
Abstract. Research on spatially extended excitable systems
with cross-diffusion components is reviewed. Particular atten-
tion is given to the new phenomena of the quasi-soliton and half-
soliton interaction of excitation waves, which are specific to
such systems and occur along with the standard nonsoliton
wave interaction that causes the waves to mutually annihilate.
A correlation is shown to exist between interaction regimes and
wave profile shapes. One example of a cross-diffusion system is
population systems with taxes. Based on the mathematical

models of and experimental work with bacterial populations,
waves in excitable cross-diffusion systems can be identified as a
new class of nonlinear waves.

1. Introduction

Since the work of Turing [1], the majority of mathematical
models simulating the formation and propagation of non-
linear waves and structural self-organization processes in
physical, chemical, and social systems have been based on
reaction ± diffusion systems, where nonlinear terms describe
kinetics, while transfer processes are represented by isotropic
diffusion [2 ± 9]. Butmore complicated diffusionmechanisms,
such as nonlinear, anisotropic, and cross-diffusion, are of
importance in many other systems.

Most authors focus on direct diffusion (self-diffusion) of
N components jk, k � 1; . . . ;N, described by the equations

qt jk � qx Jk � Fk�jj � ;

where the flux Jk � ÿDkqxjk and diffusion coefficients Dk

are constants [10]. In this class of systems, formation of
spatio-temporal structures is determined by the diffusion
coefficients Dk and specific forms of the kinetic functions of
reaction processes Fk. The case where diffusion coefficients
are not constants but depend on dynamic variables corre-
sponds to nonlinear diffusion. Examples of nonlinear diffu-
sion can be found in mass-transfer processes in porous media
and in population models [11, 12]. Mathematical models with
diffusion coefficients depending on the bacterial density have
been used to describe the formation of complicated spatial
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structures in growing microbial colonies [13 ± 16]. Regimes
with sharpening and spatial localization in open dissipative
systems are described by models with nonlinear diffusion
[17, 18].

The natural generalization of these systems includes the
use of cross-diffusion, for which the flow is written as [10]

Jk � ÿ
X
j

Dkj �j� qxjj :

Certain cross-diffusion models have been considered in a
number of studies in physical (plasma physics) [10, 19],
chemical (dynamics of electrolyte solutions) [20], and biolo-
gical (cross-diffusion transport) [21] systems. The same refers
to population dynamics [9, 22 ± 25] and ecological (forest age-
structure dynamics) [26, 27] studies. The Burridge ±Knopoff
model was used to describe interactions between tectonic
plates in seismology. Mathematical models with cross-
diffusion have been extensively employed in the past decade
to gain insight into the mechanisms of tumor growth and
development [30 ± 36] (along with reaction ± diffusion ±
advection systems [37]).

To explain what wemean by the term `cross-diffusion,' we
consider a system of two partial differential equations in a
one-dimensional case:

qu
qt
� f �u; v� �D1

q2u
qx 2
� h1

q
qx

�
Q1 �u; v� qvqx

�
;

qv
qt
� g �u; v� �D2

q2v
qx 2
� h2

q
qx

�
Q2 �u; v� quqx

�
:

�1�

At h1 � h2 � 0, mathematical model (1) is a reaction ±
diffusion system with the diffusion coefficients D1 5 0,
D2 5 0 (at least one Di 6� 0). When at least one coefficient
hi 6� 0 (with any sign), system (1) is of the cross-diffusion type.
In linear cross-diffusion, Qi �u; v� � const for i � 1; 2; in
nonlinear cross-diffusion, Qi �u; v� 6� const for at least one i.

Cross-diffusion means that the spatial movements of an
object described by one of the variables occur due to the
diffusion of another object described by a different variable.
The simplest example at the population level is a parasite (first
object) moving by diffusion of a host (second object). The
term `self-diffusion' (diffusion, direct diffusion, ordinary
diffusion) implies an individual traveling with the diffusion
flow from a high concentration to a low-concentration
region. The term cross-diffusion means that a flow/motion
of individuals of one species occurs in the gradient of other
individuals/substances. Cross-diffusion coefficients may be
positive, negative, or zero. A positive coefficient suggests
motion towards a region with low concentration of other
individuals/substances; a negative coefficient indicates that
motion occurs towards a region with a high concentration of
other individuals/substances. Systems with cross-diffusion
are rather widespread in nature and play an important role,
especially in biophysical and biomedical situations.

The ability to spontaneously form and develop ordered
dynamic and static structures is one of the properties of
reaction ± diffusion systems. As a result of self-organization,
such systems can acquire properties that were present in none
of the constituent components. The formation of spatially
and temporally ordered structures is a key issue for under-
standing the development of various stages of morphogen-
esis, population and ecosystem dynamics, excitable tissues,
neuronal networks, etc. [38 ± 43]. The simplest variants of

morphogenesis are associated with the development of a
multicellular `organism' from populations of unicellular
organisms, which most often occurs when the populations
are under extreme conditions. A similar ability to form
complex ordered dynamic and static structures is inherent in
cross-diffusion systems. Cross-diffusion must be taken into
account in simulating extended predator ± prey population
systems [9, 24, 25, 44 ± 47]. Cross-diffusion systems play a
primary role in mathematical modeling of pigmentation
patterns in animals [9, 48 ± 52], the localization and motion
of leukocytes in response to bacterial inflammation [53], or
the aggregation of Dictyostelium discoideum [54 ± 57]. Effec-
tive simulation of biological phenomena at the level of test
systems in in vitro experiments and the construction of
mathematical models is a fundamental method in modern
biophysics.

Recent progress in self-organization research in physical,
chemical, and biological systems is first and foremost due to
the development of an autowave theory including mechan-
isms of the generation, propagation, and interaction of
nonlinear waves in extended active media with diffusion, the
so-called active (excitable) media. Suchmedia are exemplified
by chains of van der Pol generators, nerve fibers, extended
chemical systems with autocatalysis, etc. [6, 8, 58 ± 63]. One
common property of the above media is their ability to
produce and transmit autowaves, i.e., self-sustained strongly
nonlinear medium change waves, whose shape and velocity in
an established motion regime are independent of boundary
conditions and are totally determined by parameters char-
acterizing a given medium. Autowaves are extended analogs
of auto-oscillations in lumped systems. Disturbance of the
normal autowave propagation and interaction regimes leads
to disorganization and chaos in systems controlled by
autowave processes.

All the well-known properties of autowaves have recently
been obtained in studies of reaction ± diffusion systems.What
additional changes are introduced into wave properties of
excitable systems by cross-diffusion? Experimental and
theoretical studies of the 1980s and 1990s demonstrated that
bacterial population waves have much in common with
excitation waves propagating in biological systems; they
provide an example of autowave processes [2, 23, 64 ± 67]. It
was emphasized in the same works that bacterial waves
constitute a specific class of autowaves due to their unique
properties lacking in `classical' autowaves. Quite unexpected
results have been obtained in studies carried out over the last
four years [68 ± 73]. It was shown that excitable systems with
cross-diffusion exhibit new wave properties that make them
substantially different from excitation waves in systems of the
reaction ± diffusion type. These data allowed categorizing
waves in cross-diffusion systems into a special class of
nonlinear waves.

This review analyzes results of wave studies in excitable
systems with cross-diffusing components.

Section 2 focuses on bacterial populationwaves propagat-
ing due to chemotaxis and considers wave properties in
systems with nonlinear cross-diffusion. It presents the results
of experimental studies and mathematical models of the
formation, propagation, and interaction of bacterial waves
and describes conditions for the development of a soliton-like
interaction regime.

Sections 3 and 4 deal with taxis wave properties in
reaction ± diffusion and reaction ± taxis systems investigated
in a predator ± prey model with positive and negative taxes.
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The wave propagation mechanism operating in such systems
is described. It is shown that the dependence of the taxis wave
propagation velocity on the diffusion coefficient is substan-
tially different from the analogous dependence for waves in
reaction ± diffusion systems. A large region of the parameter
space is occupied by the quasi-soliton interaction of taxis
waves.

Section 5 discusses a formerly unknown wave phenom-
enon, half-soliton interaction, studied in one and two-
dimensional media.

It is shown in Section 6 that waves in linear cross-diffusion
systems are characterized by a quasi-soliton interaction
regime. The relation between evolution of wave shape and
various wave interaction regimes is discussed.

2. Nonlinear cross-diffusion. Taxis waves

2.1 Taxis in population systems
Nonlinear cross-diffusion systems are exemplified first and
foremost by systems with taxes. Waves generated in such
systems are called taxis waves. Living organisms can choose
a direction of motion due to their ability to respond to
environmental changes [22, 74, 75]. This reaction to external
stimuli for the choice of the optimal environmental
conditions is referred to as a taxis. The directed motion of
an organism towards more favorable conditions along the
attractant (e.g., nutrient) gradient is a positive taxis, that
away from unfavorable factors (e.g., repellents) is a negative
taxis [76 ± 78].

In many cases, migration of animals is a response to the
diversified environment leading to a temporary concentration
of birds in flocks, fish in shoals, flies in swarms, etc. For
example, congregation in large groups is one of the principal
forms of interactions between individuals ensuring better
protection, feeding (searching), and adaptation; it is asso-
ciated with the ability of individuals to make movements
whose intensity and direction are dictated by the nonuniform
spatial distribution of a given stimulus [79 ± 82]. The stimulus
may be either an environmental factor (temperature, salinity,
illumination, food, sound, etc.) or population density.

References [79 ± 82] describe the behavior of animals in
space based on the assumption that acceleration of the
motion of migrants at each point of space is proportional to
the density distribution gradient of a given stimulus. This
hypothesis is confirmed by observations of natural popula-
tions, e.g., gregarious fish; the probability of a change in the
direction of motion (speed variation) depends on the
difference between real and preferable temperature [83].
Analysis of the motion of phytophagous insects also suggests
that they change the velocity of motion depending on the
quality of and closeness to food accumulation [84]. Papers
[79 ± 82] propose a mathematical model describing the
aggregation of individuals brought together by an autotaxis,
i.e., orientation by population density gradient; the model is
based on kinematic characteristics of animal motion reported
in [85, 86]. Analytic studies of this model [79 ± 82] supplemen-
ted by numerical calculations in one- and two-dimensional
media suggest formation of a stable stationary concentration
of individuals within a certain range of model parameters;
that is, the models have a time-independent spatially
inhomogeneous solution.

Reference [87] analyzes the wave regimes of conceptual
population dynamics described by polynomial reaction ±

diffusion ± taxis and reaction ± cross-diffusion ± autotaxis
models with an increasing degree of the reaction and taxis
(autotaxis) functions. On the one hand, the existence of a
`proper' nonlinear taxis may change the speed and the shape
of wave fronts and lead to the appearance of various `robust'
spatially inhomogeneous wave regimes, including those with
a very large density fluctuation amplitude. On the other hand,
a taxis may have a stabilizing effect on the spatial distribution
dynamics of a system. It is emphasized in the samework that a
variety of possible wave regimes may occur at parameter
values corresponding to the critical points of a model. In
another work [88], the authors examined the role of a taxis in
the population dynamics of forest insects [88].

