
Abstract. A consistent method of calculating the linear response
to an external magnetic field that allows obtaining the result in a
manifestly gauge-invariant form is proposed. Within the dia-
gram technique for nonequilibrium processes, the self-consis-
tency equations for the order parameter in an arbitrary-gauge
field allow deriving an equation that determines the phase of the
order parameter as a function of the external field. Such a
method automatically accounts for the existence of collective
excitations in superconductors, which must be taken into con-
sideration in accordance with the continuity equation. The
possible types of collective excitations in pure superconductors
at different temperatures are considered. The authors present a
microscopic theory that explains the possibility of observing
collective modes in superconducting tunnel junctions.

1. Introduction

In 1957, Bardeen, Cooper, and Schrieffer for the first time
formulated [1] a microscopic theory of superconductivity.
The simple model proposed by the three authors (which
became known as the BCS model) very successfully
explained many properties of superconductors. However, at
the beginning, several difficulties emerged in calculations of
the linear response of a superconductor to an electromagnetic
field in the BCS framework. Very soon it became clear [2 ± 5]

where the difficulties arise. It was found that the gauge
invariance condition is satisfied in a superconductor in a
nontrivial way. In the first works on the subject, only the
current generated in the superconductor by the transverse
field was calculated. Direct generalization of the results to the
case of longitudinal fields led to violation of the gauge
invariance condition for the response and to a contradiction
with the continuity equation. To solve this problem, one must
allow for excitation by an external field not only of
Bogolyubov quasiparticles in the superconductor but also of
collective modes specific to the superconducting state. The
contribution to the current caused by collective modes
eliminates the contradiction with the continuity equation
and restores the gauge invariance of the theory. We note
that even in the simplest case of stationary fields, correctly
accounting for gauge invariance is extremely important. It is
this requirement that modifies the well-known London
equations such that it implies one of the most unusual
properties of superconductors, the quantization of the
magnetic flux trapped in a superconducting ring.

This review is an attempt to show how to consistently
describe the linear response of superconductors to an
electromagnetic field in the BCS model such that the gauge
invariance condition is satisfied automatically. Sections 2
and 3 are devoted to the development of such a consistent
microscopic theory. In Section 4, we discuss some simple
corollaries of the general formulas that provide a clear
relation between the general approach and the relations
known from superconductivity theory. In Section 5, we
briefly discuss the possible types of collective excitations in
superconductors and their role in response functions. Finally,
Section 6 is devoted to a topic closely related to the problem of
collective modes in response functions, a theory that explains
how collective modes may manifest themselves in measure-
ments of the tunnel current flowing between two super-
conductors.

P I Arseev, S O Loiko, N K Fedorov P N Lebedev Physics Institute,

Russian Academy of Sciences,

Leninskii prosp. 53, 119991 Moscow, Russian Federation

Tel. (7-495) 132 62 71. Fax (7-495) 135 85 33

E-mail: ars@lpi.ru; stol@lpi.ru; fedorov@lpi.ru

Received 9 February 2005, revised 20 May 2005

Uspekhi Fizicheskikh Nauk 176 (1) 3 ± 21 (2006)

Translated by E Yankovsky; edited by AM Semikhatov

REVIEWS OF TOPICAL PROBLEMS PACS numbers: 74.20.Fg, 74.25.Nf, 74.81. ± g

Theory of gauge-invariant response of superconductors to an external

electromagnetic field

P I Arseev, S O Loiko, N K Fedorov

DOI: 10.1070/PU2006v049n01ABEH002577

Contents

1. Introduction 1
2. Interaction of electrons and an electromagnetic field in the BCS model 2
3. A self-consistent method of calculating the linear response 4
4. Simple limit cases 6
5. Collective excitations in superconductors 7
6. Excitation of collective modes in tunnel experiments 9
7. Conclusion 13
8. Appendices 13

8.1 Normal and anomalous Green's functions in the Keldysh diagram technique; 8.2 Polarization operatorsQ andP.

The Ward identity; 8.3 Behavior of the polarization operators Q and P in the limit of small q and o
References 17

Physics ±Uspekhi 49 (1) 1 ± 18 (2006) #2006 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences



2. Interaction of electrons
and an electromagnetic field in the BCS model

We recall that the starting point in the BCS theory is a
Hamiltonian of the form

bH � � bc�a �x�� bp 2

2m
ÿ m
� bca�x� d3r

ÿ g

� bc�# �x� bc�" �x� bc"�x� bc#�x� d3r ; �1�

were x � �t; r�, ca is the Heisenberg operator of annihilation
of an electron with spin a (a �"; #), and g is the electron ±
electron coupling constant. Here and in what follows, we use
the notation proposed byGor'kov [6] and assume summation
over repeated spin indices. Superconductivity theory involves
nonzero anomalous averages that determine the supercon-
ducting order parameter D:

D�x� � g

 bc" �x� bc#�x�� : �2�

In the mean-field approximation, the BCS Hamiltonian then
assumes the simple form

bH � � bc�a �x�� bp 2

2m
ÿ m
� bca�x� d3r

ÿ
� �

D�x� bc�# �x� bc�" �x� � h:c:
�
d3r : �3�

This Hamiltonian can be diagonalized exactly via a Bogolyu-
bov transformations [7], yielding the well-known spectrum of
one-particle excitations of the gap type:

bH 0 �X
p

�������������������������������������
p2

2m
ÿ m
�2

� D2

s
a�p ap ; �4�

where a�p is the quasiparticle creation operator.
We now describe the behavior of superconductors in an

external electromagnetic field with potentials A�x� and j�x�.
With the electron ± electron Coulomb interaction taken into
account, the total Hamiltonian is

bH � � bc�a �x���bpÿ �e=c�A�x��22m
ÿ m
� bca�x� d3r

�
�
ej�x� dbn �x� d3rÿ� �D�x� bc�# �x� bc�" �x� � h:c:

�
d3r

� 1

2

�
dbn �x�V�rÿ r 0� dbn �x0� d3r : �5�

Hamiltonian (5) accounts for the presence of a uniformly
distributed positive background, which ensures the electro-
neutrality of the system and gives rise to the density
fluctuation operator

dbn�x� � bc�a �x� bca�x� ÿ n �6�

(n is the electron number density in a zero field) in the terms
that contain the scalar potential and the electron ± electron
Coulomb interaction V �rÿ r 0� � e2=j rÿ r 0j.

The following remark is in order. If an external field is
added to Hamiltonian (1), the Hamiltonian is unchanged

under the gauge transformations

A�x� ! A0�x� � A�x� � Hw�x� ;

j�x� ! j 0�x� � j�x� ÿ 1

c

qw�x�
qt

; �7�

bca�x� ! bc 0a�x� � bca�x� exp
�
i
e

c
w�x�

�
:

But the situation is different for Hamiltonian (5). If we
consider D a fixed parameter, Hamiltonian (5) is no longer
gauge invariant. Actually, the difficulties arise because of this
fact. For the description of all effects associated with one-
particle excitations in superconductors, Hamiltonian (3) or
(4) is sufficient. But when an electromagnetic field comes into
the picture, one must bear in mind that D must always be
defined in a self-consistent manner by formula (2). If this fact
is taken into account, then a completely gauge-invariant
theory of the linear response of superconductors can be built
such that only gauge-invariant combinations of the potentials
forming the electromagnetic field enter the final expressions
for the current and the electron number density.

The presence of an external field changes the states of the
electrons in the superconductor or, in other words, the
Heisenberg bc-operators are dependent on the potentials A
and j. Therefore, order parameter (2) is, obviously, a
function of the external field, and hence the total Hamilto-
nian of the excitation for a superconductor in an external field
can be written as

bHint � ÿ 1

c

� bj 0�x�A�x� d3r
� e

�
dbn �x��j�x� � 1

e

�
V�rÿ r 0�
dbn �x 0���1� d3r 0� d3r

ÿ
�
D�1��x� bc�# �x� bc�" �x� d3r

ÿ
�
D�1���x� bc"�x� bc#�x� d3r ; �8�

were

bj 0�x� � ie

2m

hÿ
Hbc�a �x�� bca�x� ÿ bc�a �x�Hbca�x�

i
�9�

is the `paramagnetic' part of the current density operator,D�1�

is a correction to the order parameter caused by the field, and
hdbn �x�i�1� is a correction to the electron number density.
Because the Coulomb interaction between electrons leads to
strong screening effects in real superconductors, the Coulomb
interaction in the random-phase approximation (RPA) is also
taken into account in Hamiltonian (8).

To determine the changes in the current and charge
distributions due to the excitation Hamiltonian (8), we use
the Keldysh diagram technique for nonequilibrium pro-
cesses [8]. As the building blocks of the diagram technique
for a superconductor, in addition to the normal Green's
functions G, the anomalous Green's functions F are
introduced (their form is given in Appendix 8.1). Here, it
is most important to know the two functions Gÿ�ab and F ÿ�ab
defined without the standard T-ordering symbol:

Gÿ�ab �x; x 0� � i

bc�b �x 0 � bca�x�

�
;

F ÿ�ab �x; x 0� � i

bcb�x 0 � bca�x�

�
: �10�
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We can now use (10) to write expressions for the fluctuations
of density (6), current density, and order parameter (2) as

dn�x� � ÿ2iGÿ�1 �x; x� ; �11�

j�x� � ÿ2 ie

2m
�H 0 ÿ H�Gÿ�1 �x; x 0�jx 0�x ÿ

e2n

mc
A�x� ; �12�

D�1��x� � igF ÿ�1 �x; x� ; �13�

where the subscript 1 indicates a correction of the first order
in perturbation operator (8) to the respective Green's
function (we recall that we restrict ourselves to the theory of
linear response). The factors 2 appear in (11) and (12) because
of summation over spin (we neglect the interaction between
the electron spin and the magnetic field, and therefore
Gab � dabG and Fab � is y

abF ).
The standard construction of the diagram technique in the

perturbation theory with respect to the operator bHint in (8)
leads to a first-order correction to the Green's function Gÿ�

depicted by the diagrams in Fig. 1. We note that the quantity
D�1� on the right-hand side is determined by the anomalous
function F ÿ� with coinciding arguments [see Eqn (13)]. For
F ÿ�, there exists an expression that is very similar to that for
G ÿ� and describes the variation of the anomalous function in
the first order in bHint. This leads to an equation for D�1�,
shown in Fig. 2a, where the joint ends of an anomalous
Green's function indicate that the arguments x and x 0

coincide. For the variation in the electron number density
(11), we similarly arrive at the equation shown in Fig. 2b. For
a normal metal, this equation describes the standard screen-
ing effect in the RPA framework. Thus, the equations
represented in Fig. 2 are the self-consistency equations for
the order parameter and the electron number density
fluctuations.

