
Abstract. The problem of photon linear momentum in a refract-
ing medium is discussed. It is shown that the relations P � �hk
and DM � E=c 2 cannot hold simultaneously in a refracting
medium and that in the particular case of a negative-refraction
medium, light pressure is replaced by light attraction. It is also
shown that the Abraham energy±momentum tensor is actually
not a tensor because of its lack of relativistic invariance.

1. Introduction

The fact that the refractive index n can be negative raises the
question of whether and how physics formulas valid for
positive n can be applied to negative-n materials. It is easy to
show that many commonly known formulas of electrody-
namics and optics often produce gross errors when used
straightforwardly for negative values of n [1, 2]. If n < 0 and
hence the phase and group velocities are antiparallel, some
other formulas (those that do not involve n directly) should
also be used with extreme caution. One example is the well-
known formula P � �hk relating the photon momentum P
(linear momentum in the present context) and the photon
wave vector k. Clearly, for oppositely directed phase and
group velocities, when the wave vector k is negative, this
formula gives a negative value of the photon linear momen-
tum, meaning that light absorbed or reflected by a negative-

refraction medium should produce attraction instead of
pressure [2 ± 4]. This statement is of course strong enough to
require solid foundation and a through analysis of its
consequences, especially because, strange though this may
seem, the value of the photon linear momentum is still
sometimes the subject of discussion even for usual, positive-
n materials. Studies on this topic abound, in Russia in
particular [5 ± 9]. A current bibliography on this subject is
given, in particular, in Ref. [10] and in review paper [11].

The question of the direction and magnitude of the field
linear momentum is closely related to the more general
question of how energy, linear momentum, and mass are
transferred as the field propagates in the material. In
particular, it is necessary to determine the mass transfer from
the emitter to the receiver in the situation where the space
between the two is filled not with the vacuum but with the
medium in which the phase (vph) and group (vgr) velocities of
radiation differ from the speed of light in the vacuum c. We
then assume that, on the one hand, the medium has a certain
amount of frequency dispersion (and hence vph 6� vgr in the
general case) and, on the other hand, we are far from the
absorption lines of the medium, meaning that the absorption
is not too strong and the very concept of group velocity still
has its usual meaning.

2. Light pulse propagation in the vacuum

It is known that if the space between the emitter and the
receiver is filled with the vacuum, then the transfer between
them of electromagnetic radiation with the energy E and the
linear momentum

P � E

c
�1�

is accompanied by the transfer of the mass

DM � E

c 2
: �2�
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This relation readily follows by considering Fig. 1 along the
lines of Ref. [12].

The emitter of mass M that emits a wave packet (or a
photon or a light pulse) of energy E and linear momentum P
receives a leftward recoil

v � P

M
� E

Mc
: �3�

The wave packet reaches the receiver at the instant

t � L

c
; �4�

whereas the emitter travels in this time leftward over the
distance

Dx � tv � LE

Mc 2
: �5�

The requirement that the center of inertia of the system as a
whole not move leads to the relation

DxM � LE

c 2
: �6�

This relation can be interpreted as meaning that as the energy
E is transferred from the emitter to the receiver, the former
loses and the latter acquires the mass DM equal to E=c 2 in
accordance with Eqn (2). We note that the photon itself
remains massless in this geometry [13].

3. On the concept of field linear momentum
in matter

Onemore point to note in the above discussion is the quantity
c that occurs twice in the denominator of Eqn (2). While this
quantity is numerically equal to the speed of light, it is not
entirely understood what role it plays in either of these two
quantities (2). In one possibility, c 2 is simply a numerical
factor introduced tomake both sides of Eqn (2) dimensionally
equal; in another, it may have a more definite physical
meaning. The following analysis of the origin of these two
c's in Eqn (2) readily shows that the latter is the case. It is clear
that one of these quantities came to the denominator in the
right-hand side of Eqn (2) from relation (1), whereas the other
came from Eqn (4). On the other hand, it is also clear that the
factor c in Eqn (1) has the meaning of the phase velocity of
light cph, whereas the same factor in Eqn (4) has the meaning
of the group velocity cgr. That both factors are numerically
equal to the speed of light in the vacuumdoes not change their
physical meaning, nor does it change the fact that each of
them has a meaning of its own. Equation (2) can then be