Today, the main experimental and theoretical data on the
role of taxis and self-organization processes in population
systems come from the studies of bacterial population waves,
the growth and development of microbial colonies [22, 23,
65 ± 67, 89 ± 99]. Bacterial populations prove to be convenient
subjects for simulation-based analysis of one of the main
problems in mathematical biophysics of ecological commu-
nities, i.e., investigations into the stability of a regime of
ecosystem functioning. Characteristic features of microbial
populations, such as multiplicity, rapid generation turnover,
controllable growth, and a variety of structural self-organiza-
tion modalities allow applying the results of their experi-
mental and theoretical studies in the most unusual areas. For
example, Ron and collaborators [100] consider certain
structural forms of the development of a bacterial colony as
possible models of tumor growth.

The chaotic motion of bacteria is known to lead, under
certain conditions, to their nonuniform distribution, i.e., to
the formation of spatial structures both changing and
unchanging with time (see, e.g., [22, 89 ± 91, 101 ± 104]).
Extensive studies of the individual and cooperative behavior
of bacteria date back to the 1960s when the works of Adler
were published [74, 75]. For the past four decades, various
aspects of chemotactic mobility have been investigated in
much detail (especially in models of population organization
in E. coli and Salmonella spp.) (see reviews [22, 23, 105 ± 107]).
The following features of bacterial motility and chemotaxis
deserve to be distinguished. Many bacteria have extracellular
spiral filiform organelles known as flagella [108 ± 110]. At the
base of each flagellum, there is a motor that powers its
clockwise or counterclockwise rotation. Individual flagella
rotating counterclockwise make up a compact bundle that
thrusts the cell forward. Periodically, these smooth/free runs
are briefly reversed by jerky chaotic movements reminiscent
of vibration and tumbling. They are caused by the untwisting
of the bundle as its constituent microfilaments change the
direction of rotation [108 ± 111]. Each tumbling episode is
followed by reorientation of the cell motion. The direction of
an individual cell motion in the absence of a chemotactic
gradient is therefore random. Environmental factors attract-
ing bacteria are termed attractants, those having the opposite
effect are repellents [74, 75, 108 ± 112]. The free run time in an
isotropic medium is � 1 ± 3 s and a tumbling episode lasts
� 1:1 s. When a bacterium swims through an attractant
gradient, tumbling is partly suppressed; its frequency
increases in a repellent gradient.

The molecular mechanism controlling the direction of
flagellar rotation is rather complicated [77, 78, 107, 108 ± 114].
A chemoreception model for bacteria in attractant and
repellent gradients has been proposed. A variety of receptors
are known to interact with attractants or repellents. Most of
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them are highly specific and bind to only one or two chemical
compounds. The cell analyzes time-dependent environmental
conditions for the choice of the optimal behavioral strategy
by comparing the degree of receptor occupation and the level
of methylation of the part of the receptor submerged in
cytoplasm. Occupation of the receptor reflects current
environmental conditions and the degree of methylation
reflects conditions in the `recent past,' that is, approximately
3 s ago as shown in experiment.

Bacterial attractants and repellents are not only chemical
compounds but also physical factors, such as temperature
[105, 115], light [116, 117], electric and magnetic fields [118 ±
121], or gravitation [122]. For example, an intense blue light
induces continuous tumbling in E. coli, while alternating
electric fields may stimulate motility in these bacteria and
simultaneously inhibit their chemotactic responsiveness.

For a long time, chemotaxis with respect to environmental
factors has been regarded as the main cause underlying the
mobility of individual bacteria. On the other hand, bacterial
cells can by themselves affect this process. For example,
E. coli and S. typhimurium placed under unfavorable condi-
tions release two amino acid attractants, aspartate and
glutamate [90, 91, 96, 123]. These cells become mobile
sources of attractants and begin to interact with other cells,
thus coordinating chemotactic motion. This interaction leads
to a variety of nontrivial collective phenomena, e.g., the
formation of compact multicellular clusters, mobile rings,
and a number of stationary structures of different shape.

Recent studies by Ben-Jacob [102 ± 104] revealed general
principles of growth and development of bacterial colonies in
terms formerly applied to intellectual systems. In this
approach, Ben-Jacob considers bacterial populations as
multilevel structured systems with a complicated multicellu-
lar hierarchy that are in many respects analogous to social
systems composed of individuals having intellect. It is shown
that bacteria have numerous means of information exchange
for the maintenance of cooperative behavior under unfavor-
able environmental changes, including a wide range of
chemical signal mechanisms, collective gene activation and
inactivation, and even exchange of genetic information.

2.2 Bacterial population waves
In the mid-1960s, Adler and collaborators demonstrated that
bacteria inoculated in a nutrient medium may generate
propagating population waves [74, 75]. Substrate consump-
tion by bacteria leads to a substrate-attractant gradient, and
their chaotic movements acquire a component directed along
the gradient. Moreover, bacteria continue to multiply. The
chemotactic response to the substrate-attractant gradient
results in the formation and propagation of taxis rings or
bacterial population waves. Taxis rings preserve their clear-
cut shape in the course of bacterial motion and propagate
with an approximately constant speed depending on the
medium (agar) viscosity and strain motility. Constant
characteristics are due to continuous reproduction of the
local attractant gradient by bacteria as they move from place
to place. This wave actually visualizes the boundary between
the region of lowered attractant concentration and that where
it remains elevated. If the medium contains two attractants
consumed by bacteria, two bacterial population waves may
form due to depletion of one substrate and subsequent
switching of the bacteria to the other, previously disregarded
substrate.

Interaction between bacterial waves may cause formation
of static spatial structures [22, 66, 89]. The type of structure
depends on the wave interaction regime [23, 67]. The present
section is focused on two of them (soliton-like and nonsoliton
regimes). The former is characterized by penetration of
population waves through one another without an apparent
delay, the latter by the cessation of colliding waves.

Nonsoliton interaction regime.Figure 1 presents an example of
the nonsoliton interaction (the waves stop after collision).
Bacteria are initially seeded at four different sites in a slightly
agarized nutrient medium in a Petri dish. The sites where
bacteria multiply serve as sources of bacterial population
waves. We consider the formation of a static cruciform
structure from the interaction between bacterial waves
moving out from the four inoculation points [66]. These
centers give rise to the first ring-shaped chemotaxis waves
some 3 ± 4 h after inoculation; the main product consumed by

a b c d

e f g h

1

2

2'

Figure 1. Formation of a cross-like structure in a Petri dish �9 cm during the interaction of bacterial waves propagating from four sites of E. coli J621

inoculation into a nutrient medium [66, 67]. (a) chemotactic rings drawing together (t � 0); (b) collision of the first chemotactic rings (t � 15 min); (c, d)

formation of thw collision line (t � 30 min, 55 min); (e) `reflection' Ð formation of waves 2 0 from the collision lines �t � 85 min); (f) collision of waves 2

and 2 0 (t � 140 min); (g,h) formation of a cruciform structure.
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bacteria from these rings is the serine of the nutrient medium
(Table 1). The second ring of chemotaxis waves is formed
after a short delay (Fig. 1a). Bacteria of the second wave
largely consume aspartate (Table 1). Collision of the first
chemotactic rings (Fig. 1b) gives rise to a thin line (Fig. 1b ± d)
where the waves are stopped by the depletion of the serine
gradient.

The rings that stopped upon collision could be expected to
undergo diffuse smearing. But this does not occur and
bacteria produce waves again. The collision line of the first
chemotactic rings gives rise to waves 2 0 (Fig. 1e) after time t.
As shown in [66], propagation of bacterial waves 2 and 2 0 is
supported by the consumption of identical components of the
substrate. Experiments with different nutrient media and
microbial strains indicate that after the collision, bacteria
from front 1 `switch over' to the attractant along whose
gradient wave 2 propagates (in our case, aspartate) (see
Table 1). Therefore, the collision of waves 2 and 2 0 gives rise
to the formation of the respective lines (Figs 1g ± h).

It was proposed in [65, 66] to regard bacterial population
waves 1 and 2 (2 0) as autowaves of different `modality.'
Unlike autowaves in the previous physical, chemical, and
biological studies, bacterial waves of different modality may
undergo interconversion due to the ability of bacteria to
switch over to an alternative substrate.

What are the factors determining the time t for which
colliding bacterial waves transform into waves 2 0 moving out
from the collision line? It turns out that t has the least value
during the interaction of bacterial waves that propagate in an
established regime [99]. Propagation of a bacterial wave is
accompanied by an increase in the front density to a constant
level in the stationary regime due to division of bacterial cells.
When interaction involves chemotaxis waves originating at
the inoculation points located close to each other, colliding
fronts have low bacterial density; accordingly, the amount of
the first substrate-attractant remains rather high and switch-
ing over to the second one takes more time [99].

Mathematical model of the formation and propagation of
bacterial waves in a multi-component nutrient medium. A
mathematical model of chemotaxis wave propagation was

proposed by Keller and Segel in 1971 [124]. We consider a
modifiedKeller ± Segel model for the formation and propaga-
tion of bacterial waves in a multi-component medium [67]:

qbi
qt
� kig�Si� bi � H

ÿ
m �Si�Hbi

�
ÿ hiH

ÿ
bi w �Si�HSi

�� Ri�b;S�; �2�
qSi

qt
� ÿpig �Si� bi �DSH 2Si ; i � 1; 2; . . . ;m ;

m�Si� �
m0 � Db ; if Si 5S00 ;

m0

�
Si

S00

�n

; if Si < S00 ;

8<: �2a�

Ri�b;S� � riÿ1biÿ1 ÿ ri bi ;

ri � 0; if Si > Shi ;
a �0 < a < 1� ; if Si < Shi ;

�
�2b�

w �Si� � Si

�Si � Sk�2
; g�Si� � Si

Si � Sr
; �2c�

where bi �x; y; t� is the concentration of bacteria consuming
the substrate component Si �x; y; t�, Shi is the threshold value
of substrate Si,Db andDS are the diffusion coefficients of the
bacteria and substrate, respectively, w �Si� is the chemotactic
response function, g �Si� is the specific bacterial growth rate, h
is the taxis coefficient, and Sk, Sr, Shi, S00, ki, pi, ri, and a are
constants. The functionRi �b;S� describes the transformation
of bacteria biÿ1 consuming the substrate Siÿ1 to a subpopula-
tion bi consuming the substrate Si. The classical Keller ± Segel
model is recovered at m � 1 and a � 0, i.e., for a one-
component medium and, accordingly, without bacteria
switching over to the consumption of other substrate-
attractants. 1

Figure 2 presents the result of numerical simulation of the
formation of a cross-shaped structure during the interaction
between bacterial waves moving out from four inoculation
centers. Figure 2b details the propagation and interaction
dynamics of waves produced only by b2-type bacteria (waves
2 and 2 0) both in the four inoculation centers and upon
collision of waves of bacteria b1 and their switching to the
substrate S2 after the interval of t � 25 arbitrary time units.