Before we do specific calculations, we discuss some
`ideological' questions related to the self-consistency equa-
tion for the order parameter (Fig. 2a). To clarify matters, we
temporarily ignore the effects associated with the Coulomb
interaction. The self-consistency equations can then be
formulated differently if we represent the right-hand side of
the equation in Fig. 2a as the sum of all the terms in the series
depicted in Fig. 3, where the vertices are due to the BCS
coupling constant g. This series corresponds to the contribu-
tion of certain vertex corrections that modify the `initial'
vertex of the interaction between the electron and the

electromagnetic field due to the electron ± electron interac-
tion that leads to superconducting pairing. It is known that
the charge conservation law (the continuity equation) leads to
a rigid relation between one-particle Green's functions and
vertex functions, theWard identity [9]. It turns out that taking
the vertex corrections depicted in Fig. 3 into account is
required for the Ward identity to be satisfied in the BCS
model. We see in what follows that such vertex corrections
contain a pole contribution corresponding to certain collec-
tive excitations specific of superconductors. There is a certain
analogy with the appearance of a plasmon pole in normal
metals when polarization corrections to the Coulomb inter-
action are taken into account. On the other hand, it can be
shown that consistently implementing the requirement of
gauge invariance in calculating the response functions
automatically ensures that the induced currents and charges
satisfy the continuity equation [9]. Thus, the concepts of
gauge invariance, charge conservation, the Ward identity,
and collective excitations used in different works mean the
same thing in the given case. This was first noted by
Bogolyubov [3] and Anderson [5].

The difficulties actually emerged at the first stage because
Hamiltonian (4), which describes only one-particle excita-
tions in superconductors, was used as the starting point in
constructing the linear response. Now we can turn to
technical details and show how to obtain manifestly gauge-
invariant expressions for the linear response of superconduc-
tors.

= +

+ +

(1) (1)+

+ +

dn�1�dn�1�

Figure 1. The diagram expression for the correction to the normal Green's

function Gÿ�1 that is linear in the electromagnetic field. A dashed line

corresponds to the `initial' interaction of electrons with the potentials A

andj, a triangle represents the correctionD�1� to the order parameter, and

a wavy line represents the electron ± electron Coulomb interaction V. The

open circles in the third line of the expression correspond to a change in the

number density dn �1� due to the field.

= + + +
(1)

dn�1�
(1)+(1)

a

(1)

dn�1� = + + +

(1)+ b

+ +

dn�1� dn�1�

Figure 2. (a) Diagram representation of the self-consistency equation for

the correctionD�1� to the order parameter that is linear in the external field.

A black circle represents the BCS coupling constant g; (b) an equation for

determining a change in the electron number density dn �1� in an

approximation that is linear in the external field.

. . . =+ ++

Figure 3. The diagram series corresponding to the renormalization of the

vertex coupling the electrons to the electromagnetic field, a renormaliza-

tion caused by the BCS interaction between electrons.
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3. A self-consistent method of calculating
the linear response

Instead of solving the problem by directly summing the
required vertex diagrams, we can use the strategy first
formulated in Ambegaokar and Kadanoff's paper [10]. We
know that an external field changes the order parameter. We
first assume that the variation D�1� is a fixed but unknown
function of the external fields. Then, knowing the first-order
diagrams forGÿ� (Fig. 1), we can easily determine j and dn as
functions of the potentials A and j and the quantity D�1�.
Next, we require that the current and electron number
densities satisfy the continuity equation e �qdn=qt��
div j � 0, which is solved for D�1� as a function of the external
fields A and j. In accordance with what we said at the end of
Section 2, such a procedure is equivalent to the correct
summation of the vertex corrections in accordance with the
Ward identity.

However, there is an approach that allows restoring gauge
invariance at an earlier stage. In calculation of the linear
response of a superconductor to an external longitudinal
electric field, the change in the order parameter due to the
external field can be represented in the form of corrections to
the absolute value and the gradient of the phase of the order
parameter, which are small quantities. Changes in the phase
proper (hence, in the order parameter as a whole) may be of
order 1. Such is the situation, e.g., with a superconducting
ring placed in a magnetic field. The corresponding theory can
be constructed as follows.

We explicitly separate the changes in the absolute value
and phase of D in an external field:

D�x� � �D0 � D1� exp
�
iy�A;j�� :

By applying a gauge transformation, we make the order
parameter a real quantity. (We note that the phase y is still
an unknown function of A and j.) Under such a transforma-
tion, the potentials acquire [in accordance with (7)] additional
terms:

A0�x� � A�x� ÿ c

2e

ÿ
Hy�x���1� ;

j 0�x� � j�x� � 1

2e

�
qy�x�
qt

��1�
: �14�

To simplify matters, we begin by studying a superconductor
without the Coulomb interaction. Substituting A0 and j0 as
external fields into the diagrams in Fig. 1, we readily arrive at
the following expression for the current and charge densities
(combined for the sake of compactness into a current 4-vector
jm � �edn; j �):

jm�q� � ÿ e2

c

�
QA

mn�q� �
n

m
dmn�1ÿ dm 0�

�
A 0n�q�

ÿ e
�
QD

m �q� �QD�
m �ÿq�

�
D1�q� : �15�

Here, for field potentials (14), we have introduced the
4-vector notation A0�q� � �cj 0�q�;A0�q�� and performed a
Fourier transformation in the spatial and temporal variables,
q � �o; q�, with the subscript m � 0 corresponding to the
temporal component of the 4-vector and m � 1, 2, 3 to the
spatial components. The explicit form of the kernels
(polarization operators) Q, which are sums of convolutions
of different pairs of Green's function, is given in Appendix 8.2
(so as not to clutter up the picture).

Equation (15) is still not the solution of the problem,
because its right-hand side (a) contains the unknown
variation D1 of the absolute value of the order parameter,
and (b) involves the potential A 0 that contains not only the
potentials of the external field but also the phase y�A;j�,
which is to be determined. To find all these quantities, we use
the self-consistency equation shown in Fig. 2a:

D�1��q� � ÿ e

c
PA

n �q�A 0n�q� ÿ
�
PD�q� �PD��q��D�1��q� :

�16�
The polarization operators P are calculated in the same way
as the kernels Q and are given in Appendix 8.2. To avoid a
misunderstanding, we note that PD� is an independently
defined kernel and not the complex conjugate ofPD.

We introduced the phase y such that the order parameter
D�1� becomes a real quantity. But because the functionsP are
complex-valued, Eqn (16) actually amounts to a system of
two equations, which makes it possible to simultaneously
determine the real-valued correction D1 and the relation
between the phase y and the external field. We define the
real and imaginary parts of the functionsP and Q as

P1�q� � P�q� �P ��ÿq�
2

; P2�q� � P�q� ÿP ��ÿq�
2i

;

Q1�q�� Q�q��Q��ÿq�
2

; Q2�q�� Q�q� ÿQ��ÿq�
2i

: �17�

Then, Eqn (16) with the Coulomb interaction taken into
account is equivalent to the two conditions

D1�q� � ÿ e

c
PA

1;l�q�
�
Al�q� ÿ i

c

2e
ql y�q�

�
� ePA

1;0�q�
�
j�q� ÿ i

1

2e
oy�q� � 1

e
V�q� dn�q�

�
ÿ �PD

1 �q� �PD�
1 �q�

�
D1�q� ; �18�

0 � ÿ e

c
PA

2;l�q�
�
Al�q� ÿ i

c

2e
qly�q�

�
� ePA

2;0�q�
�
j�q� ÿ i

1

2e
oy�q� � 1

e
V�q� dn�q�

�
ÿ �PD

2 �q� �PD�
2 �q�

�
D1�q� ; �19�

where (18) is the real part of Eqn (16) and (19) the imaginary
part. Equation (19) is the condition for the order parameter to
be real (after we explicitly isolated the phase of the order
parameter). Because we have now returned to the complete
problem with fluctuations of the electron number density and
the Coulomb interaction taken into account, Eqns (18) and
(19) must be supplemented with by a self-consistency
equation for the fluctuations of the electron number density
(see Fig. 2b):

dn�q� � ÿ e

c
QA

0l �q�
�
Al�q� ÿ i

c

2e
qly�q�

�
� eQA

00�q�
�
j�q� ÿ i

1

2e
oy�q� � 1

e
V�q� dn�q�

�
ÿ 2QD

1;0�q�D1�q� ; �20�
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where V�q� � 4pe2=q2 and the subscript l takes only the
`spatial' values 1, 2, and 3. Equations (18) ± (20) form a
closed system of three equations for the three unknown
functions D1, y, and dn. By solving this system, we arrive at
the following equation for the phase y as a function of the
external fields:

i

2

��
P

A

2;l�1ÿ VQ
A

00� �P
A

2;0 VQ
A

0l

�
ql ÿP

A

2;0o
�
y

� e

c

�
P

A

2;l�1ÿ VQ
A

00� �P
A

2;0VQ
A

0l

�
Al ÿ eP

A

2;0j : �21�

Equation (21) is at the center of the theory of a gauge-
invariant response of superconductors. As long as the phase
y is an arbitrary function, Eqn (15) does not allow finding
the current density and the fluctuations of the charge
density in fixed external fields. Although Eqn (15) is not
altered by gauge transformations, it depends on the choice
of the initial gauge of the potentials. In solving the full
system of three equations, renormalized functions P and Q
appear in (21):

Q
A

mn � QA
mn ÿ 2QD

1;m

PA
1;n

1�PD
1 �PD�

1

; �22�

P
A

2;n � PA
2;n ÿ �PD

2 �PD�
2 �

PA
1;n

1�PD
1 �PD�

1

: �23�

It can be verified that the additions to the initial functions
P andQ on the right-hand sides of Eqns (22) and (23) emerge
when the changes in the absolute value of the order parameter
due to the external field are taken into account (see also
Ref. [11]). If we ignore these changes by excluding Eqn (18)
and setting D1 � 0 in Eqns (19) and (20), the equation for the
phase [Eqn (21)] retains its form, the only difference being
that the initial operators P and Q replace the polarization
operators with the bar. The problem of how essential the
corrections to the absolute value of the order parameter are
can be resolved by analyzing the explicit expression for D1

obtained from the same system of equations:

D1 �
ie
ÿ
PA

2;l P
A

1;0 ÿPA
2;0 P

A

1;l

�
Elh

P
A

2;l 0 �1ÿ VQ
A

00� �P
A

2;0 VQ
A

0l 0

i
ql 0 ÿP

A

2;0o
; �24�

where

P
A

1;n �
PA

1;n

1�PD
1 �PD�

1

: �25�

In Appendix 8.3, we give estimates of the polarization
operators, which suggest that for ordinary superconductors,
there is always a small characteristic parameter D=eF with
respect to which all corrections due to changes in the absolute
value of the order parameter are small. In what follows, we
therefore ignore the difference between polarization opera-
tors with and without a bar.