rewritten in the somewhat different form

DM � E

cphcgr
: �7�

A quite reasonable question that arises from this equation is:
Howmuchmass is transferred from the emitter to the receiver
if (in the configuration of Fig. 1) all the space between them is
filled with a material whose phase velocity vph and group
velocity vgr are different from c? Does the modification of
Eqn (7) to

DM � E

vphvgr
�8�

hold in this case (see Refs [14, 15])?
Perhaps the even more interesting question to ask is: Does

Eqn (8) hold if the space between the emitter and the receiver
is filled with a negative-refraction material? In that case, the
phase and group velocity vectors are antiparallel, making
mass transfer negative. This is equivalent to saying, para-
doxically, that an emitter in a negatively refracting medium
does not lose, but rather gains, mass and that the radiation
receiver is subject to attraction rather than pressure from light
[14 ± 16].

Toclarify these statements,wemust first define the concept
of the linear momentum of an electromagnetic field in a
medium. It is commonly pointed out when discussing this
question [7, 8] that the linearmomentumof a field propagating
in a medium cannot be distinguished (or, at least is difficult to
distinguish) from that of the medium itself. Indeed, if an
electromagnetic field is present in a certain volume of the
medium (and is defined by the field strength and induction
vectors), particles in themediumundergo somekindofmotion
that can be described in terms of the displacements of and
tension between the particles. We are primarily interested in
the field-period-averaged quadratic functions of these quan-
tities, because these functions determine the permanent
mechanical (ponderomotive) forces acting on the medium.
Clearly, in this setting, we actually treat the electromagnetic
field as an ensemble of some kind of quasiparticles, which can
be called quasiphotons. Nevertheless, asking howmuch linear
momentum the flux of such particles transfersÐor, equiva-
lently, what the field linear momentum in the medium isÐ is
quite legitimate, as is asking about the size of the emitter-to-
receiver mass transfer in the presence of the flow of such
quasiparticles. (We emphasize once again that the mass
transferred from the emitter to the receiver need not necessa-
rily be equal to the mass of the quasiphoton [13].)

Given the ambiguity in splitting the field linearmomentum
in a medium into contributions from the field proper and the
medium, we rely on Fig. 2 to define the field linearmomentum
in the medium. In this figure, light enters from the vacuum on
the left, travels through a transparent nonabsorbing body,
and is absorbed in an absorber that is located on the right and
matched with the transparent body, such that the light is not
reflected as it enters the absorber. Nor does the light entering
the transparent body at the matched left face undergo
reflection. The left face is fixed, as the two vertical arrows
indicate. The energy flux density of the light entering the
transparent body is equal to the Poynting vector S and
remains the same within it. The linear momentum flux
density of light is P0 � S=c in the vacuum and

nP0 � nS

c
� S

vph

L

Emitter, massM Receiver

Wave packet, energy E

Momentum P � E=c

Figure 1. Transfer of a wave packet from an emitter to a receiver in the

vacuum.
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inside the body. Here, n is the refractive index of the medium.
The fact that the linear momentum flux density in the vacuum
differs from that in themedium results in themechanical force
density

F1 � �1ÿ n�P0 �9�

on the input face of the transparent body. But in the geometry
that we use (the left face is fixed!), this force leaves the
transparent body unmoved as a whole.

The boundary between the body and the absorber is also
acted upon by the mechanical (ponderomotive) force whose
magnitude is equal to the linear momentum flux density in the
transparent body, i.e.,

F2 � nP0 : �10�

Due to this force, a corresponding stress develops in an
arbitrary cross section A ±B of the body; very importantly,
it changes sign with the sign of n. If n is positive, the boundary
between the transparent body and the absorber is subject to
light pressure and the cross section A ±B, correspondingly, to
tension. For a negative n, light pressure is replaced by light
attraction [3, 14 ± 16], and the cross section A ±B turns out to
be under pressure.