It follows from experiment (see Fig. 1) and simulation
(Fig. 2) that this interaction regime is a nonsoliton one
because population waves 1 stop upon collision and do not
pass through one another. Wave passage/reflection is
associated with switching over to the consumption of
another substrate. This switching takes some time to be
completed.

2.3 Restoration of bacterial population waves during
isolation of the inoculation center
The dependence of bacterial wave formation on initial
conditions was studied both by mathematical modeling and
in experiments on perturbation of propagation of two
successive chemotaxis rings of E. coli with isolation of a
region around the inoculation point that serves as a source of
such waves. It was shown that such excitation does not
interfere with the generation of the second chemotaxis wave
[93].

Table 1. Amino acid composition of the nutrient medium (10ÿ3 mol)
before (control) and after passage of taxis waves of E. coli J621.

Medium Control 1 2 2 0

Alanine
Arginine
Aspartate
Glutamate
Histidine
Isoleucine
Leucine
Lysine
Methionine
Phenylalanine
Praline
Serine
Threonine
Tyrosine
Valine

1.4
2.0
0.3
0.7
0.5
0.4
1.5
0.8
0.2
0.9
0.00
0.5
0.3
0.9
1.0

1.4
2.1
0.2
0.7
0.5
0.5
1.5
0.8
0.2
0.9
0.00
0.08
0.3
1.0
1.0

1.5
2.1
0.04
0.6
0.5
0.5
1.4
0.8
0.2
0.9
0.00
0.03
0.2
1.0
1.0

1.5
2.1
0.03
0.6
0.5
0.5
1.3
0.8
0.2
0.9
0.00
0.04
0.2
1.0
1.0

Note: Bold type is used to distinguish components of the medium

consumed by bacteria after passage of the first wave (serine) and waves

2 and 2 0 (aspartate) [66]. Measurements were made with Analaser T339

(Microtechna, Prague)

1 See review [22] for more details pertaining to the Keller ± Segel model [2].
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Mathematical simulation was based on model (2) in a
two-dimensional medium in the two-component case (m � 2)
with the initial conditions S1�x; y; 0� � S2�x; y; 0� � S0,
xc � Lx=2, yc � Ly=2, where (xc; yc) are coordinates of the
center of the inoculation region of bacteria (b0) with the
radius R0. Results of numerical experiments are shown in
Fig. 3a. After the formation of two waves propagating along
the substrate attractants S1 and S2 (Fig. 3, t � 60) at the
instant t � � 70, the vicinity of the inoculation center with the
radius R � 30 was cut out so as to isolate the second wave:

S1�x; y; t �� � S2�x; y; t �� � 0;

b1�x; y; t �� � b2�x; y; t �� � 0 ;

if

�������������������������������������������
�xÿ xc�2 � �yÿ yc�2

q
< R :

As the wave propagated along the substrate S1, bacteria
falling behind the first wave front gave rise to the second wave
consuming the substrate S2.

What is the mechanism of this process? It follows from
mathematical model (2) that the switching of bacteria from
the consumption of one substrate to another occurs only if the
concentration of the former decreases to a threshold level Sh1.
When the propagation velocity and bacterial density of the

first wave are constant, the concentration of the substrate
S1�x; y� at each point decreases to Sh1 at equal intervals after
the passage of the wave front. Therefore, when the inocula-
tion center and its close vicinity to the second wave are
isolated, bacteria within a circle of radius R are the first to
switch over to the consumption of the second substrate-
attractant. This results in the propagation of bacteria that
fell behind the first chemotactic ring and switch over to the
substrate S2. The presence of a substrate-attractant concen-
tration gradient is necessary for the existence of a chemotaxis
wave. Evidently, the substrate S2 gradient created within a
circle of radiusR provides the condition for directed bacterial
movements. The spatial density of bacteria propagating in a
given direction along the gradient of S2 is enhanced by
bacteria that consecutively switch over to the consumption
of S2 at r > R. These factors create prerequisites for the
formation of the second chemotactic ring.

The results of numerical simulation were confirmed in
experiments on the formation of bacterial population waves.
In these experiments, E. coli J621 were inoculated into the
center of a Petri dish 9 cm in diameter containing a slightly
agarized � 2 mm thick nutrient medium (peptone 1.5%,
Difco agar 0.27%, NaCl 0.5%). The dish was previously
filled with a � 2 mm thick strongly agarized substrate of 2%
Difco agar and 0.5% NaCl for the reliable isolation of the

a

t � 280 t � 325 t � 350 t � 360

b

t � 370 t � 380 t � 400 t � 440

t � 350 t � 360 t � 370 t � 400

Figure 2. Formation of a cross-shaped structure in a numerical experiment in mathematical model (2) of a two-component medium (m � 2) of size

Lx � Ly � 210� 210 [99]. (a) propagation and interaction dynamics of population waves of bacteria b � bi � b2; (b) formation, propagation, and

interaction dynamics of population waves (2 and 2 0) of bacteria b2. Parameters of the model: h1 � 0:4, h2 � 0:2, Sk � 5� 10ÿ3, Sr � 0:55, Shl � 10ÿ5,
S0 � 0:05, a � 0:1, S00 � 0, b0 � 0:8, Db � 0, DS � 0, k1 � k2 � 1, p1 � p2 � 0:4. Coordinates of inoculation centers (xc, yc): (55, 55), (155, 55), (55,

155), (155, 155).
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inoculation center. The center was isolated by an impene-
trable cylindrical membrane after formation of the second
bacterial wave such that the entire second front was enclosed
by the membrane.

The results of these experiments are shown in Fig. 3b. It
can be seen that isolation of the inoculation center and the
second wave (Fig. 3b, t � 0) does not prevent formation of a
new wave at a distance from the enclosed region by residual
bacteria of the first chemotaxis ring (Fig. 3b, t � 80 min,
t � 120 min). The appearance and movement of the second
front are due to the adaptation of bacteria to environmental
changes rather than to the initial conditions.

2.4 Soliton-like regime of the interaction between bacterial
waves
Mathematical simulation and experiment in [67] demon-
strated for the first time that the studied bacterial population
system also exhibited a soliton-like regime of chemotactic ring
interactions. As bacterial waves collided at a speed slightly
higher than a certain critical value, they penetrated through/
reflected from one another without an apparent delay.
Figure 4a shows the soliton-like interaction dynamics of
bacterial waves in numerical experiments with model (2) and
Fig. 4b shows the population wave interaction dynamics of
E. coli in a slightly agarized nutrient medium.

a

1
W

2

b

t � 60 t � 70 t � 140 t � 220

t � 0 t � 80 min t � 120min

Figure 3. Formation and propagation of the second bacterial wave during isolation of the inoculation center [93]. (a) Results of numerical experiments

with mathematical model (2). Two-component medium (m � 2) of size Lx � Ly � 250� 250. Parameters of the model: h1 � 4, h2 � 2, Sr � 0:7,
Sk � 5� 10ÿ3, Sh1 � 5� 10ÿ4, S0 � 0:05, a � 1, S00 � 0, b0 � 1, Db � 0, DS � 0, k1 � k2 � 1, p1 � p2 � 0:4, R � 30. (b) Population waves of E. coli

J621: propagation of the first (1) and the second (2) chemotaxis rings from the inoculation center, isolation of the second ring with a cylindrical membrane

W �t � 0�; formation of the second chemotaxis ring outside the membrane (t � 80 min, t � 120 min).

a

t � 65 t � 70 t � 75 t � 80

b

t � 20 mint � 0 t � 28 min t � 33 min

Figure 4. Soliton-like regime of bacterial population wave interaction. (a) Numerical experiments with mathematical model (2) for a two-component

medium (m � 2) of sizeLx � Ly � 210� 110 [99]. Parameters of the model: h1 � 6, h2 � 3, the remaining ones (E. coli J621 ) are as in Fig. 2. Coordinates
of the inoculation centers (xc, yc): (55, 55), (155, 55). (b) Interaction between bacterial waves (E. coli J621) originating from two inoculation centers in a

weakly agarized nutrient medium (1% peptone, 0.5% NaCl, 0.22% agar Typ USA, � 1ÿ2-mm-thick layer, petri dish (�9 cm), 37 �C. Colliding waves

(t � 20 min) pass through/reflect from one another without an appreciable delay (t � 28 min, t � 33 min) [67].
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What is the mechanism of this interaction? It is known
that the strength of a chemotactic response largely depends on
the ratio dS=S (where S is the substrate-attractant concentra-
tion) [125]. This means that a high consumption rate of the
substrate, even at its low concentration, may create a rather
marked attractant gradient. At the onset of front contacts, the
bacterial concentration at the collision point increases, and
the bacteria located at this site create a new concentration
gradient of the first substrate remaining after the wave
passage. If a certain amount of the first substrate remains at
the bacterial front and behind it, the newly created gradient is
sufficient tomaintain directedmovements of bacteria without
their switching to the consumption of the second substrate.
The wave then propagates along the first attractant as far as
the medium region, where it is depleted due to the consump-
tion of the substrate by a small number of bacteria that always
fell behind the first chemotaxis ring during its expansion.

The bacterial-wave propagation speed V depends on the
agar concentration in the nutrient medium. It was shown by
varying the agar concentration in the nutrient medium [67]
that the soliton-like interaction regime between bacterial
waves (E. coli J621) developed at a relatively high expansion
rate of chemotactic rings; specifically, the soliton-like
regime at V > 9 mm hÿ1, the nonsoliton regime at
4:5 < V < 9 mm hÿ1, and a collisionless interaction regime
at V < 4:5 mm hÿ1 [92]. In numerical experiments with
model (2), the shift of the nonsoliton interaction regime to
the soliton-like one also occurred with an increase in the wave
propagation speed resulting from a change in the taxis
coefficient h.

3. Main properties of population taxis waves

Mathematical model. We consider population taxis waves
using a reaction ± diffusion mathematical model of the
predator ± prey type with directed motion of predators
toward the prey and evasion behavior of the prey [9]. Such
problems were studied with cellular automata models includ-
ing predators pursuing prey and prey escaping predators
[126 ± 128]. Properties of nonlinear waves in a one-dimen-
sional predator ± prey mathematical model were first compre-
hensively studied in [68, 69]. A new type of wave propagation
in reaction ± diffusion ± taxis and reaction ± taxis systems
underlain by a taxis-dependent mechanism was demon-
strated in [68, 69], where quite unexpected results were
obtained.

