<u>ΥCΠΕΧИ ΦИЗИЧЕСКИХ НАУК</u>

КОНФЕРЕНЦИИ И СИМПОЗИУМЫ

Научная сессия Отделения физических наук Российской академии наук

(19 апреля 2006 г.)

19 апреля 2006 г. в конференц-зале Физического института им. П.Н. Лебедева РАН состоялась Научная сессия Отделения физических наук Российской академии наук. На сессии были заслушаны доклады:

1. Каган М.Ю., Клапцов А.В., Бродский И.В. (Институт физических проблем им. П.Л. Капицы РАН, Москва), Combescot R., Leyronas X. (Ecole Normale Supériure, Paris, France). Составные фермионы и бозоны в ультрахолодных газах и высокотемпературных сверхпроводниках.

2. Андрияш А.В., Лобода П.А., Лыков В.А., Политов В.Ю., Чижков М.Н. (Российский федеральный ядерный центр "Всероссийский научно-исследовательский институт технической физики им. Е.И. Забабахина", г. Снежинск, Челябинская обл.). Лазеры и физика высоких плотностей энергии во Всероссийском научно-исследовательском институте технической физики.

3. Муртазаев А.К. (Институт физики Дагестанского научного центра РАН, Махачкала). Исследование критических явлений в спиновых решеточных системах методами Монте-Карло.

4. **Черепенин В.А.** (Институт радиотехники и электроники РАН, Москва). *Релятивистские многоволновые генераторы и их возможные применения*.

Краткое содержание докладов публикуется ниже.

PACS numbers: 03.75.Mn, 21.45.+v, 32.80.Pj

Составные фермионы и бозоны в ультрахолодных газах и высокотемпературных сверхпроводниках

М.Ю. Каган, А.В. Клапцов, И.В. Бродский, R. Combescot, X. Leyronas

1. Введение

В последние годы физика ультрахолодных квантовых газов заслуженно привлекает большое внимание как теоретиков, так и экспериментаторов, работающих на стыке физики конденсированного состояния и атомной физики [1].

Фактически ультрахолодные ферми-бозе-газы и ферми-бозе-смеси в магнитных и дипольных ловушках являются прекрасным экспериментальным полигоном для апробации различных современных теорий физики сильнокоррелированных электронных систем. Более

6 УФН, т. 176, № 10

того, экспериментальная возможность контролируемым образом изменять параметры плотности и взаимодействия в ультрахолодных газах и тем самым переходить от режима слабых корреляций к более актуальному режиму сильных корреляций делает магнитные ловушки и оптические решетки идеальным объектом для проверки наиболее популярных сейчас сценариев высокотемпературной сверхпроводимости (ВТСП). В последние годы бурное развитие экспериментальной и теоретической физики ультрахолодных ферми-бозегазов связано, в первую очередь, с экспериментальной реализацией эффекта Фешбаха в данном классе систем [2]. Эффект Фешбаха позволяет резко изменять знак и величину амплитуды рассеяния в квазирезонансном случае (при наличии мелкого реального или виртуального уровня в потенциале парного взаимодействия двух частиц) при приложении внешнего магнитного поля. При переходе через резонансное магнитное поле B_0 в системе скачком меняется знак взаимодействия, и при $B > B_0$ мы переходим от положительной длины рассеяния (соответствующей случаю образования реальных молекул), a > 0, к отрицательной длине рассеяния (соответствующей отсутствию реального связанного состояния), a < 0. Более того, при $B \rightarrow B_0$ эффективная длина рассеяния по абсолютной величине может достигать значений порядка 2000-3000 Å, тогда как затравочная квазирезонансная длина рассеяния при отсутствии магнитного поля обычно составляет порядка 15-20 Å. Резонанс Фешбаха схематично иллюстрируется на рис. 1. В аналитическом виде зависимость длины рассеяния от магнитного поля выражается известной формулой [2]:

$$a = a_{\rm bb} \left(1 + \frac{\varDelta}{B - B_0} \right),\tag{1}$$

где a_{bb} — затравочная длина рассеяния, Δ — ширина фешбаховского резонанса, измеренная в гауссах. При $B \rightarrow B_0$ длина рассеяния $a \rightarrow \infty$ и мы переходим к так называемому унитарному пределу для квантовых газов. Отметим, что применительно к ультрахолодному ферми-газу случай a > 0 соответствует образованию молекулы (составного бозона) из двух элементарных фермионов $f_1 f_{\downarrow}$. При этом энергия связанного состояния определяется по формуле

$$E_{\rm b} = -\frac{1}{ma^2} \,. \tag{2}$$

© М.Ю. Каган, А.В. Клапцов, И.В. Бродский, R. Combescot, X. Leyronas 2006

Рис. 1. Схематическая иллюстрация эффекта Фешбаха. При приложении магнитного поля происходит пересечение двух термов в открытом и закрытом каналах. В результате наличие связанного состояния в системе при a > 0 сменяется наличием виртуального уровня при a < 0, $\Delta B = B - B_0$ — разность магнитных полей вблизи резонанса Фешбаха, B_0 — резонансное поле; μ — магнитный момент атома.