After we have used Eqn (21) to find the dependence of the
phase y on the potentials A and j, it remains to substitute
y�A;j� in formulas (15) for the linear response. The final
expressions determining the linear response of superconduc-

tors to an electromagnetic field are

dn � ie
ÿ
P

A

2;l Q
A

00 ÿP
A

2;0 Q
A

0l

�
Elh

P
A

2;l 0 �1ÿ VQ
A

00� �P
A

2;0VQ
A

0l 0

i
ql 0 ÿP

A

2;0o
; �26�

jk � ÿ e2

c

�
QA

kl �
n

m
dkl

��
Al ÿ qlql 0

q2
Al 0

�
� ie2

Q
A

k0 P
A

2;l ÿ
�
Q

A

kl � �n=m� dkl
�
P

A

2;0h
P

A

2;l 0 �1ÿVQ
A

00��P
A

2;0VQ
A

0l 0

i
ql 0 ÿP

A

2;0o

qlql 00

q2
El 00 :

�27�
Thus, we have succeeded in solving the problem, i.e.,

the final formulas contain the potentials A and j only in
gauge-invariant combinations: as the electric field E �
ÿcÿ1qA=qtÿ Hj and as the transverse part of the vector
potential, Atr; l �

�
Al ÿ �qlql 0=q2�Al 0

�
. We note that by

solving the equation for the phase of the order parameter,
we actually required that the system be gauge invariant in
arbitrary fields. Hence, it comes as no surprise that the self-
consistency condition (15) in our approach is equivalent to
the condition of continuity of the current used by Ambegao-
kar and Kadanoff [10].

Using the relations between polarization operators
(equivalent to the Ward identity; see Appendix 8.2), we can
write Eqns (26) and (27) in a more convenient form, which
contains the kernels QA

kl , QA
k0, and QA

00 standard for the
electromagnetic response:

dn � ieqk

��
Q

A

kl �
n

m
dkl

�
Q

A

00 ÿQ
A

k0 Q
A

0l

�
El

�
�
qk 0

�
QA

k 0l 0 �
n

m
dk 0 l 0

�
ql 0 ÿ 2oQA

0l 0 ql 0 � o2QA
00

ÿ Vqk 0ql 0

��
Q

A

k 0 l 0 �
n

m
dk 0l 0

�
Q

A

00 ÿQ
A

k 00 Q
A

0l 0

��ÿ1
; �28�

jk � ÿ e2

c

�
QA

kl �
n

m
dkl

��
Al ÿ qlql 0

q2
Al 0

�

� ie2
��

Q
A

kl �
n

m
dkl

�
Q

A

00 ÿQ
A

k0 Q
A

0l

�
o

�
�
qk 0

�
Q

A

k 0l 0 �
n

m
dk 0l 0

�
ql 0 ÿ 2oQA

0l 0 ql 0 � o2QA
00

ÿVqk 0ql 0
��

QAk 0 l 0 � n

m
dkl

�
Q

A

00 ÿQ
A

k 00 Q
A

0l 0

��ÿ1
qlql 00

q2
El 00 :

�29�
Linear response (27) contains a term related to the

longitudinal electric field. For certain frequencies o and
wave vectors q, this term may be of a resonant nature.
Comparing (27) with (21), we see that a resonance in the
response corresponds to a nontrivial solution of the homo-
geneous equation for the phase, i.e., a solution of Eqn (21)
with zero external fields A and j. The existence of such
solutions means that there are specific collective excitations
in the superconductor spectrum forwhich theorder parameter
phase is one of the collective variables of the system. In an
infinite system, solving the homogeneous equation corre-
sponding to (21) allows finding the dispersion law for such
modes, o�q�. Actually, because the complete expressions for
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the response necessarily contain a resonant term related to
collective excitations, we can say that to restore the gauge
invariance, we must, in addition to taking one-particle
excitations into account, allow for collective modes (these
are discussed later).Wenext examine several simple limit cases
for the general expressions with the aim to relate cumbersome
formulas (28) and (29) to thewell-known, simpler expressions.

4. Simple limit cases

We begin with the case of static fields, o � 0. In (29), we then
have the contribution to the current density fromonly the first
term containing the transverse part of the vector potential:

jk � ÿ e2

c

�
QA

kl�q; 0� �
n

m
dkl

��
Al ÿ qlql 0

q2
Al 0

�
: �30�

This is a standard equation of the London type, which,
however, fully accounts for spatial dispersion effects. At
absolute zero and as q! 0, we easily establish (see Section 2)
that QA

kl ! 0. Then, Eqn (30) becomes the London equation,
derived in 1935 via phenomenological reasoning and given in
many textbooks on superconductivity (e.g., see Ref. [12]):

j � ÿ ne2

mc
Atr : �31�

As the temperature is raised to Tc, with Tc the critical, or
transition, temperature, and the order parameter vanishes,
the kernel QA

kl ! ÿ�n=m� dkl, and hence there is no London
response in a normal metal. We note that for a uniform
superconductor, it automatically occurs that j is proportional
precisely to the transverse part of the vector potential,Atr, for
any initial gauge of the fields. This is achieved in our approach
by determining the phase of the order parameter in an
arbitrary external field through Eqn (21). We examine this
equation more closely. In the static limit and for finite q, this
equation has a very simple form,

q2y � ÿ 2ie

c
qlAl ; �32�

or in the coordinate space,

H2y � 2e

c
divA : �33�

In the limit in question, Eqn (15) for the current density
becomes

j � ÿ ne2

mc

�
Aÿ c

2e
Hy
�
: �34�

We see that with the phase y, the solution of inhomogeneous
equation (33) in infinite space, substituted in (34), the
longitudinal part of the vector potential is eliminated from
the response. If we select the transverse gauge with divA � 0
from the start, the only possible solution of Eqn (33) is
y � const. But in a finite superconductor, e.g., in a super-
conducting ring, there can be nonzero solutions of Eqn (33)
even in the gauge divA � 0. In this case, we must return to
Eqn (34) with theA-independent additional `field' Hy0, which
is the solution of the homogeneous equation corresponding to
(33). substituted into it. Instead of (31), we then have

j � ÿ ne2

mc

�
Atr ÿ c

2e
Hy0

�
: �35�

It turns out that in a superconductor with boundaries, only
the total solution of theMaxwell equations allows findingHy0
in (35), which is an independent quantity from the standpoint
of the theory of linear response. Because this aspect is
discussed in the literature very scantily, we examine a simple
example showing to what extent y is determined by an
external field A at the superconductor boundary.

We suppose that a magnetic field is applied parallel to the
flat surface of a semi-infinite superconductor, as shown in
Fig. 4. Equation (31) [or (34)] and the Maxwell equations
immediately imply an equation for themagnetic field strength
leading to the Meissner effect, i.e., magnetic field damping
inside a superconductor. We do not repeat the derivation of
this equation. Instead, we simply mention the well-known
result that the magnetic field decays in accordance with the
law

Hy�z� � H0 exp

�
ÿ z

l

�
; �36�

where l � �4pne2=mc�1=2 is the decay length. Such a magnetic
field can be described by a vector potential in the transverse
gauge as well as in the longitudinal gauge. If we select the
transverse gauge with Ax � ÿlH0 expfÿz=lg, then
divA � 0. The only solution of the homogeneous equation
for the phase,Dy � 0, that agrees with theMaxwell equations
is y � const. London equations (31) have a distinct meaning:
the current is directed along the vector potential A. But there
is nothing to prevent us from describing the same magnetic
field H in terms of the vector potential Az � xH0 exp�ÿz=l�,
which has a longitudinal part, i.e., for which divA �
ÿAz=l 6� 0. The equation for the phase then becomes

Dy � ÿ 2e

c

Az

l
; �37�

and is solved by

y�x; z� � ÿ 2e

c
lxH0 exp

�
ÿ z

l

�
: �38�

Equation (34) yields

jz � ÿ ne2

mc

�
Az ÿ c

2e

qy
qz

�
� 0

z

j ;Ax

x

y

H

Az

Figure 4. A semi-infinite superconductor in a magnetic field H applied

parallel to the superconductor surface.
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and

jx � ne

2m

qy
qx

:

If we substitute (38) in the expression for jx, we, of course,
arrive at the same result as would be obtained with the
`natural' transverse gauge. However, if we select the `non-
standard' gauge for the vector potential, the current density j
is no longer directed alongA. Only by solving the equation for
y and substituting the result in (34) we correctly restore the
gauge-invariant current density.

We now suppose that we have a massive ring of super-
conducting material with a cylindrical hole in the middle. We
can assume that Fig. 4 shows a small segment of the inner
cylindrical surface and the x axis as a whole is `folded' into a
circle. Nonzero solutions of the equation for the phase,
Dy � 0, such that qy=qx � const can then also exist in the
transverse gauge Ax 6� 0. The physical restriction for such a
solution is that for all quantities to be uniquely defined, the
total change in the phase due to going around a closed loop
must be a multiple of 2p. It is precisely this condition that
leads to the magnetic flux quantization in a hole in the
superconductor.

The last problem that we wish to consider for static fields
is to determine how strongly the screening of a charge in
superconductors differs from that in normal metals. Formula
(28) simplifies considerably at o � 0:

dn � ieQA
00�q�

q2 ÿ 4pe2QA
00�q�

qlEl : �39�

For small values of q (see Appendix 8.3), we have
QA

00 � ÿ2N0, where N0 is the density of states at the Fermi
level. Superconductivity yields corrections of the order of
�D=eF�2 to this value. Instead of (39), we then have

edn � ÿ 1

4p
K2

q2 � K2
qEext ; �40�

where K is the reciprocal Debye (or Thomas ±Fermi) screen-
ing radius, with K2 � 8pN0e

2. Equation (40) clearly shows
that static screening in superconductors is described, towithin
corrections of the order �D=eF�2, by the ordinary dielectric
constant e�q� � 1� K2=q2, as could be expected. The presence
of superconducting pairing, which is interpreted as a kind of
effective attraction, in no way alters the static dielectric
constant and leads to no real attraction of electrons in the
coordinate space.

The calculation of the response of superconductors at an
arbitrary frequency is a much more difficult problem than in
the static case. Here, the difficulties are not only of an
`arithmetic' but also of a `conceptual' nature. The thing is
that only in infinite space can we conveniently separate fields
into longitudinal and transverse [as we did explicitly in
Eqns (28) and (29)]. Even with a static magnetic field in
superconductors with boundaries (of, a finite size), there
appear nontrivial solutions of boundary value problems, as
wehave seen above.Oneof themain problems confronting the
theory is the calculation of the reflection of electromagnetic
waves froma superconducting surface. Thus, generally speak-
ing, to correctly interpret the results of experiments, we must
know how to solve boundary value problems in a certain
geometry. One of the few attempts in this area of research was
that of Lozovik and Apenko [30], who described nontrivial
modes of a superconducting surface.

