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Formation kinetics of the Bose condensate
and long-range order

Yu M Kagan

The rapidly developing area of research related to ultracold
gases has opened up the unique possibility of studying the
formation kinetics of a Bose condensate and long-range
order. The isolation of a gas from the walls in magnetic and
electric traps and the possibility of observing the intrinsic
real-time evolution of the system are the decisive factors in
this case. Although the first theoretical papers in this field
appeared in the early 1990s, it was not until 2007 that the first
experimental research on the time evolution of long-range
order was reported in the literature [1 ± 2]. A vigorous study of
this phenomenon was pursued between these dates, and this
report is concerned with the analysis of the data and existing
notions in this area.

The capability of rapid cooling by cutting off the
Maxwellian tails enables studying the evolution starting
from the points in time when all correlation properties of a
gas are purely classical and there is not the slightest trace of
a condensate. In this case, the kinetics proceed with
conservation of the total energy and the number of
particles in the system. As it turns out, the evolution
comprises four stages.

During the first stage, which is described by the Boltz-
mann equation, a particle flux forms in the energy space,
directed towards lower energies. When the particles that
constitute the condensate in equilibrium occur in the energy
range where the kinetic energy is lower than the interparticle
interaction energy, the formation of collective correlations
sets in and the kinetic equation is no loner valid (the number
of particles that fall into this energy range, which is commonly
termed the coherence interval, is comparable with the total
number of particles). But even before this, the evolution goes
through a stage during which all occupation numbers of
individual modes become much greater than unity. As
shown in Refs [3, 4], the system is then adequately described
by the classical Bose field, which obeys the nonlinear
SchroÈ dinger equation in the form of the Gross ± Pitaevskii
equation. The solution of this equation leads to an important
result: in the coherence interval, the fluctuations of density
are suppressed and the single-particle density matrix depends
only on phase fluctuations. At this stage, a special quasicon-
densate state emerges, which is equivalent to the genuine
condensate in local properties, but has no long-range order.
An instantaneous picture of the gas actually demonstrates the
division of the system into finite-size quasicondensate
domains. Each domain has a specific phase in the absence of
phase correlation between different domains.

This picture underlay the prediction that the evolution
during the third stage should be accompanied by the
emergence of a vorticity structure. This prediction was
borne out by the direct numerical solution of the nonlinear
Schr�odinger equation [5], which demonstrated the emergence
of a vorticity ball and its temporal evolution.

The final stage is characterized by the damping of
nonequilibrium regular-phase fluctuations and the relaxa-
tion of the vorticity structure. This occurs with an increase of

quasicondensate domains in size, which is effectively equiva-
lent to an increase in the density-matrix decay distance,
thereby determining the evolution of the long-range order
scale [3, 4] (see also Ref. [6]). The long-range order settling
time tL increases with the domain size L: tL � Ln, where
n � 1ÿ2, depending on parameter ratios.

The report presents a comparison with the theory and a
comprehensive analysis of the experimental results found in
Refs [1, 2], especially of the temporal evolution of long-range
order formation [1]. The analysis relies on the theory
elaborated for the analog of the Hanbury ±Brown ±Twiss
effect for particles in the `two sources, one detector' setup in
the evolution of a nonequilibrium system involving a
classical-to-quantum transformation of correlations [7].
Experimental data are qualitatively and quantitatively
compared with theoretical predictions.
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Superêuid Fermi liquid in a unitary regime

L P Pitaevskii

1. Introduction

When choosing the subject of my presentation at this session
dedicated to the 100th anniversary of the birth of Landau, I
wanted to speak about something that would have surprised
Landau. I believe that the recently prepared physical
objectÐa universal superfluid Fermi liquidÐmeets this
requirement in the best way possible.

As is well known, Landau did not regard the microscopic
theory of fluids as a problem worth being occupied with. I
quote a well-known passage from Statistical Physics [1]: ``In
contrast to gases and solids, liquids do not permit calculating
the thermodynamic quantities or at least their temperature
dependences in the general form. The reason lies with the
strong interaction between the molecules of a liquid and, at
the same time, the absence of the smallness of oscillations,
which imparts simplicity to the thermal motion in solids.
Because of the high intensity of molecular interaction, the
knowledge of a specific interaction law, which is different for
different liquids, becomes significant for calculating thermo-
dynamic quantities.''

