 0:15. Curve 1 depicts a strong generation of
phonons in a symmetric system with gp � gk � 0:1, ap � 0:55, and

ak � 0:65; curve 2 fits a suppressed generation in an asymmetric system

with gp � 0:3, gk � 0:05, ap � 0:55, and ak � 0:25.
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Figure 19. Degree of system excitation at small relative variations of the

parameters ap, ak. The parameters are as follows: e1 � 1, o0 � 0:7,
l � 0:15, and gp � gk � 0:1. Curve 1 corresponds to ak � 0:55,
ap � 0:65; curve 2 refers to ak � ap � 0:55, and curve 3 corresponds to

ak � 0:65, ap � 0:55.
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ImG r
s; as�o�

� ÿ 1=2�gp � gk�
��oÿ e0 � T12�2 � gpgk

���oÿ e0�2 ÿ T 2
12 ÿ gpgk

�2 � �gp � gk�2�oÿ e0�2
:

�78�

Formulae (77), (78) permit us to determine how the degree
of vibrational excitation changes with the variation of the
chain tunneling coupling with contact leadsÐ that is, under
changes of gp and gk. In Fig. 20, the nonequilibrium
occupation numbers for a vibrational mode (i.e., the
intensity of phonon emission) are shown at various ratios
between the tunneling rates gp and gk.

The physical reason for such intensity variation is that in
inverting the proportion between gp and gk, the character of
energy occupation of states of the first and second atoms
changes. In a certain energy range, an inversion arises of the
nonequilibrium occupation numbers for the ground and
excited states in the diatomic chain, which substantially
affects the vibrational excitation probability. However, the
total number of electrons in the upper level is always less than
in the lower level. In Fig. 21, the variation of nonequilibrium
occupation numbers for upper and lower levels is shown
versus energy under changes of the ratio between gp and gk.

7. Conclusion

We have shown that in small tunneling contacts, as well as in
bulky material, a description of the interaction between
electrons and vibrational modes should start with a succes-
sive separation of the vibrational and electronic degrees of
freedom and with constructing the Hamiltonian of their
interaction in the framework of the adiabatic approach. In
the general case, the electron±phonon interaction in the
process of electron tunneling through single molecules may
be contributed by various mechanisms: modulation of the
tunneling matrix elements with vibrating atoms in amolecule,
the change of equilibrium atomic positions and vibrational
frequencies in electron transitions between a molecule and
contact leads, and phonon emission or absorption in electron
transitions between the energy levels of a molecule itself. If
several different mechanisms make comparable contribu-
tions, interesting effects may arise connected with the
interference of the interactions of different types. As was

shown above by the example of electron tunneling through a
single electronic level of a small molecule, an interference of
two interaction channels in different conditions results in
either amplification or suppression of molecular vibrations
when the tunneling current flows. The expressions obtained
for the intensity of vibrational excitation by a tunneling
current in various systems permitted us to determine the
general conditions which influence the generation intensity.
The generation of atomic vibrations is stronger in symmetric
contacts where the tunneling coupling of a molecule with
different contact leads is approximately equal. In contrast,
the generation is suppressed in an asymmetric contact with
noticeably different rates of tunneling transitions to the
different leads of the contact.

Due to the interaction of electrons with molecule vibra-
tional modes, the tunneling characteristics acquire peculia-
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Figure 20.Nonequilibrium occupation numbers for vibrationalmodes of a

diatomic chain at various couplings with contact leads: curve 1 corre-

sponds to gp 4 gk, and curve 2 corresponds to gp 5 gk.
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rities whose positions are related to the energies (frequencies)
of vibrational modes. The shape of these peculiarities is not
universal: it depends on the system type and particular
parameters of the tunneling contact. Qualitatively, we may
say that the peculiarity shape depends on the ratio between
the `elastic' and `inelastic' contributions into the tunneling
current due to an electron±phonon interaction. The elastic
addition relates to the change in the density of electronic
states caused by the interaction. The inelastic addition arises
when real processes of phonon emission start in the contact.
The elastic contribution always deteriorates the contact
conductance, whereas the inelastic contribution provides a
conductance increase due to the emergence of an additional
channel for electron transport.