Применительно к ферми-бозе-смеси с резонансным взаимодействием между фермионом и бозоном случай a > 0для амплитуды рассеяния фермиона на бозоне соответствует образованию молекулы (составного фермиона), состоящей из элементарного бозона b и элементарного фермиона f [3]. Для равных масс фермиона и бозона, $m_B = m_F$, энергия связи вновь $E_b = -1/(ma^2)$. Наконец в бозе-газе с двумя сортами частиц случай a > 0 для амплитуды рассеяния бозона одного сорта на бозоне другого сорта соответствует образованию составного бозона (молекулы b₁b₂) [4]. Отметим, что как составные бозоны f₁f₄ (⁶Li₂, ⁴⁰K₂), так и составные фермионы fb (⁴⁰K + ⁸⁷Rb) недавно наблюдались в дипольных оптических ловушках в экспериментах по резонансу Фешбаха группами Jin [5], Ketterle [6], Grimm [7] и Salomon [8].

В данном докладе мы рассмотрим составные фермионы fb и составные бозоны $f_{\uparrow}f_{\downarrow}, b_1b_2$ в ферми-бозегазах и ферми-бозе-смесях с резонансно большой амплитудой рассеяния $a \ge r_0$, где r_0 — радиус действия потенциала. Мы точно определим амплитуды рассеяния элементарного фермиона (бозона) на молекуле (составном бозоне или фермионе), а также амплитуду рассеяния молекулы на молекуле в резонансных трехмерных (3D) и двумерных (2D) ферми-бозе-газах и покажем, какую роль эти амплитуды играют в построении фазовых диаграмм данного класса систем. Мы также точно определим все энергии связанных состояний комплексов из трех и четырех резонансно-взаимодействующих частиц в двумерном случае, где, как мы покажем в дальнейшем, число связанных состояний конечно. В заключение мы кратко рассмотрим вероятность образования комплексов из пяти и более резонансно-взаимодействующих частиц в двумерных бозе-газе и фермибозе-смеси. Наконец мы кратко остановимся на возможном сценарии сверхпроводимости в ВТСП-системах, основанном на формировании локальной пары из двух композитных дырок (двух спиновых поляронов или двух струн) в d-канале. При этом под композитной дыркой мы будем фактически понимать связанное состояние спинона f_{io} и холона b_i в струнном потенциале конфайнмента, возникающем при движении дырки по антиферромагнитному (AFM) фону в двумерном и трехмерном случаях [9, 10].

2. Рассеяние молекулы на атоме

Для построения фазовых диаграмм в резонансных газах необходимо определить амплитуды рассеяния для трех и четырех частиц, а именно: a_{2-1} — амплитуду рассеяния молекулы на атоме и a_{2-2} — амплитуду рассеяния молекулы на молекуле.

В случае сильного притяжения между частицами необходимо также вычислить энергии связи троек E_3 , четверок E_4 и больших капель, содержащих N > 4 частиц. Отметим, что в затравочном (борновском) приближении для трех резонансно взаимодействующих фермионов $f_{\uparrow}f_{\downarrow}$ и $f_{\uparrow,\downarrow}$ знак амплитуды рассеяния a_{2-1} соответствует отталкиванию. Аналогичным образом фермион $f_{\uparrow,\downarrow}$ отталкивается от молекулы fb, состоящей из фермиона и бозона [3]. Вместе с тем в затравочном приближении бозон b притягивается к молекуле bb. Аналогично бозон b притягивается к молекуле bf [3]. Эта разница в знаках затравочного взаимодействия определяется только принципом Паули (только статистикой взаимодействующих частиц).

3. Уравнения Скорнякова – Тер-Мартиросяна

Воспользуемся теперь нашим знанием знаков затравочного взаимодействия и определим точное значение амплитуды рассеяния a_{2-1} для комплексов из трех частиц. Для этого нам необходимо точно решить так называемые интегральные уравнения Скорнякова – Тер-Мартиросяна [11]. Графически эти уравнения изображены на рис. 2.

Рис. 2. Графический вид уравнения Скорнякова – Тер-Мартиросяна для рассеяния трех частиц. *T*₃ — точная трехчастичная Т-матрица, двойной линией изображена точная двухчастичная Т-матрица *T*₂.