We consider a one-dimensional reaction ± diffusion ± taxis
system describing a predator ± prey model whose spatial
evolution is governed by three processes: diffusion of both
variables, a positive taxis of predators up the gradient of prey,
and a negative taxis of prey down the gradient of predators:

qP
qt
� f �P;Z� �D

q2P
qx2
� hÿ

q
qx

P
qZ
qx

;

qZ
qt
� g �P;Z� �D

q2Z
qx 2
ÿ h�

q
qx

Z
qP
qx

;

�3�

where P �x; t� and Z �x; t� are the prey and predator popula-
tion densities, respectively, the diffusion coefficients of P and
Z are assumed to be equal to D, q=qx

ÿ
P �qZ=qx�� are taxis

terms, q=qx
ÿ
Z �qP=qx�� is the coefficient of a negativeP taxis

down the Z gradient, and hÿ is the coefficient of a positive Z
taxis up the P gradient. Local kinetic functions f �P;Z� and
g �P;Z� were taken as in Refs [129, 130], which reported a

Truscott ± Brindley reaction ± diffusion model describing the
population dynamics of phytoplankton (P) and zooplankton
(Z ):

f �P;Z� � bP �1ÿ P� ÿ ZP 2

P 2 � n 2
;

g �P;Z� � gZP 2

P 2 � n 2
ÿ wZ ;

�3a�

where b, g, n, w are constants.
Such kinetics is known to display `excitable' behavior; in

other words, it implies the possibility of propagation of a
solitary wave at certain parameters of the reaction ± diffusion
system (hÿ � h� � 0). Model (3), (3a) has dimensionless
variables and parameters.

All numerical experiments in the study of mathematical
model (3) of the reaction ± diffusion ± taxis (D > 0, hÿ > 0
and/or h� > 0) and reaction ± taxis (D � 0, hÿ > 0 and/or
h� > 0) types were performed using the upwind difference
scheme proposed in [69]. This scheme, unlike the classical
central scheme, allows computation not only at small
diffusion coefficients D but also at D � 0.

If not specified otherwise, calculations were carried out at
the parameter values b � 1, n � 0:07, and w � 0:004 and two
different values of g:

(a) g � 0:01, at which wave propagation occurs through
diffusion alone (i.e. at hÿ � h� � 0, D > 0);

(b) g � 0:016, at which the propagation of a purely
diffusion wave is infeasible.

3.1 Waves in a reaction ± diffusion ± taxis system
( c � 0:01)
Figure 5 presents profiles of population waves described by
the system of equations (3) in the reaction ± diffusion case
(Fig. 5a) and after the addition of taxis terms (Figs 5b, c, e ±
g). The taxis terms substantially change the wave profile, with
the coefficient h� making a much greater contribution than
hÿ. If hÿ > 0, the waves retain the same shape as in the purely
diffuse case with a long and smooth plateau. At h� > 0, the
wave profile of Z becomes explicitly nonmonotonic, while
waves of the variable P have two profiles, `one-humped' and
`two-humped.'

For a qualitative explanation of the change in the wave
shape, we consider the effect of a positive Z taxis up the P
gradient for h� > 0. Prior to wave propagation, the system is
stable. A local increase in the P density in an interval
0 < x < x0 induces the flow of Z from the vicinity in front
of the point x0 toward the P gradient. As a result, the
equilibrium in front of the point x0 is disturbed by a decrease
in the Z density which, in turn, leads to an increase in the P
density. A sequence of such events gives rise to a traveling
wave. Diffusion is not necessary for the realization of this
wave formation mechanism. The same mechanism accounts
for oscillations ahead of the taxis wave front (Fig. 5d, h). The
amplitude of these oscillations being low, they can be
described in the framework of a linearized theory. When the
wave propagates with an established speed c, the variables P
and Z depend only on the combination x � xÿ ct and satisfy
the automodel system

f �P;Z � �D
d2P

dx 2
� hÿ

d

dx
P

dZ

dx
� c

dP

dZ
� 0 ;

g �P;Z � �D
d2Z

dx 2
ÿ h�

d

dx
Z

dP

dx
� c

dZ

dZ
� 0 :

�4�
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In Fig. 5g, the wave speed is c � 0:3535, and stationary
values of P0 and Z0 are 0.05703 and 0.13480, respectively.
Simple calculations using these parameters give the solution
in the form

�P;Z ��x� � �P0;Z0� �Re
��P1;Z1� exp�ÿlx�

�
;

jP1;Z1j5 jP0;Z0j ; l � 1:9925� 2:5014i :

It follows that the oscillation half-length along the
coordinate x is p=Im l1;2 � 1:256, in good agreement with
the observed wave profiles (Fig. 5d, h). In other words, these
oscillations are not a numerical artifact [68].

Taxis waves have an important property of retaining their
shape, amplitude, and velocity; that is, once established after
a transitional period, these characteristics are independent of
the initial conditions [68, 69]. In this respect, they resemble
autowaves and differ from waves in conservative systems.

The main differences in the mechanisms of wave propaga-
tion in reaction ± diffusion and reaction ± taxis systems may
be characterized as follows. The density of predators in the
forefront of a reaction ± diffusion wave changes slowly. The
wave front usually spreads through diffusion and local
nonlinear dynamics of the prey. The density of predators
gradually increases between the forward and rear fronts as
they consume the prey. It becomes especially high at the back
front, where the prey concentration decreases substantially.
Here, as at the forefront, the diffusion of P and Z has a
marked effect. Quite a different sequence of events occurs in
the reaction ± taxis system. Asmentioned above, the forefront
of P attracts Z, which results in the movement of Z towards
the P front. A second mechanism then operates whereby the
forefront of P spreads due to the negative taxis of prey down
the gradient of predators. The same shifting mechanisms for
P andZ determine the shape of the rear front and account for
the taxis wave duration (t) being significantly shorter than
that of a diffusion wave [70].

Quasi-soliton interactions of taxis waves. It was shown in [68,
69] that system of equations (3) has a region in the
parameter space characterized by a quasi-soliton wave
interaction during which the colliding waves penetrate

through (reflect from) one another and undergo reflection
from the boundaries. This is the main difference from
classical autowaves in excitable media [62]. Figure 6
presents the results of numerical experiments on a segment
of length L with impenetrable boundaries (qP=qxjx�0;L � 0
and qZ=qxjx�0;L � 0); twowaves were started from either end
of the segment; the data obtained are given in the coordinates
t and x. Purely diffuse waves annihilate upon collision
(Fig. 6a). The introduction of taxis terms leads to two types
of interactions: (b) a quasi-soliton interaction during which
waves penetrate through one another to be reflected from the
boundaries and (c) the splitting of waves after they pass
through one another (or were reflected from the bound-
aries); in this case, rear fronts emit backward waves that
collide and annihilate.

Soliton-like interactions occur in certain reaction ± diffu-
sion systems with excitable kinetics (autowaves) in both
mathematical models [131 ± 138] and experiment [138, 139].
However, such interactions are always confined to a very
narrow parameter region at the boundary of the standby and
oscillatory regimes of the system [134 ± 137]. Analysis of the
transition from the annihilation regime to the soliton-like one
upon the collision of two waves is reported in [140 ± 141]
based on the FitzHugh ±Nagumo reaction ± diffusion math-
ematical model [142, 143].
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Figure 5. (a ± c, e ± g) Taxis waves in system (3) (P Ð thick lines, Z Ð thin lines) at different coefficients h� (D � 0:04, b � 1, g � 0:01, w � 0:004).
(d, h) Pulse forefront oscillations (theoretical half-length value is 1.256), horizontal lines correspond to the steady state (P0, Z0) [68, 69].

t

x

hÿ � h� � 0 a

x

hÿ � h� � 1 b
t

hÿ � 2, h� � 2.2

x

t
c

Figure 6. Spatio-temporal dynamics of the propagation and interaction of

waves (3) at different taxis coefficients h� [69]: (a) wave annihilation;

(b) quasi-soliton interaction; (c) quasi-soliton interaction with splitting of

waves upon collision. In all cases, D � 0:04, L � 500, and t 2 �0; 3000�.
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It is shown in [68, 69] that the quasi-soliton regime for
excitable systems with cross-diffusion occurs in a large area of
the parameter space.

Different taxis wave propagation and interaction regimes
are depicted in Fig. 7 for several parameter spaces. The
following regimes are characteristic of reaction ± diffusion ±
taxis systems (3), (3a) (Figs 7a ± c):

(1) propagation of waves annihilating upon interaction,
(2) propagation with splitting,
(3) quasi-soliton interaction, i.e., penetration of waves

through one another, and
(4) quasi-soliton interaction with splitting.
Another qualitative difference between taxis waves and

`classical' autowaves is that they do not immediately
annihilate, like autowaves in reaction ± diffusion systems,
even in the nonsoliton interaction regime (Fig. 8a), but pass
through one another and only then decay.

Wave splitting. The phenomenon of taxis wave splitting is
observable in both quasi-soliton (black triangles in Fig. 7) and
nonsoliton (white triangles, Fig. 7) interaction regimes.
Figure 9 illustrates different h�-dependent regimes in one-
dimensional taxis waves in a medium with impenetrable
boundaries. The time interval between successive splittings
increases with increasing h� (Fig. 9b, c). A split wave
propagating backward either decays or undergoes secondary
splitting. In the latter case, this process may lead to self-
supporting aperiodic or periodic activity.

As shown in [69], splitting is immediately preceded by the
oscillatory instability of a propagating wavemanifested as the
increasing amplitude of P and Z oscillations. Each splitting
has only a weak effect on the forefront propagation velocity,
and the process itself remains periodic [69].

Similar wave splittings were observed in experiments with
the Belousov ±Zhabotinskii reaction [144], in numerical
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Figure 7. Parameter space corresponding to different taxis wave propagation and interaction regimes [68, 69]: (a) g � 0:01, D � 0:04, b � 1, w � 0:004;
(b) g � 0:01, D � 0:04, b � 1, hÿ � 1; (c) g � 0:01, D � 0:04, b � 1, h� � 1; (d) g � 0:016, D � 0:04, b � 1, w � 0:004; (e) g � 0:016, D � 0, b � 1,

w � 0:004; (f) taxis wave propagation velocity as a function of D 1=2. Solid line Ð g � 0:016, hÿ � 5, h� � 1, dotted line Ð g � 0:01, hÿ � h� � 1. In

reaction ± diffusion systems, this dependence is always linear. * Ð quasi-soliton interaction, * Ð quasi-soliton interaction with wave splitting, ~ Ð

persistent pulse propagation with nonsoliton interaction, ~ Ð pulse propagation with splitting, . Ð unstable propagation, �Ð oscillation regime.
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Figure 8. Two taxis wave interaction regimes [68, 69]: (a) nonsoliton (g � 0:01,D � 0:04, hÿ � 2, h� � 0:85)Ðwaves penetrate through one another and

only then decay, (b) quasi-soliton (g � 0:016 and D � 0, hÿ � 5, h� � 1) Ð waves penetrate through one another and their amplitude is gradually
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experiments with the FitzHugh ±Nagumo model and a
mathematical model of the Belousov ±Zhabotinskii reaction
[145, 146], and in a three-component reaction ± diffusion
model describing blood coagulation [147].

