
Abstract. Electric field distribution in 2D self-dual media,
especially in nearly percolating media and LC circuits (low-
frequency filters), is viewed both from the physical (fluctua-
tions and absorption) and mathematical (stability) stand-
points. The finite energy absorption paradox occurring in such
systems of nonabsorbing elements is discussed.

1. Introduction

In these notes we examine two physical phenomena in the
electrodynamics of inhomogeneous media that have recently
attracted a lot of attention. One is the anomalously large
spatial fluctuations of local electric fields in randomly
inhomogeneous two-dimensional media at the percolation
threshold. The other is the anomalously large absorption of
energy in such media. In both cases we are dealing with two-
dimensional two-phase inhomogeneousmedia near and at the
percolation threshold, i.e., at critical phase concentration pc,
in conditions where the real part of the local conductivity of
the phases is small (ideally, equal to zero), while the imaginary
parts have different signs. It can be said that the medium
consists of inductance coils and capacitors, which are
characterized by permeability and permittivity. Films con-
sisting of metallic islets separated by dielectric regions
constitute an example of such media. The metallic areas of

the film possess inductances, while the dielectric areas (often
simply air) possess capacitances. The first exact solution to
the two-dimensional problem of the effective conductivity of
a two-phase medium (film) at equal concentrations of the
phases and their geometrically equivalent (on the average)
arrangement was found in Ref. [1]. In this case, the
restrictions on the phase conductivities were not imposed. In
particular, one of the phases may constitute an ideal
conductor, so that conductance has only a negative imagin-
ary part (inductance), while the second phase may constitute
an ideal capacitor (conductance has only a positive imaginary
part). According to Ref. [1], the conductance of such a
medium is on the whole real, i.e., a medium ``consisting of
imaginary resistors not leading to energy dissipation has a
real-valued equivalent resistivity, i.e., absorbs energy''. This
paradox is resolved if we allow for the fact that ``the source
energy is expended on resonantly exciting local vibrations.
Here, the presence of absorption, no matter how small, in the
system will lead to true (finite) energy dissipation'' [1]. For
media of dimensions smaller than the correlation radius, huge
fluctuations in the inhomogeneity of the local fields are
observed (e.g., see Refs [2 ± 4] and the review [5]). The
above-mentioned paradox, the `emergence' of a real-valued
part on the resistivity of amedium consisting of elements with
a purely imaginary part in their resistivity [1], is also present in
the simplest circuit theory comprising the theory of a ladder-
type filter (LC circuits) and continues to draw attention [6].
Diametrically opposite opinions concerning the existence of a
real-valued part of resistivity in a ladder-type filter within a
certain frequency range can be found in college physics
courses, which results in quite different explanations of how
such filters operate.

We begin, in Section 2, by examining the problem of
finding the effective conductivity of a two-dimensional two-
phase medium at the percolation threshold in the case of a
small or zero dissipative part in the phase conductivity. In
Section 3, we use the example of an implementation of such a
medium to show that there is deterministic chaos. In Section 4,
we examine the behavior of the conductivity of a hierarchic
network implementation of such media. Section 5 is devoted
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to a discussion. Finally, in Section 6 we briefly examine the
problem of the impedance of a ladder-type circuit.

2. Two-dimensional two-phase media
with a dual phase arrangement

For two-phase media with a geometrically equivalent (on the
average) arrangement of the phases, the following exact
expression for the effective conductivity se was derived in
Ref. [1]:

se � ����������
s1s2
p

: �1�

The phases with conductivities s1 and s2 in such media are
dual, i.e., interchanging of the phase conductivities s1 $ s2
does not affect the effective conductivity se. Examples of such
dual media, which we call D-media for brevity, comprise two-
dimensional randomly inhomogeneous media at the percola-
tion threshold pc � 0:5. We are speaking, of course, of the
case where for a randomly inhomogeneous medium one can
introduce the concept of effective conductivity, in particular,
for media whose dimensions L > x, where x is the correlation
length Ð that is, the length over which self-averaging occurs
(in our case, the self-averaging of effective conductivity). By
self-averaging we mean that in calculating (for each random
implementation) a quantity characterizing the system on the
whole, no additional averaging over implementations is
required.