В аналитическом представлении уравнения Скорнякова – Тер-Мартиросяна для трех резонансно-взаимодействующих частиц имеют вид [11, 12]

$$T_{3}(p_{1}, p_{2}, P) = \mp G(P - p_{1} - p_{2}) \mp$$

$$\mp i \int \frac{d^{4}q}{(2\pi)^{4}} G(P - p_{1} - q)G(q)T_{2}(P - q)T_{3}(q, p_{2}, P), \quad (3)$$

где для трех фермионов p_1 , p_2 — начальные и конечные четырехимпульсы элементарного фермиона, $P - p_1$ и $P - p_2$ — начальные и конечные четырехимпульсы молекулы $f_{\uparrow}f_{\downarrow}$, P — суммарный четырехимпульс, q — промежуточный четырехимпульс элементарного фермиона; $d^4q = d^3\mathbf{q} d\Omega_q$ — мера интегрирования по промежуточному импульсу; знак "-" соответствует затравочному отталкиванию фермиона $f_{\uparrow,\downarrow}$ от молекул $f_{\uparrow}f_{\downarrow}$ и fb, а знак "+" — затравочному притяжению бозона к молекулам bb и bf. Для определения амплитуды рассеяния a_{2-1} фермиона на молекуле $f_{\uparrow}f_{\downarrow}$ мы можем без ограничения общности положить в (3) $P = \{E, \mathbf{P}\} = \{-|E_b|, 0\}$ и $p_2 = 0$.

Отметим, что в уравнении (3) G — одночастичная функция Грина (в вакууме $G = 1/(\omega - p^2/(2m) + i0))$, свободный член в уравнении (3) отвечает борновскому приближению, T_2 — двухчастичная Т-матрица, T_3 — трехчастичная Т-матрица.

В трехмерном случае для двух частиц с одинаковыми массами [12]

$$T_2(\omega, \mathbf{p}) = \gamma \, \frac{4\pi}{m^{3/2}} \, \frac{\sqrt{|E_b|} + \sqrt{p^2/(4m) - \omega}}{\omega - p^2/(4m) + |E_b|} \,, \tag{4}$$

где $|E_b| = 1/(ma^2)$ — модуль двухчастичной энергии связи, $\gamma = 2$ для неразличимых частиц, $\gamma = 1$ для двух разных частиц (фермиона и бозона или двух бозонов разного сорта).

Аналогично в 2D-случае

$$T_{2}(\omega, \mathbf{p}) = \gamma \, \frac{4\pi}{m} \frac{1}{\ln \frac{p^{2}/(4m) - \omega}{|E_{\rm b}|}},\tag{5}$$

где, как и в 3D-случае, $\gamma = \{1, 2\}$.

Трехчастичная Т-матрица T_3 связана с амплитудой рассеяния $a_{2-1}(\mathbf{k})$ элементарной частицы на молекуле соотношением

$$\frac{8\pi}{m^2 a} T_3\left(\left\{\frac{k^2}{2m}, \mathbf{k}\right\}, 0, -|E_b|\right) = \frac{3\pi}{m} a_{2-1}(\mathbf{k}).$$
(6)

После подстановки $a_{2-1}(\mathbf{k})$ и $T_2(\omega, \mathbf{p})$ в уравнение (3) и взятия интеграла по частотам мы получим в 3D-случае для трех фермионов:

$$\frac{(3/4)a_{2-1}(\mathbf{k})}{\sqrt{m|E_{\rm b}|} + \sqrt{3k^2/4 + m|E_{\rm b}|}} = \frac{1}{k^2 + m|E_{\rm b}|} - 4\pi \int \frac{a_{2-1}(q)}{q^2(k^2 + q^2 + \mathbf{kq} + m|E_{\rm b}|)} \frac{\mathrm{d}^3\mathbf{q}}{(2\pi)^3} \,. \tag{7}$$

Решая это уравнение, мы находим, что длина sрассеяния фермиона на молекуле

$$a_{2-1}(0) = 1,18a, (8)$$

в соответствии с классическим результатом Скорнякова-Тер-Мартиросяна.

Отметим, что в случае затравочного притяжения элементарной частицы к молекуле для определения энергии связи комплекса из трех частиц нам фактически достаточно решить однородное уравнение Скорнякова-Тер-Мартиросяна и определить из него полюс трехчастичной вершины Т₃. Здесь, однако, имеется следующее важное обстоятельство. Анализируя ядро интегрального уравнения (3) для трех бозонов bbb или двух бозонов и фермиона fbb в 3D-случае, мы заметим, что однородное уравнение Скорнякова-Тер-Мартиросяна имеет решение при любых сколь угодно больших по модулю отрицательных энергиях [13]. Реально, однако, $|E_3| < 1/(mr_0^2)$, где *r*₀ ≪ *a* — радиус действия потенциала, и существует $N \sim (1/\pi) \ln (a/r_0)$ трехчастичных уровней [14] в интервале энергий $1/(ma^2) < |E_3| < 1/(mr_0^2)$. Это явление, которое носит название эффекта Ефимова [15], связано с наличием притягательной части $V_{\rm eff} \sim -\alpha/R^2 < 0$ (рис. 3) в трехчастичном уравнении Шрёдингера для трех бозонов в 3D-случае.