Taxis wave propagation velocity. Figure 10a shows the typical
h�-dependence of the taxis wave propagation speed at
different fixed hÿ values. Symbols in this figure denote
different wave propagation and interaction regimes. The
graphs have two branches, parabolic and linear. The linear
branch is virtually independent of hÿ above a certain h�
value. It turns out that the transition of the parabolic branch
to the linear one with increasing h� shows linear correlation
with a quantitative change in the wave shape [69]. The
parabolic branch corresponds to the `two-humped' shape of
P�x� and the linear one to the `one-humped' shape.

3.2 Waves in a reaction ± taxis system ( c � 0.016)
The preceding section was focused on taxis waves in the case
where local kinetics allows purely diffuse waves in the system
of equations (3), i.e., for hÿ � h� � 0, D > 0. Local kinetic
parameters can be changed so as to make such propagation
unfeasible. This regime occurs when the parameter g increases
in amathematicalmodel. It turns out that taxis waves can also
propagate in this case.

Figure 7d shows the dependence of taxis wave behavior on
hÿ and h� at fixed g � 0:016 and D � 0:04. The point

hÿ � h� � 0 is in the region where stationary wave propaga-
tion is impossible. The plane hÿ, h� has regions correspond-
ing to quasi-soliton and nonsoliton wave interactions. No
wave splitting is observed in this parameter region, in contrast
to the case of local kinetics considered for g � 0:01.

We consider a situation where the diffusion coefficient
D � 0 (Fig. 7e). The h�-dependence of the wave propagation
speed is illustrated in Fig. 10b. Here, the graph also has two
branches, and the transition from the parabolic to linear
branch (Fig. 10b) correlates with the transition from a `two-
humped' to a `one-humped' wave [69]. This transition is well
correlated with the transition from quasi-soliton to nonsoli-
ton wave interaction regimes [69]. As in the previous case,
taxis waves do not annihilate in the nonsoliton interaction
regime at g � 0:016 for D5 0 but always penetrate through
one another prior to decay [69].

3.3 Mechanisms of the quasi-soliton interaction between
taxis waves
We consider the quasi-soliton interactions of taxis waves in
the case where g � 0:016 and D � 0 at greater length
(Fig. 8b). It was mentioned above that taxis waves in the
mathematical predator ± prey model are characterized by
low density of predators (Z ) ahead of the prey wave front
(P) because the predator moves along the prey density
gradient due to positive taxis. The predator and the prey
move in opposite directions. The meeting of two waves of the
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Figure 9. Spatio-temporal dynamics of taxis wave propagation and interaction in the splitting regime [69] (L � 600, t 2 �0; 3000�).
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prey results in its enhanced concentration (Fig. 8b, t � 10).
High local concentration of the prey attracts predators,
which leave the periphery of the collision zone. A local
increase in the number of predators provokes `evasion' of
prey (due to a negative taxis down the gradient of predators)
from the center of the collision zone towards its boundaries
where the predator density has already decreased (Fig. 8b,
t � 20). The result is the inversion of population gradients
and formation of new fronts at the boundaries of the
collision zone. It this way, two new (reflected) taxis waves
are generated that gradually recover their normal amplitude
(Fig. 8b, t � 35).

As noted above, certain properties of taxis waves are
essentially different from autowave properties. The depen-
dence of the wave propagation speed on the diffusion
coefficient D is also different (Fig. 7f). Evidently, the
dependence presented in the figure is different from the
/ D 1=2 law in reaction ± diffusion waves. This dependence is
disturbed near the transition between annihilating and
reflected waves.

To conclude, the observed properties of taxis waves are
not mathematical exotics as confirmed by the existence of the
soliton-like interaction regime in bacterial populations [67]
(Fig. 4b).

4. Taxis waves in two-dimensional media

Mathematical model.We consider a two-dimensional version
of mathematical model (3) [70]:

qP
qt
� f �P;Z � �DH 2P� hÿH �PHZ � ; �5�

qZ
qt
� g �P;Z � �DH 2Zÿ h�H �ZHP� ;

where P �x; y; t� and Z �x; y; t� are the respective population
densities of prey and predator. The local kinetic functions
f �P;Z � and g �P;Z � satisfy system (2a) with the parameters
b � 1, n � 0:07, w � 0:004, and the parameters g and D are
considered in two variants: (A) g � 0:01, D � 0:04 and (B)
g � 0:016, D � 0. The taxis coefficients hÿ and h� vary. As
known from the one-dimensional case, propagation of a
purely diffuse wave without taxis terms (hÿ � h� � 0) is
feasible in variant (A), but no such waves are possible in
variant (B).

All two-dimensional numerical experiments weremade on
rectangular or square media �x; y� 2 �0;Lx� � �0;Ly� with
impenetrable boundaries:

q�P;Z �
qx

����
x�0;Lx

� q�P;Z �
qy

����
y�0;Ly

� 0 : �6�

The numerical experiments were carried out using the explicit
Euler scheme with numerical approximation of the taxis term
by the explicit upwind difference scheme [69] with spatial and
temporal steps dx � dy � 0:5 and dt � 0:005. In figures
showing pictures with a regular time interval, this interval is
denoted by Dt.

4.1 Spiral waves
Rotating spiral waves are a special type of elementary
excitations in two-dimensional active media described by
reaction ± diffusion systems [148 ± 152]. The spiral wave is
the fastest of the autonomous autowave sources; its frequency

is higher than in the leading (circular) center. Spiral waves are
long-known and extensively studied processes in two-dimen-
sional reaction ± diffusion systems observed in a variety of
experimental conditions. Accordingly, there is a variety of
mathematical models describing such systems including
predator ± prey models [153]. In what follows, we consider
results of investigations into the properties of spiral waves in
excitable media of the reaction ± diffusion ± taxis and reac-
tion ± taxis types [70].

Very low taxis can destabilize spirals. Figure 11a depicts a
typical stable spiral-wave solution observed in the purely
reaction ± diffusion model (5). Results of the study of taxis
wave properties in the one-dimensional case [68, 69] suggest a
qualitatively new behavior of spiral waves, when taxis terms
are large enough in comparison with the diffusion coefficient
D (in our case, D � 0:04). This value corresponds to fluxes
comparable in terms of diffusion and taxis. Comparison of
the fluxes allows the relative contribution of taxis and
diffusion terms to be reasonably evaluated. It must be
remembered that the coefficients of nonlinear terms (h�)
and D have different dimensions.

Figure 11b shows a spiral wave in a reaction ± diffu-
sion ± taxis system at taxis coefficients significantly smaller
than those at which reflection from the boundaries occurs.

a

b

c

d

t=40 t=60 t=100 t=240

Figure 11. (a) Spiral wave in reaction ± diffusion system (5): case (A),

Lx � Ly � 200� 200, hÿ � h� � 0, Dt � 150; (b) Meander of the spiral

with a small taxis coefficient: case (A), Lx�Ly� 200� 200, hÿ �
h� � 0:05, Dt � 400; (c) Spiral behavior at higher taxis coefficients: case

(A), Lx � Ly � 200� 200, hÿ � h� � 0:1, Dt � 225; (d) Wavebreak does

not lead to the formation of a spiral wave: case (B), Lx � Ly � 250� 250,

hÿ � 5, h� � 1.
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Even these small taxis coefficients substantially change the
behavior of the spiral and give rise to a spiral wave meander
that drifts along a certain trajectory [70]. Such nonsta-
tionary behavior of spiral waves is unknown in excitable
media, where the transition from steady rotation is usually
associated with a change in reaction parameters. Conver-
sely, in the case under consideration, such transition occurs
upon a change in spatial parameters. As the taxis coeffi-
cients increase, they have a greater effect on wave spiral
dynamics and the spiral wave meander extends such that the
spiral drifts out of the medium and annihilates at its
boundary (Fig. 11c).

4.2 Alternative behavior of wavebreaks
In autowave systems, a wavebreak leads to `germination' of
the tip and its curling up into a spiral wave if the medium is
`strongly excitable' or to shrinking (retraction) of the tip if the
medium is `weakly excitable.' Figure 11e presents an example
of a reaction ± taxis system where nothing of the kind takes
place. This phenomenon also distinguishes taxis waves from
classical autowaves. The broken tip of a taxis wave germi-
nates but does not curl into a spiral, i.e., a qualitatively new
phenomenon develops [70]. Germination of the wavebreak
(WB) tip and transition to an expanding circle occur when
hÿ > h�. The prey near the wavebreak have the capacity to
escape from the predators into a region relatively free from
them. In this region, the prey density increases due to
reproduction, and an expanding circular zone forms where
there is no chasing wave of predators and the prey density is
rather high. However, the high-prey state ends when pre-
dators start to multiply intensively, giving rise to a chasing
wave. The WB tip cannot be identified from the prey (P)
population distribution, but a WB can be formally defined as
an intersection ofP andZ isolines [70]. ThisWB is attached to
the `mother' wave. This cannot happen in excitable reaction ±
diffusion systems because of a refractory period behind the
excitation wave. The refractory period in the population
system under consideration is characterized by a high density
of predators such that triggering of the prey-escape mechan-
ism is not feasible. Equilibrium between the variablesP andZ
behind the wave is reached very quickly (due to positive taxis
of Z in the gradient of P); this marks a qualitative difference
between taxis waves and classical autowaves. As a result, a
taxis wave has a relatively short refractory tail (if any), which
allows attraction and attachment of aWB to the back front of
its own wave [70]. We note that the attachedWB has to move
much faster than a plane solitary wave because it simulta-
neously participates in themotion of themother wave and the
circular wave that moves at an angle to the mother wave. One
reason for such faster motion is an unusual nonlinear
dispersive coupling of taxis waves, whose velocity increases
as the period decreases.

This property is illustrated in Fig. 12, which shows the
velocity of waves propagating over a one-dimensional
interval with periodic boundary conditions. Calculations
were performed as follows. Initially, a wave was started on
an interval of a large length L; the interval ends then
interlocked and the wave propagated circumferentially. The
length Lwas then decreased in small steps, and the stationary
velocity v�L�was estimated after each step. To circumvent the
interpretational difficulty related to the difference in spatial
scales in the diffusion and taxis terms, we plotted not the
absolute velocity but the velocity relative to the velocity of a
solitary wave, v �1�.

4.3 Partial reflection and self-supporting activity
In the one-dimensional case, taxis waves are reflected from
the boundaries and penetrate through one another. In two
dimensions, there are new aspects characterizing the impact
of the waves with boundaries and with each other: the
curvature of the waves and the angle of incidence at the
instant of impact. It is shown in [70] that in reaction ± taxis
model (5), the curvature and/or the angle of incidence
markedly affect the result of the impact, i.e., whether the
wave is reflected from the medium boundary or is annihilated
at it. An example is presented in Fig. 13a. A circular wave was
initiated at an asymmetrically located site within a rectan-
gular domain such that the distances to all boundaries were
different. As a result, the wave annihilated at the `northern'
and `western' boundaries (except for small portions) but was
reflected from the `southern' and `eastern' ones. The wave
approached the northern and western boundaries while
having a greater curvature than when it reached the southern
and eastern boundaries. The waves reflected from the south-
ern and eastern boundaries partly annihilated on collision.
Transition from annihilation to reflection/penetration
depended on the wave front interaction angle. One more
important factor that affected the outcome of the collision
proved to be the `age' of the propagating wave. This property
of taxis waves is considered at greater length in the next
section.