Unfortunately, up to now, the common approach to
solving the problem of reflection of electromagnetic waves
has been to study only strictly normal incidence of an
electromagnetic wave on a flat, infinite surface of the super-
conductor. In this case, indeed, only the transverse `London'
part survives in the current density [the first term on the right-
hand side of Eqn (29)]. The only quantity that fully
determines the response is the kernel QA

kl , which is calculated
for an arbitrary frequency o but at q � 0 (QA

kl � dklQA). It is
more convenient to describe the superconductor in this limit
not by the functionQA

kl itself but by the optical conductivity s,
which is related toQA

kl as s�o� � ÿe2�QA�o� � n=m�=io. The
current density is then related to the electric field in the
standard way, as j � s�o�E. The first to calculate the
transverse conductivity were Mattis and Bardeen [13] for a
superconductor with impurities. They arrived at the following
result (at T � 0):

Re ss
Re sn

�
��

1� 2D
o

�
E�O� ÿ 4D

o
K�O�

�
y�oÿ 2D� : �41�

Here, E and K are elliptic integrals with the argument
O � �oÿ 2D�=�o� 2D�, and the conductivity of the super-
conductor is normalized to the conductivity in the normal
state. Figure 5 shows the result (taken from Ref. [14]) of
comparing formula (41) with the experimental data. The real
part of the conductivity determines the absorption in the
system, and therefore, due to the gap in the spectrum of one-
particle states, Re ss � 0 in the BCS model up to the
frequencies o � 2D. Above this threshold, quasiparticles
and quasiholes occur in pairs, and absorption gradually
increases. In the framework of a more detailed approach
based on the Eliashberg equations, it is also possible to
calculate the transverse conductivity of superconductors.
However, the behavior of Re ss�o� is more complicated in
this case. The real part of the conductivity is then nonzero
even at frequencies below D. The details of calculations in the
strong-coupling theory can be found in Maksimov's review
article [15] and in the literature cited therein.

5. Collective excitations in superconductors

We now return to the discussion of the possibility of
resonances appearing in the response due to the excitation
of collective modes. We recall Eqn (21) for the phase in the

0

0

10 20 30 40 50 60

0.5

1.0

Frequency o, cmÿ1

ss=sn

ì sample A
ì sample B
ì sample C
ì theory

Figure 5. Comparison of the experimentally measured real part of the

optical conductivity with the results of the Mattis ±Bardeen theory (taken

from Ref. [14]).
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absence of fields.We write it in the same way as Eqns (28) and
(29), but in terms of the polarization operators Q:�

qk

�
QA

kl �
n

m
dkl

�
ql ÿ 2oQA

0l ql � o2QA
00

ÿ V�q� qkql
��

QA
kl �

n

m
dkl

�
QA

00 ÿQA
k0Q

A
0l

��
y � 0 : �42�

The first (and the simplest) type of collective excitation is
generated in an uncharged Fermi gas with attraction accord-
ing to the BCSmodel. The term `uncharged Fermi gas' means
that we have excluded the Coulomb interaction between
particles and have set V �q� � 0 in (42). At absolute zero in
the limit of small q and o, Eqn (42) acquires the simple form

�q2u2 ÿ o2� y�q;o� � 0 : �43�

In deriving (43), we used the limit expressions of polarization
operators for small q and o given in Appendix 8.3.
Bogolyubov et al. [3] and Anderson [5] were the first to
discuss the possibility of the existence of collective oscilla-
tions with an acoustic spectrum [3, 5]. They found that with a
quadratic dispersion law for Fermi particles, the velocity of
`sound' is given by the simple formula u � vF=

���
3
p

(where vF is
the Fermi velocity). Thesemodes are characteristic features of
superconductors and are related to long-wave oscillations of
the order parameter phase, and the oscillation propagation
speed is always of the order of vF.

Ambegaokar and Kadanoff [10] calculated the current
density in a superconductor with the Bogolyubovmode taken
into account and arrived at an expression that is the limit of
the general formula (29) at V �q� � 0 and T � 0:

j � ÿ ne2

mc

�
Atr �

icoEjj
�q2u2 ÿ o2�

�
; �44�

where Ejj is the longitudinal part of the electric field. We note
that at o � 0 and finite q, this expression reduces to London
formula (31).

It is unclear whether uncharged Fermi systems (e.g.,
neutron stars) with such a Bogolyubov mode can exist. It is
also unclear whether formula (44) has a clear-cut meaning,
because it was derived for Fermi particles interacting with an
electromagnetic field but not experiencing mutual Coulomb
repulsion. There is no way in which the Coulomb interaction
between electrons in ordinary superconductors can be
neglected. In the long-wave limit as q! 0, the contribution
of the Coulomb interaction V �q� � 4pe2=q2 dramatically
changes the collective-mode spectrum. While the Bogolyu-
bov mode was determined by the first row in Eqn (42), now,
due to the divergence of V�q� at small q in (42), the leading
terms are those proportional to QA

00, because QA
kl ! 0 and

QA
k0 ! 0 at low temperatures (see Appendix 8.3):�

o2QA
00 ÿ

4pe2

q2
qkql

n

m
dklQA

00

�
y � 0 ; �45�

�
o2 ÿ o2

p

�
y � 0 : �46�

Equation (46) describes plasma oscillations with the fre-
quency determined by the standard formula o2

p � 4pne2=m.
We have arrived at the fact, known from Anderson's paper
[5], that at small q, the Coulomb interaction `pushes,' as it is
sometimes said, the frequency of acoustic oscillations to the

plasma frequencyop. Here is a qualitative explanation of this
effect. As noted earlier, the Bogolyubovmode is related to the
appearance of oscillations in the order parameter phase,
necessarily causing oscillations of the current [see Eqn (15)],
which in turn give rise to oscillations in the electron number
density. Any changes in the charge density in metals,
including superconductors, generate strong longitudinal
electric fields, which result in oscillations at the plasma
frequency.

A somewhat unexpected fact is that despite what we have
said about the role of the strong Coulomb interaction, there
may still be long-wave oscillations of the acoustic type in
superconductors. The first traces of such modes of the
acoustic type were observed in 1973 ± 1975 in the experiments
of Carlson and Goldman [16, 17], and these excitations
therefore became known as the Carlson ±Goldman modes.
In Section 6, we show how to build a theory that describes
these experiments. Here, we try to explain in what case
solutions of the acoustic type may appear in Eqn (42). We
take the long-wave limit, o! 0 and q! 0, and assume that
the ratio o=q � v0 is finite and equal to the velocity of the
acoustic oscillations. In this case, the leading part in Eqn (42)
is the one containing the Coulomb potential V �q�. In the
limit, all the polarization operators are functions of only v0
and the temperature T, and we arrive at the equation

qkql
q2

��
QA

kl�v0;T � �
n

m
dkl

�
QA

00�v0;T �

ÿQA
k0�v0;T �QA

0l �v0;T �
�
y � 0 : �47�

Finding a simple analytic solution of Eqn (42) in the general
case is impossible. The existence of a solution of this equation
depends on the temperature and on how strong the scattering
on impurities in a given superconductor is. The conditions
needed for the existence of the Carlson ±Goldman modes are
different for pure and impure superconductors. In any case,
such modes can exist only at high temperatures close to the
transition temperature. By studying the properties of polar-
ization kernels, we can easily show that at temperatures close
to absolute zero in the long-wave limit, the only oscillations
that are possible are those at the plasma frequency and
acoustic modes cannot appear. Here is a qualitative explana-
tion of what the Carlson ±Goldman modes are. As noted
earlier, the low-frequency Bogolyubov sound cannot exist in
real superconductors because oscillations of the phase
generate charge density oscillations. But at temperatures
close to Tc, in addition to the `superconducting' current,
there is the current of quasiparticles, or the `normal'
component of the current. If oscillations of the order
parameter phase generate oscillations of the superconduct-
ing current, the `normal' current can oscillate in antiphase, to
prevent the charge density from changing. This opens the
possibility of soft oscillations of the acoustic type existing in a
superconductor. As the temperature decreases, the number of
quasiparticles decreases, and at some moment the `normal'
current is not strong enough to compensate the `super-
conducting' contribution. At this temperature, the soft
modes disappear and the collective-mode frequency is
`pushed' to the plasma frequency.

This qualitative explanation already suggests that the
Carlson ±Goldman modes are damped modes, in contrast to
the Bogolyubov modes. First, in the presence of impurities,
the normal component of the current is always dissipative.
Second, it turns out that the damping associated with the
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quasiparticle ± quasihole pair production in pure supercon-
ductors has an even more destructive effect on acoustic
modes. This effect is so strong that for pure s-type super-
conductors in the nondissipative regime, there can be no
Carlson ±Goldman modes. But in pure d-type superconduc-
tors, the situation is different because many normal excita-
tions remain down to low temperatures. Figure 6, taken from
paper [18], schematically shows how the region where the
Carlson ±Goldman modes exist in a d-wave superconductor
changes as the temperature decreases from Tc. It can be seen
from the figure that the speed of the soft mode in this case is
close to vF (see also Ref. [19]). Artemenko and Volkov [20],
Ovchinnikov [21], and SchoÈ n [22] studied s-type supercon-
ductors with impurities. Similar investigations based on the
Green's function formalism within the temperature technique
have been performed by many authors (see Refs [23 ± 27] and
Refs [28, 29]). Despite the differences in the approaches, the
soft-mode speed at temperatures close to the transition
temperature is of the same order in most works: v20 �
�D�T �=T �v2F.

We note that the phrase `Carlson ±Goldman modes exist
in such and such conditions' should be interpreted with
caution. The point is that Eqn (47) has a real part and an
imaginary part. In many works, the condition needed for the
existence of a Carlson ±Goldman mode is assumed to be the
requirement that the real part of Eqn (47) vanish. But the
magnitude and role of the imaginary part requires a separate
investigation. There is also another problem that is rarely
discussed. We return to expression (29) for the current
density. We see that condition (47) corresponds not to a
resonance in the response, as would be the case when the
frequency of the external field coincides with the frequency of
an eigenmode of the system, but to the condition that the
current density must vanish. This agrees with the general
qualitative understanding that low-frequency modes exist
because the superconducting current and the normal current
balance each other. However, the total equation for eigen-
oscillations of the phase, Eqn (42), also contains terms
proportional to q2 and o2, which were neglected in Eqn (47).
And if exact solutions of the equation for the phase existed,
then instead of the current vanishing, a resonance would
appear in the current.

The common approach in works devoted to the Carlson ±
Goldman mode is to study not the response function but only
an equation for the phase similar to Eqn (42) but obtained
within one or another simplified model of the problem. At the
same time, we see that such an approach may have no
immediate physical meaning, because the response functions
may have no resonances at these frequencies due to damping
or because the zeros in the numerators and denominators in
(28) and (29) are close to each other. But then how do these
modes manifest themselves in physically measurable quanti-
ties, as resonances or as zeros of response functions? One
answer we already know: in tunnel measurements involving
superconductors, which we examine in the next section.

The following remark is in order in concluding this section.
The question of whether collective eigenmodes exist in
superconductors is closely related to the problem discussed
in Section 3 concerning the homogeneous solution of the
equation determining the order parameter phase as a function
of external fields. For an infinite superconductor, solving such
equations is reduced to solving an algebraic equation in the
Fourier space.Thepossibility of nontrivial solutions emerging
in the case of a finite superconductor was briefly discussed
above only in the static case.Actually, a problem that has been
left unstudied is how the collective modes in finite super-
conductors, e.g., films and small crystals in resonators,
change. The difficulty lies in the fact that Eqn (42) becomes
an integro-differential equation. The problem of the imposed
boundary conditions is also essential here. The only work in
this area of research, we believe, is Lozovik and Apenko's
paper [30] written in 1981. And yet the problem is highly
important for interpreting the results of many experiments in
measuring the conductivity of high-Tc superconductors.