This statement is perfectly correct for all liquids existing in
nature. However, progress in experimental techniques has
recently enabled preparing liquids with properties indepen-
dent of any quantities that characterize the interaction. This
situation emerges because the interatomic interaction in these
bodies is, in a sense, infinitely strong. The case in point is
ultracold gases near the so-called Feshbach resonances.
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First of all, we pose the question: what is the word liquid
taken to imply? We accept a natural definition: a liquid is a
fluid body with a strong interaction between its particles. We
emphasize that fluidity implies the absence of strict periodi-
city, of a crystalline long-range order.

The liquids of interest to us are made from gases whose
atoms obey the Fermi statistics. The gas is dilute in the sense
that the average interatomic distance nÿ1=3, where n is the
atomic number density, is much greater than the character-
istic range r0 of interatomic forces:

r0 5 nÿ1=3 : �1�

Condition (1) is always satisfied for the objects under
consideration. However, the fulfillment of this condition
does not yet signify that we are dealing with a gas in the
sense that the interaction is weak. Let the temperature be
sufficiently low, such that the gas is degenerate, T4EF.

1 It is
then valid to say that all body properties depend on one
parameter f, the amplitude of the scattering of atoms with the
orbital momentum l � 0 by each other. The interaction is
weak, i.e., the body is indeed a gas, if the amplitude is small in
comparison with the interatomic distances:

j f j5 nÿ1=3 : �2�

The quantities r0 and j f j are typically of the same order of
magnitude and conditions (1) and (2) are practically equiva-
lent. However, this is not the case when a system of two atoms
has an energy level close to zero. According to the general
scattering theory, the scattering amplitude is then expressed
in the form (see, e.g., Landau and Lifshitz [2]) f �k� �
ÿ�aÿ1 � ik�ÿ1, where k is the wave vector and a � ÿf �0� is
the scattering length, a constant that characterizes the
scattering completely. When a > 0, the system of two atoms
has a bound state with the negative energy E � ÿ�h 2=ma 2.
When a < 0, the system is said to have a virtual level. If jaj is
high enough, jaj5 kÿ1 � nÿ1=3, the interaction weakness
condition (2) is certainly violated and we are by definition
dealing with a liquid, although a dilute liquid in the sense of
condition (1). In this case, its properties are characterized by
the sole parameter a. When jaj4 kÿ1, the scattering ampli-
tude reaches its `unitary limit' f � i=k. The length a then drops
out of the theory and we are dealing with a universal liquid,
whose properties do not depend on the interaction at all. Of
course, the picture under discussion implies the possibility of
changing the scattering amplitude. This opportunity arises in
the presence of Feshbach resonances, in the vicinity of which
the position of the energy level of the system of two atoms
depends on the magnetic field [3]. The scattering length as a
function of the magnetic field can be represented as

a � abg

�
1ÿ DB

Bÿ B0

�
: �3�

Near the resonance B � B0, the scattering length is large and
the system is a universal liquid.

We qualitatively consider the properties of the system at
T � 0 in different ranges of the scattering length a. When this
length is positive and relatively small, r0 5 a5 nÿ1=3, the
system of two atoms has a bound state and the atoms combine
to form molecules with a binding energy E. The system is a

Bose gas consisting of weakly bound diatomic molecules, or
dimers. It is significant that the dimer ± dimer scattering
length add is positive, i.e., these molecules experience mutual
repulsion. Calculating add is an intricate problem, which was
solved in [4]. It turned out that add � 0:6a. Therefore, in this
regime, the system is a weakly nonideal superfluid Bose gas
described by the Bogolyubov theory [6], with the obvious
change m! 2m, a! 0:6a.