В результате в системе трех частиц возникает явление падения на центр и становится возможным появление сколь угодно сильно связанных трехчастичных комплексов в 3D-случае. Анализ показывает, что эффект Ефи-

Рис. 3. Координата R описывает расстояние между элементарным бозоном 3 и центром тяжести молекулы из двух бозонов 1, 2.

мова имеет место в пространствах размерностью 2,3 < D < 3,8 [16]. В 2D-случае эффект Ефимова отсутствует [16]. В трехчастичном уравнении Шрёдингера возникает отталкивательный член $V_{\rm eff} \sim \beta/R^2 > 0$. В результате число трехчастичных уровней $|E_3|$ с отрицательной энергией в 2D-случае становится конечным.

Точное решение уравнения Скорнякова – Тер-Мартиросяна в 2D-случае показывает, что для трех резонансновзаимодействующих бозонов имеется всего два уровня с энергиями связи [17]

$$E_3^{(1)} = 16,4E_{\rm b}, \qquad E_3^{(2)} = 1,3E_{\rm b}.$$
 (9)

Аналогично, для рассеяния бозона b на составном фермионе fb или для рассеяния бозона одного сорта b_1 на молекуле b_1b_2 (из двух бозонов разных сортов) имеется всего один связанный уровень [12]:

 $E_3 = 2,4E_b$, (10)

для одинаковых масс, $m_{\rm B} = m_{\rm F}$, фермиона и бозона. Подчеркнем, что энергии связи трехчастичных комплексов (9), (10) в 2D-случае являются функциями только двухчастичной энергии связи $|E_b|$.

4. Рассеяние молекулы на молекуле

Рассмотрим теперь четыре резонансно-взаимодействующих частицы в 3D- и 2D-случаях и найдем амплитуду рассеяния молекулы на молекуле a_{2-2} и энергии связанных состояний E_4 . В затравочном (борновском) приближении, снова исходя лишь из принципа Паули (из статистики частиц), можно показать, что две молекулы, $f_{\uparrow}f_{\downarrow}$ и $f_{\uparrow}f_{\downarrow}$, отталкиваются. В то же время две молекулы (например, bb и bb) притягиваются друг к другу.

Нам удалось [12] вывести точные интегральные уравнения для четверок, аналогичные уравнению Скорнякова – Тер-Мартиросяна для троек. Графически уравнения изображены на рис. 4.

В алгебраическом представлении эти уравнения имеют вид [12]:

$$\begin{split} \Phi(q_1, q_2, p_2, P) &= -G(P - q_1 + p_2)G(P - q_2 - p_2) - \\ &- \mathrm{i} \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \, G(k)G(2P - q_1 - q_2 - k) \times \\ &\times \, T_2(2P - q_1 - k)\Phi(q_1, k, p_2, P) + \\ &+ \frac{1}{2} \iint \frac{\mathrm{d}^4 Q}{(2\pi)^4} \, \frac{\mathrm{d}^4 k}{(2\pi)^4} \, G(Q - q_1)G(2P - Q - q_2)T_2(2P - Q) \times \\ &\times \, T_2(Q)G(k)G(Q - k)\Phi(k, Q - k, p_2, P) + (q_1 \leftrightarrow q_2); \ (11) \end{split}$$

$$T_4(p_1, p_2, P) = \frac{\mathrm{i}}{2} \sum_{\alpha\beta} \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \,\chi(\alpha, \beta) G(P + p_1 - k) G(k) \times \\ \times \,\chi(\beta, \alpha) \,\Phi(P + p_1 - k, k, p_2, P) \,, \tag{12}$$

Рис. 4. Точные интегральные уравнения для четырех резонансновзаимодействующих частиц. Двойной линией на рисунке изображена точная трехчастичная Т-матрица *T*₂.

здесь в уравнении (11) мы ввели вспомогательную вершину Ф. связанную с канонической четырехчастичной Т-матрицей Т₄ соотношением (12). Подчеркнем, что в кососимметричную вершину Ф входят две линии, соответствующие элементарным частицам с четырехимпульсами q1 и q2, и одна двойная линия, соответствующая молекуле. В то же время из Φ выходят две молекулярные линии. В каноническую Т-матрицу Т₄ входят и выходят две молекулярные двойные линии. В уравнении (12) $\chi(\alpha, \beta)$ — спиновый фактор, *P* — суммарный четырехимпульс. Знак "-" перед свободным членом в (11) соответствует борновскому отталкиванию двух молекул f₁f₁. Для нахождения амплитуды s-рассеяния молекулы на молекуле а2-2 мы можем без ограничения общности положить $p_2 = 0$, $P = \{0; -|E_b|\}$ и использовать следующее соотношение, связывающее a_{2-2} с T_4 :

$$\left(\frac{8\pi}{m^2 a}\right)^2 T_4(0,0,-2|E_{\rm b}|,0) = \frac{2\pi(2a_{2-2})}{m}.$$
 (13)