Expression (1) was derived on the basis of the following
symmetry transformations first introduced in Ref. [1]:

~j � Ln� E ; ~E � Lÿ1n� j ; �2�

where n is a unit vector normal to the plane of the medium, j
and E are the current density and electric field strength in the
`parent' medium, respectively, and~j and ~E are the analogous
quantities in the dual medium (Fig. 1). The constant L is
found from the requirements that ~se � se andL2 � s1s2, and
of course the fields and currents in the `parent' and dualmedia
are related through Ohm's law: j � s�r�E and ~j � ~s�r�~E.
From the volume-averaged transformations (2), namely

h~j i � Ln� hEi ; h~Ei � Lÿ1n� h j i ; �3�

where h. . .i stands for an average over a volume whose
characteristic size is greater than the correlation length, it

follows that se � L, which with allowance for L2 � s1s2
yields (1).

When both phases have purely imaginary conductivities
of different signs, viz.

s1 � ÿiy ; s2 � ix ; x > 0 ; y > 0 ; �4�

where x � oc, and y � 1=ol, with c and l being the specific
capacitance and inductance of the material measured,
respectively, in farads and henries per cubic meter, equation
(1) yields

se � ������
xy
p �

���
c

l

r
: �5�

According to the last relationship, a medium consisting of
nondissipative elements (Re s1 � Re s2 � 0) is dissipative
with Re se > 0, which constitutes the paradox.

3. Hierarchic implementation of a D-medium

Let us examine an implementation of a D-medium obtained
throughwhat is known as themixing procedure [7 ± 10]. In the
first stage (Fig. 2a), the medium is `built up' from strips of
thicknesses d1 and d2 and conductivities s1 and s2, with, of
course, p=d1 � �1ÿ p�=d2, where p is the concentration of the
phase with the conductivity s1. Turning the strip thicknesses
to zero, i.e., homogenizing the medium, we get a `single
crystal' (Fig. 2b) with principal components of the conductiv-
ity tensor

s�1�jj � ps1 � �1ÿ p�s2 ; s�1�? �
s1s2

�1ÿ p�s1 � ps2
: �6�

Then, cutting this `single crystal' in longitudinal and
transverse directions into strips of thicknesses d1 and d2,
respectively, we fabricate a new `single crystal' (Fig. 2b),
whose principal components of the conductivity tensor are
s�2�jj and s�2�? . Doing this procedure n times, we notice at each
stage that

s�n�1�jj � ps�n�jj � �1ÿ p�s�n�? ; s�n�1�? �
s�n�jj s

�n�
?

ps�n�jj � �1ÿ p�s�n�?
:

�7�

Since the iterative procedure (7) has an invariant

I � s�n�1�jj s�n�1�? � s�n�jj s
�n�
? � s1s2

ps1 � �1ÿ p�s2
�1ÿ p�s1 � ps2

; �8�

the first equation in formulas (7) can be written down as

s�n�1�jj � ps�n�jj � �1ÿ p� I

s�n�jj
: �9�

In the `ordinary' case with Im s1 � Im s2 � 0, the mixing
procedure rapidly converges yielding the isotropic medium
with

se � ����������
s1s2
p

��������������������������������
ps1 � �1ÿ p�s2
�1ÿ p�s1 � ps2

s
: �10�

For phase concentration p � pc � 1=2, expression (10) is
reduced to Eqn (1), and the iteration procedure amounts to

s1

s2

D-point

j

n

~E

Figure 1. Two-phase dual medium. At the top is the `parent' medium, and

at the bottom is the dual medium, with n being a unit vector normal to the

plane of the medium. The dashed arrow points to one of the D-points. The

area with conductivity s1�s2� in the `parent' medium corresponds to the

area with s2�s1� in the dual medium.
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the method for calculating the square root by Newton's
method, which is a common in applied mathematics
(Fig. 3a). The inset to Fig. 3a shows how s�n�jj changes in the
course of the iteration procedure. In the case of conductivities
with a zero real part and imaginary parts of the same sign
(e.g., the medium consists of two media with different
dielectric constants), everything remains the same, to within
notation. But when the imaginary parts have opposite signs,
i.e., for Re s1 � Re s2 � 0 and Im s1 Im s2 < 0, the situation

changes dramatically (Fig. 3b). Allowing for the fact that
Re s�n�? � Re s�n�jj � 0 and introducing the notation for s�n�?
and s�n�jj similar to formulas (4):

s�n�? � ÿiYn ; s�n�jj � iXn ; ImXn � ImYn � 0 ; �11�

we arrive at an expression for the invariant I:

I � xy
pyÿ �1ÿ p� x
�1ÿ p� yÿ px

; �12�

and instead of the iteration process (9) we have the iteration
process

Xn�1 � pXn ÿ �1ÿ p� I

Xn
; �13�

whose fixed point X � is given by

X � � �
������
ÿI
p

: �14�

According to definition (11), ImXn � 0, with the result that
the fixed point X � exists only if I < 0, which is possible if any
of the two systems of inequalities

py > �1ÿ p� x
�1ÿ p� y < px

�
;

py < �1ÿ p� x
�1ÿ p� y > px

�
�15�

is satisfied (Fig. 4). The hatched regions in Fig. 4 correspond
to an empty set of solutions to systems (15), i.e., there is no
fixed point.

Thus, on the one hand, geometrically the medium that
exists at p � 1=2 is a D-medium but, on the other hand, as
Fig. 4 shows, there is no fixed point. If we write down the
mapping (9) in the form N�z� � �zÿ I=z�=2, Im I � 0,
Re I > 0, it can be shown (see Ref. [11]) that the imaginary
axis coincides with its Julia set JN which separates the basins
of attraction of stable fixed points� ��

I
p

. The mappingN�z� is
conjugate to the mapping R�u� � u2 obtained through the
substitution u � �z� ��

I
p �=�zÿ ��

I
p �. Here, the imaginary

axis (the Julia set) goes over into a unit circumference
whereon the dynamics is given by the mapping
r�y� � 2ymod2. The latter, as is well known (see Refs [11,
12]), generates chaotic dynamics.

Hence, as is evident from the foregoing account, when the
parameters of the medium land in the hatched area, the

b

s�1�k

s�1�?

c

d1 d1d2

pp 1ÿ p

s�1�k

s�1�k

s�1�k s�1�?

s�1�? s�1�?

a

d1 d1 d1d2 d2

1ÿ p p pp 1ÿ p

s1 s1 s1s2 s2

Figure 2. Procedure for the consecutive building (mixing) of a two-phase hierarchic medium with arbitrary phase concentration. In the first stage (a) the

medium consists of strips of the first (s1) and second (s2) phases with concentrations p and 1ÿ p; after homogenization (d1:2 ! 0) the medium becomes a

`single crystal' (b) with principal components s�1�jj and s�1�? of the conductivity tensor. The next stage (c) consists in homogenization of the medium

composed of strips cut from the `single crystal' fabricated in the previous stage.
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Figure 3. (a) One-dimensional mapping x! px� �1ÿ p� I=x (I � 0:02,
s1 � 1 and s2 � 0:02) of process (9) with concentration p � 1=2 in the

presence of a fixed point. Clearly, there is rapid convergence to��
I
p � ���������

0:02
p � 0:141. (b) One-dimensional mapping x!pxÿ �1ÿ p� I=x

(I � 0:125) of process (13) with concentration p � 0:4 and s1 � i and

s2 � ÿ0:5i; the inset shows the iteration process for these parameters.
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iteration process does not converge, and at p � 0:5 there
occurs strongly deterministic chaos. This means, among other
things, that self-averaging is lacking in the medium, i.e., the
correlation radius tends to infinity.

4. Hierarchic D-network

Let us examine one more implementation of a D-medium,
which is termed a hierarchic D-network (Fig. 5). After
introducing notation for the initial (zero) stage of building
up such a network, namely

R0�rx� � rxr1 � 2r1r2 � rxr2
r1 � 2rx � r2

; �16�

we can examine several different hierarchic networks Rn�r0�,
Rn�r1�, and Rn�r2�, which differ only in one resistor rx at the
`center' of the network. As Fig. 5 suggests, the iteration
processes for these three networks can be written in the
following way:

Rn�1�r0�� Rn�r0�Rn�r1� � 2Rn�r1�Rn�r2� � Rn�r0�Rn�r2�
Rn�r1� � 2Rn�r0� � Rn�r2�

�17�

for Rn�1�r0�, and similarly for Rn�r1� and Rn�r2�, with r1 and
r2 substituted for r0 in formula (17), respectively. The network
Rn�r0� at rx � r0 � ��������

r1r2
p

is a D-network for any number n,
and its resistance is exactly r0 � ��������

r1r2
p

. At Im r1 � Im r2 � 0,
one finds

lim
n!1 Rn�r1� � lim

n!1 Rn�r2� � ��������
r1r2
p

; Im r1 � Im r2 � 0 ;

�18�
as would be expected, since to within a single resistor (against
the background of n!1) the networks Rn�r1� and Rn�r2�
are D-networks as well.