The question of the lifetime of this system is of paramount
importance for the entire area of physics involved. This
lifetime is limited by transitions from the weakly bound level
to deep molecular levels in molecular collisions accompanied
by the release of a large amount of energy. The molecule
number loss in these inelastic processes is described by the
equation _nd � ÿaddn 2

d . The dependence of the recombination
coefficient add on a was also studied in Ref. [4]. It turned out
that add / aÿ2:25. Therefore, the system becomes more stable
with an increase in the scattering length, i.e., as the resonance
is approached. This paradoxical result stems from the Fermi
nature of atoms or, to be more precise, from the fact that
fermions with parallel spins cannot reside at the same point.
In a Bose gas, which was also studied in experiments, the
lifetime decreases sharply as the resonance is approached.
This is the reason why only the Fermi liquid can actually be
investigated in the unitary mode. The experimentally mea-
sured dependence of add on a is depicted in Fig. 1. It is in
satisfactory agreement with the theory.

We now consider the opposite limit case, where the
scattering length is negative and small in modulus, a < 0,
r0 5 jaj5 nÿ1=3, as is the case on the opposite side of the
resonance. The system is then a weakly nonideal Fermi gas
with attraction between the atoms. According to the
theoretical concepts of Bardeen ±Cooper ± Schrieffer and
Bogolyubov, the occurrence of a Fermi surface gives rise to
Cooper pairs in this case. As a result, a gap appears in the
fermion energy spectrum and the system becomes superfluid.

In the immediate vicinity of the resonance, the system is a
universal unitary Fermi liquid. Because the system is super-
fluid in both limit cases considered, it is reasonable to assume
that it is superfluid in all of the interval of a values. (Different
arguments are presented below.) Of course, the system is then
assumed to be stable in the unitary mode. This assumption is
supported by the wealth of experimental data and theoretical
calculations.

1 In all formulas, we set kB � 1.
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Figure 1. The dimer recombination coefficient add as a function of the

scattering length a (borrowed from Ref. [5]). The slope of the dashed line

corresponds to the theoretical dependence add / aÿ2:5.
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Prior to discussing these results, I briefly describe the
typical experimental arrangement using the example of a
facility at Duke University [7] (Fig. 2a). Two types of Fermi
atoms were actually used in the experiments, 6Li and 40K
isotopes. The isotope choice was dictated by the presence of a
Feshbach resonance in a convenient range of the magnetic
field and the occurrence of spectral lines in a convenient
wavelength range. The atoms are confined in an optical trap
formed by a focused laser beam. The chosen light frequency is
somewhat lower than the absorption line frequency, and
therefore the atoms are `attracted' to the intensity peak.
Because the intensity near the focus decreases rapidly in the
radial direction and slowly in the axial direction, the sample

was elongated and cigar-shaped. Solenoids induce the
magnetic field required to attain the resonance. Since the
main objective of the experiments was to investigate super-
fluidity, two types of fermions were needed. In superconduc-
tivity theory, electrons with opposite values of spin projection
are usually considered. In our case, atoms in different
hyperfine structure states were used.

Experiments with fermions are arduous and the number
of groups working with them is smaller than the number of
groups investigating the Bose ±Einstein condensation. The
work is undertaken at the JILA (Joint Research Institute of
the National Institute of Standards and Technology and the
University of Colorado) (Boulder), Massachusetts Institute
of Technology (MIT) (Boston), Duke University (Durham),
and Rice University (Houston) in the USA, the �Ecole
Normale SupeÂ rieure (Paris) in France, and the University of
Innsbruck in Austria. It is a pleasure for me to mention that
A Turlapov, one of the leading experimenters at Duke
University, has returned to Nizhnii Novgorod and is making
a facility there.

I give the typical parameters of recent experiments. The
number of atoms in the trap isN � 3� 106ÿ107 and the atom
density at its center is n � 2� 1012. Accordingly, the Fermi
energy is EF � 200ÿ500 nK and the magnitude of the Fermi
wave vector is kF � 0:3 mmÿ1. The parameters of the trap are
conveniently characterized by the frequencies of atomic
oscillations in it. The radial frequency n? normally lies in
the 60 ± 300 Hz range and the longitudinal frequency
nz � 20 Hz. The lowest attainable temperature turns out to
be under 0:06EF, i.e., of the order of 10 nK.As is evident from
the subsequent discussion, it has been possible not only to
conduct experiments at these prodigiously low temperatures
but also to set up a thermodynamic temperature scale in this
domain. I cannot enlarge on the techniques of gas cooling,
and only mention that during the final stage, the gas is cooled
due to the evaporation of the faster atoms from the trap,
much like tea is cooled in a cup left on a table.