Как мы уже отмечали, первый член в правой части уравнения для Φ (11) отвечает -GG — борновскому приближению [18]. Подставив борновское выражение для Φ в (12), мы получим, что T_4 пропорциональна интегралу от четырех функций Грина G^4 и, более того, $a_{2-2} = 2a$ в соответствии с принципом Паули. Этот результат был получен в известной работе Хаусмана [18]. Третий член правой части уравнения для Ф (11) соответствует лестничному приближению. Он был рассмотрен в работе Pieri и Strinati [19] и соответствует бесконечному числу перерассеяний молекулы на молекуле без потери идентичности молекул. Подстановка первого и третьего члена в выражении (11) для Ф в уравнение для T₄ (12) приводит к результату $a_{2-2} = 0,75a$ [19]. Наконец второй член правой части выражения для Ф отвечает за динамику при рассеянии молекулы на молекуле. Он описывает процессы как виртуального распада одной молекулы с образованием виртуальных троек и единичек, так и при учете кроссинга процессы виртуального распада обеих молекул с обменом элементарными частицами между ними. Такие процессы при рассеянии молекулы на молекуле были рассмотрены ранее в работе Петрова, Шляпникова, Саломона [20] на базе правильно выбранного анзаца

для решения четырехчастичного уравнения Шрёдингера. Подстановка всех трех членов выражения для Φ в уравнение для T_4 (12) дает $a_{2-2} = 0, 6a > 0$ в согласии с результатами [20]. Аналогичные вычисления в 2D-случае приводят к результату [21]

$$f_{2-2}(\varepsilon) = \frac{1}{\ln(1.6 |E_{\rm b}|/\varepsilon)} > 0.$$
 (14)

Наконец вновь остановимся на задаче о связанном состоянии четырех частиц в случае резонансного притяжения между ними. В 3D-случае мы снова имеем аналог эффекта Ефимова и однородные уравнения, соответствующие интегральным уравнениям (11), (12), в случае взаимодействия двух молекул (bb и bb, f_{\uparrow} b и f_{\downarrow} b, fb и bb) имеют решение при любых сколь угодно больших по модулю значениях энергии связи $|E_4|$. В реальной ситуации вновь $1/(ma^2) < |E_4| < 1/(mr_0^2)$.

В двумерном случае аналог эффекта Ефимова для четверок вновь отсутствует и мы опять имеем конечное число связанных уровней. Для четырех взаимодействующих бозонов bbbb существует два связанных уровня с энергиями

$$E_4^{(1)} = 194 E_b, \qquad E_4^{(2)} = 24 E_b.$$
 (15)

Энергии этих уровней впервые были определены в работе [22] (Bruch, Tjon). Для комплекса $f_{\uparrow}bf_{\downarrow}b$ из двух бозонов и двух фермионов или для комплекса $b_1b_2b_1b_2$ из бозонов разных сортов вновь имеется два связанных уровня с энергиями [12]

$$E_4^{(1)} = 10,7 E_b, \qquad E_4^{(2)} = 2,9 E_b.$$
 (16)

Наконец для комплекса fbbb при равных массах фермиона и бозона, $m_{\rm B} = m_{\rm F}$, существует только один уровень [12]:

$$E_4 = 4,1 E_b$$
. (17)

Подчеркнем, что в последнем случае второй ("лестничный") член в выражении для Φ вообще отсутствует [12].

5. Фазовая диаграмма резонансного ферми-газа

Полученные в разделах 3, 4 результаты для a_{2-1} , и в особенности для a_{2-2} , а также для E_3 и E_4 имеют большое значение для построения фазовых диаграмм 3D- и 2D-ферми-бозе-газов и их смесей.

Качественный вид фазовой диаграммы резонансного ферми-газа в 3D-случае приведен на рис. 5 [23]. На рисунке в осях безразмерной температуры $T/\varepsilon_{\rm F}$ и обратного газового параметра $1/ap_{\rm F}$ обозначена сверхтекучая

Рис. 5. Фазовая диаграмма резонансного ферми-газа в 3D-случае. ВСS-область отвечает куперовскому спариванию, ВЕС-область — бозе-конденсации локальных пар.

ВСS-область, соответствующая образованию и одновременной бозе-конденсации протяженных куперовских пар, и ВЕС-область, соответствующая образованию локальных пар (молекул) и их последующей бозе-конденсации. ВСS-область отвечает отрицательной двухчастичной длине рассеяния, a < 0, и положительному значению химического потенциала, $\mu > 0$. Куперовское спаривание в ферми-газе в области слабых корреляций $1/(ap_F) \rightarrow -\infty$ происходит вблизи поверхности Ферми, так что при $1/(ap_F) \rightarrow -\infty$ $\mu \approx \varepsilon_F$.