The important point is that for any value of n, the sum F0

of the forces acting on both faces of the transparent body is
determined only by the linear momentum P0 transferred by
the incident beam, and is equal to

F0 � F1 � F2 � P0 : �11�

The force F0 is balanced by the reaction force of the fixing
device on the left face of the transparent body.

4. Ponderomotive force at the emitter±medium
interface

We return to relation (8), which is thus far a certain
assumption that extends the results in Ref. [12] to the case
where all the space between the emitter and the receiver is
filled by a material whose phase velocity vph and group
velocity vgr are both different from c (see Fig. 3). In
discussing the forces F1 and F2, the uncertainty arises as to
how to determine the points (or more precisely, planes) of
their application. It is not clear, for example, whether F1 is
applied to the emitter or the transparent body. This
uncertainty makes it difficult to determine the displacements
that occur in the system during the passage of light. Changing
the system geometry to that in Fig. 4 helps elucidate this
question. A new feature in Fig. 4 is that it shows the vacuum
gaps separating the transparent body from the emitter and
from the receiver. The width of the gaps is much less than the
length of the transparent body but much larger than the light

wavelength. In this situation, for example, the force between
the emitter and the transparent body can be decomposed into
two components, F1 between the emitter and the vacuum, and
F3 between the vacuumand the transparent body. Clearly, the
total force between the emitter and the transparent body is
now the sum of F1 and F3 and is equal to the corresponding
total force in Fig. 3 (also denoted by F1).

The use of the geometry in Fig. 4 avoids the need to
consider the forces acting in the near-interface region at the
junction between the emitter (receiver) and the transparent
body. We consider a short-duration wave packet of energy E
traveling from the emitter to the receiver in this geometry.
When leaving the emitter, the wave packet imparts the linear
momentum P � E=c to the emitter, causing it to move to the
left at the speed v � E=Mc. From Eqn (2), this means that the
emitter loses the mass E=c 2. When the wave packet reaches
the front face of the transparent material, the linear
momentum P � E=c and the mass E=c 2 are transferred to
the material. After crossing the front face of the transparent
body, the energy of the wave packet remains equal to E, and
the linear momentum is given by

P1 � E

vph
� En

c
; �12�

where n is the refractive index of the transparent material. We
thus see that the wave packet that entered the transparent
material with the linear momentum P � E=c has the linear
momentum P1 � En=c in that material, in accordance with
Eqn (12). Also, by the linear momentum conservation law,

S S

A

B

P0
nP0

Figure 2. Schematic of light propagating in a transparent body and then

absorbed in a matched absorber.

F1 F2

Light beam

Transparent body, phase velocity vph, group velocity vgr

Emitter, massM Receiver

Figure 3. Linear momentum and mass transfer from emitter to receiver in

the case where the space between them is filled with material with phase

and group velocities different from c.

F1

Light beam

Transparent body, phase velocity vph, group velocity vgr

Emitter, massM Receiver

F2

F3 F4

Figure 4. Light passage in the presence of gaps at the boundary of the

transparent body. Forces F1ÿF4 correspond to the case of continuous

radiation from the emitter to the receiver.
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the transparent material gains the linear momentum

P2 � P1 ÿ P � �nÿ 1�P �13�

and starts moving to the left (if n > 1) at the speed

v � P2

M1
� �nÿ 1�P

M1
; �14�

whereM1 is the mass of the transparent material.
When the wave packet crosses the back face of the

transparent material, the process occurs in reverse: the
transparent material stops, the receiver starts moving to the
right after gaining the linear momentum P � E=c and mass
E=c 2, and the center of inertia of the system as a whole comes
to a halt.

How far did the center of inertia move during the packet's
travel time from the emitter to the receiver? This travel time is
readily shown to be

t � L

vgr
; �15�

where L is the distance from the emitter to the receiver and vgr
is the group velocity. The length of the transparent body is
assumed to be equal to L.