One of the most important experimental tasks was to
ascertain that the system was superfluid. An immanent
property of superfluidity is the existence of quantized
vortices. The velocity circulation around a vortex in a Fermi
liquid is G � p�h=m, two times smaller than in a Bose liquid.
Accordingly, in the rotation with a sufficiently high angular
velocity O, the number of vortices per unit area must be equal
to 2Om=�p�h�. How can the liquid be set in rotation? MIT
experimenters positioned a pair of thin laser beams along the
trap axis, which were shifted from the axis (Fig. 2b) [8]. This
`mixer' rotated about the axis and entrained the liquid. At
some instant, the trap was disengaged, the liquid expanded,
and observations of the density distribution were made. The
result is shown inFig. 3. The vortex cores are observed as dark
reduced-density domains. A simple calculation of the number
of vortices confirms the theoretical value of the circulation
given above.

We now consider the liquid precisely at the resonance
point, when a! �1. (It is pertinent to note that this is not a
phase transition point.) We begin from the properties of a
uniform liquid at T � 0. Apart from the density, there are no
parameters at our disposal on which the thermodynamic
functions may depend. Dimensionality considerations sug-
gest, e.g., that the chemical potential of the liquid must be of
the form

m�n� � xm id�n� ; �4�

a

b

Figure 2. (a) Schematic of the facility employed at Duke University to

investigate the properties of a Fermi gas in an optical trap near a Feshbach

resonance (borrowed from [7]). (b) Schematic of the facility used at MIT

for investigating the rotation of a superfluid Fermi gas (borrowed

from [8]). Two laser beams aligned with the axis set the gas in rotation.

Separately shown is the scheme for observing the vortices from the

shadowgraph of the expanding fermionic cloud.
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where m id�n� � �3p 2n�2=3��h 2=m� is the chemical potential of
an ideal Fermi gas with the density n for T � 0 and x is a
dimensionless coefficient independent of the kind of liquid.
The theoretical task consists in the calculation of x and the
experimental task involves its measurement. The first esti-
mates of x were made proceeding from the Bardeen ±
Cooper ± Schrieffer ±Bogolyubov (BCSB) theory. This the-
ory is a mean-field theory and, needless to say, is inapplicable
near the unitarity point. But its ingenious generalization to
the strong-coupling case has allowed obtaining formulas
sound in both limit cases (see, e.g., [9]). At exactly the
unitarity point, this theory yields x � 0:59. The most reliable
result is provided by calculations involving the quantum
Monte Carlo (QMC) technique: x � 0:42 [10]. It is note-
worthy that the absence of a small parameter in the theory is
substantially favorable to numerical calculations. It is not
infrequent that the existence of such a parameter impairs
convergence. An attempt has been made to apply the e-
expansion technique, which relies on the fact that x � 0 in a
four-dimensional space [11]. The theory is constructed in the
space ofD � 4ÿ e dimensions under the assumption that e is
small, and the results are then extrapolated to e � 1. This
technique, which is highly beneficial in the theory of phase
transitions, supposedly yields poor accuracy in this case. It is
significant that the parameter x < 1. This signifies that the
interaction at the unitarity point lowers the fluid pressure, i.e.,
is an effective attraction. It is therefore reasonable that it leads
to fermion pairing and to superfluidity. A quantitative
characteristic of the pairing is the gap D in the Fermi branch
of the spectrum. Once again, the dimensionality considera-
tions suggest that

D�n� � ym id�n� : �5�

QMC calculations yield y � 0:5 [10].
We now turn our attention to the experimental verifica-

tion of the theory. The most direct method of determining x
consists in the precise measurement of fluid density in the
trap. In the semiclassical approximation, this distribution is
given, in view of expression (4), by the equation
xm id

�
n�x��� V�x� � const. Fitting to the observed distribu-

tion allows determining x. At Rice University, the value
x � 0:46 was thus found for 6Li [12]. Another method was
applied by experimenters at JILA, who worked with 40K.
They measured the density distribution and calculated the
potential energy Upot �

�
n�x�V�x� dx of the liquid, which is

proportional to
���
x
p

[13]. By this means, they obtained the
value x � 0:46. The proximity of the values for 6Li and 40K to
the theoretical one confirms the universal nature of x.
Reliable measurements of the gap D, in my opinion, have
not been made to the present day.