Thus, colliding waves either annihilate or penetrate/
reflect, depending on the local details of their interaction;
these two phenomena can work together to generate a self-
supporting spatio-temporal activity. The typical sequence of
events is as follows. Partially reflected/penetrated waves are
broken, i.e., have free ends that do not curl up into spirals but
produce circular waves. These waves interact with each other
and with the medium boundaries, and therefore the sequence
of events repeats, resulting in spatio-temporal chaos. Exam-
ples of such self-supporting activity are shown in Fig. 13b, c.
Reference [70] presents a broad collection of numerical
experiments demonstrating that this mechanism is not
restricted to a narrow region of parameters. The self-
supporting activity may last quite long but not necessarily
infinitely long because there is always a possibility that all

v�L�
v�1�

1.2

1.0

0.8

0.6

0 100 200 300 400 500 600
T

(B)(2.5; 5)

(B)(0; 5)

(A)(0; 2)

(A)(0; 0)

Figure 12. Dispersion curves of periodic waves as the dependence of the

normalized velocity v �L�=v �1� on the period T � L=v �L� in cases (A)

and (B) for different parameters (hÿ and h� values are given in brackets).

Reaction ± diffusion waves decelerate as the frequency increases; the taxis

wave can accelerate [70].
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waves annihilate on collision. Evidently, such probability is
higher for a smaller system. At the same time, breaks resulting
from partial reflection of the waves and formation of circular
waves from their free ends may constitute a new mechanism
underlying generation of spatio-temporal chaos.

5. Half-soliton interactions between population
taxis waves

The results presented in this section were obtained in
numerical experiments designed to study mathematical
models (3) and (5) [71]. In the one-dimensional case, the
implicit upwind difference scheme [69] was used with
discretization steps dx � 0:1, dt � 5� 10ÿ3; in the two-
dimensional case, the explicit upwind difference scheme with
dx � dy � 0:5 and dt � 5� 10ÿ3 was used. As in the preced-
ing sections, b � 1, n � 0:07, w � 0:004 for two different
values of g: g � 0:01 and g � 0:016. The Neumann condition
qP=qxjx�0;L�0, qZ=qxjx�0;L�0 was satisfied in the one-

dimensional case �x 2 �0;L�� and qP=qx jx�0;Lx
� 0,

qZ=qx jx�0;Lx
� 0, qP=qyjy�0;Ly

� 0, qZ=qyjy�0;Ly
� 0 in the

two-dimensional case
ÿ�x; y� 2�0;Lx� � �0;Ly�

�
.

5.1 One-dimensional case
It was shown in [71] that taxis waves have one more unique
property, `half-soliton' interaction, during which one collid-
ing wave annihilates and the other continues to propagate.
Figure 14a, b illustrates the spatio-temporal dynamics of
solitary population taxis waves in model (3), including their
formation, propagation, and reflection from the boundaries.
These waves were initiated with g � 0:01 (Fig. 14a) and
g � 0:016 (Fig. 14b) with the initial conditions P�x; 0� � 0:8
for x 2 �0; 1�,P�x; 0� � P0 for x 2 �1;L�, andZ�x; 0� � Z0 for
x 2 �0;L�, where P0 and Z0 are stationary values.

The results presented below are related to the following
fact: the structure of a taxis wave and its propagation velocity
are established after a rather long transitional period [71].
Figure 15A shows plots of the wave propagation velocity (V )

a

b

c

t � 120 t � 240 t � 360 t � 580 t � 640

t � 275 t � 375 t � 425 t � 525 t � 1175

t � 200 t � 380 t � 480 t � 600 t � 680

Figure 13. Self-supporting activity [70]. (a) Evolution of a circular wave: case (B),Lx � Ly � 200� 160, hÿ � 5, h� � 1; some parts are reflected from the

boundaries, others are not; (b) case (A), Lx � Ly � 350� 230, hÿ � 2, h� � 1:5; (c) symmetric case (B), Lx � Ly � 250� 250, hÿ � 5, h� � 1.

t t t t t ta b c d e f

t 2 [0, 1200] t 2 [0, 900] t � 350 t � 300 t � 300 t � 250

x x x x xx

Figure 14. Spatio-temporal dynamics of one-dimensional (L � 250) taxis waves (3) with reflection from impenetrable boundaries [71]. Cases (a, b) Ð

solitary waves, (c ± f) Ð periodically initiated waves at the left end with period T and t 2 �0; 2000�: (a) g � 0:01, D � 0:04, hÿ � h� � 1, (b), g � 0:016,
D � 0, hÿ � 5, h� � 1, (c, d), g � 0:01,D � 0:04, hÿ � h� � 1, (e, f) g � 0:016,D � 0, hÿ � 5, h� � 1. Bold dark initial sections of the lines correspond to

P � 0:9; thin dotted lines correspond to P � 0.
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and the wave profile width (W ) during such transition prior
to and after reflection from the boundaries. In the course of
establishment, the wave propagation velocity decreases
sharply within a short time period (approximately
450 < t < 550), whereas the wave profile width monotoni-
cally approaches a stationary value. The decrease in the
velocity with time is associated with a change in the wave
profile shape (see Section 3). Figure 15B shows wave profiles
corresponding to the chosen time instants indicated by arrows
in Fig. 15A. It can be seen that a temporary decrease in the
velocity correlates with a change in the wave profile from
`two-humped' to `one-humped.'

On the other hand, the type of interaction of steadily
propagating waves, i.e., reflection or annihilation, also
correlates with the shape of their profile (see Section 3).
Because the profile shape takes a rather long time to change
after the initiation, it was suggested that the `age' of the wave
must affect the interaction regime. This suggestion was
verified in numerical experiments presented in Figs 14c ± f.
Periodic waves were initiated in a one-dimensional medium
with impenetrable boundaries. The figure illustrates interac-
tion of the waves moving out from the left end of the section
with those reflected from the impenetrable boundary. Two
types of interaction occur, quasi-soliton and those in which
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Figure 15. (A) Wave propagation velocity (a, c) and wave profile width (b, d) in the course of their establishment corresponding to 14a, b [71]: (a, b)

g � 0:01,D � 0; 04, hÿ � h� � 1, (c, d) g � 0:016,D � 0, hÿ � 5, h� � 1. The wave profile widthW �t� is defined as the distance between the points of the
forward and rear fronts, where P �x; t� � 0:4. (B) Wave profiles corresponding to the chosen time instants t (arrows in Fig. A).
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Figure 16.Results of collisions of differently `aged' waves [71]: (a) wavesW200 (left) andW466 (right); (b) wavesW350 (left) andW466 (right); (c) wavesW650

(left) andW466 (right).
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only one wave passes after the collision; the latter represent a
new type (half-soliton interactions).

Waves of different `ages' were generated to study this
phenomenon. They were recorded in a large system at given
instants during transition to the stationary propagation
regime, namely, at t � 195, 345, 461, and 645. Thereafter,
the initial conditions were chosen such that half of the
medium was occupied by a wave of one age shifted along the
x axis and the other half by a wave of a different age turned
toward the former one. Artificial starting conditions were
such that the waves collided in roughly five time units; wave
ages at the collision were as shown in Fig. 15. These waves are
denoted as W200, W350, W466, and W650 in the order of
increasing age.

Figure 16a shows the interaction between wavesW200 and
W466 in whichW200 suppressesW466. Similarly, the waveW350

in Fig. 16b prevails over the wave W466. Interaction between
W650 and W466 occurs in the quasi-soliton regime. Tables 2
and 3 summarize the results of collisions of waves of different
ages. It follows that half-soliton interaction occurs when two
colliding waves have substantially different profile widths. It
is more difficult for a narrow (`old') wave to penetrate
through a wide (`young') wave.

5.2 Two-dimensional medium
We consider the interaction between concentric taxis waves of
different radii and profile widths [71]. In a one-dimensional
collision, the initial conditions were formed by single pulses
recorded at different stages of taxis wave development and
therefore having different widths. If P1d�x�, Z1d�x� is the
recorded impulse shifted along the x axis such that the front
occurs at the point x � 0, the initial conditions used can be
represented in the form

P �x; y; 0� � P1d

ÿ ����������������
x 2 � y 2

p
ÿ R

�
;

Z �x; y; 0� � Z1d

ÿ ����������������
x 2 � y 2

p
ÿ R

�
;

where R is the fixed radius of a circular wave.

This transformation for the parameters g � 0:016,D � 0,
hÿ � 5, h� � 1 initiated circular waves from a one-dimen-
sional wave taken at t � 120 (W-wave), t � 450 (S-wave), and
t � 450 (U-wave). The profile widths of these wavesmeasured
at the level P � 0:4 were lW � 9:2, lS � 6:4, lU � 5:1, and
hence lW=lU � 1:8 and lW=lU � 1:25.

Interaction of U-waves with the initial radius R � 35 is
shown in Fig. 17a. In this case, both waves penetrate through
(reflect from) each other and undergo reflection from the
boundaries. Interaction of U and W-waves with the same
radii exhibits half-soliton behavior whereupon the W-wave
suppresses the U-wave but annihilates at the boundary
(Fig. 17b).

5.3 Taxitons. Dependence of the reflection regime
on the taxis wave interaction angle
The collision of two S-waves with the initial radius R � 20
(Fig. 17b) results in their partial penetration. The result is
given by spatially localized waves called `taxitons,' analogous
to the term `excitons' [154] coined to describe localized
propagating excitations in excitable media [71] (Fig. 17c,
t � 80).

In certain cases, two regimes, half-soliton and taxiton,
are simultaneously realized after collision (Fig. 17d). When
a U-wave (R � 35) interacts with an S-wave (R � 20), the
latter passes through the former in the half-soliton regime,
whereas a U-wave passes only partially through (Fig. 17d,
t � 60, 80, 100).

The interaction type (annihilation, quasi-soliton, or half-
soliton) depends not only on the curvature of the colliding
waves and the width of their profiles but also on the incidence
angle [71]. This explains the formation of taxitons.

Figure 18 shows collisions of plane taxis waves at different
angles between interacting fronts. The initial conditions were
formed by a stationary one-dimensional U-wave converted to
a pair of two-dimensional plane waves propagating in
opposite directions with different tilts. The following trans-
formation was used for the purpose:

P �x; y; 0� � P1d

ÿ
x cos y� y sin yÿ C

�
;

Z �x; y; 0� � Z1d

ÿ
x cos y� y sin yÿ C

�
;

where y and C are constants that differ for the right and left
halves of the medium.

As a result, the waves annihilate when the angle between
their interacting fronts is a � 80� (Fig. 18a) and pass through
each other at a � 60� (Fig. 18b).