When Re r1 � Re r2 � 0 and Im r1 Im r2 < 0, the net-
works Rn�r1� and Rn�r2� also differ from a D-network by a
single resistor, but here the transformation

Rn�1�r1� � Rn�r1� Rn�r1� � 3Rn�r2�
3Rn�r1� � Rn�r2� ;

Rn�1�r2� � Rn�r2� 3Rn�r1� � Rn�r2�
Rn�r1� � 3Rn�r2� �19�

has no fixed stable point, and the behavior of bothRn�r1� and
Rn�r2� is chaotic. If for Im r1 Im r2 < 0 the resistance rx is
set equal to real-valued resistance, rx � r0 � ��������

r1r2
p

, i.e., a
D-resistance, such a replacement of a single resistance in an
arbitrarily large network will change the behavior of the
network dramatically, since now a stable fixed point exists:

lim
n!1Rn�r0� � r0 � ��������

r1r2
p

; Im r1 Im r2 < 0 : �20�

Notice that if for rx we take a real-valued resistance that is not
equal to the D-resistance, i.e., rx 6� r0 � ��������

r1r2
p

, the sequence
Rn�rx; Im rx � 0� again begins to oscillate chaotically, but
around the `correct' value r0 � ��������

r1r2
p

, with the average value
hRn�rx�i tending to r0 as n increases:



Rn�rx�

� � lim
N!1

1

1�N

XN
n�0

Rn�rx� ! r0 � ��������
r1r2
p

: �21�

5. Discussion

Arkhincheev [13] proposed one further approach to the
problem of stability in D-media. From formulas (3) and the
definition of effective conductivity as the quantity that
couples the volume averages of the fields and currents, it
follows that ~se � L2=se [1]. Arkhincheev [13] interpreted this
relationship as the transformation f �Z� � L2=Z in the
complex domain whose fixed (stable or unstable) point
Z � � �L is the effective value. According to Banach's
contraction-mapping theorem (see, for example, Section 5.3
in Ref. [14]), the inequality j f 0�Z ��j < 1 establishes the
criterion of stability of the fixed point Z �. In our case

0

2

6

4

0.60.40.2 0.8 1.0
p

x=y

Figure 4. Plots of instability regions (hatched areas) of the mixing

procedure (13) versus the first phase concentration p and the conductivity

ratio x=y of the phases.

b

Rn�r1�

Rn�1�rx� �

Rn�r1�Rn�r2�

Rn�r2�

Rn�rx�

r1 r2

r2 r1

rxR0�rx� �

a

Figure 5. Hierarchic D-network. The initial (a) and nth (b) stages of

building up such a network.
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(Im s1 Im s2 < 0) we have j f 0�Z ��j � 1, i.e.,Z � is not a stable
fixed point. Indeed, for any Z as close to Z � as desired we
have f � f �Z�� � ZÐ that is, the mapping does not converge
to Z �, and so we are concerned with a focus rather than a
stable center. In Ref. [13], the transformation
Z! f �Z� � L2=Z is first written in the finite-difference form

Zn�1 ÿ Zn � f �Zn� ÿ Zn � F�Zn� ; �22�
after which it is written in the form of differential equations
[for the real and imaginary parts of expression (22)] with
respect to the independent variable n. If such a passage were
meaningful, then, according to the stability theory of
differential equations (e.g., see Section 1.2 in Ref. [14]), the
stability criterion Re�F 0�Z ��� < 0 would be met, since in the
case at hand Re�F 0�Z ��� � ÿ2. However, the passage to the
continuous case is not meaningful, which follows if only from
the equality Zn�2 � Zn.