Important information about the properties of the liquid
may be obtained by investigating its oscillations in the trap.
These oscillations are described by the Landau superfluid
hydrodynamics [14]. (I emphasize that Landau believed from
the outset that his equations applied both to Bose and Fermi
superfluid liquids.) An especially simple result for the
oscillation frequencies in a harmonic trap is obtained for a
liquid with the polytropic equation of state m�n� / n g. We
consider an important type of oscillation: axially symmetric
radial oscillations whose frequency iso � �����������������

2�g� 1�p
o? [15].

According to this formula, in the molecular limit (a > 0,
na 3 5 1), when m / addn, i.e., g � 1, the frequency o � 2o?.
In the unitary limit and BCSB limit, g � 2=3 as in an ideal
Fermi gas and o � ����������

10=3
p

o? � 1:83o?. For intermediate
values of a, the frequency cannot be calculated analytically,
but it appears reasonable that the frequency for a > 0 is
monotonically decreasing with increasing a. These were
precisely the indications of the first experiments. Theories
that have this property and rely on the mean-field approx-
imation have also been proposed.

However, the situation is not that simple. For na 3 5 1, the
theory permits rigorous calculations of not only the first term
in m but also a correction, which was first determined in [16].
This gives a correction to the frequency equal to [17]

do
o
� �0:72

�������������������������
n�x � 0� a 3

dd

q
: �6�

The positive correction sign signifies that the frequency must
initially increase with increasing a and only then decrease to
attain the limit value 1:83o?. This reasoning was disputed on
the grounds that molecular dimers are nevertheless not
entirely bosons. However, correction (6) bears a clear
physical meaning. It stems from the contribution to the
energy made by zero-point phonon oscillations, whose
occurrence in the superfluid liquid is beyond question. This
is why it is anomalously large, of the order of the square root
of the gas parameter na 3, while the `normal' expansion is
performed in this parameter. All this leads us to the statement
that the author has been vigorously promoting, namely, that
the monotonic behavior of the frequency would imply a
catastrophe for the theory. Fortunately, the situation has
recently been clarified. New experiments do yield above-2o?
values of the frequency on the molecular side of the
resonance. They are in good agreement with the calculations
throughout the interval of a values performed by the QMC
technique [19] (Fig. 4).We note that the disagreement with the
data of previous experiments is attributable to the fact that
the temperature in those experiments was not low enough.
Meanwhile, correction (6) is temperature sensitive, because it
is related to the excitation of relatively low energies �ho � m.

We now discuss the fluid properties at the unitarity point
at finite temperatures. In this case, the temperature is
assumed to be not too high, and therefore the wavelength of
atoms in their thermal motion is long in comparison with the
atomic size: r0 5 �h=

�������
mT
p

. We are actually dealing with
temperatures of the order of EF.

The question of the temperature of transition to the
superfluid state is all-important here. The most reliable data
were obtained in [20] using the Monte Carlo technique:

1.6
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0 ÿ0.7

730 833

a b c
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Interaction parameter 1=kfa

935

Figure 3.Quantized vortices in a rotating superfluid Fermi gas (borrowed

from [8]): (a) corresponds to a dilute gas of dimers, (b) to a Fermi liquid in

the vicinity of the unitarity point, and (c) to a dilute Fermi gas with a weak

attraction between the atoms.
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Tc � 0:16m id. This result is in good agreement with experi-
ment. It is noteworthy that the transition temperature is
relatively low, and hence at temperatures somewhat higher
thanTc, we face an interesting research objectÐa degenerate
normal Fermi liquid in the unitary regime.