6. Waves in excitable media
with linear cross-diffusion

6.1 Examples of systems with cross-diffusion
In the preceding sections, we considered mathematical
models with taxes that can be classified as nonlinear cross-
diffusion ones. The number of publications devoted to
systems with linear cross-diffusion is relatively small com-
pared to publications on nonlinear cross-diffusion.

In 1975, JorneÂ [20] demonstrated in the context of
chemical reactions (dynamics of electrolyte solutions) that
the introduction of negative linear cross-diffusion in the
reaction ± diffusion equations enhances the probability of
instabilities leading to oscillations and the formation of

Table 3. Results of taxis wave collisions for g � 0:016, D � 0, hÿ � 5,
h� � 1 (Fig. 15c, d).

a b c d

a
b
c
d

ÿ
a
a
a

a
ÿ
b
b

a
b
�
�

a
b
�
�

Note: A corresponds to w84, b to w140, c to w160, and d to w450. Wave

profile ratios at the level P � 0:4: la=ld � 2:8, lb=ld � 1:4, and

lc=ld � 1:14 [71].

Table 2. Results of taxis wave collisions for g � 0:01, D � 0:04,
hÿ � h� � 1.

A B C D

A
B
C
D

ÿ
A
A
A

A
�
B
B

A
B
�
�

A
B
�
�

Note: A corresponds to W200, B to W350, C to W466, and D to W650.

Letters at the intersection of lines and columns indicate which wave

suppresses the other; the+ sign corresponds to the quasi-soliton regime,

the ÿ sign to annihilation. Wave profile ratios at the level P � 0:4:
lA=lD � 5:3, lB=lD � 2, and lC=lD � 1:25 [71].
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ordered structures. In a later study, the same author examined
the Lotka ±Volterra equation with diffusion in a homoge-
neous system encompassing negative linear cross-diffusion
[155]. He observed the appearance of oscillations and spatial
structures at certain values of cross-diffusion coefficients.
Since then, negative cross-diffusion has been recognized as a
factor responsible for unstable regimes in the extended
Lotka ±Volterra system [45, 46, 156].

Satulovsky [156] also used the Lotka ±Volterra system to
study the behavior of predators and prey that led to equations
with negative cross-diffusion. JorneÂ [155] and Satulovsky
[156] emphasized that negative cross-diffusion considered in
their works is rarely applicable to ecological situations
because it reflects a detrimental behavioral strategy on the
part of the prey.

Almirantis and Papageorgiou [21] postulated a mechan-
ism of intercellular communication capable of maintaining
cross-diffusion transport in biological systems. As an
illustration, they proposed a hypothetical membrane
mechanism including transmembrane microstructures with
enzymatic activity having two active and one regulatory

sites. It turned out that at such spatial relations, a simple
catalytic reaction (even with very low cross-diffusion
compared with ordinary diffusion) can yield structures.
The same authors [21] also studied the reaction ± cross-
diffusion system

q
qt

X � F �X;Y;A� �DX
q2

qr 2
X�DXY

q2

qr 2
Y ;

q
qt

Y � G �X;Y;A� �DY
q2

qr 2
Y�DYX

q2

qr 2
X ;

�7�

where X and Y are regulatory and `transport' substances,
respectively.

Conditions were found at which stationary structures
could form in the two-component reaction ± diffusion system
(7) in the presence of cross-diffusion. In other words, the
authors of Ref. [21] proposed and investigated a hypothetical
mechanism involving transmembrane allosteric enzymes as a
possible candidate for the creation of a cross-diffusion
interaction between components of the system in which
dissipative structures arise. Some characteristics of mem-

t � 0 t � 20 t � 40 t � 60 t � 80

t � 0 t � 20 t � 40 t � 60 t � 80

t � 0 t � 40 t � 60 t � 80 t � 100

t � 0 t � 40 t � 60 t � 80 t � 100

a

b

c

d

Figure 17. Interaction of concentric taxis waves (Lx � Ly � 150� 100) [71]; (a) quasi-soliton interaction of U-waves with initial radii R � 35; (b) half-

soliton interaction of U- and W-waves with R � 35; (c) two S-waves with R � 20; (d) U-wave (R � 35) and S-wave (R � 20).

a

b

Figure 18. Interaction of two plane U-waves at different angles a between the fronts (Lx � Ly � 150� 50, Dt � 20) [71]: (a) a � 80�, (b) a � 60�.
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branemicrostructures reported in that paper were observed in
certain receptor systems [157, 158].

Dubey and collaborators [24] considered the following
predator ± prey model with self- and cross-diffusion:

qP
qt
� g�P�Pÿ f �P�Z�D11

q2P
qx 2
�D12

q2Z
qx 2

;

qZ
qt
� �cf �P� ÿ q�P��Z�D22

q2Z
qx 2
�D21�t� q

2P

qx 2
;

�8�

where P �x; t� and Z �x; t� are prey and predator population
densities, respectively. This model was used to study
instability and global stability criteria, as well as the effect of
critical wavelength, which may bring a cross-diffusion system
to unstable regimes. Also considered was the case of a time-
dependent predator's cross-diffusion coefficient; the effect of
time-dependent cross-diffusion on the stability of the system
was evaluated [24].

Seismology. Burridge ±Knopoff model (BK model). Burridge
and Knopoff [28] proposed describing characteristic features
of earthquakes using amodel that considers the interaction of
two tectonic plates as the interaction of a chain ofN blocks of
equal length a and mass m interconnected by springs with
Hooke's coefficient kc. The blocks are attached to the main
part of a plate moving with speed V. The connection of the
blocks with this plate is determined by an elastic shift with a
coefficient kp and friction Ff between the two plates. In the
stationary state, the equation for the ith block has the form

m _Xi � kc�Xi�1ÿ 2Xi � Xiÿ1�ÿ kp�Xi ÿ Vt�ÿ Ff � _Xi� ; �9�

where Xi is the displacement of the ith block from equili-
brium. Burridge and Knopoff [28] introduced an S-shaped
dependence of the friction function. In further studies,
Carlson and Langer [159, 160] introduced a friction function
asymptotically decaying with increasing velocity. Cartwright
and collaborators [29] returned to the initial shape of the
friction function and reduced the BK model to a system with
linear cross-diffusion.

Passing to the limit in Eqn (9), we have

�w � c 2w 00 ÿ �wÿ vt� ÿ gj � _w� ; �10�

where w�x; t� is the time-dependent local lengthwise displace-
ment of the upper plate relative to the lower one. For the local
velocity c � _w, Eqn (10) gives a BK model in the form of a
system with linear cross-diffusion [29]:

_c � g
ÿ
Zÿ j�c�� ; _Z � ÿgÿ1�cÿ vÿ c 2c 00� : �11�

Cross-diffusion model of forest-age structure dynamics. From
the mathematical standpoint, systems with linear cross-
diffusion appear to be simpler than those with nonlinear
cross-diffusion; however, their physical representation pre-
sents difficulty. We consider one of the most interesting
corollaries of a mathematical model with linear cross-
diffusion using the model of forest-age structure dynamics
proposed in [26, 27]. Forest-age structure dynamics is under-
stood as a change in the number of trees of different age
classes in space and time under the effect of internal and
external factors. The age structure of natural forests varies
from one place to another, and such `cells' are integrated into
a common system by mechanisms of seed dispersal and

vegetative reproduction. Trees are known to reproduce
themselves by seeds via four main stages: seed production,
seed transport, seed deposition on the soil, and germination.
The following model was considered:

qu
qt
� dbwÿ g�v� uÿ fu ;

qv
qt
� fuÿ hv ; �12�

qw
qt
� avÿ bw�Dwxx ;

where u and v are the density of `young' and `old' trees;w is the
seed density in `the air', f and h are the aging coefficient of
`young' and mortality coefficient of `old' trees, respectively;
g�v� is the mortality of young trees; a, b, and d are the
respective coefficients of seed production, deposition, and
germination; and D is the coefficient of diffusion along the
spatial variable x. System (12) looks like a reaction ± diffusion
one. Elimination of the `seed' variable from (12) yields a
cross-diffusion system of equations for the density of young
and old tree classes [26, 27].

The cross-diffusionmodel in [26, 27] was derived based on
the hypothesis of different timescales for seed dispersion and
tree lifetimes. Because the last equation in system (12) is
linear, its formal solution can be written as

w �x; t� �
� �1
ÿ1

dx
� �1
0

dt v �x� x; tÿ t�

� a

2
���������
pDt
p exp

�
ÿ x 2

4Dt
ÿ bt

�
: �13�

It should be borne in mind that the time spent by seeds in
the air is much smaller than all other time-dependent
constants; in other words, bÿ1 (the characteristic seed
deposition time) is a small parameter. Expansion of v in a
Taylor series in the second argument gives an asymptotic
series for w in the limit b! �1:

w �x; t� �
� �1
ÿ1

dx

(
v �x� x; t�

� �1
0

dt
a

2
���������
pDt
p

� exp

�
ÿ x 2

4Dt
ÿ bt

�
� vt�x� x; t�

� �1
0

dt
a

2
���������
pDt
p

� exp

�
ÿ x 2

4Dt
ÿ bt

�
� . . .

)

� a
� �1
ÿ1

dx

(
v �x� x; t� 1�������

Db
p exp

�
ÿ jxj

�
b
D

�1=2 �

� vt�x� x; t� 1

2

���������
Db 3

q �
1� jxj

�
b
D

�1=2 �

� exp

�
ÿ jxj

�
b
D

�1=2�)
�O

ÿ
bÿ5=2

�
: �14�

Substitution of this expression in the first equation of system
(12) (keeping only the leading term) leads to the integro-
differential set of equations

ut �
� �1
ÿ1

r0�x� v �x� x; t� dxÿ g�v� uÿ fu ;

vt � fuÿ hv ;
�15�
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where the function r0 is given by the formula

r0�x� � ad
�

b
D

�1=2

exp

�
ÿ jxj

�
b
D

�1=2 �
: �16�

The integral term in (15) can be approximated by a
differential one if v �x� x� is expanded in a Taylor series
and only the first four terms are retained. This approach has
no rigorous substantiation, but it gives the first `nontrivial'
spatially extended generalization of model (12). The assump-
tion that� �1

ÿ1
r0�x� v �x� x; t� dx � rv �x; t� � K vxx�x; t� ;

where

r �
� �1
ÿ1

r0�x� dx � 2ad ;

K � 1

2

� �1
ÿ1

r0�x� x 2 dx � 2adD
b

;

leads to the following system with cross-diffusion:

qu
qt
� rvÿ g �v� uÿ fu� K vxx ;

qv
qt
� fuÿ hv :

�17�

The linear and cubic terms in x disappear due to the parity
of r0. We note that system (17) already has a cross-diffusion
termK vxx, whereasmodel (12) includes the classical diffusion
term Dwxx. To conclude, a cross-diffusion model with two
interacting components was proposed to describe spatio-
temporal dynamics of the age structure of monospecific
forest stands [26, 27]. In addition, tree limit displacement
was examined in [26, 27] in the context of model (17).