For network implementations of D-media (here we are
dealing with ordinary networks and not with hierarchic
networks, which were examined in Section 4), the absence of
a definite value of se on a finite network for Im s1 Im s2 < 0
was first emphasized by Helsing and Grimvall [15]. They
found that at concentrations higher than pc there is a
continuous path from one contact to another (from `ÿ1' to
`1') from both `left to right' and `bottom to top' along
couplings that are inductance coils. However, the effective
conductivity of amediummay be greater or smaller than zero,
depending on the conductivities of the network elements, i.e.,
is either a capacitance or an inductance. In network media at
concentrations not equal to the threshold one, the reciprocal
relation se~se � L2 [1] means that if the effective conductivity
of the `parent' medium is of the capacitance type (Im se > 0),
then that of the reciprocal medium is of the inductance type
(Im se < 0). At concentrations tending to the threshold value,
nothing changes and, in the final analysis, the effective
conductivities of the `parent' and dual media remain with
different signs. On the other hand, in network media at the
percolation threshold, if they are D-media, there is always at
least one element (coupling) with a conductivity equal neither
to the conductivity of the first phase nor the conductivity of
the second phase (Fig. 6). The conductivity of this D-coupling

is
����������
s1s2
p

(see the details in Refs [15, 16]). In the continuum
two-phase case of D-media, these couplings degenerate into
points; the arrow in Fig. 1 points to just such a point. If there
is no such a D-coupling, then for Res1;2 � 0 and
Im s1 Im s2 < 0 the network is not a dual one, and, for one
thing, the conductances from `left to right' and from `bottom
to top' will be of opposite signs: along one direction, the
medium will be a `capacitor', and along another direction, an
`inductor'. But if there is aD-coupling, then, strictly speaking,
the medium is not a D-medium consisting of two phases. The
larger the medium, the smaller the effect of this coupling. This
proves to be true for Im s1 Im s2 < 0 only if Re s1;2 6� 0.

Now let us see how absorption emerges in a D-medium as
x!1 atRe s1;2 � 0, i.e., how effective conductivity takes on
a real value. The answer is simple: as x!1 the conductivity
fluctuates and its real part is finite. Clearly, the addition of a
real term (as small as desired) to s1 or s2 makes the iteration
process (13) discussed in Section 3 stable. Now, the process
converges to the real value����������

s1s2
p �

�������������������������������������������������������������������
�Re s1 � iIm s1��Re s2 � iIm s2�

p
�

���������������������������
ÿIm s1 Im s2

p
(in which we can disregard small `seeding' real-valued terms).
Figure 7 shows how small fluctuations lead out the phase
point (in the fRe sÿ Im sg space) from the Im s-axis, where
it performed chaotic jumps (Fig. 3b), onto a path that
converges to the real axis. Thus, we have two limiting
processes x!1 and Re s1;2 ! 0 that occur simulta-
neously, and these processes cannot be interchanged. For a
finite-size medium, the number of elements (couplings and
size of the medium) will compete with the real part of the
conductivity. If the number of elements `loses' this competi-
tion, there is no self-averaging in the medium and the given
random fractal implementation occurs (the reader will recall
that media at the percolation threshold have a fractal
structure) [17, 18]. Naturally, in such a medium, which on

1 2

D-coupling

Figure 6. One possible implementation of a finite-size D-network [15].

Black rectangles stand for resistors z1, and white rectangles stand for

resistors z2. At the center of the network there is a D-coupling, which in

order to meet the network variant of the transformations (2) and (3)

and the condition ~se � se must have a resistance equal to
���������
z1z2
p

. The

D-coupling (resistor) is a network analog of D-points in the continuous

case (see Fig. 1).

Im
�s

n
�
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ÿ20

ÿ10
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30
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Re �sn�
10

Figure 7. `Phase' paths of the iteration process (9) in the fIm sÿRe sg
space for small real `seeding' parts in the phase conductivities and a con-

centration p � 0:5. The broken dashed line corresponds to s1 � 0:038ÿ 5i

and s2 � 0:1� 40i; the solid line corresponds to s1 � 0:1ÿ 10i and

s2�0:1� 20i, and the dotted line corresponds to s1 � 0:056ÿ 6:667i and
s2 � 0:1� 30i. The phase paths rapidly converge to the real axis, precisely,

to
����������
s1s2
p �2

�������������������������������������������������������������������Re s1� iIms1��Re s2� iIm s2�
p � ���������������������������ÿIm s1 Ims2

p �14:14,
and the small `seeding' parts in the initial conductivities can be ignored in

the process.
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the average is inhomogeneous, there are large spatial
fluctuations, including fluctuations of Joule heat release,
absorption, higher moments of the current distribution, and
so forth [2 ± 5].