The distance the emitter travels in time t is

Dx1 � tP

M
� EL

Mcvgr
: �16�

In the same time, the transparent body travels the distance

Dx2 � EL�nÿ 1�
M1cvgr

: �17�

The requirement that the center of inertia of the entire system
be at rest is given by

MDx1 �M1Dx2 � LDm ; �18�

where Dm is the mass the emitter loses and the receiver gains.
From Eqns (16) ± (18) (and in full agreement with Eqn (8)),
this mass can be expressed as Dm � E=vphvgr. The term
`emitter' refers in this case to the emitter as such, which loses
the energy E, linear momentum P, and mass E=c 2 when
emitting a wave packet; and the front face wall of the
transparent material is a face to which these energy, linear
momentum, andmass are transferred by the wave packet.We
note, however, that the packet then carries the energy E, the
linear momentum �nÿ 1�P, and the mass E�1=vphvgr ÿ 1=c 2�
from the wall, and hence the loss of mass is Dm � E=vphvgr, in
full agreement with Eqn (8). In the neighborhood of the
absorber, things go in reverse.

5. Energy±momentum relation
for a field in a medium

5.1 The Minkowski and Abraham energy±momentum
tensors
Equation (8) sharply contradicts the familiar relation (2). The
reason for this is the energy±momentum relation

P � �hk � E

vph
� En

c
�19�

which we used for our quasiparticle and which, importantly,
involves the phase velocity vph rather than simply the speed of
light c.

We can now formulate the problem in a somewhat
different way by asking the following: What form should the
energy±momentum relation for a quasiphoton take in a
medium in order that, as the quasiphoton passes the
medium, the mass transferred from the emitter to the receiver
be exactly E=c 2? It can be shown following Ref. [6] that the
mass transfer is given by E=c 2 if the energy and linear
momentum of the quasiphoton are related by

P � E

cn
: �20�

With the frequency dispersion neglected, this relation is
identical to the well-known relativistic formula [Ref. [17],
Eqn (9.8)]

P � Ev

c 2
: �21�

The inconsistency between Eqns (19) and (20) fundamen-
tally stems from the following inconsistency inherent to the
very concept of the particle±wave dualism. If a photon (or a
quasiphoton) is considered a particle, then its linear momen-
tum can to a certain approximation be written asP �Mv and
is therefore proportional to the velocity. If it is considered a
wave, its linear momentum is P � �hk � �ho=v, that is,
inversely proportional to the velocity. Because of this
difference, a wave and a particle have different energy±
momentum relations [see Eqns (19) and (20)]. This is of little
or no importance for photons propagating in the vacuum but
leads to problems when considering a photon (quasiphoton)
in a medium.

We note that the `nonstandard' expressionDM�E=vphvgr
is found in some papers published even before our papers
[14, 15], where some bibliography is provided. Later, this
expression was also obtained in Ref. [16], neglecting
frequency dispersion. Choosing between Eqns (19) and (20)
for the photon energy±momentum relation is a century-old
problem, dating back to the works of Minkowski [18] and
Abraham [19], each of whom suggested a form of his own for
the energy±momentum tensor of the electromagnetic field.

The energy±momentum tensor Tik is important in that it
allows expressing the four-dimensional ponderomotive force
fi acting on an electromagnetic medium. The tensor Tik and
the force fi are related by

fi � qTik

qxk
: �22�

We note that Minkowski's and Abraham's forms of the
tensor can be written in combined form as

Tik � yab gc

S=c W

� �
; �23�

where the quantities yab are the spatial components of the
tensor, with a; b � x; y; z; g is the field linear momentum
density; S is the Poynting vector (energy flux density); andW
is the field energy density. In the Appendix, the concrete
forms of all of these quantities (taken from Ref. [8]) are
provided for either tensor form.

As can be seen from the Appendix, the only difference
between the tensorsÐand exactly the one that matches the

652 V G Veselago Physics ±Uspekhi 52 (6)



difference between Eqns (19) and (20)Ð is in the magnitude
of the linear momentum density g.