At finite temperatures, the equation of state cannot be
written proceeding from only the dimensionality considera-
tions. But these considerations lead to important similarity
relations. For instance, the chemical potential is of the form
m�n;T � � m id�n� fm�T=m id�n��; the entropy per atom can be
written as s�n;T � � fS�T=m id�n��. The last relation implies
that under an adiabatic density variation, the temperature
varies as / n 2=3, as in an ideal monoatomic gas.

For a fluid in the trap, these formulas lead to an important
integral relation. Following the standard derivation of the
virial theorem, it can be shown that

2Upot � E ; �7�

where Upot is the potential energy and E is the total energy,
i.e., the sum of potential, internal, and hydrodynamic kinetic
energies [21]. As indicated above, Upot can be calculated
directly from the measured density distribution. The total
energy may be changed in a controllable way. For this, the
trap potential was switched off for some `heating time' theat.
During this period, the liquid was free to expand. The sum of
the kinetic and internal energies was conserved in the process.
Then, the trap was turned on again and the system came to
equilibrium, and its potential energy, which was measured
anew, turned out to be higher. This ingeniousmethod enabled
the authors of [21] to verify relation (7) with high precision
and thus confirm the similarity laws formulated above.

The total entropy S � � n�x� s�x� dx of the system as a
function of its energy E was measured in a similar experiment
in [22]. In the experiment, the energywas varied andmeasured
as described above; tomeasure the entropy, themagnetic field
was adiabatically increased, taking the system away from
resonance, where the interaction was insignificant. Measure-

ments of the cloud dimension enabled calculating the entropy
from the formulas for an ideal Fermi gas, which, due to the
adiabaticity of the process, was equal to the entropy of the
liquid before the increase in the magnetic field. It is
noteworthy that the derivative T � dE=dS directly yields
the absolute temperature of the system. I believe that the
capability of measuring the absolute temperature in the
nanokelvin domain is a wonderful achievement by itself.
Another way of measuring the absolute temperature is
described below.

The aforesaid leaves no room for doubt that the
theoretical notions about the properties of a `unitary' super-
fluid liquid are amply borne out by experiments. I believe,
however, that the significance of the issue calls for high-
precision verification. Such a possibility does exist. For this,
the fluid should be placed in a trap that is harmonic and
isotropic with a high degree of accuracy. Then, we can state
with certainty that the spherically symmetric cloud pulsations
are precisely equal to 2oh in frequency, where oh is the
eigenfrequency of the trap, and do not attenuate [23]. This
theorem is valid both below and above the superfluid
transition point and applies to oscillations of arbitrary
amplitude. It is a corollary of the hidden symmetry of the
system at the unitarity point. (A similar situation occurs for
oscillations of a dilute Bose gas in a cylindrical trap [24, 25].)
The absence of damping signifies that the second viscosity z of
the fluid is equal to zero above the transition point. Of the
three second viscosity coefficients introduced byKhalatnikov
[26], z1 and z2 turn out to be zero [27] in the superfluid phase.

So far, we have dealt with experiments in which the
numbers of atoms in two spin states were equal. Recently,
active work commenced to study polarized systems in which
the number of atoms in one spin state (we conventionally
speak of `spin-up' atoms) is greater than in the other state.
This question had already been discussed for superconduc-
tors. In [28] and [29], the existence of spatially inhomogeneous
phases (LOFF phases) was predicted, in which the super-
conducting gap is a periodic function of coordinates [28, 29].
In superconductors, the population difference of the spin
states may exist in ferromagnetic bodies or may be induced by
an external magnetic field. In both cases, the magnetic field
affects the orbital motion and destroys superconductivity.

In our neutral dilute systems, the spin relaxation time is
quite long and the numbers of atoms in different states are
practically arbitrary parameters, determined by the initial
conditions. Theoretical calculations in [30] and the experi-
ment in [31] show that the liquid in a trap at T � 0 near the
unitarity domain breaks up into three phases. At the center is
the superfluid phase with equal numbers of `spin-up' and
`spin-down' atoms. It is surrounded by the partially polarized
normal phase with unequal densities of the atoms of different
polarization. At the periphery is the completely polarized
phase, which consists of only the atoms of excess polarization.
In this case, the existence of LOFF-type phases in some
parameter value ranges is not ruled out.