Критическая температура в BCS-области определяется по известной формуле Горькова – Мелик-Бархударова [24]:

$$T_{\rm c} \approx 0.28\varepsilon_{\rm F} \exp\left(-\frac{\pi}{2p_{\rm F}|a|}\right).$$
 (18)

При приближении к точке $1/(ap_{\rm F}) \rightarrow -0$ мы переходим к так называемому унитарному пределу. В этом пределе нет малого параметра и все величины, включая полную энергию системы, химический потенциал μ и $T_{\rm c}$, выражаются только через энергию Ферми [25]. Вычисления по методу Монте-Карло (Pieri, Pisani, Strinati, 2005) [26], (Астрахарчик и др., 2004) [27] дают $\mu = 0.44\epsilon_{\rm F} > 0$, т.е. знак химического потенциала соответствует BCS-области. В то же время вычисление $T_{\rm c}$ по методу Монте-Карло дает $T_{\rm c}/\epsilon_{\rm F} = 0.15$ (Buravski et al.) [28]. Химический потенциал обращается в нуль в точке $T_{\rm c}$ лишь при $ap_{\rm F} \approx 2.5$ [23], т.е. в области положительных *a*. Отметим, что при $1 \leq ap_{\rm F} \leq 3$ имеем $na^3 = p_{\rm F}^3 a^3/3\pi^2 \leq 1$ —локальные пары все еще не сильно перекрываются, а лишь касаются друг друга.

На рисунке 5 штриховой линией обозначена граница BCS- и BEC-областей. На этой линии $\mu(T) = 0$. При $ap_F < 2,5(1/(ap_F) > 0,4)$ мы переходим в BEC-область. В этой области в пределе слабых корреляций $(1/(ap_F) \ge 1)$ критическая температура определяется формулой [29]

$$T_{\rm c} = 0.2\varepsilon_{\rm F} [1 + 1.3 \, a_{2-2} \, n^{1/3}] \,. \tag{19}$$

Поправки к формуле Эйнштейна в (19), которые являются линейными по длине рассеяния молекулы на молекуле a_{2-2} , были определены с помощью метода Монте-Карло в работе Кашурникова, Прокофьева и Свистунова [29]. Отметим, что в ВЕС-области существует еще одна характерная температура, определяемая формулой Саха [29]:

$$T_* = \frac{|E_{\rm b}|}{(3/2)\ln\left(|E_b|/\varepsilon_{\rm F}\right)} \gg T_{\rm c} \,. \tag{20}$$

Эта температура описывает плавный кроссовер и находится из условия термодинамического равновесия между неспаренными фермионами и молекулами

$$n_{\rm F}(T_*) = 2n_{\rm M}(T_*) = \frac{n}{2},$$
 (21)

где n — суммарная плотность. При $T_c \ll T \ll T_*$ мы переходим в область нормального бозе-газа молекул с массой 2m и плотностью n/2 [30].

Отметим также, что длина рассеяния молекулы на молекуле a_{2-2} определяет скорость звука в сверхтекучем состоянии резонансного ферми-газа для ВЕС-области

$$c^2 = \frac{n_{\rm M}}{m_{\rm M}} \frac{\mathrm{d}\mu_{\rm M}}{\mathrm{d}n_{\rm M}} \,, \tag{22}$$

где

$$\mu_{\rm M} = \frac{4\pi a_{2-2}}{2m} \frac{n}{2} > 0 \tag{23}$$

— химический потенциал слабонеидеального бозе-газа молекул с массой $m_{\rm M} = 2m$ и плотностью $n_{\rm M} = n/2$.

Аналогично, наше знание амплитуды рассеяния f_{2-2} в 2D-ферми-газе и энергий связи трех и четырех частиц в 2D-ферми-бозе-смеси с резонансным притяжением между фермионами и бозонами позволяет определить характерные температуры Саха и температуру сверхтекучего перехода в этих системах, тем самым удается завершить построение их фазовых диаграмм.

Отметим, что в двумерных бозе-газе и ферми-бозесмеси с превалированием числа бозонов над числом фермионов ($n_{\rm B} > n_{\rm F}$) в принципе возможно образование больших комплексов (капель), содержащих N > 4частиц. При этом энергия связи такой капли вновь будет ограничена лишь наличием отталкивательного кора: $|E_N| < 1/(mr_0^2)$. Для многочастичных комплексов построение и решение замкнутой системы интегральных уравнений типа уравнений Скорнякова-Тер-Мартиросяна весьма затруднительно. Более перспективным здесь является вариационный подход, предложенный, например, в работе Hammer, Son [34]. В рамках этого подхода энергия капли в двумерном бозе-газе возрастает экспоненциально с ростом числа частиц N в капле, $|E_N| \sim |E_b| \exp{(2N)}$, при условии, что $N < N_{\max} =$ $= 0.9 \ln (a/r_0)$. Отметим, что большие капли, по-видимому, наблюдались в экспериментах Roati et al. [35], Modugno et al. [36] по коллапсу бозе-газа в ферми-бозесмесях при $n_{\rm B} > n_{\rm F}$.