6. Excitation of collective modes
in tunnel experiments

Soft modes in superconductors were first observed in
experiments in measuring the tunneling conductivity
described by Carlson and Goldman [16, 17]. A schematic of
a tunnel junction that was used in the experiments is shown in
Fig. 7. A magnetic field directed parallel to the junction plane
is applied in a flat gap between the two superconductors of the
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Figure 6. Dispersion of collective excitations for a pure superconductor with a d-wave order parameter, at different temperatures: (a) Tc � 0:9, (b)
T=Tc � 0:8, and (c) T=Tc � 0:7. The solid line corresponds to a Carlson ±Goldman (CG) mode and the dotted-dashed line to a Bogolyubov mode (BM).

The figure is taken from Ref. [18].
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tunnel junction. As we see later, it was the introduction of a
magnetic field into the experiment that made it possible to
determine the dispersion law of collectivemodes,o�q�, within
a certain region.

The tunneling of electrons between two superconductors
is described by the Hamiltonian

Ht �
X
k; p

�Tkpbc�k bcp � h:c:� ; �48�

where bc�k and bc�p are the electron creation operators in the left
and right superconductors and Tkp is the matrix element
describing the transition from the state k of one super-
conductor to the state p of the other superconductor. Here,
we have omitted the spin indices because we assume that
tunneling occurs without spin flip. The tunnel current is
determined by the off-diagonal Green's functions Gÿ�kp [31],
which become nonzero as soon as electron transitions
described by Hamiltonian (48) occur:

Jtun � 2e
X
k; p

�Tpk G
ÿ�
kp ÿ Tkp G

ÿ�
pk � : �49�

Just as we sought the perturbation of the system due to an
external field in linear-response theory, we here have a similar
problem of building a perturbation theory with respect to
tunnel Hamiltonian (48). We can say that we are calculating
the `response' of a system consisting of two superconductors
to the transition amplitude Tkp, while the applied potential
and the magnetic field are taken into account exactly in the
zeroth-order Green's functions.

We assume for definiteness that the potential difference f
across the tunnel junction is described as a change in the
potential of only the left side of the junction. Then, in the
space ± time representation, the Green's functions of the
superconductors involves oscillating factors of the form [32,
33]

Gk�r1; t1; r; t� � exp

�
ÿ i

2
qk
Hx1

�
Gk�r1 ÿ r; t1 ÿ t �

� exp

�
i

2
qk
Hx

�
;

Fk�r1; t1; r; t� � exp

�
ÿ i

2
qk
Hx

�
Fk�r1 ÿ r; t1 ÿ t �

� exp

�
ÿ i

2
qk
Hx1

�
;

Gp�r1; t1; r; t� � exp

�
i

2
q
p
Hx1 ÿ ieft1

�
Gp�r1 ÿ r; t1 ÿ t �

� exp

�
ÿ i

2
q
p
Hx� ieft

�
;

Fp�r1; t1; r; t� � exp

�
i

2
q
p
Hx1 ÿ ieft1

�
Fp�r1 ÿ r; t1 ÿ t �

� exp

�
i

2
q
p
Hxÿ ieft

�
: �50�

Hence, the order parameters become oscillating functions of
the form

Dp�x; t� � Dp exp�iqp
Hxÿ i2eft�;

Dk�x; t� � Dk exp�ÿiqk
Hx� ; �51�

where q
p
H � 2elp=�hcH and qk

H � 2elk=�hcH. It is important
that the magnetic field controls the magnitude of the wave
vector and that the voltage applied to the junction controls
the oscillation frequency.

The perturbation theory with respect to Hamiltonian (48)
can be built in exactly the sameway as in the case of a response
to an external field. The first-order correction to the Green's
function Gÿ�kp is

G
�1�ÿ�
kp � �GkTkpGp�ÿ� � �FkTkpF

�
p �ÿ� : �52�

This approximation is sufficient if we want to derive the
ordinary expression for the current (including the Josephson
current) in a tunnel junction of two superconductors. The
resonance in which we are interested (related to collective
modes) may manifest itself in the DC tunnel characteristics
only in the third order in Tkp, as we see shortly. However, in
calculating higher-order corrections, we must again take into
account that turning on the tunneling between superconduc-
tors leads to corrections in the order parameter and the
electron number density fluctuations. For simplicity, we
assume that the transition temperatures of the superconduc-
tors differ substantially and that the temperature is closer to
Tc of the `weaker' superconductor (which agrees with the
conditions of a real experiment). Then the variation of the
order parameter is stronger for the superconductor with the
lower value ofTc, and we can ignore the variation of the order
parameter in the other superconductor. We assume that the
junction side labeled by k is just such a superconductor. As a
result of calculations of Gÿ�kp in the third order in Tkp, there
appear corrections, shown in Fig. 8, in which the variation of
the off-diagonal Green's function is determined by the action
of the tunnel matrix element Tkp both `explicitly' and
`implicitly' through the variation of the order parameter Dk

and the electron number density dnk:

G
�3�ÿ�
kp � ÿGkD

�1�
k GÿkTkp F

�
p

�ÿ�� ÿFkD
�1��
k FkTkp F

�
p

�ÿ�
� ÿGk�Vdnk�FkTkp F

�
p

�ÿ�
� ÿFk�Vdnk�GÿkTkp F

�
p

�ÿ�
. . . : �53�

According to the general approach, the corrections to the
order parameter, D�1�k , and the electron number density, dnk,
must satisfy a self-consistency equation similar to Eqns (16)
and (20) (Fig. 9a). What happens next depends very strongly
on the type of tunnel junction that we consider, because
different types of junctions have different dependences of the
matrix element Tkp on the momenta k and p. For instance, for

k
Tpk

z

x

y

H

p

Figure 7. Schematic of a tunnel junction used to observe a collective

Carlson ±Goldman mode.
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a point junction, a good approximation is the substitution of a
momentum-independent constant for Tkp. Summation over
the momenta of the left and right sides of the junction is then
performed independently, which simplifies calculations con-
siderably. Such an approximation is often used to derive the
classical expression for the tunnel current in the first order in
T 2
kp [33]. But the replacement ofTkp with a constant in higher-

order terms is too rough an approximation in our case. For
the real junction of the type considered here, due to the
roughness of the its surfaces and defects on them and to other
technological reasons that lead to the junction not being ideal,
we must assume that the tunnel matrix element is a random
function of the coordinates x and y of both sides of the
junction. Then, assuming that this random function is
characterized by a Gaussian distribution and that there is no
correlation between the random inhomogeneities of the
surfaces of the two superconductors, we conclude that the
following averages appear in the theory:

hTkpTp1k1i � T 2
kÿk1 ; pÿp1 or hTr1r

0
2
Tr 0

3
r4i

� T 2
r1ÿr 02 d�r1 ÿ r4� d�r 02 ÿ r 03� ; �54�

where r � �x; y� is a point on the surface of one super-
conductor, r 0 � �x 0; y 0� is a point on the surface of the other
superconductor, and only the dependence on the momen-
tum components parallel to the junction plane is written
explicitly. The use of such averages leads to the situation
where second-order corrections to the order parameter and
to the electron number density are distinctly separated into

three space ± time `harmonics': one constant contribution
and two proportional to exp � i�qp

H � qkH� xÿ i2eft� and
exp �ÿi�qp

H � qkH� x� i2eft�. To explain all this, we use the
expression corresponding to the third diagram in Fig. 9a. We
let D3�r; t� denote the contribution of this diagram:

D3�r;t� � ig

� �
Gk�r; t; r1; t1�Tr1r

0
2
Fp�r 02; t1; r 03; t2�

� Tr 0
3
r4Gk�r; t; r4; t2�

�ÿ�
dr1 dr2 dr3 dr4 dt1 dt2 : �55�

Using the averaging in (54), we obtain

D3�r; t� � ig

� �
Gk�r; t; r1; t1�T 2

r1ÿr 02Fp�r 02; t1; r 02; t2�
� Gk�r; t; r1; t2�

�ÿ�
dr1 dr2 dt1 dt2 : �56�

If we separate the explicit dependence of the Green's
functions on the phase oscillations [Eqn (50)], we can write
the expression for D3�r; t� in terms of the superconductor
Green's functions that depend solely on the differences of the
r and t variables. The final contribution of D3�r; t� can be
written as

D3�r; t� � D3 exp�iqp
Hxÿ i2eft� ;

D3 � igfT 2

�
de
�
dp dp1

�
Gk�p� qH; e� ef�

� Fp�p1; e�Gk�ÿp;ÿe� ef��ÿ� ; �57�
where

qH��qp
H � qk

H� bx ; fT 2 �
�
exp

�ÿ iq
p
H�x1 ÿ x��T 2

r1ÿr dr1 ;

�58�

and x̂ is the unit vector along the x axis. Reasoning along the
same lines, we can easily show that the second and third
diagrams on the right-hand side of Fig. 9amake the respective
contributions proportional to exp�ÿi�qp

Hx� 2qkHxÿ 2eft��
and exp�ÿiqk

Hx�. The same separation into three harmonics
can be done in calculations of the corrections to the electron
number density, whose diagram series is shown in Fig. 9b.
Hence, it is convenient to write dnk and D�1�k as a sum of
contributions of three different harmonics:

D�1�k �x; t� �
n
D1 � D2 exp

�ÿ i �qp
H x� qk

H xÿ 2eft��
� D3 exp

�
i �qp

H x� qk
H xÿ 2eft��o exp�ÿiqk

H x� ;

dnk�x; t� � dn1 � dn2 exp
�ÿ i �qp

H x� qk
H xÿ 2eft��

� dn3 exp
�
i �qp

H x� qk
H xÿ 2eft�� : �59�

The superconductor with the lower value of Tc used in the
Carlson ±Goldman experiments was a thin film whose
thickness was much smaller than the penetration depth and
the coherence length. In these conditions, both dn and D are
practically constant across the film, and Eqn (58) describes
the variation of these quantities (averaged over the film
thickness) as depending on the time and the coordinate x
along the film. Strictly speaking, in this case, the definition of
qk
H involves the film thickness d rather than the penetration

depth l [see Eqn (51)], but this does not significantly alter the
result. In formula (57) forD3, we intentionally indicated only
the dependence on the coordinates x and y in the junction

+
k k pD�1� k k pD�1��

+

dn�1�

k k p

dn�1�

k k p

Figure 8. The part of the diagrams of the third order in the tunnel matrix

elementTkp (a� in the figure) for the functionGÿ�kp containing corrections

to the order parameter, D�1�, and fluctuations of the electron number

density, dn �1�, of superconductor k.

+ +D�1� �

+ ++

dn�1�
D��1�D�1�

a

b

dn�1� � ++ +

+ + ++

D�1�
dn�1� dn�1�

D�1��

Figure 9. Self-consistency equations for (a) the correction to the order

parameter of superconductor k that is quadratic in Tkp, and (b) the

fluctuation of the electron number density of superconductor k in the

second order in the tunnel matrix element Tkp.
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plane and did not explicitly write the integral over the
transverse coordinate z. The point is that the specific value
of the integral with respect to z is, generally speaking, model-
dependent and differs for different types of junctions and
different geometries. This, however, is unimportant in our
further discussion.