6.2 Characteristic wave properties
Mathematical model. It was shown in [72] that a characteristic
property of waves in excitable systems with linear cross-
diffusion is their quasi-soliton interaction regime. This study
used a mathematical model with the FitzHugh ±Nagumo
nonlinearity [142, 143], a prototype of an excitable system
model including linear cross-diffusion (19) instead of the
traditional description of the system component distribution
through diffusion (18) [72]:

qu
qt
� u �uÿ a��1ÿ u� ÿ v�Du

q2u
qx 2

;

qv
qt
� e �uÿ v� �Dv

q2v
qx 2

;
�18�

qu
qt
� u �uÿ a��1ÿ u� ÿ v�Dv

q2v
qx 2

;

qv
qt
� e �uÿ v� ÿDu

q2u
qx 2

;
�19�

where Du 5 0, Dv5 0, e5 1, a < 0:5.
The signs of cross-diffusion terms in (19) were chosen

analogously to the studied system with nonlinear cross-
diffusion. It is worth noting that system (19) at Dv � 0
corresponds to the Burridge ±Knopoff model describing the
interaction of tectonic plates [29].

Numerical experiments with system (19) were carried out
for x 2 �0;L�, where the medium size L varied in different
cases. The impenetrability conditions qu=qxjx�0;L �
qv=qxjx�0;L � 0 were satisfied at the boundaries of the
medium. Whenever wave behavior in an unbounded medium
had to be examined, the computation interval was from time
to time displaced so as to exclude the boundary effect on wave
propagation. For this reason, spatial coordinates in all figures
represent a spatial scale rather than the wave position in a
concrete experiment. In all numerical experiments, the
parameter a was fixed as a � 0:3, whereas e, Du, and Dv

were varied. The implicit central-difference scheme [161] was
used for calculations. The spatial and temporal steps of
calculations were dx � 0:2 and dt � 0:005. The initial condi-
tions were chosen as u �x; 0� � Y �dÿ x� and v �x; 0� � 0 for
starting one wave (at the left end), and as u �x; 0� �
Y �dÿ x� �Y

ÿ
xÿ �Lÿ d�� and v �x; 0� � 0 for starting

two waves from either end, whereY is the Heaviside function
and d�2. The beginning and end of the excitation wave were
defined as the points where u �x; t� � uf � 0:5.

Evolution of wave shape. Figure 19A depicts a typical profile
of a wave traveling in the excitable cross-diffusion system
(19). The following characteristic properties are worth
noting [72]:
� a quite long transitional period (much longer than in a

system with usual diffusion) during which a wave pulse
expands to a certain stationary length;
� an oscillating forefront of the pulse;
� oscillations of the wave profile near the forward and

back fronts are apparent for both the activator and the
inhibitor;
� the pulse plateaus (Fig. 19A, t � 120, t � 620) of both

the activator and the inhibitor vary insignificantly.
All these properties are reminiscent of those described for

taxis waves and differ from wave properties in a FitzHugh ±
Nagumo system with ordinary diffusion:
� the transition to a stable pulse usually occurs for a time

comparable with its duration;
� the forward and back fronts are monotonic;
� the soliton-like interaction regime is confined to a

narrow parameter region at the boundary of the standby
and oscillatory regimes.

We consider the evolution of a wave profile width W
defined as the distance between the point where u � uf and
qu=qt > 0 (forefront) and u � uf and the point where
qu=qt < 0 (back front) at a given instant. Figure 19B shows
that with the chosen initial conditions, the wave profile width
increases to a stationary value. Both the stationary value of
the profile width and its growth rate depend on all para-
meters. However, the e-dependence appears especially inter-
esting because the saturation effect is eliminated at e � 0
[Fig. 19B (d)].

In Fig. 19C, it is possible to trace the wave shape evolution
in detail at small values of the parameter e . The wave becomes
longer, which allows comparing the forward and back fronts
better at different instants. If the two fronts are superimposed
at t � 250 and t � 1000, the forefront remains practically
constant during the prolonged wave transition to the
stationary state [Fig. 19C (c)], whereas the rear front under-
goes relatively small changes.

We separately consider the motion of the forward and
back fronts in terms of variation of their velocities with time
(Fig. 19D). It can be seen that the forefront velocity becomes
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constant after a very short transitional period. In contrast, the
back front velocity gradually increases from a very small
value and needs rather a long period to reach the forefront

velocity. Thus, the dynamics of wave profile formation can be
described as a gap distance between back and forward fronts
at which the velocities of the two become equal. The change in
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Figure 19. (A) Profile of a propagatingwave described bymathematical model (19). Solid lines: u, dotted lines: v. Parameters: e � 0:001,Du � 5,Dv � 0:5;
the range of x is 50 in all figures. (B) Time-dependent growth of the wave profile width (W) at various combinations of system parameters (19). Points on
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Du � 1 in Fig. (b) Ð quasi-soliton regime is absent. Figure (d): e � 0, i.e. the quasi-soliton regime persisted throughout the period of observation. (C)

Details of the wave shape evolution in time (e � 0:001,Du � 5,Dv � 0:5): (a) and (b) general view; (c) superposition of forward fronts corresponding to

instants t � 250 and t � 100; (d) superposition of rear fronts. (D) Speed evolution of forward (solid line) and back (dashed line) wave fronts in time at
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the back front velocity slows down as the value of e decreases
[Fig. 19D (a ± c)], but it does not change at all at e � 0

[Fig. 19D (d)]. Such divergence in the motion of the forward
and back fronts accounts for the continuous growth of the
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wavelength. Figure 19E illustrates the e-dependence of stable
wave profiles. At small e, stable wavelengthsW are fairly well
approximated by the dependenceW / eÿ1.

6.3 Quasi-soliton wave interaction
It was shown in [72] that quasi-soliton interaction is also a
characteristic property of waves in excitable systems with
cross-diffusion. This property is related to the slow evolution
of the wave shape described in the preceding section. The
ability of waves to penetrate through one another and reflect
at impenetrable boundaries depends on their `age', i.e., profile
width at the moment of collision.

Figure 20A shows two interaction regimes for waves of
different ages at identical parameters. Such waves were
obtained by varying the medium size. In a smaller system
(L � 300), wave profiles prior to the impact did not reach a
properwidth; hence, a quasi-soliton collision occurs.After the
collision, the waves became narrow again and, as a conse-
quence, were reflected from the boundaries during further
propagation. This process repeated over and over, ensuring
self-supporting activity of the system. In a larger system
(L � 600), waves had wide enough profiles at the instant of
impact and annihilated [72]. The dynamics of quasi-soliton
and nonsoliton interactions between waves in both cases are
shown in Fig. 20B, C. Similar to taxis waves, the nonsoliton
interaction regime in the given case is characterized by wave
penetration through one another and their subsequent decay.

Switching from a soliton-like to a nonsoliton interaction
regime occurs when a wave is in a certain `expansion' phase
during transition to the stable state. The instants of this switch
are shown in Figs 19B and 19D. The quasi-soliton interaction
regime holds only for `narrow' waves, i.e., for waves in the
first half of the transition to the steady state (Fig. 19b). The
wave profile width grows depending on the back front
dynamics (i.e., on its spatial location and structure). There-
fore, it may be supposed that the outcome of collision is
largely determined by the back front properties. The inter-
relation between forward and back fronts must be negligible
when the wave profile is very wide.

The structure of the rear part of a wide wave profile
remains the same as in a narrow profile; that is, it is capable of
reflection if the pulse plateau changes rather slowly, depend-
ing on the parameter e. This suggestion was confirmed in
numerical experiments (Fig. 19D (d)) [72]. The samework [72]
describes an analytic approach to the study of waves in
systems with linear cross-diffusion.

7. Conclusion

We have shown that the replacement of usual diffusion by
cross-diffusion in excitable systems results in new wave
properties.

The main properties and newwave phenomena character-
istic of systems with cross-diffusion and distinguishing them
from the known properties of autowaves are as follows.
� There is an oscillating forefront of waves in cross-

diffusion systems.
� `One-humped' or `two-humped' wave profiles occur.

The dependence of the wave propagation velocity on the taxis
coefficients has two branches, parabolic and linear. The
transition from one branch to the other fairly well correlates
with changes in the wave profile shape; that is, the parabolic
branch corresponds to the `two-humped' shape and the liner
branch to the `one-humped' shape.

� There is a rather long transition (much longer than in a
system with ordinary diffusion) during which a wave pulse
reaches a certain stationary length.
� The dependence of the taxis wave propagation velocity

on the diffusion coefficient differs from the
����
D
p

dependence
always present in reaction ± diffusion systems.
� Small taxis coefficients substantially alter the behavior

of spiral waves and lead to a spiral wave meander. Such
nonstationary behavior of spiral waves is unknown in
excitable reaction ± diffusion systems, where the transition
from steady rotation is usually associated with changes in the
reaction parameters.
� Partial diffusion of cross-diffusion waves is possible in

two-dimensional systems.
� Free tips of wavebreaks can attach to the back front of

the mother wave, generating a circular wave.
� The quasi-soliton interaction regime associated with

collisions of cross-diffusion waves spreads over a large
parameter region. The soliton-like interaction regime in
reaction ± diffusion systems is confined to a very narrow
parameter region at the boundary of standby and oscillating
regimes.
� In the nonsoliton interaction regime in cross-diffusion

systems, waves do not annihilate but always penetrate
through one another and thereafter decay.
� The half-soliton interaction regime occurs under certain

conditions in cross-diffusion systems.
� There is a relation between wave shape evolution and

various wave interaction regimes (quasi-soliton, nonsoliton,
and half-soliton).

These findings indicate that waves in excitable cross-
diffusion systems may be regarded as a special class of
nonlinear waves.

The present review was not designed to compare analytic
approaches to the study of cross-diffusion systems. Such
investigations were initiated by the publication of the
Keller ± Segel mathematical model in 1971 [124] describing
chemotaxis in population systems. The majority of analytic
works deal with self-organization processes in population
systems (see, e.g., [9, 15, 25, 44, 155, 162 ± 167]). It is
worthwhile to mention the works of Talanov [168, 169], who
proposed a phenomenological description of nonlinear
cooperative effects in extended kinetic systems and analyzed
the relation of stimulated diffusion (nonlinear diffusion and
cross-diffusion) to the principles of thermodynamics. An
asymptotic theory for the regime in which the local dynamics
of the inhibitor is much smaller than that of the activator is
suggested in Ref. [72]; it considers the classical FitzHugh ±
Nagumo system in which ordinary diffusion was substituted
by linear cross-diffusion.

In the present work, the properties of waves in cross-
diffusion systems are largely reviewed in application to
spatially extended population systems for which selected
mechanisms underlying the wave phenomena of interest can
be explained. Moreover, a number of experimental data
available for population systems confirm some wave proper-
ties discovered in mathematical models.

It can be expected that further theoretical and experi-
mental studies of excitable systems with cross-diffusion will
make an important contribution to understanding self-
organization phenomena in all sorts of nonlinear systems,
from micro- and astrophysical systems to social ones.
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