It goes without saying that more refined methods are
needed in order to do quantitative calculations of the
distribution of local fields and their moments. Sarychev and
Shalaev [5] found that the problem of the potential's
distribution coincides with that of Anderson localization on
a network with purely imaginary conductivities of the
couplings. A small real term added to the imaginary part of
the conductivity of the metallic phase can be taken into
account perturbatively. Such an approach has been used, in
particular, to calculate the correlation lengthwhich proved to
be proportional to 1=

������������
Re s1
p

(for the two-dimensional case).
Thus, in the case of purely imaginary phases, the correlation
length diverges: x�Re s1 ! 0� ! 1, a result that also follows
from the above reasoning.

6. Ladder-type filter (LC circuit)

Now, let us turn to the problem of the impedance of a ladder-
type LC circuit, a well-known problem from college physics
courses (Fig. 8). What is amazing is that even the standard
physics courses, such as Feynman et al. [19] and Sivukhin [20],
give different solutions to this problem. And this is even more
amazing if we account for the fact that an LC circuit is the
simplest possible filter used in innumerable real devices.

The impedance Z of an infinite ladder-type circuit can be
found by building such a circuit one element after another and
writing the expression for Zn�1 as

Zn�1� f �Zn� ; f �Zn� � z1 � Zn z2
Zn � z2

; n �1; 2; . . . ;1 ;

�23�

where z1 and z2 are complex-valued resistances, or conduc-
tances, of the circuit elements.

For all values of z1 and z2 there is always a fixed point Z �

determined by the equation Z � � f �Z��:

Z � � z1
2
�

������������������
z21
4
� z1z2

r
: �24�

If the fixed pointZ � is stable, an infinite ladder-type chain has
an impedance Z that is found from a passage to the limit
limn!1 Zn � Z �. In the opposite case (an unstable fixed
point), the limit (limn!1 Zn) does not exist (Fig. 9; see a
similar figure in Ref. [6]) and it is meaningless to speak of the
impedance of an infinite chain.

Analysis of formulas (23) shows that in the ideal case of
purely imaginary impedances (the chain consists of induc-
tance coils and capacitors with zero ohmic resistances) for
certain values of z1 and z2 there is no fixed stable point Z �.

Indeed, the fixed point Z � of the iteration process (23) is
stable [12] if���� df�Zn�

dZn

����
Zn�Z �

< 1 : �25�

In our case, one obtains���� df�Zn�
dZn

����
Zn�Z�

�
���� 1

�1� Z �=z2�2
����

� 4����2� z1=z2 �
�����������������������������������
�z1=z2�2 � 4z1=z2

q �2��� : �26�

Introducing the notation t � ÿz1=z2, we can rewrite condi-
tion (25) as follows:

F �t� � 4����2ÿ t�
��������������
t 2 ÿ 4t
p �2��� < 1 : �27�

For t real, the behavior of the function F �t� in the range

04 t4 4 �28�

is somewhat unexpected (this can easily be checked) Ð it is
independent of t and is equal to exactly 1. Thus, the inequality
(27) is not met and the fixed point is not stable. Note that the
addition of a real term (as small as desired) to z1 or z2 always
makes the fixed point stable, which can be explained by the
fact that a system with F �t� � 1 is on the verge of stability,
and only an arbitrarily small shift is needed for the iteration
sequence (23) to acquire a fixed stable point. The stable point
exists for t < 0 and is given by

Z � � 1

2

�
z1 �

���������������������
z21 � 4z1z2

q �
; t < 0 ; �29�

while for t > 4 the stable point resides at

Z � � 1

2

�
z1 ÿ

���������������������
z21 � 4z1z2

q �
; t > 4 : �30�

Notice the different signs in front of the square root 1 in
formulas (29) and (30).

z1z1 z1 z1

z2 z2 z2 z2

Figure 8. Infinite ladder-type LC circuit (filter) with z1 � ioL and

z2 � 1=ioC.
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t � ÿz1=z2 � 3:2

Im
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�

Figure 9. Chaotic dependence of the impedance of a ladder-type circuit on

the number n of elements. The parameter t is selected equal to

ÿz2=z2 � 3:2 and, according to the criterion (28), is within the instability

range.