If in (53) we isolate the oscillating factors in the Green's
functions (50), we immediately see that theDC contribution is
obtained if we substitute D3 in the first term on the right-hand
side of Eqn (53), D�2 in the second term, and dn3 in the third
and fourth terms. The remaining possible combinations yield
corrections to the oscillating part of the tunnel current (the
Josephson current and its harmonics) and trivial corrections
to the DC amplitude, which do not contain the resonance
contribution from the collective modes. Hence, the problem
amounts to solving only the system of equations for the
constants D�2 , D3, and dn3, a system that follows from the
self-consistency equations (see Fig. 9) after the expansion in
harmonics (59) have been substituted in them and the
coefficients at each harmonic have been equated. The system
of equations has the form

D�2
�
1�PD��ÿq���PD���ÿq�D3ÿPA�

0 �ÿq�V �q�dn�2�D�2 �q�;
D3

�
1�PD�q���PD��q�D�2 ÿPA

0 �q�V�q� dn3 � D3�q� ;
�60�

dn�2
�
1ÿV �q�QA�

00 �ÿq�
��QD

0 �q�D3 �QD�
0 �ÿq�D�2 �dN �2 �q� ;

dn3
�
1ÿ V�q�QA

00�q�
��QD

0 �q�D3 �QD�
0 �ÿq�D�2 � dN3�q� :

�61�

For brevity, we have combined the components of the
Fourier transform in t and x into one quantity: q �
�o � 2ef; qx � q

p
H � qk

H�. We note that the polarization
kernels involved here are the same as in the linear-response
theory, but instead of the frequency and wave vector of the
applied electromagnetic field, they now involve the Josephson
frequency and the wave vector specified in the given junction
geometry by the constant magnetic field.

Bearing in mind our remarks concerning the possibility of
integrating the Green's functions over the coordinate z in
different ways, we find that the functions on the right-hand
sides of Eqns (60) and (61) are determined by formulas similar
to (57):

D�2 � ÿigfT 2

�
de
�
dp dp1

�
F�k �p� qH; e� ef�

� Fp�p1; e�F�k �p; eÿ ef��ÿ� ;
dN3 � ÿ2ifT 2

�
de
�
dp dp1

�
Gk�p� qH; e� ef�

� Fp�p1; e�F�k �p; eÿ ef��ÿ� ;
dN�2 � dN3 : �62�

Clearly, the condition dn�2 � dn3 is always satisfied, which
follows directly from the fact that electron number density
fluctuation (59) is a real quantity. As a result, we arrive at a
simpler system of three equations for the amplitudes D�2 , D3,
and dn3 of the harmonics. The system of equations becomes
even simpler if, as discussed in Section 3, we neglect
contributions of the order of D=eF in the polarization kernels
that are present in Eqns (60) and (61). In this approximation
(see Appendix 8.3), PA

0 �q� � ÿPA�
0 �ÿq�, PD�q� � PD��ÿq�,

PD��q� � PD�� �ÿq�, and QD
0 �q�� ÿQD�

0 �ÿq�. Then, the

sought expressions for D�2 , D3, and dn3 are given by

D�2 �q� �
1

2

D�2 �q� �D3�q�
1�PD�q� �PD� �q�

� 1

2

�D�2 �q� ÿD3�q���1ÿ V�q�QA
00�q�� ÿ 2dN3�q�V�q�PA

0 �q�
�1�PD�q� ÿPD� �q���1ÿ V �q�QA

00�q�� � 2PA
0 �q�V �q�QD

0 �q�
;

�63�

D3�q� � 1

2

D�2 �q� �D3�q�
1�PD�q� �PD� �q�

ÿ 1

2

�
D�2 �q� ÿD3�q�

��
1ÿ V�q�QA

00�q�
�ÿ 2dN3�q�V�q�PA

0 �q��
1�PD�q� ÿPD� �q���1ÿ V�q�QA

00�q�
�� 2PA

0 �q�V�q�QD
0 �q�

;

�64�

dn3�q� �
�
D�2 �q� ÿD3�q��QD

0 �q� � dN3�q�
�
1�PD�q� ÿPD� �q���

1�PD�q� ÿPD� �q���1ÿ V�q�QA
00�q�

�� 2PA
0 �q�V�q�QD

0 �q�
:

�65�

Using the relations between the polarization kernels (see
Appendix 8.2), we can easily show that the expression in the
denominator of (65) and the expressions in the denominators
in the second terms on the right-hand side of Eqns (63) and
(64) coincide with the expressions in the denominators of the
linear-response formulas (26) ± (29). Hence, the condition
that the denominators in (63) and (65) vanish coincides with
the condition that collective modes (42) with o � 2ef and
q � qH exist in the superconductor we labeled k. We see that
the quantity �D�2 ÿ D3� behaves in the manner of a resonance,
while the sum �D�2 � D3� contains no such resonance con-
tribution. (There is a certain analogy with the fact that the
collective modes in a linear response are related mainly to the
oscillations of the order parameter phase, while variations in
the absolute value of the order parameter are unessential.)
Keeping only terms that may contain resonances correspond-
ing to the excitation of collective modes in (53), we can write
the contribution to DC current (49) in the compact form

J
�4�
tun�H;f�
� 2eRe

�� eD2ÿ eD�3 ��D�2 ÿD3��2�fdN2 � fdN�3 �V�qH� dn3�;
�66�

where we use the notation similar to that in (57) and (62):

eD2 � fT 2

�
de
�
dp dp1

�
Fk�p; e� ef�

� Fk�pÿ qH; eÿ ef�F�p �p1; e�
�ÿ�

;

eD�3 � ÿfT 2

�
de
�
dp dp1

�
Gk�p; e� ef�

� Gk�ÿp� qH;ÿe� ef�F�p �p1; e�
�ÿ�

;

fdN2 � fT 2

�
de
�
dp dp1

�
Gk�p; e� ef�

� Fk�pÿ qH; eÿ ef�F�p �p1; e�
�ÿ�

;

fdN�3 � ÿfT 2

�
de
�
dp dp1

�
Fk�p; e� ef�

� Gk�ÿp� qH;ÿe� ef�F�p �p1; e�
�ÿ�

: �67�
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Although the contribution (66) to the current is of the
order ofT 4

kp (while the ordinary current is of the order� T 2
kp),

it may be significant. If the denominator in (63) ± (65) vanishes
(or becomes small) at certain applied voltages that are smaller
than the total gap Dp � Dk, a resonance peak appears in the
range of voltages where the ordinary quasiparticle current is
suppressed. As noted above, the condition for this resonance
to appear coincides with the condition for the collectivemodes
with o � 2ef and q � qH to exist. Varying the magnetic field
strength and determining the voltage at which the current ±
voltage characteristic exhibits a peak, we can determine the
dispersion law for these modes. We note than the tunnel
characteristics may also exhibit resonances related to other
collective excitations. For instance, as a result of their
experiments, Ponomarev et al. [34] discovered peaks in the
current ± voltage characteristics of tunnel junctions that
corresponded to frequencies of certain optical phonons. A
theoretical explanation of this effect was given by Maksimov
et al. [35], who used an approach similar to the theory
discussed in the present section to describe tunnel experi-
ments with excitation or absorption of optical phonons. Of
course, it is not accidental that the resonances in the tunnel
characteristics in Carlson and Goldman's experiments coin-
cided with the resonances in the response to a longitudinal
electric field. A possible qualitative explanation of this fact is
that any tunneling process is accompanied by a transfer of
charge (electrons) fromone superconductor to another, giving
rise to a response to this introduced charge, which is the source
of the longitudinal field. At the phenomenological level, the
contribution of fluctuation corrections to the tunnel char-
acteristics had been examined by Scalapino [36] even before
Carlson and Goldman's research. Later, such a phenomen-
ological theory was described in greater detail by Shenoy and
Lee [37] and Kadin and Goldman [38]. A microscopic theory
within the temperature diagram technique similar to the
approach discussed in the present section was first developed
by Dinter [27] in 1978.

7. Conclusion

Our primary goal in this review was to show the general
principles on which the theory of response for superconduc-
tors is based. In order not to make the review too long, we did
not touch on the problem of superconductors with impurities.
Most of the formulas were derived for pure superconductors
(or in the collisionless limit, where there is scattering on
impurities). But our approach can easily be extended to
incorporate the case of dirty superconductors with impurities.
All the formulas for the current and charge (26) ± (29) will
retain their form, as well as Eqn (42) for the collective modes.
The difference is that the polarization operators in these
formulas must be calculated with the scattering on impurities
taken into account. How such calculations should be done is
shown very well in Refs [18, 28, 29, 32]. The form of the
polarization kernels with the scattering by impurities taken
into account can be found, e.g., in Ref. [18].

In conclusion, we once more discuss the question of what
we consider the key problem for the future. The problem of
how collective modes are modified due to the presence of the
boundaries of a superconductor and whether surface oscilla-
tions of a specific sort can emerge has been poorly studied.
This problem is very important when one has to deal with
small superconductors. To correctly interpret the numerous
experiments involving conductivity (impedance) measure-

ments for superconductors in a broad range of frequencies,
one needs to know how to correctly estimate effects
associated with charges at the boundary, i.e., with the
longitudinal electric field. The difficulty of a theoretical
description lies in the fact that one must solve equations for
phase variations [Eqns (21) and (42)] not in infinite space but
within a limited volume. In real space, these equations are
very complicated integral equations and can be solved,
probably, only in certain limit cases.

The present work was made possible by financial support
from the Russian Foundation for Basic Research (Grant No.
02-02-16925) and the Russian Federation President Program
for Supporting Leading Scientific Schools (Grant No. 1909-
2003-02).