6. Смесь спинонов и холонов в высокотемпературных сверхпроводниках

В заключение доклада кратко остановимся на рассмотрении смеси спинонов и холонов в слабодопированных ВТСП-системах. Для ВТСП-систем мы предлагаем, исходя из гамильтониана сильновзаимодействующей ферми-бозе-смеси спинонов $f_{i\sigma}$ и холонов b_i , вывести эффективный однозонный гамильтониан для слабовзаимодействующих композитных дырок или спиновых поляронов:

$$h_{i\sigma} = f_{i\sigma} b_i \,. \tag{24}$$

При этом мы можем опереться на известное струнное решение для композитной дырки, полученное в работах Булаевского, Нагаева, Холмского [9] и Бринкмана, Райса [10]. Согласно этому решению при движении дырки по AFM-фону в 3D- и 2D-случаях за дыркой тянется линейный след (струна) из фрустрированных спинов. При этом энергия связи спинона и холона в струнном потенциале конфайнмента определяется формулой

$$E_{\rm b} \sim (zJS^2)^{2/3} t^{1/3} ,$$
 (25)

где $m_{\rm b} \sim 1/t$ — масса холона, $m_{\rm f} \sim 1/J$ — масса спинона, t — интеграл перескока, J — величина обменного интеграла, $J \ll t$ для реальных ВТСП-систем. При учете квантовых флуктуаций, связанных с членом $J(S_i^+S_j^- + S_i^-S_j^+)$ в t-J-модели, композитная

дырка приобретает большую, но конечную массу, $M \sim 1/J$. В результате спектр композитной дырки на 2D-квадратной решетке принимает вид [39]

$$E_{\rm h} = E_{\rm b} + J(\cos k_x + \cos k_y)^2 \,. \tag{26}$$

Для возникновения сверхпроводимости в системе нам надо создать пару из двух композитных дырок $h_{i\sigma}h_{j-\sigma}$, т.е. фактически четверку $f_{i\sigma}b_i f_{j-\sigma} b_j$, состоящую из двух спинонов и двух холонов, расположенных в узлах *i* и *j* квадратной решетки.

Возможность образования связанного состояния двух композитных дырок определяется характером остаточного взаимодействия между ними. Остаточное взаимодействие двух дырок при малых концентрациях ($x \ll 1$) носит диполь-дипольный характер [40] (Shraiman, Siggia, 1990) и в 2D-случае имеет вид $V(r) \sim \lambda/r^2$.

Как показано Белиничером и др. [41] (1995), [42] (2001) такое взаимодействие на решетке может привести к возникновению мелкого связанного состояния для двух композитных дырок в $d_{x^2-y^2}$ -канале в пределе малых концентраций дырок.

Отметим, что этот результат получен в спин-поляронном приближении к t-J-модели в пренебрежении следующими за ближайшими перескоками t' и t''. В противоположном случае бо́льших концентраций дырок d-спаривание (уже куперовского типа) получено в t-J-модели в работе Кадап, Rice [43]. В недавней работе группы Плакиды [44] получено точное выражение для T_c в d-канале для t-J-модели с учетом предэкспоненты. В связи с этим представляется очень интересным рассмотреть хорошо известную кривую зависимости T_c от x для ВТСП-систем как BCS – BEC-кроссовер для спаривания двух композитных дырок в d-канале.

7. Заключение

Кратко перечислим основные результаты, представленные в данном докладе. В резонансном приближении $a \ge r_0$ мы вывели и точно решили интегральные уравнения для троек и четверок в 3D- и 2D-случаях. Мы вычислили амплитуду рассеяния молекулы на молекуле в 3D- и 2D-резонансном ферми-газе, а также энергии связанных состояний всех возможных комплексов их трех и четырех частиц в 2D-случае. В результате нам удалось построить фазовую диаграмму резонансного ферми-газа и ферми-бозе-смеси. Мы также предложили новый сценарий для сверхпроводимости в ВТСП-системах, основанный на образовании в d-канале сверхпроводящей пары из двух композитных дырок, каждая из которых содержит спинон и холон.

Авторы выражают благодарность А.Ф. Андрееву, Ю. Кагану, Л.В. Келдышу, Ф. Нозьеру, П. Вёльфке, Д. Вольхардту, И.А. Фомину, Г.В. Шляпникову, П. Фулде, К. Саломону за полезные обсуждения. Работа поддержана РФФИ (грант № 06-02-16449).