Obviously, calculating the ponderomotive forces from
Eqn (22) yields different results depending on which tensor
is taken to be Tik. Whereas the Minkowski tensor causes no
problems when using Eqn (22), determining the forces fi by
means of the Abraham tensor turns out to require [8] that
Eqn (22) be modified by introducing the so-called `Abraham
force'

f A
i �

n 2 ÿ 1

4pc
q
qt
�EH�i ;

such that Eqn (22) becomes

fi � qTik

qxk
� f A

i �
qTik

qxk
� n 2 ÿ 1

4pc
q
qt
�EH�i : �24�

This expression, with Tik taken to be the Abraham from
tensor, yields the same fi as follows from Eqn (2) with the
Minkowski tensor. Another reason why the Abraham tensor
cannot be directly used in Eqn (22) is that it is not
relativistically invariant, as direct calculation shows.

There is onemore problem that arises when using Eqn (22)
to calculate the forces the field exerts on a frequency-
dispersive medium, in particular, if the medium has both its
dielectric constant e and magnetic permittivity m negative. In
this case, the energy density should be written as

W � q�oe�
qo

E 2 � q�om�
qo

H 2 ; �25�
instead of the simpler expression W � eE 2 � mH 2. Equation
(25) corresponds to the component T44 of the energy±
momentum tensor (in any form). Usually, however, no
question arises as to whether all the other components of the
energy±momentum tensor should also be modified in some
way in the presence of dispersion.

5.2 Energy±momentum tensor in Rytov and Polevoi forms
In this connection, we note the Rytov±Polevoi modification
of the energy±momentum tensor [20]. Rytov and Polevoi
showed that the energy±momentum tensor can be greatly
simplified by introducing the four-dimensional group velocity

Uk �
�

u���������������������
1ÿ u 2=c 2

p ;
c���������������������

1ÿ u 2=c 2
p �

�26�

and the four-dimensional wave vector

Ki �
�
k;

o
c

�
: �27�

Expressed in terms of these quantities, the components of the
energy±momentum tensor take the very compact form

Tik �W

o

��������������
1ÿ u 2

c 2

r
KiUk : �28�

We note that the energy density is W � T44, the Poynting
vector is Sa � T4a, the linear momentum density is
ga � 1=cTa4, yab � Tab and u is the three-dimensional group
velocity. Equation (28) is valid in the presence of frequency
dispersion, whatever the sign of n. Substituting the energy
density from Eqn (25) in Eqn (28) automatically introduces

necessary changes into all the components of the energy±
momentum tensor.
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6. Appendix

The components of the energy±momentum tensors according to
Ref. [8]
The Minkowski and the Abraham tensors have the common
form given in (23).

The components of the Minkowski tensor are

yab � 1

4p
�EaDb �HaBb� ÿ 1

8p
dab�ED�HB� ; �A:1�

S� c

4p
�EH �; g� 1

4pc
�DB�; W � 1

8p
�ED�HB�: �A:2�

The components of the Abraham tensor are

yab � 1

4p
�EaDb �HaBb� ÿ 1

8p
dab�ED�HB� ; �A:3�

S� c

4p
�EH�; g � 1

4pc
�EH�; W � 1

8p
�ED�HB�: �A:4�

Here, E and H are the electric and magnetic field strengths,
and D and B are their respective inductions.

Note added to the English proofs
After the publication date of the Russian original of this
paper, at the PIERS-2009 Conference (Moscow, Russia,
August 18±21), the talk ``Negative radiation-pressure
response of a left-handed plasmonic metamaterial'' was
presented by H Lezec and K Chau (NIST, USA). The
authors interpreted their results as an experimental evidence
of the validity of the Minkowski tensor. At the same time,
other scientists have argued against the Minkowski tensor
and in favor of theAbraham tensor; these arguments were not
considered in our paper. Given the evident scientific interest
in this problem, the author hopes to discuss it in the future
publications.
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