8. Appendices

8.1 Normal and anomalous Green's functions
in the Keldysh diagram technique
To find the linear response of superconductors to an external
perturbation via the Keldysh diagram technique [8], we must
know the following Green's functions in addition to (10):

G�ÿab �x; x 0� � ÿi

 bca�x� bc�b �x 0�� ;

F�ÿab �x; x 0� � ÿi

 bca�x� bcb�x 0�

�
;

GR
ab�x; x 0� � ÿi

D�bca�x� bc�b �x 0�	E y�tÿ t 0� ;
FR
ab�x; x 0� � ÿi

D�bca�x� bcb�x 0�
	E

y�tÿ t 0� ;
GA

ab�x; x 0� � i
D�bca�x� bc�b �x 0�	E y�t 0 ÿ t� ;

FA
ab�x; x 0� � i

D�bca�x� bcb�x 0�
	E

y�t 0 ÿ t� : �68�

Here, the braces denote the anticommutator of the two
operators, and x � �t; r�. We limit ourselves to functions
(68) in the absence of external fields, because these functions
enter the expressions for the polarization operators P and Q
(Appendix 8.2). They depend only on the difference of
coordinates and times, xÿ x 0, and their spin dependence is
Gab � dabG and Fab � is y

abF.
The Fourier transforms of functions (68), introduced

according to the formulas

G� p� �
��

G�xÿ x 0� exp �ÿ ip�xÿ x 0�� d4�xÿ x 0� ;

F � p��
��

F �xÿx 0� exp�ÿ ip�xÿx 0��d4�xÿx 0�; p��e; p�;
satisfy Gor'kov's equations, which can be conveniently
written in matrix form ascG0

ÿ1� p� bGR;A� p� � b1 ;cG0
ÿ1� p� bGÿ�� p� � 0 ; �69�

where we introduce the notationcG0
ÿ1� p� � eÿ xp ÿD0

ÿD�0 e� xp

� �
;

bGR;A� p� � GR;A
0 � p� FR;A

0 � p�
ÿF�R;A0 � p� ÿGA;R

0 �ÿp�

 !
;

bGÿ�� p� � Gÿ�0 � p� Fÿ�0 � p�
ÿ�F��ÿ�0 � p� ÿG�ÿ0 �ÿp�

� �
;

xp �
p2

2m
ÿ m :
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Solving Eqns (69), we obtain

Gÿ�0 � p� � 2pi
�
u2pnpd�eÿ ep� � v2p�1ÿ np� d�e� ep�

�
;

Fÿ�0 � p� � 2piupvp
�
npd�eÿ ep� ÿ �1ÿ np� d�e� ep�

�
;

G�ÿ0 � p� � ÿ2pi
�
u2p�1ÿ np� d�eÿ ep� � v2pnpd�e� ep�

�
;

GR
0 � p� �

u2p

eÿ ep � i0
� v2p
e� ep � i0

;

FR
0 � p� � upvp

�
1

eÿ ep � i0
ÿ 1

e� ep � i0

�

were np � �exp�ep=T� � 1�ÿ1 is the Fermi distribution for
quasiparticles, and u2p ��1� xp=ep�=2 and v2p��1ÿ xp=ep�=2
are the coherence factors. The expressions for the other
Green's functions can easily be obtained using relations that
follow from definitions (68): GA

0 � p� � GR�
0 � p�, FA

0 � p� �
FR
0 �ÿp�, and F�ÿ0 � p� � Fÿ�0 �ÿp�.

8.2 Polarization operators Q and P .
The Ward identity
The polarization operatorsQ andP play an important role in
expressions (26) ± (29) for the linear response. Their explicit
form can be obtained by using the diagrams in Fig. 1 (with
close free ends of the solid lines) and Fig. 2b:

QA
kl �q��ÿ2i

1

m2

��
pk � qk

2

��
pl � ql

2

�h
GR

0 � p� q�Gÿ�0 � p�

� Gÿ�0 � p� q�GA
0 � p� ÿ FR

0 � p� q��F��ÿ�0 � p�

ÿ Fÿ�0 � p� q��F��A0 � p�
i d4p

�2p�4 ; �70�

QA
k0�q� � QA

0k�q�

� ÿ2i 1
m

� �
pk � qk

2

�h
GR

0 � p� q�Gÿ�0 � p�

� Gÿ�0 � p� q�GA
0 � p� � FR

0 � p� q��F��ÿ�0 � p�

� Fÿ�0 � p� q��F��A0 � p�
i d4p

�2p�4 ; �71�

QA
00�q��ÿ2i

�h
GR

0 � p� q�Gÿ�0 � p�� Gÿ�0 � p� q�GA
0 � p�

ÿ FR
0 � p� q��F��ÿ�0 � p�

ÿ Fÿ�0 � p� q��F��A0 � p�
i d4p

�2p�4 ; �72�

QD
k �q� � ÿ2i

1

m

� �
pk � qk

2

�h
GR

0 � p� q��F��ÿ�0 � p�

� Gÿ�0 � p� q��F��A0 � p�
i d4p

�2p�4 ; �73�

QD
0 �q� � ÿ2i

�h
GR

0 � p� q��F��ÿ�0 � p�

� Gÿ�0 � p� q��F��A0 � p�
i d4p

�2p�4 ; �74�

and also Fig. 2a:

PA
l �q� � 2ig

1

m

� �
pl � ql

2

�h
GR

0 � p� q�Fÿ�0 � p�

� Gÿ�0 � p� q�FA
0 � p�

i d4p

�2p�4 ; �75�

PA
0 �q� � 2ig

�h
GR

0 � p� q�Fÿ�0 � p�

� Gÿ�0 � p� q�FA
0 � p�

i d4p

�2p�4 ; �76�

PD�q� � ig

� h
GR

0 � p� q�G�ÿ0 �ÿp�

� Gÿ�0 � p� q�GR
0 �ÿp�

i d4p

�2p�4 ; �77�

PD��q� � ÿig
� h

FR
0 � p� q�Fÿ�0 � p�

� Fÿ�0 � p� q�FA
0 � p�

i d4p

�2p�4 ; �78�

where k and l are the `spatial' indices, and integration is
performed with respect to the 4-momentum p � �e; p�. In the
absence of external fields, the order parameter D0 is chosen
real. In this case, the polarization operators PA and QD

are equal up to the coefficients:QD
k � PA

k =g andQD
0 � PA

0 =g,
and in addition PD��q� � PD���ÿq�. The requirement
that the linear response be gauge invariant (or equivalently,
that the current be continuous) means, in terms of theP- and
Q-kernels, that the following identities hold:�

QA
kl�q� �

n

m
dkl

�
ql ÿQA

k0�q�o � ÿ4iD0Q
D
2k�q� ; �79�

QA
0l�q� ql ÿQA

00�q�o � ÿ4iD0Q
D
20�q� ; �80�

PA
1l�q� ql ÿPA

10�q�o � ÿ2iD0

�
PD

2 �q� ÿPD�
2 �q�

�
; �81�

PA
2l �q� ql ÿPA

20�q�o � 2iD0

�
1�PD

1 �q� ÿPD�
1 �q�

�
: �82�

Here, the first subscripts 1 and 2 denote the real and
imaginary parts of the respective polarization operators
[Eqns (17)]. Similar identities were obtained earlier in the
limit of small q and o in Ref. [29].

It can be directly shown that Eqns (79) ± (82) are related to
theWard identity for a superconductor, which in the standard
form can be written as [9]X3

n�0
qn bGn� p� q; p� � bt3 bGÿ10 � p� ÿ bGÿ10 � p� q�bt3 ; �83�

werebt3 � 1 0
0 ÿ1

� �
;

and the definition of the matrix bGÿ10 � p� is given in
Appendix 8.1. The vertex function bGn in (83) enters the
expression for the correction to the one-particle Green's
function that is linear in the potentials A � �cj;A� as
bGÿ��1�� p� q; p� � ÿ e

c
bGR
0 � p� q�

X
n

bGn� p� q; p�

� bGÿ�0 � p�An�q�ÿ e

c
bGÿ�0 � p� q�

X
n

bGn� p�q; p� bGA
0 � p�An�q�:

�84�
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For the interaction in the BCS model, this function does not
contain Keldysh's indices (ÿ,�) and is determined by the
formula bGn � bGÿÿ;ÿn � bGÿÿ;�n � ÿbG��;ÿn ÿ bG��;�n .

We first consider a superconductor without the electron ±
electronCoulomb interaction. In this case, the vertex function
is given by

bGn� p� q; p� � gn� p� q; p� Pn�q�
P �n �ÿq� ÿgn�ÿp;ÿpÿ q�

� �
;

where g� p� q; p� � �1;mÿ1�p� q=2�� is the `free' vertex
function (the vertex function in the normal state) and Pn is
the kernel whereby the correction to the order parameter,
D�1�, is related to the external potential An, D�1��q� �
Pn�q�An�q� (see Fig. 3). To find the function Pn, we must
solve self-consistency equation (16) (at V � 0). We note that
Pn ensures the renormalization of the `free' vertex by the
attractive interaction between electrons that leads to super-
conductivity (Pn / g). Thus, in the case under consideration,
Eqn (16) (at V � 0) is precisely the equation that determines
the vertex matrix. Solving this equation, we express the kernel
Pn in the absence of the Coulomb interaction as

Pn�q��
PA

n �q�
�
1�PD��ÿq��ÿPA�

n �ÿq�PD��q��
1�PD�q���1�PD��ÿq��ÿPD��q�PD���ÿq�

:

�85�
To derive the Ward identity in form (8.3), we must evaluate
the combination

P
n qnPn�q�. Using relations (81) and (82)

between theP-kernels, we obtainX
n

qnPn�q�

�
P

n qnP
A
n �q�

�
1�PD��ÿq��ÿPn qnP

A�
n �ÿq�PD��q��

1�PD�q���1�PD��ÿq��ÿPD��q�PD���ÿq�

�ÿ2D0

� �
1�PD�q� ÿPD��q���1�PD��ÿq���

1�PD�q���1�PD��ÿq��ÿPD��q�PD���ÿq�

�
�
1�PD��ÿq� ÿPD���ÿq��PD��q��

1�PD�q���1�PD��ÿq��ÿPD��q�PD���ÿq�

�
�ÿ2D0 :

�86�
Similar combinations for the diagonal elements of the

vertex matrix bGn are given byX
n

qn gn� p� q; p� � xp�q ÿ xp ÿ o ;X
n

qn gn�ÿp;ÿpÿ q� � xp�q ÿ xp � o : �87�

As a result, the left-hand side of Eqn (83) becomesX
n

qn bGn� p� q; p� � xp�q ÿ xp ÿ o ÿ2D0

2D0 xp�q ÿ xp � o

� �
:

�88�
Clearly, the matrix on the right-hand side of (88) coincides
with bt3 bGÿ10 � p� ÿ bGÿ10 � p� q�bt3. Thus, we have shown that
the vertex matrix bGn satisfies Ward identity (82) if identities
(81) and (82) hold. At the end of this section, we show one of
the ways of proving (79) ± (82).

In the RPA, the Coulomb interaction is taken into
account via a certain modification of the field potentials,

by replacing An with An ÿ dn0ceÿ1Vdn, where the electron
number density fluctuations are determined in a self-consis-
tent manner. In formula (84), such a substitution leads to the
following renormalization of the vertex matrix:

bGn� p� q; p� ! bG 0n� p� q; p� � bGn� p� q; p�

� bG0� p� q; p�V �q�Q0n�q�

�
gn� p� q; p��V �q�Q0n�q� Pn�q� �P0�q�V �q�Q0n�q�

P�n�ÿq� �P�0�ÿq�V�q�Q0n�q� ÿ gn�ÿp;ÿpÿ q�ÿV�q�Q0n�q�

 !
:

(89)

Here, Q0n is the kernel relating dn to the potential An,

dn�q� � ÿ e

c
Q0n�q�An�q� ; �90�

andPn is defined in (85). The explicit form ofQ0n can easily be
established by comparing (90) and (26).