1 Van Enk [6] failed to notice that in calculating the fixed point for t > 4,
the sign in front of the square root must be minus.
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Let us examine in greater detail the case of pure
imaginaries z1 and z2 with opposite signs. When z1 � ioL
and z2 � 1=ioC, expressions (27) and (29) suggest that for

o > o0 � 2�������
LC
p �31�

the fixed point is stable and the impedance of the infinite
circuit exists and, as expected, is purely imaginary:

Z � � i

�
oL
2
�

��������������������
o2L2

4
ÿ L

C

r �
: �32�

For the frequency range

o < o0 � 2�������
LC
p ; �33�

there is no fixed stable point and, hence, the concept of the
impedance of an infinite circuit becomes meaningless. There-
fore, the statement made by Feynman et al. in the lecture
course [19] that by looking at an infinite circuit from the
terminal a 0 one would see the characteristic impedance
Z0 �

�������������������������������
L=Cÿ o2L2=4

p
is erroneous. To continue, the same

authors claim that the impedance at low frequencies is pure
resistance and, therefore, energy is absorbed. Thus, according
to Feynman et al. [19], the transmission of a filter at low
frequencies is related to the absorption of energy at these
frequencies caused by dissipation (ReZ0 > 0). Later, how-
ever, the authors make a quite valid statement that when the
source is coupled to the circuit, it must first supply energy to
the first inductor and capacitor pair, then to the second pair,
third, and so on. In circuits of this type energy constantly (and
at a permanent rate) is `sucked' from the generator and
continuously flows into the circuit. The energy is stored in
the inductance coils and capacitors.

We can say that the filter absorbs energy but that there is
no dissipation, i.e., we must clearly distinguish between the
absorption of energy by a medium consisting of LC elements
with dissipation and without dissipation. The point is that in
Ref. [19] the characteristic impedance Z0 was found by
solving a quadratic equation under the (incorrect) assump-
tion that the impedance of a network consisting of n sections
converges (for o < o0). Van Enk [6] examined the behavior
of Zn in the limit of n!1 as a function of the values of z1
and z2. As expected, at z1 � ioL and z2 � 1=ioC in the
o < o0 range the impedance Zn converges. The range
o < o0 conforms to the filter transmission band. In Ref. [6],
the filter transmission in this range is related (as in Ref. [19])
to the presence of dissipation in the system. In answering his
own question: ``How can equation (29) give 2 the right answer
in practice when we just argued that this equation is
incorrect?'', van Enk says that ``a realistic inductor has an
internal resistance r 6� 0''. In this case, the problem of the
convergence of Zn as n!1 is, of course, resolved. If z1 and/
or z2 comprises an arbitrarily small real part, the character-
istic impedance Z0 �

�������������������������������
L=Cÿ o2L2=4

p
exists. However, in

realistic filters with a finite number of elements (often this
number is very small), a small real part in z1 and/or z2 can,
obviously, change nothing. Hence, the `existence' of
Z0 �

�������������������������������
L=Cÿ o2L2=4

p
cannot be used as an explanation for

the transmission of a filter.

Actually, and this is a well-known fact (e.g., see Ref. [21]),
for a finite filter consisting of n sections with purely imaginary
elements there are two solutions that relate the input voltage
U�t� � U0 cosot and the output voltage Un�t�. The first
solution, valid for the transmission band, has the form

Un�t� � U0
cos b=2

cos�n� 1=2�b cosot ;

cos b � 1ÿ LCo2 ; o < o0 � 2�������
LC
p : �34�

At frequencies o5o0, we have Un�t� � U0 cosot, i.e., a
filter consisting of purely reactive elements with a finite
number of constituents (this number can be very small)
transmits the signal without distortions. At other frequencies
belonging to the range o < o0, the transmission is nonuni-
form, but still the system is not `cut off'.

The second solution in the range o > o0 takes the form

Un�t� � U0�ÿ1�n

� exp�x=2� ÿ exp�ÿx=2�
exp

��n� 1=2�x�ÿ exp
�ÿ �n� 1=2�x� cos�ot� ; �35�

where x can be found by solving the equation
cosh x � j1ÿ LCo2=2j.

Relation (35) clearly shows that the amplitude of the
output signal decreases exponentially as the number n of
sections in the circuit grows, and when this number is
sufficiently large, we can write

Un�t� � U0�ÿ1�n
�
exp

�
x
2

�
ÿ exp

�
ÿ x
2

��
� exp

�
ÿ
�
n� 1

2

�
x
�
cos�ot� ; �36�

that is, the signal is blocked and the filter does not transmit a
signal with frequencies higher than the critical ones.

A qualitative description of the operation of a filter
amounts to the following. Within the transmission band
there are resonances, and in a finite circuit the transmitted
frequencies are close to the resonances, but in an infinite
circuit the resonances merge and all transmitted frequencies
coincide with resonance frequencies.
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