Список литературы

- Pitaevskii L, Stringari S Bose-Einstein Condensation (Oxford: Clarendon Press, 2003); Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S Rev. Mod. Phys. 71 463 (1999)
- 2. Inouye S et al. Nature 392 151 (1998)
- 3. Kagan M Yu et al. *Phys. Rev. A* **70** 023607 (2004)
- 4. Kagan M Yu, Efremov D V Phys. Rev. B 65 195103 (2002)
- Greiner M, Regal C A, Jin D S Nature 426 537 (2003); Inouye S et al. Phys. Rev. Lett. 93 183201 (2004)

- 6. Zwierlein M W et al. Phys. Rev. Lett. 91 250401 (2003)
- 7. Jochim S et al. *Science* **302** 2101 (2003)
- 8. Bourdel T et al. Phys. Rev. Lett. 93 050401 (2004)
- 9. Булаевский Л Н, Нагаев Е Л, Хомский Д И ЖЭТФ **54** 1562 (1968)
- 10. Brinkman W F, Rice T M Phys. Rev. B 2 1324 (1970)
- 11. Скорняков Г В, Тер-Мартиросян К А ЖЭТФ **31** 775 (1956)
- 12. Brodsky I V et al. *Письма в ЖЭТФ* **82** 306 (2005); *Phys. Rev. A* **73** 032724 (2006)
- 13. Данилов Г С ЖЭТФ **40** 498 (1961)
- 14. Минлос Р А, Фаддеев Л Д ЖЭТФ **41** 1850 (1961)
- Ефимов В Н ЯФ 12 1080 (1970); Efimov V N Phys. Rev. C 44 2303 (1991)
- 16. Jensen A S et al. Rev. Mod. Phys. 76 215 (2004)
- Nielsen E et al. *Phys. Rep.* **347** 373 (2001); Nielsen E, Fedorov D V, Jensen A S *Few-Body Syst.* **27** 15 (1999)
- 18. Hausmann R Z. Phys. B 91 291 (1993)
- 19. Pieri P, Strinati G C Phys. Rev. B 61 15370 (2000)
- Petrov D S, Salomon C, Shlyapnikov G V Phys. Rev. Lett. 93 090404 (2004)
- 21. Petrov D S, Baranov M A, Shlyapnikov G V Phys. Rev. A 67 031601(R) (2003)
- 22. Bruch L W, Tjon J A Phys. Rev. A 19 425 (1979)
- 23. Combescot R, Leyronas X, Kagan M Yu *Phys. Rev. A* **73** 023618 (2006)
- 24. Горьков Л П, Мелик-Бархударов Т К ЖЭТФ 40 1452 (1961)
- 25. Heiselberg H Phys. Rev. A 63 043606 (2001)
- 26. Pieri P, Pisani L, Strinati G C Phys. Rev. B 72 012506 (2005)
- 27. Astrakharchik G E et al. Phys. Rev. Lett. 93 200404 (2004)
- 28. Burovski E et al. Phys. Rev. Lett. 96 160402 (2006)
- Kashurnikov V A, Prokof'ev N V, Svistunov B V Phys. Rev. Lett. 87 120402 (2001)
- Ландау Л Д, Лифшиц Е М Статистическая физика Ч. 1 (М: Наука, 1976)
- 31. Kagan M Yu et al. Phys. Rev. B 57 5995 (1998)
- 32. Bartenstein M et al. Phys. Rev. Lett. 92 203201 (2004)
- 33. Combescot R, Kagan M Yu, Stringari S *Phys. Rev. A* (2006) (in preparation); cond-mat/0607493
- Hammer H-W, Son D T Phys. Rev. Lett. 93 250408 (2004); Platter L, Hammer H-W, Meißner U-G Few-Body Syst. 35 169 (2004)
- 35. Roati G et al. Phys. Rev. Lett. 89 150403 (2002)
- 36. Modugno G et al. Science 297 2240 (2002)
- 37. Anderson P W Science 235 1196 (1987)
- Laughlin R B *Phys. Rev. Lett.* **60** 2677 (1988); Fetter A L, Hanna C B, Laughlin R B *Phys. Rev. B* **39** 9679 (1989)
- 39. Fulde P *Electron Correlations in Molecules and Solids* 2nd. ed. (Berlin: Springer-Verlag, 1993)
- 40. Shraiman B I, Siggia E D Phys. Rev. B 42 2485 (1990)
- 41. Belinicher V I, Chernyshev A L, Shubin V A Phys. Rev. B 56 3381 (1997)
- 42. Belinicher V I et al. Phys. Rev. B 51 6076 (1995)
- 43. Kagan M Yu, Rice T M J. Phys.: Condens. Matter 6 3771 (1994)
- 44. Плакида Н М и др. ЖЭТФ **124** 367 (2003)

PACS numbers: 42.62.-b, 52.38.-r, 52.50.Jm

Лазеры и физика высоких плотностей энергии во Всероссийском научноисследовательском институте технической физики

А.В. Андрияш, П.А. Лобода, В.А. Лыков, В.Ю. Политов, М.Н. Чижков

1. Введение

Становление физики высоких плотностей энергии (ФВПЭ) как самостоятельного раздела научных исследований было вызвано разработкой ядерного оружия. В конце 1980-х – начале 1990-х годов интенсивность иссле-