The theory makes it possible to determine a peculiarity
shape at various contact parameters. Hence, the tunneling
spectroscopy may principally allow not only finding the
frequencies of molecular vibrations, but also obtaining
information on tunneling contact parameters, for example,
on the ratio of tunneling transition rates.

In small molecules with a large energy separation between
electronic levels that are still well resolved despite tunneling
broadening, the peculiarity may appear as a peak or `step-up'
due to a large contribution from an inelastic current. In such
systems weakly bounded to contact leads with discrete
electronic levels, the tunneling conductance exhibits peculiar-
ities not only at voltages corresponding to the vibrational
energies, but also at voltages separated from the electron
energy level by the phonon energy.

According to experiments and the theoretical calculations
of some authors, an elastic contribution prevails over an
inelastic one for large molecules and long atomic chains. This
results in the tunneling conductance in such systems reducing
as the voltage reaches the energy of a certain vibrationalmode
(the peculiarity looks like a `step-down').

The work was supported by grants NSh-4895.2010.2 and
RFBR 06-02-17179.

8. Appendix.
Derivation of the complete Hamiltonian
describing electron interaction with vibrational
modes in tunneling processes

Initially, tunneling transitions are described by Hamiltonian
(11):

Htun � Tk;1�R� c�k a1 � h:c: �79�

The operators ck correspond to the electronic states in contact
leads, and Tk;1�R� is the overlap integral between the
electronic state with momentum k in the contact lead and
the electronic state of the molecule. Since Tk;1�R� depends on
the positions of the atoms in the molecule, tunneling matrix
element will be modulated with the atomic vibrations in the
molecule. For describing the modulation we may expand the
matrix element Tk;1�R� in a power series of displacement
Rÿ R1 from the equilibrium position R1:

Tk;1�R� � exp

�
�Rÿ R1� q

qR

����
R1

�
Tk;1�R�

� Tk;1�R1� � �Rÿ R1� q
qR

����
R1

Tk;1�R� � . . . : �80�

Below we shall show that an expansion in a power series of
displacement Rÿ R0 from another equilibrium position R0

would give the same final formulae for the tunneling
Hamiltonian; consequently, there is no actual arbitrariness
in choosing the point of expansion for the tunneling matrix
element Tk;1�R�. The displacement Rÿ R1 is expressed in the
standard way through the creation and annihilation opera-
tors of vibrational quanta, b�1 and b1, and, in view of
relationship (7), can be expressed in terms of new operators
~b� and ~b:�������������

2Mo1

p
�Rÿ R1� � b1 � b�1

� b�1ÿ ~a�1 ~a1�� ~b� ~b� � 2l� � ~a�1 ~a1� ~b� ~b�� : �81�

In formula (79) it is also necessary to express the initial
electron operators a1 in terms of the operators ~a1 corre-
sponding to true electronic excitations of the whole molecule
under changes of the number of electrons. The inverse
transformation to that in formula (9), which expresses the
initial operators a1 in terms of new operators ~a1, has an
explicit form

a1 � ~a1 exp
�
bl� ~bÿ ~b���

� exp
n
y
�

~b ~bÿ ~b� ~b� ÿ 2bl� ~bÿ ~b���o : �82�

In further transformations it is convenient to employ the
fact that the momentum and coordinate operators for
oscillators o1 and o0 suit the relationships

a�1 a1�bÿ b�� � ba�1 a1�~bÿ ~b�� ;
a�1 a1� ~b� ~b�� � ba�1 a1�b� b� � 2l� : �83�

We now substitute expressions (80)±(82) into tunneling
Hamiltonian (79):

Htun � c�k ~a1 exp
�
bl� ~bÿ ~b���

� exp
n
y
�

~b ~bÿ ~b� ~b� ÿ 2bl� ~bÿ ~b���o
� exp

�
1�������������

2Mo1

p
h
b�1ÿ ~a�1 ~a1�� ~b� ~b� � 2l�

� ~a�1 ~a1� ~b� ~b��� q
qR

����
R1

�
Tk;1�R� � h:c:

� c�k ~a1 exp
�
bl� ~bÿ ~b���

� exp
n
y
�

~b ~bÿ ~b� ~b� ÿ 2bl� ~bÿ ~b���o
� exp

�
1�������������

2Mo1

p � ~b� ~b�� q
qR

����
R1

�
Tk;1�R� � h:c: �84�

It should be noted that, because the tunneling matrix element
T�R� in initial expression (79), naturally, commutes with
electron operators and may reside either to the right or to
the left of the operators c�k a1, Hamiltonian (84) can bewritten
out in the equivalent form in which T�R� is to the right of the
electron operators. These two forms are entirely equivalent,
though in final form (84) such a transposition is not obvious
at first glance. Expression (84) can be simplified by using the
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relationships

exp
�
bl� ~bÿ ~b��� expny� ~b ~bÿ ~b� ~b� ÿ 2bl� ~bÿ ~b���o
� exp

�ÿ bl� ~bÿ ~b��� � exp
�
y� ~b ~bÿ ~b� ~b��� ;

exp
�
bl� ~bÿ ~b��� exp � 1�������������

2Mo1

p � ~b� ~b�� q
qR

����
R1

�
� exp

�
bl� ~bÿ ~b�� � 1�������������

2Mo1

p � ~b� ~b�� q
qR

����
R1

�
� exp

�
1

2
�R0 ÿ R1� q

qR

����
R1

�
: �85�

In addition, taking into account that the action of the
operator

exp

�
1

2
�R0 ÿ R1� q

qR

����
R1

�
reduces to a coordinate shift from R1 to �R1 � R0�=2, we
arrive at the final expression for the tunneling Hamiltonian

Htun � c�k ~a1 exp
�
y� ~b ~bÿ ~b� ~b��� exp �bl� ~bÿ ~b��

� 1�������������
2Mo1

p � ~b� ~b�� q
qR

����
�R1�R0�=2

�
Tk;1�R� � h:c: �86�

Let us now show that if expression (80) is expanded about
R0, then the final form (86) is not changed:

Tk;1�R� � exp

�
�Rÿ R0� q

qR

����
R0

�
Tk;1�R�

� Tk;1�R0� � �Rÿ R0� q
qR

����
R0

Tk;1�R� � . . . : �87�

By expressing Rÿ R0 in terms of operators b� and b and the
new operators ~b� and ~b, namely�������������

2Mo0

p
�Rÿ R0� � b� b�

�
�
�1ÿ ~a�1 ~a1� � ~b� ~b���~a�1 ~a1

1

b
� ~b� ~b�ÿ 2bl�

�
; �88�

we obtain instead of formula (84) the following expression

Htun � c�k ~a1 exp
�
bl� ~bÿ ~b���

� exp
n
y
�

~b ~bÿ ~b� ~b� ÿ 2bl� ~bÿ ~b���o
� exp

�
1�������������

2Mo1

p � ~b� ~b� ÿ 2bl� q
qR

����
R0

�
Tk;1�R� � h:c:

�89�
By using relationships (85) once more, we arrive at

Htun � c�k ~a1 exp
�
y� ~b ~bÿ ~b� ~b���

� exp

�
bl� ~bÿ ~b�� � 1�������������

2Mo1

p � ~b� ~b�� q
qR

����
R0

�

� exp

�
1

2
�R1 ÿ R0� q

qR

����
R0

�
Tk;1�R�

� c�k ~a1 exp
�
y� ~b ~bÿ ~b� ~b��� exp �bl� ~bÿ ~b��

� 1�������������
2Mo1

p � ~b� ~b�� q
qR

����
�R1�R0�=2

�
Tk;1�R� � h:c:; �90�

i.e., the same expression as Eqn (86). This confirms that the
appearance of the interaction Hamiltonian is independent of
the point at which the tunnelingmatrix element is expanded in
a power series.

General expression (86) comprises three parameters of
electron±phonon interaction. The parameter ak; p is added to
the parameters y and l (5), which can be determined from
Eqn (86) in the following way:

ak; p �
�������������

�h

2Mo1

s
1

Tk; p

q
qR

Tk; p

����
�R1�R0�=2

:

By expanding general expression (86) to a first order in all
three parameters, we arrive at interaction Hamiltonian (13).
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