The measurement data are depicted in Fig. 5. The system
with N" � 5:9� 106, T=EF � 0:03 and the spin state popula-
tion ratio N#=N" � 0:39 was investigated. Figure 5a shows
the shadowgraph of the two-dimensional polarization dis-
tribution (the column density) dna�x; z� �

�
dy�n"�r� ÿ n#�r��

and Fig. 5b shows the `weighted' distribution dnb�x; z� ��
dy�0:76n"�r� ÿ 1:43n#�r��, which gives a higher-contrast

picture. Figure 5c shows the curves dna�0; z� and dnb�0; z�,
and Figs 5d and 5e the plots of integrated linear densities
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Figure 4. (a) Frequency of radial oscillations as a function of the scattering

length. The upper solid curve represents the data calculated by the

quantum Monte Carlo technique and the lower one is the result of

calculations by the mean-field theory. The points stand for experimental

values. The upper and lower dashed straight lines show the limit frequency

values in a tenuous dimer gas and the unitarity point. (b) Measured values

of oscillation damping. (Borrowed from [18].)
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dna�z� �
�
dxna�x; z� and dna�x� �

�
dzna�x; z�. I emphasize

that the measurements were made in the trap itself, without
prior expansion of the fluid. Processing the measured two-
dimensional distribution by the Abel transform enabled
reconstructing the three-dimensional polarization distribu-
tion and confirmed the three-phase fluid structure. Measure-
ments at different temperatures were also made. Worthy of
note in this connection is the special role played by the
completely polarized phase. Because slow fermions with
parallel spins hardly interact with each other, this phase is
an ideal Fermi gas. By measuring the density distribution of
this phase and fitting it to formulas for the ideal gas, it is
possible to determine the thermodynamic temperature of the
system. The polarized phase plays the role of an ideal-gas
thermometer contacting with other phases. It is significant in
this case that the fermions of the polarized phase interact with
the fermions of other phases, which ensures thermodynamic
equilibrium. These temperature measurements permitted
verifying the transition temperature calculated in Ref. [20].
The results under discussion are at some variance with the
findings in [12], where a smaller number of atoms was
considered. Conceivably, the surface tension at the phase
boundaries plays a role under these conditions.

I mention several interesting possibilities for future
investigations. One of them involves employing two types of
fermions of different masses for which the Feshbach
resonance exists [32]. Theory predicts unconventional proper-
ties for a superfluid liquid formed as a result of Cooper
pairing of the fermions of different masses.

Another possibility is related to the vortex-free rotation of
a Fermi liquid [33]. The vortex lattice shown in Fig. 3 is
formed due to a strong fluid perturbation by the rotating
mixers. If a trap asymmetric about the axis is simply set in
rotation, there are grounds to believe that vortices would be
formed only for a high rotation rate, when the fluid shape
becomes unstable. At lower rotation rates, the fluid would

break up into two phases. The center of the weakly deformed
trap would be occupied by the superfluid liquid at rest, while
the normal phase of the liquid would rotate in the usual way
at the periphery. The existence of the normal phase at
absolute zero kept by rotation from transiting into the
superfluid state raises difficult theoretical issues.

A very rich area of research opens up when the fluid is
placed in a periodic lattice produced by counterpropagating
laser beams (see the author's review Ref. [34]). This research
in the unitary domain is still in its infancy.

We see that the investigations of a near-resonance Fermi
gas in a trap have opened up entirely new theoretical and
experimental opportunities in condensed matter physics,
reflecting the modern trend. Work to an increasing extent is
shifting to the investigation of specially fabricated objects
that do not exist in nature and have surprising new properties.
In view of this, I believe, no exhaustion of our realm of physics
is to be expected in the foreseeable future.

Acknowledgements. I express my appreciation to S Stringari
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Figure 5. Polarization distribution in a system with unequal spin state

populations (borrowed from [31]). (a) Shadowgraph of the two-dimen-

sional polarization distribution dna�x; z�. (b) Weighted polarization

distribution pattern dnb�x; z�. (c) Plots of the functions dna�0; z� (the
upper curve) and dnb�0; z� (the lower curve). (d) Linear polarization

density dna�z� along the z axis. (e) Linear polarization density dna�x�
along the x axis.
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