Taking the Coulomb interaction into account in the RPA
has no effect on theGreen's functions bG0, because the electron
number density fluctuations are zero in the absence of an
external field. Hence, the right-hand side of Ward identity
(83) remains unchanged. Thus, the vertex matrix defined by
(89) satisfies the Ward identity ifX

n

Q0n�q� qn � 0 : �91�

We note that (91) is the condition that guarantees the gauge
invariance of expression (90) for the electron number density
fluctuations dn�q�. It is satisfied automatically with the
present approach used to find the linear response of a
superconductor, because formula (26) is manifestly gauge
invariant. As a result, for the vertex matrix bG 0n, we have the
same identity as for bGn:X

n

qn bG 0n� p� q; p� �
X
n

qn bGn� p� q; p�

� bt3 bGÿ10 � p� ÿ bGÿ10 � p� q�bt3 : �92�

We now return to identities (79) ± (82). Equations (70) ±
(78) show that the polarization operators are determined by
expressions of the same type, sums of convolutions of `free'
normal and anomalous Green's functions in different
combinations. The functions G0 and F0 are related through
Gor'kov's equations (69). One of the ways of proving the
validity of (79) ± (82) is based on these equations, and we
demonstrate this by proving (79). We multiply (70) by ql and
then subtract (71) multiplied by o from the product:

QA
kl�q� ql ÿQA

k0�q�o

� ÿ2i 1
m

� �
pk � qk

2

�� � pl � ql=2� ql
2m

ÿ o
�

� �GR
0 � p� q�Gÿ�0 � p� � Gÿ�0 � p� q�GA

0 � p�
� d4p

�2p�4

ÿ 2i
1

m

� �
pk � qk

2

��
ÿ � pl � ql=2� ql

2m
ÿ o

�
� �FR

0 � p� q��F��ÿ�0 � p� ÿ Fÿ�0 � p� q��F��A0 � p�
� d4p

�2p�4 :

�93�
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We write the expression in the square brackets as

� pl � ql=2� ql
2m

ÿ o � xp�q ÿ xp ÿ o

� �xp�q ÿ eÿ o� ÿ �xp ÿ e�

and, similarly,

ÿ� pl � ql=2� ql
2m

ÿ o � ÿ�xp�q � e� o� � �xp � e� :

Clearly, the combinations in parentheses are the diagonal
elements of the matrices cG0

ÿ1� p� q� and cG0
ÿ1� p� involved

in Gor'kov's equations (see Appendix 8.1). This allows using
Eqns (69) for further simplification:

QA
kl �q� ql ÿQA

k0�q�o

� 2i
1

m

� �
pk � qk

2

��
Gÿ�0 � p� ÿ Gÿ�0 � p� q�� d4p

�2p�4

� 4iD0
1

m

� �
pk � qk

2

��
GR

0 � p� q��F��ÿ�0 � p�

� Gÿ�0 � p� q��F��A0 � p�
� d4p

�2p�4

� 4iD0
1

m

� �
pk � qk

2

��
FR
0 � p� q�Gÿ�0 � p�

� Fÿ�0 � p� q�GA
0 � p�

� d4p

�2p�4 : �94�

After simple transformations, we find that the first integral on
the right-hand side of Eqn (94) becomes

2i
1

m
qk

�
Gÿ�0 � p�

d4p

�2p�4 � ÿqk
n

m
: �95�

Noting that, according to definition (73), the second integral
on the right-hand side of (94) is equal (with the coefficient
included) to ÿ2D0Q

D
k �q�, and the third integral is equal to

2D0Q
D�
k �ÿq�, we arrive at identity (79). The proof of the other

identities, Eqns (80) ± (82), may be carried out similarly.

8.3 Behavior of the polarization operators Q
and P in the limit of small q and x
Finding the explicit form of the polarization operators as
functions of q and o is quite a complicated problem in
general. Even in the `pure' case considered here, only the
integral over the frequency e can be calculated exactly in
(70) ± (78). However, in most cases, it suffices to know the
expressions for the P- and Q-kernels in the limit of small q
(q5 pF) and o (o5D0). After integration with respect to e
has been done, the polarization operators QA

kl,Q
A
k0,Q

A
00,Q

D
1k,

and QD
10 become

QA
kl�q� �

1

m2

�
pk pl

��
1� x�xÿ � D2

0

e� eÿ

�
�nÿ ÿ n��

� e� ÿ eÿ
�o� id�2 ÿ �e� ÿ eÿ�2

�
�
1ÿ x�xÿ � D2

0

e�eÿ

�

��1ÿ nÿ ÿ n�� e� � eÿ
�o� id�2ÿ�e��eÿ�2

�
d3p

�2p�3 ;

�96�

QA
k0�q� �

1

m

�
pk

1

eÿe�

��
xÿe� � x�eÿ

�
�nÿ ÿ n��

� o� id

�o� id�2 ÿ �e� ÿ eÿ�2
� �x�eÿ ÿ xÿe��

� �1ÿ nÿ ÿ n�� o� id

�o� id�2 ÿ �e� � eÿ�2
�

d3p

�2p�3 ;

�97�

QA
00�q� �

���
1� x� xÿ ÿ D2

0

e�eÿ

�
�nÿ ÿ n��

� e� ÿ eÿ
�o� id�2 ÿ �e� ÿ eÿ�2

�
�
1ÿ x�xÿ ÿ D2

0

e�eÿ

�
� �1ÿ nÿ ÿ n�� e� � eÿ

�o� id�2 ÿ �e� � eÿ�2
�

d3p

�2p�3 ;

�98�

QD
1k�q��ÿ

1

m

�
pk

D0

2eÿe�

�
�nÿÿ n�� �o� id��e��eÿ�

�o� id�2ÿ�e�ÿ eÿ�2

ÿ �1ÿ nÿ ÿ n�� �o� id��e� ÿ eÿ�
�o� id�2 ÿ �e� � eÿ�2

�
d3p

�2p�3 ;

�99�

QD
10�q� � ÿ

�
D0

2eÿe�

�
�nÿ ÿ n�� �x� � xÿ��e� ÿ eÿ�

�o� id�2 ÿ �e� ÿ eÿ�2

ÿ �1ÿ nÿ ÿ n�� �x� � xÿ��e� � eÿ�
�o� id�2 ÿ �e� � eÿ�2

�
d3p

�2p�3 ;

�100�
where x� � xp�q=2, e� � ep�q=2, n� � np�q=2 , and d � �0.

We now analyze the explicit form of the kernels in specific
limit cases. We begin with the static case (o � 0).

To find the first London equation, we must know the
kernelQA

kl in the limit as q! 0. At a temperature T4Tc, this
kernel is given by

QA
kl�q! 0; 0� � dkl

2

3m2

�
p2
�
ÿ qnp

qep

�
d3p

�2p�3

� dkl
ns�T � ÿ n

m
: �101�

This formula is the definition of the superfluid electron
number density ns. Clearly, at T � 0, the quasiparticle
distribution function n�ep� � 0, and hence QA

kl ! 0 in the
given limit. If the temperature is equal to the transition
temperature, T � Tc, the order parameter vanishes and the
integral in (101) is given by

QA
kl�q! 0; 0� � dkl

2

3m2

�
p2
�
ÿ qn�xp�

qxp

�
d3p

�2p�3

� ÿdkl n
m
: �102�

This result could be expected for the normal state and is in full
agreement with identity (79).We note that in this case, ns � 0.

The polarization operator QA
00 found for the same limit

q! 0 contains all the necessary information about the static
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screening in the superconductor. We calculate it at T � 0 as

QA
00�q!0; 0� � ÿ

� �
1ÿ x2p ÿ D2

0

e2p

�
1

2ep

d3p

�2p�3

� ÿ
�

D2
0

�x2p � D2
0�3=2

d3p

�2p�3

� ÿN0

��1
ÿ1

d�x=D0�
�1� �x=D0�2�3=2

� ÿ2N0 ; �103�

where N0 is the density of states at the Fermi level.
For the kernels QA

kl and QA
k0 at absolute zero, finite

frequencies o 6� 0, and q � 0, the equality QA
kl�0;o� �

QA
k0�0;o� � 0 holds.
We now see whether the correction to the absolute value

of the order parameter, D1, can be neglected in the expression
for the linear response in the limit of small but finite o and q.
Allowing for the correction, D1 in the final expressions for the
electron number density functions dn, Eqns (26) and (28), and
the current density j, Eqns (27) and (29), results in replacing
the initial polarization operators by the polarization opera-
tors with a bar. From (22) and (23), it follows that the role
played by such a substitution is determined mainly by the
magnitude of the kernels QD

1 (we recall that the PA
1 are equal

to them up to a coefficient) and PD
2 (we have noted that

PD�
2 � 0). We find the expression for the kernel QD

10 (for
simplicity, we assume that T � 0):

QD
10�q;o� � ÿ

�
D0xp
2e3p

d3p

�2p�3

� ÿ 1

2

��1
ÿeF

x

�x2 � D2
0�3=2

N�x� eF� dx / ÿN0
D0

eF
: �104�

It follows from (104) that a small characteristic parameter
D0=eF emerges as a result of the calculation. The reason is that
in the zeroth order in D0=eF, the kernel QD

10 vanishes, because
the integrand is an odd function of x in this approximation,
and therefore the integration is performed within symmetric
limits. As a result, to within D0=eF, the quantity QD

0 proves to
be purely imaginary, i.e., QD

0 �q�� ÿQD�
0 �ÿq� � iQD

20�q�.
Reasoning along the same lines, we can easily show that
with the same approximation, we have PA

0 �q� �
ÿPA�

0 �ÿq� � PA
20 �q�, PD�q� � PD��ÿq� � PD

1 �q�, and
PD��q� � PD���ÿq�� PD�

1 �q�. We now calculate the rela-
tive contribution to the kernel Q

A
00 from the second term in

(22). Substituting (104) in (22), we obtain

QA
00 ÿQ

A

00

QA
00

� ÿ 2QD
10 gQ

D
10

QA
00�1�PD

1 �PD�
1 �

� g
��N0=2��D0=eF�

�2
gN 2

0

/
�
D0

eF

�2

5 1 : �105�

Thus, in the limit of small q ando, the correction toQA
00 due to

the second term in (22) is unessential. The same approach can
be used to show that the difference between the polarization
operators PA

2 and the operator P
A

2 given by (23) is small in
the parameter �D0=eF�2, which emerges, as in the previous
case, because the integrand in the expression forPD

2 is an odd
function (in the zeroth approximation) of x.

The above estimates show that not only the contribution
of the correction to the absolute value of the order parameter

is small in the expressions for the electron number density and
current density fluctuations, but the correction itself is also a
small quantity [see Eqn (24)].

We note that this result is not universal and to a great
extent emerges because for a quadratic dispersion law for the
free electrons, the density of states near the Fermi surface
changes slowly and can be assumed constant (N0). However,
the electron spectrum may be such that the density of states
has a singularity near the Fermi level, and therefore the
integrands in the expressions for the kernels QD

1k and PA
2 can

no longer be approximately considered odd functions of x (in
the above sense). In this case, the correction to the absolute
value of the order parameter and its contribution to j and dn
may become significant.
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